等腰三角形的性质练习题及答案

合集下载

等腰三角形性质定理(基础)巩固练习含答案

等腰三角形性质定理(基础)巩固练习含答案

【巩固练习】一.选择题1. 已知一个等腰三角形两边长分别为5,6,则它的周长为( )A.16 B.17C.16或17D.10或122.已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为()A.50°B.80° C.50°或80°D.40°或65°3. 将两个全等的且有一个角为30°的直角三角形拼成如图所示形状,两条长直角边在同一条直线上,则图中等腰三角形的个数是()A. 4个B. 3个C. 2个D. 1个4. 已知实数x,y满足|x−4|+(y−8)2=0,则以x,y的值为两边长的等腰三角形的周长是()A.20或16 B.20 C.16 D.以上答案均不对∆沿过D的直线折叠,使点A落在BC上F处,若5. 如图,D是AB边上的中点,将ABC∠度数是()∠=︒,则BDFB50A.60° B.70° C.80° D.不确定6. (2016•滨州)如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A.50° B.51°C.51.5°D.52.5°二.填空题7.如图,△ABC中,D为AC边上一点,AD=BD=BC,若∠A=40°,则∠CBD=_____°.8.(2016•泰州)如图,已知直线l1∥l2,将等边三角形如图放置,若∠α=40°,则∠β等于.9. 如图,△ABC是等腰直角三角形,∠C=90°,BD平分∠CBA交AC于点D,DE⊥AB于E.若△ADE的周长为8cm,则AB =_________cm.10.在等腰△ABC中,AB=AC,中线BD将三角形的周长分成了15和18两个部分,则底边长BC= .11. 如图,AE∥BD,C是BD上的点,且AB=BC,∠ACD=110°,则∠EAB=______度.12. 如图,△ABC的周长为32,且AB=AC,AD⊥BC于D,△ACD的周长为24,那么AD的长为 .三.解答题13.已知:如图,ΔABC中,AB=AC,D是AB上一点,延长CA至E,使AE=AD.试确定ED与BC的位置关系,并证明你的结论.14. 如图,DE是△ABC边AB的垂直平分线,分别交AB、BC于D、E.AE平分∠BAC.设∠B=x(单位:度),∠C=y(单位:度).请讨论当△ABC为等腰三角形时,∠B为多少度?15.如图,在△ABC 中,AB=AC ,D 是BC 上任意一点,过D 分别向AB ,AC 引垂线,垂足分别为E ,F ,CG 是AB 边上的高.DE ,DF ,CG 的长之间存在着怎样的等量关系?并加以证明.【答案与解析】一.选择题1. 【答案】C ;【解析】注意分类讨论.2. 【答案】C ;【解析】解:如图所示,△ABC 中,AB=AC .有两种情况:①顶角∠A=50°;②当底角是50°时,∵AB=AC,∴∠B=∠C=50°,∵∠A+∠B+∠C=180°,∴∠A=180°﹣50°﹣50°=80°,∴这个等腰三角形的顶角为50°和80°.故选:C .3. 【答案】B ;4. 【答案】B ;【解析】根据题意得4080x y -⎧⎨-⎩==,解得48x y =⎧⎨=⎩. (1)若4是腰长,则三角形的三边长为:4、4、8,不能组成三角形;(2)若4是底边长,则三角形的三边长为:4、8、8,能组成三角形,周长为4+8+8=20.故选B .5. 【答案】C ;【解析】AD =DF =BD ,∠B =∠BFD =50°,BDF ∠=180°-50°-50°=80°.6. 【答案】D ;【解析】根据等腰三角形的性质推出∠A=∠CDA=50°,∠B=∠DCB ,∠BDE=∠BED ,根据三角形的外角性质求出∠B=25°,由三角形的内角和定理求出∠BDE ,根据平角的定义即可求出选项.二.填空题7. 【答案】20;【解析】∠A =∠ABD =40°,∠BDC =∠C =80°,所以∠CBD =20°.8.【答案】20°;【解析】解:过点A 作AD ∥l 1,如图,则∠BAD=∠β.∵l 1∥l 2,∴AD ∥l 2,∵∠DAC=∠α=40°.∵△ABC 是等边三角形,∴∠BAC=60°,∴∠β=∠BAD=∠BAC ﹣∠DAC=60°﹣40°=20°.故答案为20°.9. 【答案】8;【解析】DE =DC ,AC =BC =BE ,△ADE 的周长=AD +DE +AE =AC +AE =AB =8.10.【答案】9或13;【解析】解:设等腰三角形的底边长为x ,腰长为y ,则根据题意,得或,解得或,经检验,这两组解均能构成三角形,所以底边长为9或13.故答案为:9或13.11.【答案】40;【解析】解:∵AB=BC ,∴∠ACB=∠BAC∵∠ACD=110°∴∠ACB=∠BAC=70°∴∠B=∠40°,∵AE ∥BD ,∴∠EAB=40°,故答案为40.12.【答案】8;【解析】解:∵AB=AC ,AD ⊥BC ,∴BD=DC .∵AB+AC+BC=32,即AB+BD+CD+AC=32,∴AC+DC=16∴AC+DC+AD=24∴AD=8.故填8.三.解答题13.【解析】证明:ED ⊥BC ;延长ED ,交BC 边于H ,∵AB =AC ,AE =AD .∴设∠B =∠C =x ,则∠EAD =2x ,∴∠ADE =1802902xx ︒-=︒-即∠BDH =90°-x∴∠B +∠BDH =x +90°-x =90°,∴∠BHD =90°,ED ⊥BC.14.【解析】 解:由题意可知,AC ≠BC ,若 AB=AC ,此时,x=y ,即:180-3x=x ,得:x=45°;若 AB=BC ,此时,2x=y ,即:180-3x=2x ,得:x=36°.∴当△ABC 为等腰三角形时,∠B 分别为45°或36°.15.【解析】解:CG=DE+DF.理由如下:如图,连接AD,∵S△ABC=S△ABD+S△ACD,∴AB•CG=AC•DE+AB•DF,∴AB=AC,∴CG=DE+DF.。

等腰三角形练习题(含答案)

等腰三角形练习题(含答案)

等腰三角形练习题(含答案)等腰三角形第1课时:等腰三角形的性质1.已知等腰三角形的一个底角为50°,则其顶角为80°。

2.如图,△ABC中,AB=AC,BC=6cm,AD平分∠BAC,则BD=3cm。

3.如图,△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C的度数为45°。

4.已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为80°。

5.如图,在△ABC中,D是BC边上一点,且AB=AD=DC,∠BAD=40°,求∠C的度数为100°。

6.如图,△ABC中,AB=AC,D是BC的中点,E,F分别是AB,AC上的点,且AE=AF。

证明:DE=DF。

第2课时:等腰三角形的判定1.在△ABC中,∠A=40°,∠B=70°,则△ABC为钝角三角形。

2.已知△ABC中,∠B=50°,∠A=80°,AB=5cm,则AC=5cm。

3.如图,在△ABC中,AD⊥BC于点D,且BD=DC,则△ABC为等腰三角形。

4.如图,已知△ABC中,∠A=36°,AB=AC,BD为∠ABC的平分线,则图中共有2个等腰三角形。

5.如图,D是△XXX的BC边上的中点,DE⊥AC,DF⊥AB,垂足分别是E,F,且DE=DF。

证明:AB=AC。

6.如图,AB∥CD,直线l交AB于点E,交CD于点F,FG平分∠EFD交直线AB于点G。

证明:△EFG是等腰三角形。

等边三角形第1课时:等边三角形的性质与判定1.如图,a∥b,等边△ABC的顶点B,C在直线b上,则∠1的度数为60°。

2.在△ABC中,∠A=60°,现有下面三个条件:①AB=AC;②∠B=∠C;③∠A=∠B。

能判定△ABC为等边三角形的有条件①、②、③。

3.如图,在等边△ABC中,BD⊥AC于D,若AB=4,则AD=2.4.如图,△ABC是等边三角形,∠CBD=90°,BD=BC,连接AD交BC于点E,求∠BAD的度数为75°。

等腰三角形的性质练习(含答案)

等腰三角形的性质练习(含答案)

等腰三角形的性质练习(含答案)等腰三角形的性质1.选择题:1) 等腰三角形的底角与相邻外角的关系是()A。

底角大于相邻外角 B。

底角小于相邻外角C。

底角大于或等于相邻外角 D。

底角小于或等于相邻外角2) 等腰三角形的一个内角等于100°,则另两个内角的度数分别为()A。

40°,40° B。

100°,20°C。

50°,50° D。

40°,40°或100°,20°3) 等腰三角形中的一个外角等于100°,则这个三角形的三个内角分别为()A。

50°,50°,80° B。

80°,80°,20°C。

100°,100°,20° D。

50°,50°,80°或80°,80°,20°4) 如果一个等腰三角形的一个底角比顶角大15°,那么顶角为()A。

45° B。

40° C。

55° D。

50°5) 等腰三角形一腰上的高与底边所成的角等于()A。

顶角 B。

顶角的一半C。

顶角的2倍 D。

底角的一半6) 已知:如图1所示,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A的度数为()A。

30° B。

45° C。

36° D。

72°2.填空题:1) 如图2所示,在△ABC中,①因为AB=AC,所以∠A=∠C;②因为AB=AC,∠1=∠2,所以BD=BC,BD⊥AC.2) 若等腰三角形的顶角与一个底角之和为110°,则顶角的度数为70°.3) 已知等腰三角形的一个角是80°,则顶角为20°.4) 在等腰三角形ABC中,一腰上的高是1cm,这条高与底边的夹角是45°,则△ABC的面积为1/2 cm².5) 如图3所示,O为△ABC内一点,且OA=OB=OC,∠ABO=20°,∠BCO=30°,则∠CAO=30°.3.等腰三角形两个内角的度数比为4:1,求其各个角的度数.设两个内角的度数为4x和x,则三角形的第三个角的度数为180°-5x.因为三角形内角和为180°,所以4x+4x+180°-5x=180°,解得x=36°,因此两个内角的度数分别为144°和36°,第三个角的度数为100°.4.如图,已知线段a和c,用圆规和直尺作等腰三角形ABC,使等腰三角形△ABC以a和c为两边,这样的三角形能作无数个.5.如图,在△ABC中,D是BC边上一点,AD=BD,AB=AC=CD,求∠BAC的度数.连接AD和AC,因为AD=BD,AB=AC,所以△ABD≌△ACD,故∠ABD=∠ACD.又因为AB=CD,所以△ABC为等腰三角形,所以∠BAC=180°-∠ABC=180°-2∠ABD=80°.6.如图所示,AB=AE,∠ABC=∠AED,BC=ED,点F是CD的中点.1) AF与CD不垂直.因为∠ABC=∠AED,所以△ABC≌△AED,故AB=AE,又因为BC=ED,所以AC=AD,所以AF垂直于BC的中点,而CD的中点是F,所以AF与CD不垂直.二、拓展延伸训练右下图是人字型层架的设计图,由AB、AC、BC、AD四根钢条焊接而成,其中A、B、C、D均为焊接点,且AB=AC,D为BC的中点,现在焊接所需的四根钢条已截好,且已标出BC的中点D。

初二数学等腰三角形的性质试题答案及解析

初二数学等腰三角形的性质试题答案及解析

初二数学等腰三角形的性质试题答案及解析1.如图,△ABC中,∠B,∠C的平分线相交于O点,作MN∥BC,EF∥AB,GH∥AC,BC=a,AC=b,AB=c,则△GMO的周长+△ENO的周长-△FHO的周长= .【答案】b+c-a【解析】由角平分线及平行线可得等腰三角形,进而得边长相等,再通过转化,即可得出结论.∵OB、OC分别平分∠ABC、∠ACB,MN∥BC,EF∥AB,GH∥AC,∴OM=BM,ON=NC,OG=AE,OE=AG,∴△GMO周长+△ENO的周长-△FHO的周长=OG+OM+GM+OE+ON+EN-OH-OF-FH=AE+EN+NC+BM+GM+AG-HC-FH-BF=b+c-a,故应填b+c-a.【考点】本题主要考查角平分线的性质,平行线的性质点评:解答本题的关键是掌握由角平分线及平行线可得等腰三角形,再通过转化求解。

2.△ABC中,AB=AC,∠A=∠C,则∠B=_______.【答案】60°【解析】由AB=AC根据等边对等角可得∠B=∠C,即可得到∠A=∠B=∠C,再根据三角形的内角和180°即可求得结果。

∵AB=AC,∴∠B=∠C,∵∠A=∠C,∴∠A=∠B=∠C,∵∠A+∠B+∠C=180°,∴∠A=∠B=∠C=60°,故答案为60°.【考点】本题考查的是等腰三角形的性质,三角形的内角和定理点评:解答本题的关键是根据等边对等角得到∠A=∠B=∠C.3.如图,Rt△ACB中,∠ACB=90°,点D、E在AB上,AC=AD,BE=BC,则∠DCE等于()A、45°B、60°C、50°D、65°【答案】A【解析】根据等腰三角形的性质可得到几组相等的角,再根据三角形内角和定理可分别表示出∠ACD,∠BCE,再根据角之间的关系,不难求得∠DCE的度数.∵AC=AD,BC=BE∴∠ACD=∠ADC,∠BCE=∠BEC∴∠ACD=(180°-∠A),∠BCE=(180°-∠B)∴∠DCE=∠ACD+∠BCE-∠ACB=90°-(∠A+∠B)∵∠A+∠B=90°∴∠DCE=45°故选A.【考点】此题主要考查等腰三角形的性质及三角形内角和定理的综合运用点评:解答本题的关键是熟练掌握等腰三角形的性质及三角形内角和定理的综合运用。

等腰三角形的性质及判定含答案

等腰三角形的性质及判定含答案

等腰三角形的性质及判定一.选择题(共30小题)1.如图,已知AB=AC=BD,那么()A.∠1=∠2B.2∠1+∠2=180°C.∠1+3∠2=180°D.3∠1﹣∠2=180°2.如图,△ABC中,CA=CB,∠A=20°,则三角形的外角∠BCD的度数是()A.20°B.40°C.50°D.140°3.若C也是图中的格点,且使得△ABC为等腰三角形,则符合条件的点C有()个.A.2个B.3个C.4个D.5个4.如果某等腰三角形的两条边长分别为4和8,那么它的周长为()A.16B.20C.20或16D.不确定5.△ABC中,AB=AC,顶角是120°,则一个底角等于()A.120°B.90°C.60°D.30°6.已知等腰三角形ABC的两边满足+|6﹣BC|=0,则此三角形的周长为()A.12B.15C.12或15D.不能确定7.如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上(不含端点B,C)的动点.若线段AD长为正整数,则点D的个数共有()A.5个B.3个C.2个D.1个8.已知等腰三角形的两边长分别为6和1,则这个等腰三角形的周长为()A.13B.8C.10D.8或139.若等腰三角形的周长为26cm,底边为11cm,则腰长为()A.11cm B.11cm或7.5cmC.7.5cm D.以上都不对10.若实数m、n满足|m﹣3|+(n﹣6)2=0,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()A.12B.15C.12或15D.911.已知△ABC中,∠ACB=90°,AC=8,BC=6.在射线BC上取一点D,使得△ABD 为等腰三角形,这样的等腰三角形有几个?()A.2个B.3个C.4个D.5个12.若等腰三角形的一边长等于6,另一边长等于4,则它的周长等于()A.15或17B.16C.14D.14或1613.若等腰三角形的顶角为70°,则它的一个底角度数为()A.70°或55°B.55°C.70°D.65°14.如图,在3×3的正方形网格中,点A、B在格点上,要找一个格点C,使△ABC是等腰三角形(AB是其中一腰),则图中符合条件的格点有()A.2个B.3个C.4个D.5个15.等腰三角形的一个角是30°,则这个等腰三角形的底角为()A.75°B.30°C.75°或30°D.不能确定16.如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于E,CD平分∠ACB 交BE于D,图中等腰三角形的个数是()A.3个B.4个C.5个D.6个17.如图,直线l1,l2相交于点A,点B是直线外一点,在直线l1,l2上找一点C,使△ABC 为一个等腰三角形,满足条件的点C有()A.2个B.4个C.6个D.8个18.如图,已知OA=OB=OC,BC∥AO,若∠A=36°,则∠B等于()A.54°B.60°C.72°D.76°19.如图,△ABC中,∠B=∠C,BD=CD,则下列判断不一定正确的是()A.AB=AC B.AD⊥BCC.∠BAD=∠CAD D.△ABC是等边三角形20.等腰三角形的边长为2和3,那么它的周长为()A.8B.7C.8或7D.以上都不对21.等腰三角形的顶角是40°,则它的底角是()A.55°B.70°C.40°或70°D.55°或70°22.如图所示,在三角形ABC中,AB=AC,∠BAC=108°,在BC上分别取点D,E使∠BAD=∠B,∠CAE=∠C,则图中的等腰三角形有()A.3个B.4个C.5个D.6个23.三角形三个内角的比是∠A:∠B:∠C=1:1:2,则△ABC是()A.等腰三角形B.等腰直角三角形C.等边三角形D.不能确定24.小方画了一个有两边长为3和5的等腰三角形,则这个等腰三角形的周长为()A.11B.13C.8D.11或1325.如图钢架中,∠A=a,焊上等长的钢条P1P2,P2P3,P3P4,P4P5…来加固钢架.若P1A =P1P2,且恰好用了4根钢条,则α的取值范围是()A.15°≤a<18°B.15°<a≤18°C.18°≤a<22.5°D.18°<a≤22.5°26.已知等腰△ABC中,∠A=120°,则底角的大小为()A.60°B.30°或120°C.120°D.30°27.如图,在△ABC中,AB=AC=13,该三角形的面积为65,点D是边BC上任意一点,则点D分别到边AB,AC的距离之和等于()A.5B.6.5C.9D.1028.如图,直线L1∥L2,点A、B在L1上,点C在L2上,若AB=AC、∠ABC=70°,则∠1的大小为()A.20°B.40°C.35°D.70°29.若等腰△ABC中有一个内角为40°,则这个等腰三角形的一个底角的度数为()A.40°B.100°C.40°或100°D.40°或70°30.等腰三角形的周长为18,其中一条边的长为8,则另两条边的长是()A.5、5B.2、8C.5、5或2、8D.以上结果都不对二.填空题(共15小题)31.等腰三角形的一个内角为30°,那么其它两个角的度数为______.32.已知AD是△ABC的高,若AB=AC,BC=4,则CD=______,33.如图,在平面直角坐标系中,点A,B分别在y轴和x轴上,∠ABO=60°,在y轴上找一点P,使△P AB是等腰三角形,则符合条件的P点共有______个.34.如图,直线a、b相交于点O,∠1=50°,点A在直线a上,直线b上存在点B,使以点O、A、B为顶点的三角形是等腰三角形,这样的B点有______.35.若等腰三角形的两边的长分别为3和10,则它的周长为______.36.如果等腰三角形的两边长分别是6、8,那么它的周长是______.37.如图,Rt△ABC中,AC⊥BC,AE=AO,BF=BO,则∠EOF的度数是______.38.等腰△ABC的边长分别为6和8,则△ABC的周长为______.39.已知等腰三角形中顶角的度数是底角的3倍,那么底角的度数是______.40.已知等腰三角形的周长为20,底长为x,则x的取值范围是______.41.用一条长为20cm的细绳围成一个等腰三角形,已知一边长是另一边长的2倍,则腰长为______cm.42.如图,△ABC中,AB=AC,D、E是BC边上两点,AD=AE,BE=6,DE=4,则EC =______.43.如图,△ABC中,AB=AC,∠C═30°,DA⊥BA于点A,BC=16cm,则AD=______.44.如图,AB=AC=CD,∠BAC=56°,则∠B=______,∠D=______.45.如图,已知每个小方格的边长为1,A,B两点都在小方格的顶点上,请在图中找一个顶点C,使△ABC为等腰三角形,则这样的顶点C有______个.三.解答题(共5小题)46.如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.47.在△ABC中,AD平分∠BAC,E是BC上一点,BE=CD,EF∥AD交AB于F点,交CA的延长线于P,CH∥AB交AD的延长线于点H,①求证:△APF是等腰三角形;②猜想AB与PC的大小有什么关系?证明你的猜想.48.如图,在△ABC中,AB=AC,点D在BC上,且BD=BA,点E在BC的延长线上,且CE=CA.(1)若∠BAC=90°(图1),求∠DAE的度数;(2)若∠BAC=120°(图2),求∠DAE的度数;(3)当∠BAC>90°时,探求∠DAE与∠BAC之间的数量关系,直接写出结果.49.已知等腰三角形的周长为24cm,其中两边之差为6cm,求这个等腰三角形的腰长.50.如图,在△ABC中,AB=AC,CE平分∠ACB,EC=EA.(1)求∠A的度数;(2)若BD⊥AC,垂足为D,BD交EC于点F,求∠1的度数.等腰三角形的性质及判定参考答案与试题解析一.选择题(共30小题)1.解:∵AB=AC=BD,∴∠B=∠C,∠BAD=∠1,∵∠1=∠C+∠2,∴∠BAD=∠1=∠C+∠2,∵∠B+∠1+∠BAD=180°,∴∠C+2∠1=180°,∵∠C=∠1﹣∠2,∴∠1﹣∠2+2∠1=180°,即3∠1﹣∠2=180°.故选:D.2.解:∵CA=CB,∠A=20°,∴∠B=∠A=20°,∴∠BCD=∠A+∠B=40°,故选:B.3.解:如图:分情况讨论.①AB为等腰△ABC底边时,符合条件的C点有2个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有2个.故选:C.4.解:若4为腰,8为底边,此时4+4=8,不能构成三角形,故4不能为腰;若4为底边,8为腰,此时三角形的三边分别为4,8,8,周长为4+8+8=20,综上三角形的周长为20.故选:B.5.解:∵△ABC中,AB=AC,顶角是120°,∴∠B=∠C,∠A=120°∵∠A+∠B+∠C=180°,∴∠B=∠C==30°,故选:D.6.解:∵+|6﹣BC|=0,∴AB﹣3=0,6﹣BC=0,解得AB=3,BC=6,(1)若AB是腰长,BC为底,则三角形的三边长为:3、3、6,不能能组成三角形,(2)若AB是底边长,BC为腰,则三角形的三边长为:3、6、6,能组成角形,周长为3+6+6=15.故此三角形的周长为15.故选:B.7.解:过A作AE⊥BC,∵AB=AC,∴EC=BE=BC=4,∴AE==3,∵D是线段BC上的动点(不含端点B、C).∴3≤AD<5,∴AD=3或4,∵线段AD长为正整数,∴AD的可以有三条,长为4,3,4,∴点D的个数共有3个,故选:B.8.解:当等腰三角形的腰为1时,三边为1,1,6,1+1=2<6,三边关系不成立,当等腰三角形的腰为6时,三边为1,6,6,三边关系成立,周长为1+6+6=13.故选:A.9.解:∵11cm是底边,∴腰长=(26﹣11)=7.5cm,故选:C.10.解:|m﹣3|+(n﹣6)2=0,∴m﹣3=0,n﹣6=0,解得m=3,n=6,当m=3作腰时,三边为3,3,6,不符合三边关系定理;当n=6作腰时,三边为3,6,6,符合三边关系定理,周长为:3+6+6=15.故选:B.11.解:在Rt△ABC中,AB==10,①如图1,当AB=AD=10时,CD=CB=6时,CD=CB=6,得△ABD的等腰三角形.②如图2,当AB=BD=10时,△ABD是等腰三角形;③如图3,当AB为底时,AD=BD时,△ABD是等腰三角形.故选:B.12.解:当4为底边时,腰长为6,则这个等腰三角形的周长=4+6+6=16;当6为底边时,腰长为4,则这个等腰三角形的周长=4+4+6=14;故选:D.13.解:∵等腰三角形的顶角为70°,∴它的一个底角度数为(180°﹣70°)=55°,故选:B.14.解:如图所示:由勾股定理得:AB==,①若AB=BC,则符合要求的有:C1,C2,C3共4个点;②若AB=AC,则符合要求的有:C4,C5共2个点;若AC=BC,则不存在这样格点.∴这样的C点有5个.故选:D.15.解:①当这个角为顶角时,底角=(180°﹣30°)÷2=75°;②当这个角是底角时,底角=30°;故选:C.16.解:∵AB=AC,∠A=36°,∴△ABC是等腰三角形.∴∠C=∠ABC=72°.∵BD平分∠ABC交AC于E,∴∠ABE=∠EBC=36°,∵∠A=∠ABE=36°,∴△ABE是等腰三角形.∵∠BEC=∠A+∠ABE=72°=∠C,∴△BEC是等腰三角形.∵∠DBC=∠DCB=36°,∴△BCD是等腰三角形,∵∠EDC=∠DBC+∠DCB=72°=∠DEC,∴△CDE是等腰三角形,∴共有5个等腰三角形.故选:C.17.解:以A为圆心,AB长为半径画弧,交l1、l2于4个点;以B为圆心,AB长为半径画弧交l1、l2于2个点,再作AB的垂直平分线交l1、l2于2个点,共有8个点,故选:D.18.解:∵OA=OC,∴∠ACO=∠A=36°,∵BC∥AO,∴∠BCA=∠A=36°,∴∠BCO=72°,∵OB=OC,∴∠B=72°.故选:C.19.解:∵∠B=∠C,∴AB=AC,∴选项A不符合题意;∵∠B=∠C,∴AB=AC,BD=CD,∴AD⊥BC,∠BAD=∠CAD,∴选项B、选项C不符合题意;当△ABC中有一个角为60°时,△ABC是等边三角形,∴选项D符合题意;故选:D.20.解:分两种情况讨论:当这个三角形的底边是2时,三角形的三边分别是2、3、3,能够组成三角形,则三角形的周长是8;当这个三角形的底边是3时,三角形的三边分别是2、2、3,能够组成三角形,则三角形的周长是7.故等腰三角形的周长为8或7.故选:C.21.解:因为等腰三角形的两个底角相等,又因为顶角是40°,所以其底角为=70°.故选:B.22.解:∵AB=AC,∠BAC=108°,∴∠B=∠C=36°,△ABC是等腰三角形,∵∠BAD=∠B=36°,∴△ABD是等腰三角形,∵∠CAE=∠C=36°,∴△AEC是等腰三角形,∴∠ADC=∠DAC=72°,∴△ADC是等腰三角形,同理,△ABE是等腰三角形,∴∠ADE=∠AED=72°,∴△ADE是等腰三角形,故选:D.23.解:∵∠A+∠B+∠C=180°,∠A:∠B:∠C=1:1:2,∴∠A=∠B=45°,∠C=90°.则该三角形的等腰直角三角形.故选:B.24.解:由题意知,应分两种情况:(1)当腰长为3时,能构成三角形,周长=2×3+5=11;(2)当腰长为5时,能构成三角形,周长=2×5+3=13.故选:D.25.解:∵AP1=P1P2,P1P2=P2P3,P3P4=P2P3,P3P4=P4P5,∴∠A=∠P1P2A,∠P2P1P3=∠P2P3P1,∠P3P2P4=∠P3P4P2,∠P4P3P5=∠P4P5P3,∴∠P3P5P4=4∠A=4α°,∵要使得这样的钢条只能焊上4根,∴∠P5P4B=5α°,由题意,∴18°≤α<22.5°.故选:C.26.解:∵在等腰△ABC中,∵∠A=120°,∴∠A为等腰三角形的顶角,∴∠B=∠C,∵∠A=120°,∴∠B=∠C=30°;故选:D.27.解:连接AD,∵在△ABC中,AB=AC=13,该三角形的面积为65,∴三角形ABC的面积=△ABD的面积+△ACD的面积=AB•DN+AC•DM=AB•(DN+DM)=×13×(DN+DM)=65,解得:DN+DM=10.故选:D.28.解:∵AB=AC,∴∠ACB=∠ABC=70°,∵直线l1∥l2,∴∠1+∠ACB+∠ABC=180°,∴∠1=180°﹣∠ABC﹣∠ACB=180°﹣70°﹣70°=40°.故选:B.29.解:当40°的角为等腰三角形的顶角时,底角的度数==70°;当40°的角为等腰三角形的底角时,其底角为40°,故它的底角的度数是70°或40°.故选:D.30.解:当腰长为8时,底长为:18﹣8×2=2;2+8>8,能构成三角形;当底长为8时,腰长为:(18﹣8)÷2=5;5+5>8,能构成三角形.故另两条边的长是5、5或2、8.故选:C.二.填空题(共15小题)31.解:①30°是顶角,则底角=(180°﹣30°)=75°;②30°是底角,则顶角=180°﹣30°×2=120°.∴另两个角的度数分别是75°、75°或30°、120°.故答案为75°、75°或30°、120°.32.解:∵AD是△ABC的高,AB=AC,∴CD=BD=BC=4=2,故答案为:2.33.解:①当AB=AP时,在y轴上有2点满足条件的点P.②当AB=BP时,在y轴上有1点满足条件的点P.③当AP=BP时,在y轴上有一点满足条件的点P.综上所述:符合条件的点P共有4个.故答案为:434.解:要使△OAB为等腰三角形分三种情况讨论:①当OB=AB时,作线段OA的垂直平分线,与直线b的交点为B,此时有1个;②当OA=AB时,以点A为圆心,OA为半径作圆,与直线b的交点,此时有1个;③当OA=OB时,以点O为圆心,OA为半径作圆,与直线b的交点,此时有2个,1+1+2=4,故答案为:435.解:(1)若3为腰长,10为底边长,由于3+3<10,则三角形不存在;(2)若10为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为10+10+3=23.故答案为:23.36.解:当6是腰长时,周长=6+6+8=20;当8是腰长时,周长=6+8+8=22.故周长是20或22.故答案为:20或22.37.解:∵Rt△ABC中,AC⊥BC,∴∠A+∠B=90°,∵AE=AO,BF=BO,∴∠AOE=∠AEO=,∠BOF=∠BFO=,∴∠EOF=180°﹣∠AOE﹣∠BOF=180°﹣(+)=(∠A+∠B)=45°,故答案为45°.38.解:当6为底时,三角形的三边为6,8、8可以构成三角形,周长为6+8+8=22;当8为底时,三角形的三边为8,6、6可以构成三角形,周长为8+6+6=20.则△ABC的周长为22或20.故答案为:22或20.39.解:设底角为x°,则顶角为3x°,根据题意得:x+x+3x=180解得:x=36;故答案为:36°.40.解:根据三角形的三边关系,x<(20﹣x),解得x<10,∴x的取值范围是0<x<10.故答案为:0<x<10.41.解:设较短的边长为xcm,则较长的边长为2xcm,①若较短的边为底边,较长的边为腰,则x+2x+2x=20,解得x=4,此时三角形三边长分别为4cm,8cm,8cm,能组成三角形;②若较短的边为腰,较长的边为底边,则x+x+2x=20,解得x=5,此时三角形三边长分别为5cm,5cm,10cm,∵5+5=10,∴不满足三角形任意两边之和大于第三边,故不能围成三角形;综上所述,等腰三角形的腰长8cm,故答案为8.42.证明:∵BE=6,DE=4,∴BD=BE﹣DE=2,过A作AP⊥BC于P,∵AB=AC,AP⊥BC,∴BP=CP,同理有DP=EP,∴CE=BD=2,故答案为:2.43.解:∵AB=AC,∴∠B=∠C=30°,∴∠BAC=180°﹣2×30°=120°,∵DA⊥BA,∴∠BAD=90°,∴∠CAD=120°﹣90°=30°,∴∠CAD=∠C,∴AD=CD,在Rt△ABD中,∵∠B=30°,∠BAD=90°,∴BD=2AD,∴BC=BD+CD=2AD+AD=3AD,∵BC=16cm,∴AD=cm,故答案为:cm.44.解:∵AB=AC,∠BAC=56°∴∠B=∠ACB==62°,∵AC=CD,∴∠CAD=∠D,∵∠ACB=∠CAD+∠D,∴∠D=∠ACB=31°,故答案为:62°,31°.45.解:当AB为底时,作AB的垂直平分线,可找出格点C的个数有5个,当AB为腰时,分别以A、B点为顶点,以AB为半径作弧,可找出格点C的个数有3个;∴这样的顶点C有8个.故答案为:8.三.解答题(共5小题)46.解:∵∠C=∠ABC=2∠A,∴∠C+∠ABC+∠A=5∠A=180°,∴∠A=36°.则∠C=∠ABC=2∠A=72°.又BD是AC边上的高,则∠DBC=90°﹣∠C=18°.47.①证明:∵EF∥AD,∴∠1=∠4,∠2=∠P,∵AD平分∠BAC,∴∠1=∠2,∴∠4=∠P,∴AF=AP,即△APF是等腰三角形;②AB=PC.理由如下:证明:∵CH∥AB,∴∠5=∠B,∠H=∠1,∵EF∥AD,∴∠1=∠3,∴∠H=∠3,在△BEF和△CDH中,∵,∴△BEF≌△CDH(AAS),∴BF=CH,∵AD平分∠BAC,∴∠1=∠2,∴∠2=∠H,∴AC=CH,∴AC=BF,∵AB=AF+BF,PC=AP+AC,∴AB=PC.48.解:(1)如图1,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵BD=BA,∴∠BAD=∠BDA=(180°﹣∠B)=67.5°,∵CE=CA∴∠CAE=∠E=∠ACB=22.5°,∴∠BAE=180°﹣∠B﹣∠E=112.5°,∴∠DAE=∠BAE﹣∠BAD=45°,(2)如图2,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=30°,∵BA=BD,∴∠BAD=∠BDA=75°,∴∠DAC=45°,∵CA=CE,∴∠E=∠CAE=15°,∴∠DAE=∠DAC+∠CAE=60°;(3)∠DAE=∠BAC,理由:设∠CAE=x,∠BAD=y,则∠B=180°﹣2y,∠E=∠CAE=x,∴∠BAE=180°﹣∠B﹣∠E=2y﹣x,∴∠DAE=∠BAE﹣∠BAD=2y﹣x﹣y=y﹣x,∠BAC=∠BAE﹣∠CAE=2y﹣x﹣x=2y﹣2x ∴∠DAE=∠BAC.49.解:设三角形的腰为x,底为y,根据题意得或,解得或,又知6+6<12,不能构成三角形,即等腰三角形的腰长为:10cm.50.解:(1)∵EA=EC,∴设∠A=∠2=x,∵EC平分∠ACB,∴∠ACB=2x,∵AB=AC,∴∠ABC=∠ACB=2x,在△ABC中,∴x+2x+2x=180°,∴x=36°,∴∠A=36°;(2)∵∠A=∠2,∴∠2=36°,∵BD⊥AC,∴∠DFC=90°﹣36°=54°,∴∠1=∠DFC=54°.第1页(共1页)。

八年级上2.3《等腰三角形的性质定理》同步练习题含答案

八年级上2.3《等腰三角形的性质定理》同步练习题含答案

浙教版八年级数学上册第二章特殊三角形2.3《等腰三角形的性质定理》同步练习题一、选择题1.一个等腰三角形的顶角是底角的4倍,则其顶角的度数为()A.20° B.30° C.80° D.120°2.等腰三角形的一个外角为140°,则顶角的度数为()A.40° B.40°或70° C.70° D.40°或100°3.如图,在△ABC中,已知∠B和∠C的平分线交于点F,过点F作DE∥BC,交AB于点D,交AC于点E.若BD+CE=9,则线段DE的长为()A. 9B. 8C. 7D. 6(第3题)(第4题)4.如图,△ABC内有一点D,且DA=DB=DC.若∠DAB=20°,∠DAC=30°,则∠BDC的大小是()A.100° B.80° C.70° D.50°5.等腰三角形的“三线合一”指的是()A.中线、高线、角平分线互相重合 B.腰上的中线、腰上的高线、底角的平分线互相重合C.顶角的平分线、中线、高线互相重合D.顶角的平分线,底边上的高线、底边上的中线互相重合(第6题)6.如图是人字形屋架的设计图,由AB,AC,BC,AD四根钢条焊接而成,其中A,B,C,D均为焊接点,且AB=AC,D为BC的中点.现在焊接所需的四根钢条已截好,且已标出BC的中点D.如果焊接工身边只有可检验直角的角尺,那么为了准确快速地焊接,他首先应取的两根钢条及焊接的点是()A.AC和BC,焊接点C B.AB和AC,焊接点AC.AD和BC,焊接点D D.AB和AD,焊接点A二、填空题7.(1)在△ABC中,AB=AC,AD⊥BC于点D,若∠BAC=80°,则∠DAC=40°;若BC=6 cm,则CD=____cm;(2)在△ABC中,AB=AC,AD平分∠BAC,若BD=2.5 cm,则BC=5c m,∠ADB=;(3)在△ABC中,AB=AC,AD是BC边上的中线,若∠BAD=50°,则∠BAC=__,∠ADC=____.8. 如图,在△ABC中,AB=AC,BC=6,AD⊥BC于点D,则BD=____.9.如图,在△ABC中,AB=AC,E为BC的中点,延长BA至点D.若∠CAE=36°,则∠B=_-_,∠CAD=______.10. 在等腰三角形A BC中,AB=AC,AD是角平分线,有下列结论:①AD⊥BC,②BD=DC,③∠B=∠C,④∠BA D=∠CAD.其中正确的是________ (填序号).三、解答题11.如图,在△ABC中,AB=AC,直线AE交BC于点D,O是AE上一动点(不与A重合),且OB=OC,试猜想AE与BC的关系,并说明理由.12.如图,在△ABC中,PM,QN分别是AB,AC的垂直平分线,∠BAC=110°,求∠P AQ的度数.(第13题)13.如图,已知等腰△ABC的周长为16 cm,AD是顶角∠BAC的平分线,AB∶AD=5∶4,且△ABD的周长为12 cm.求△ABC各边的长.(第14题)14.如图,已知D是等腰三角形ABC的底边BC上一点,它到两腰AB,AC的距离分别为DE,DF,请指出当D在什么位置时,DE=DF,并加以证明.(第15题)15.如图,已知△ABC和△ADE都是等腰三角形,AB=AC,AD=AE且∠DAB=∠EAC,则DE∥BC吗?为什么?(第16题)16.如图,在△ABC 中,∠BCA =90°,∠BAC =30°,分别以AB ,AC 为边做等边△ABE 和△ACD ,连结ED 交AB 于点F .求证:(1)BC =12AB ; (2)EF =FD .参考答案:1.D2.D3.A4.A5.D6.C7.3; 90°;100°, 90° 8. 39. ∠B =54°,∠CAD =108°.10. ①②③④11.【解】 猜想:AE 垂直平分BC ,即AE ⊥BC ,BD =CD.理由如下:∵AB =AC ,OB =OC ,AO =AO ,∴△ABO ≌△ACO(SSS),∴∠BAO =∠CAO.∴AE⊥BC,BD=CD(等腰三角形三线合一).12.【解】∵PM垂直平分AB,∴P A=PB,∴∠P AB=∠B.同理,∠QAC=∠C.∵∠B+∠C+∠BAC=180°,∴∠B+∠C=180°-110°=70°,∴∠P AB+∠QAC=70°.∵∠P AQ=110°-(∠P AB+∠QAC),∴∠P AQ=110°-70°=40°.13.【解】设AB=5x,则AD=4x,AC=5x,BC=16-10x.∵AB=AC,AD平分∠BAC,∴BD=DC=12BC=8-5x,∴5x+4x+(8-5x)=12,解得x=1.∴AB=5x=5,AC=5x=5,BC=16-10x=6.14.【解】当D在BC的中点时,DE=DF.证明:当BD=CD时,∵∠B=∠C,∠DEB=∠DFC=90°,∴△DBE≌△DCF(AAS),∴DE=DF.15.【解】DE∥BC.理由如下:∵AB=AC,AD=AE,∴∠B =∠C ,∠D =∠E.∵∠DAB =∠EAC ,∴∠B +∠DAB =∠C +∠EAC , ∴∠AFG =∠AGF ,∴∠AFG =12(180°-∠EAD ). 又∵∠D =12(180°-∠EAD ), ∴∠AFG =∠D ,16.【解】 (1)过点E 作EG ⊥AB 于点G . ∵△ABE 为等边三角形,∴BG =12AB ,∠BEG =12∠AEB =30°,BA =BE . ∵∠BCA =90°,∠BAC =30°,∴∠BGE =∠BCA =90°,∠BAC =∠BEG . 在△ACB 和△EGB 中,∵⎩⎪⎨⎪⎧∠BGE =∠BCA ,∠BEG =∠BAC ,BE =BA ,∴△ACB ≌△EGB (AAS ),∴BC =BG .∴BC =12AB . (2)∵△ACB ≌△EGB ,∴AC =EG .∵△ACD 为等边三角形,∴∠CAD =60°,AC =AD ,∴EG =DA .∵∠BAC =30°,∴∠DAF =∠CAD +∠BAC =90°. ∴∠EGF =∠DAF .在△EGF 和△DAF 中, ∵⎩⎪⎨⎪⎧∠EFG =∠DF A ,∠EGF =∠DAF ,EG =DA ,∴△EGF ≌△DAF (AAS ), ∴EF =FD .。

2021-2022学年人教版八年级数学上册等腰三角形的性质练习含答案

2021-2022学年人教版八年级数学上册等腰三角形的性质练习含答案

等腰三角形的性质一、选择题1.如图,已知线段AB,分别以A,B为圆心,大于AB同样长为半径画弧,两弧交于点C,D,连接AC,AD,BC,BD,CD,则下列说法错误的是()A.AB平分∠CAD B.CD平分∠ACB C.AB⊥CD D.AB=CD2.如图,在△ABC中,AB=AC,∠A=40°,CD∥AB,则∠BCD=()A.40°B.50°C.60°D.70°3.如图,在Rt△ABC中,∠ACB=90°,∠A=50°,以点B为圆心,BC长为半径画弧,交AB于点D,连接CD,则∠ACD的度数是()A.50°B.40°C.30°D.20°4.等腰三角形的一个角是80°,则它顶角的度数是()A.80°B.80°或20°C.80°或50°D.20°5.如图,在△ABC中,AB=AC,BD平分∠ABC,BD=BE,∠A=100°,则∠DEC=()A.90°B.100°C.105°D.110°6.如图,AD是等腰三角形ABC的顶角平分线,BD=5,则CD等于()A.10B.5C.4D.37.如图,将一张长方形纸按图中虚线AD对折,再沿直线l剪开,再把它展开后得到△ABC,则下列结论错误的是()A.AD⊥BC B.BD=CD C.∠B=∠C D.AB=CB8.如图,AB=AC,AB的垂直平分线MN交AC于点D,若∠C=65°,则∠DBC的度数是()A.25°B.20°C.30°D.15°9.如图,在△ABC中,AB=AC,点D在CA的延长线上,DE⊥BC于点E,∠BAC=100°,则∠D=()A.40°B.50°C.60°D.80°10.等腰三角形一腰上的高与另一腰的夹角为30°,它的顶角为()A.30°B.60°C.120°D.60°或120°二、非选择题11.已知:如图,在△ABC中,点D在边BC上,AB=AD=DC,∠C=35°,则∠BAD=度.12.如图,在△ABC中,AB=AC,D是BC边上的中点,连接AD,BE平分∠ABC交AC 于点E,过点E作EF∥BC交AB于点F.(1)若∠C=36°,求∠BAD的度数;(2)求证:FB=FE.13.问题:如图,在△ABD中,BA=BD.在BD的延长线上取点E,C,作△AEC,使EA =EC.若∠BAE=90°,∠B=45°,求∠DAC的度数.答案:∠DAC=45°.思考:(1)如果把以上“问题”中的条件“∠B=45°”去掉,其余条件不变,那么∠DAC的度数会改变吗?说明理由.(2)如果把以上“问题”中的条件“∠B=45°”去掉,再将“∠BAE=90°”改为“∠BAE=n°”,其余条件不变,求∠DAC的度数.14.如图,在△ABC中,AB=AC,D是BC边上任意一点,过点D分别向AB,AC引垂线,垂足分别为E,F,CG是AB边上的高.(1)当点D在BC的什么位置时,DE=DF?请加以证明.(2)DE,DF,CG的长之间存在着怎样的等量关系?请加以证明.(3)若点D在底边BC的延长线上,(2)中的结论还成立吗?若不成立,又存在怎样的关系?请说明理由.15.如图,∠ACB=90°,D、E在AB上,AD=AC,BE=BC,求∠DCE的度数.参考答案与试题解析一、选择题1.如图,已知线段AB,分别以A,B为圆心,大于AB同样长为半径画弧,两弧交于点C,D,连接AC,AD,BC,BD,CD,则下列说法错误的是()A.AB平分∠CAD B.CD平分∠ACB C.AB⊥CD D.AB=CD【分析】根据作图判断出四边形ACBD是菱形,再根据菱形的性质:菱形的对角线平分一组对角、菱形的对角线互相垂直平分可得出答案.【解答】解:由作图知AC=AD=BC=BD,∴四边形ACBD是菱形,∴AB平分∠CAD、CD平分∠ACB、AB⊥CD,不能判断AB=CD,故选:D.2.如图,在△ABC中,AB=AC,∠A=40°,CD∥AB,则∠BCD=()A.40°B.50°C.60°D.70°【分析】根据等腰三角形的性质可求∠ACB,再根据平行线的性质可求∠BCD.【解答】解:∵在△ABC中,AB=AC,∠A=40°,∴∠ACB=70°,∵CD∥AB,∴∠ACD=180°﹣∠A=140°,∴∠BCD=∠ACD﹣∠ACB=70°.故选:D.3.如图,在Rt△ABC中,∠ACB=90°,∠A=50°,以点B为圆心,BC长为半径画弧,交AB于点D,连接CD,则∠ACD的度数是()A.50°B.40°C.30°D.20°【分析】根据三角形的内角和和等腰三角形的性质即可得到结论.【解答】解:∵在Rt△ABC中,∠ACB=90°,∠A=50°,∴∠B=40°,∵BC=BD,∴∠BCD=∠BDC=(180°﹣40°)=70°,∴∠ACD=90°﹣70°=20°,故选:D.4.等腰三角形的一个角是80°,则它顶角的度数是()A.80°B.80°或20°C.80°或50°D.20°【分析】分80°角是顶角与底角两种情况讨论求解.【解答】解:①80°角是顶角时,三角形的顶角为80°,②80°角是底角时,顶角为180°﹣80°×2=20°,综上所述,该等腰三角形顶角的度数为80°或20°.故选:B.5.如图,在△ABC中,AB=AC,BD平分∠ABC,BD=BE,∠A=100°,则∠DEC=()A.90°B.100°C.105°D.110°【分析】由在△ABC中,AB=AC,∠A=100°,根据等边对等角的性质,可求得∠ABC 的度数,又由BD平分∠ABC,即可求得∠DBE的度数,又由等边对等角的性质,可求得∠BED的度数,根据平角的定义就可求出∠DEC的度数.【解答】解:∵在△ABC中,AB=AC,∠A=100°,∴∠ABC=∠C=40°,∵BD平分∠ABC,∴∠DBE=∠ABC=20°,∴∠BDE=∠BED=80°,∴∠DEC=100°.故选:B.6.如图,AD是等腰三角形ABC的顶角平分线,BD=5,则CD等于()A.10B.5C.4D.3【分析】根据等腰三角形三线合一的性质即可求解.【解答】解:∵AD是等腰三角形ABC的顶角平分线,BD=5,∴CD=5.故选:B.7.如图,将一张长方形纸按图中虚线AD对折,再沿直线l剪开,再把它展开后得到△ABC,则下列结论错误的是()A.AD⊥BC B.BD=CD C.∠B=∠C D.AB=CB【分析】由图中操作可知:AD所在直线是△ABC的对称轴,即可得出结论.【解答】解:由图中操作可知:AD所在直线是△ABC的对称轴,∴AD⊥BC,BD=CD,∠B=∠C,AB=AC,∴A,B,C正确,D错误,故选:D.8.如图,AB=AC,AB的垂直平分线MN交AC于点D,若∠C=65°,则∠DBC的度数是()A.25°B.20°C.30°D.15°【分析】根据等腰三角形的性质得到∠ABC,再根据垂直平分线的性质求出∠ABD,从而可得结果.【解答】解:∵AB=AC,∠C=∠ABC=65°,∴∠A=180°﹣65°×2=50°,∵MN垂直平分AB,∴AD=BD,∴∠A=∠ABD=50°,∴∠DBC=∠ABC﹣∠ABD=15°,故选:D.9.如图,在△ABC中,AB=AC,点D在CA的延长线上,DE⊥BC于点E,∠BAC=100°,则∠D=()A.40°B.50°C.60°D.80°【分析】根据等腰三角形的性质和三角形内角和定理,求得∠C=40°,然后根据直角三角形两锐角互余,即可求得∠D=50°.【解答】解:∵AB=AC,∠BAC=100°,∴∠C=∠B=40°,∵DE⊥BC于点E,∴∠D=90°﹣∠C=50°,故选:B.10.等腰三角形一腰上的高与另一腰的夹角为30°,它的顶角为()A.30°B.60°C.120°D.60°或120°【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成立,因而可分两种情况进行讨论.【解答】解:分两种情况:①当高在三角形内部时(如图1),∵∠ABD=30°,∴顶角∠A=90°﹣30°=60°;②当高在三角形外部时(如图2),∵∠ABD=30°,∴顶角∠CAB=90°+30°=120°.故选:D.二、非选择题11.已知:如图,在△ABC中,点D在边BC上,AB=AD=DC,∠C=35°,则∠BAD=40度.【分析】根据等腰三角形的性质和三角形的内角和定理即可得到结论.【解答】解:∵AD=DC,∴∠DAC=∠C=35°,∴∠ADB=∠DAC+∠C=70°.∵AB=AD,∴∠B=∠ADB=70°,∴∠BAD=180°﹣∠B﹣∠ADB=180°﹣70°﹣70°=40°.故答案为:40.12.如图,在△ABC中,AB=AC,D是BC边上的中点,连接AD,BE平分∠ABC交AC 于点E,过点E作EF∥BC交AB于点F.(1)若∠C=36°,求∠BAD的度数;(2)求证:FB=FE.【分析】(1)利用等腰三角形的三线合一的性质证明∠ADB=90°,再利用等腰三角形的性质求出∠ABC即可解决问题.(2)只要证明∠FBE=∠FEB即可解决问题.【解答】(1)解:∵AB=AC,∴∠C=∠ABC,∵∠C=36°,∴∠ABC=36°,∵BD=CD,AB=AC,∴AD⊥BC,∴∠ADB=90°,∴∠BAD=90°﹣36°=54°.(2)证明:∵BE平分∠ABC,∴∠ABE=∠CBE=∠ABC,∵EF∥BC,∴∠FEB=∠CBE,∴∠FBE=∠FEB,∴FB=FE.13.问题:如图,在△ABD中,BA=BD.在BD的延长线上取点E,C,作△AEC,使EA =EC.若∠BAE=90°,∠B=45°,求∠DAC的度数.答案:∠DAC=45°.思考:(1)如果把以上“问题”中的条件“∠B=45°”去掉,其余条件不变,那么∠DAC的度数会改变吗?说明理由.(2)如果把以上“问题”中的条件“∠B=45°”去掉,再将“∠BAE=90°”改为“∠BAE=n°”,其余条件不变,求∠DAC的度数.【分析】(1)根据三角形外角的性质得到∠AED=2∠C,①求得∠DAE=90°﹣∠BAD =90°﹣(45°+∠C)=45°﹣∠C,②由①,②即可得到结论;(2)设∠ABC=m°,根据三角形的内角和定理和等腰三角形的性质即可得到结论.【解答】解:(1)∠DAC的度数不会改变;∵EA=EC,∴∠EAC=∠C,①,∵BA=BD,∴∠BAD=∠BDA,∵∠BAE=90°,∴∠B=90°﹣∠AED=90°﹣2∠C,∴∠BAD=(180°﹣∠B)=[180°﹣(90°﹣2∠C)]=45°+∠C,∴∠DAE=90°﹣∠BAD=90°﹣(45°+∠C)=45°﹣∠C,②由①,②得,∠DAC=∠DAE+∠CAE=45°﹣∠C+∠C=45°;(2)设∠ABC=m°,则∠BAD=(180°﹣m°)=90°﹣m°,∠AEB=180°﹣n°﹣m°,∴∠DAE=n°﹣∠BAD=n°﹣90°+m°,∵EA=EC,∴∠CAE=AEB=90°﹣n°﹣m°,∴∠DAC=∠DAE+∠CAE=n°﹣90°+m°+90°﹣n°﹣m°=n°.14.如图,在△ABC中,AB=AC,D是BC边上任意一点,过点D分别向AB,AC引垂线,垂足分别为E,F,CG是AB边上的高.(1)当点D在BC的什么位置时,DE=DF?请加以证明.(2)DE,DF,CG的长之间存在着怎样的等量关系?请加以证明.(3)若点D在底边BC的延长线上,(2)中的结论还成立吗?若不成立,又存在怎样的关系?请说明理由.【分析】(1)当点D在BC的中点时,DE=DF,根据AAS证△BED≌△CFD,根据全等三角形的性质推出即可;(2)连接AD,根据三角形ABC的面积=三角形ABD的面积+三角形ACD的面积,进行分析证明;(3)类似(2)的思路,仍然用计算面积的方法来确定线段之间的关系.即三角形ABC 的面积=三角形ABD的面积﹣三角形ACD的面积.【解答】(1)解:当点D在BC的中点时,DE=DF.理由:如图1中,连接AD.∵D为BC的中点,∴BD=CD.∵AB=AC,∴∠B=∠ACB,∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=90°.在△BED和△CFD中,,∴△BED≌△CFD(AAS),∴DE=DF.(2)解:DE+DF=CG.证明如下:如图2,连接AD,则S△ABC=S△ABD+S△ACD,即AB•CG=AB•DE+AC•DF.∵AB=AC,∴DE+DF=CG.(3)解:当点D在BC的延长线上时,(2)中的结论不成立,但有DE﹣DF=CG.理由如下:如图3,延长BC至点D,连接AD,过点D作DF⊥AC,交AC的延长线于点F,则S△ABD=S△ABC+S△ACD,即AB•DE=AB•CG+AC•DF.∵AB=AC,∴DE=CG+DF,即DE﹣DF=CG.15.如图,∠ACB=90°,D、E在AB上,AD=AC,BE=BC,求∠DCE的度数.【分析】由AD=AC,BC=BE,根据等边对等角得出∠ACD=∠ADC,∠BEC=∠ECB,再利用三角形内角和定理得出∠A=180°﹣2∠ADC,∠B=180°﹣2∠DEC,而∠A+∠B=90°,那么求出∠ADC+∠DEC=135°,则∠DCE=180°﹣(∠ADC+∠DEC)=180°﹣135°=45°.【解答】解:∵AD=AC,∴∠ADC=∠ACD.∵BE=BC,∴∠BEC=∠ECB.∵∠ACB=90°,∴∠A+∠B=90°.在△ACD中,∠A=180°﹣2∠ADC,在△BCE中,∠B=180°﹣2∠DEC,∴∠A+∠B=180°﹣2∠ADC+180°﹣2∠DEC=90°.∴360°﹣2(∠ADC+∠DEC)=90°.∴∠ADC+∠DEC=135°.∴∠DCE=180°﹣(∠ADC+∠DEC)=180°﹣135°=45°.。

等腰三角形的性质精选试题附答案

等腰三角形的性质精选试题附答案

等腰三角形的性质精选试题一.选择题(共21小题)1. (2009?呼和浩特)在等腰△ ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为A. 7)B . 11 7或11 D. 7 或102. (2006?仙桃)在△ ABC中,已知AB=AC ,DE垂直平分AC,/ A=50。

,则/ DCB的度数是(A. 15 30°50°D. 65△ ABC 中,/ ACB=100 ,AC=AE , BC=BD,则/ DCE 的度数为(3. (2006?威海)如图,在25°4. (2003?青海)A . 75 °C. 30若等腰三角形一腰上的高等于腰长的一半,C . 75°或15°B .15°D. 40则此三角形的底角等于(D. 30°5. (2006?普陀区二模)等腰三角形一腰上的高与底边所成的角等于()A . 顶角的一半B. 底角的一半• C . 90°减去顶角的一半 D . 90°减去底角的一半6.在等腰△ ABC中,AB=AC=9 , BC=6 , DE是AC的垂直平分线,交AB、AC于点D、E,则△ BDC的周长是()A. 67.如图,AB=AC ,A. 10C. 12D. 15B . 9/ C=70° AB垂直平分线EF交AC于点D,则/ DBC的度数为(B .15°C .20°D. 3014 .在△ ABC 中,AB=AC , / BAC=80° 卩在^ ABC 中,/ PBC=10 ° / PCB=20 ° 则/ PAB 的度数为()&如图,点 D 、E 在^ABC 的BC 边上,AB=AC , AD=AE ,则图中全等三角形共有(D . 3对10.已知△ ABC 是等腰三角形,且/A=40 °那么/ ACB 的外角的度数是A . 110°B . 140 °C . 110或 140°11.如图已知/ BAC=100 ° AB=AC , AB 、AC 的垂直平分线分别交 BC 于D 、E ,则/ DAE=()9.如图,在△ ABC 则/ EDF 的度数为( £中,/ B= / C ,点F 为AC 上一点, )FD 丄 BC 于 D ,过 D 点作 DE 丄 AB 于 E .若/ AFD=158 °△ A . 90 ° B .80°C .68°D . 60 C20°D . 1012.如图,钢架中/ 要( )根. A=16 °焊上等长的钢条 P 1P 2, P 2P 3, P 3P 4••来加固钢架,若 AP 仁P 1P 2,则这样的钢条至多需 C . D . 7 13.如图,在△ ABC 图中阴影部分的面积是 中, AB=AC , ) AD 是/ BAC 的角平分线,AD=8cm , BC=6cm ,点E 、F 是AD 上的两点,则 CA . 48 24C . 12D .6( )D .以上都不对A . 0对14 .在△ ABC 中,AB=AC , / BAC=80 ° 卩在^ ABC 中,/ PBC=10 ° / PCB=20 ° 则/ PAB 的度数为( )A. 50D是线段AB与线段C. 70D.BC的垂直平分线的交点,/65B=40 °,则/ ADC 等于( )15.如图,点B .60°C. 70AD=BC=BA,那么/ 1与/ 2之间的关系是(16.如图,A . / 1=2 /2B. 2 / 1+ / 2=18017.有下列命题说法:形有一个外角等于120°这个三角形一定是等边三角形;一个三角形中至少有一个角不小于60度.其中正确的有(A . 2个B . 3个①锐角三角形中任何两个角的和大于18.设等腰三角形的顶角为/ A,则/ A的取值范围是(A . 0° 2^A<180°B . 0°</ A< 180° C. 0°19 .如图,已知△ ABC中,AB=AC ,8cm,那么BC的长是()cm .AB的垂直平分线D. 80/ 1+3 / 2=180 D . 3 / 1 -/ 2=18090°②等腰三角形一定是锐角三角形;④ 等腰三角形中有一个是40°那么它的底角是)D . 5个D . 0°</ A < 90③等腰三角70 °;⑤DE 交AC 于D,垂足为E,若AB=5cm , △ BCD 的周长为20 .已知△ ABC 中,/ C=32 °, / A、( )/ B的外角平分线分别交对边的延长线于D、E两点,且AC=AD , 则/ E=A .10B .16°C.20°D .2421.如图,△ ABC中,AB=BC=AD , D在BC的延长线上,则角a和B的关系是(二•填空题(共5小题)22.(2011?沈河区一模)如图,在△ ABC 中,/ B= / C,点 D 、E 分别在 BC 、AC 边上,/ CDE=15 ° 且/ AED= / ADE , 则/ BAD 的度数为 ________________ .AB=AC=AD , / BAC=50 ° / DAC=30 ° 则/ BDC=25.如图,在 △ ABC 中,DE 、FG 分别是边 AB 、AC 的垂直平分线,则/ / 2;若/ BAC=126 ° 贝EAG= 度.26.如图,A 、B 是网格中的两个格点,点 C 也是网格中的一个格点,连接 形时,格点C 的不同位置有 形ABC 的面积之和等于_三.解答题(共4小题)27.已知:如图,AD 平分/ BAC , AD=AB , CM 丄AD 于M .请你通过观察和测量,猜想线段AB 、AC 之和与线段AM 有怎样的数量关系,并证明你的结论.C . 3a+3=180 ° D. 2 3=a24.如图所示, 添加的钢管长度都与AOB 是一钢架,且/ AOB=10 °为了使钢架更加坚固,需在其内部添加一些钢管 OE相等,则最多能添加这样的钢管 ___________________ 根.EF , FG , GH …,AB 、BC 、AC ,当△ ABC 为等腰三角 处,设网格中的每个小正方形的边长为 1,则所有满足题意的等腰三角23.如图,已知:28.如图,在等腰△ ABC中,AB=AC ,(1)若/ BAC=90 ° / BAD=30 ° 求/(2)若/ BAC=a (a>30° , / BAD=30(3)猜想/ EDC与/ BAD的数量关系?30.如图,在等腰△ ABC(1)连接OA,求/ OAC的度数;(2)求:/ BOC .猜想:证明:c29.如图所示,在△ ABC长.中,AB=AC , DE是AB的垂直平分线,△ BCE的周长为24cm,且BC=10cm,求AB的点D在BC上,且AD=AE .EDC的度数?°求/ EDC的度数?(不必证明)中,/ A=80 °/ B和/ C的平分线相交于点O等腰三角形的性质精选试题参考答案与试题解析一•选择题(共21小题)1. (2009?呼和浩特)在等腰 △ ABC 中,AB=AC ,中线BD 将这个三角形的周长分为 15和12两个部分,则这个等 腰三角形的底边长为()A . 7B . 11考点:等腰三角形的性质;三角形三边关系. 专题:分类讨论.分析:~题中给出了周长关系,要求底边长,首先应先想到等腰三角形的两腰相等,寻找问题中的等量关系,列 方程求解,然后结合三角形三边关系验证答案.解答:~解:设等腰三角形的底边长为~X ,腰长为y ,则根据题意,5C点评: 本题考查等腰三角形的性质及相关计算.学生在解决本题时, 有的同学会审题错误, 以为15, 12中包含着中线BD 的长,从而无法解决问题,有的同学会忽略掉等腰三角形的分情况讨论而漏掉其中一种情况; 注意:求出的结果要看看是否符合三角形的三边关系定理.故解决本题最好先画出图形再作答.2. (2006?仙桃)在△ ABC 中,已知 AB=AC , DE 垂直平分 AC , / A=50 °则/ DCB 的度数是(考点「线段垂直平分线的性质;等腰三角形的性质. 专题:’■十算题.分析: 首先由AB=AC 可得/ ABC= / ACB ,再由DE 垂直平分AC 可得DC=AD ,推出/ DAC= / DCA •易 求/ DCB .D . 7 或 10解方程组①得:”=口I 尸8 解方程组②得:(口I 尸10即等腰三角形的底边长是故选C . A,根据三角形三边关系定理,此时能组成三角形;,根据三角形三边关系定理此时能组成三角形, 11 或 7;B . 30°C . 50D . 65A . 15解: AB=AC , / A=50 ° / ABC= / ACB=65 °•••DE 垂直平分 AC ,•••/ DAC= / DCA .•••/ DCB= / ACB -/ DCA=65。

等腰三角形的性质

等腰三角形的性质

等腰三角形的性质例1、已知等腰三角形一边长为3,另一边长为5,求它的周长。

类题演练:已知等腰三角形的两边长是2和7,则它的周长是___________例2、如图所示,在△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,求∠A的度数类题演练:将上题条件中的“BD=BC=AD”改为“BD=AD,BC=CD”,其他条件不变,能否求∠A的度数?请你尝试一下例3、如图所示,点D和点E在BC上,AB =AC,AD=AE,试说明:BD=CE类题演练:如图所示,在△ABC中,AB=AC,O是△ABC内一点,且OB=OC,AO的延长线交BC于点D。

试说明:BD=CDB 同步反馈:1、已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为( )A 、50°B 、80°C 、50°或80°D 、40°或65°2、等腰三角形的顶角为84°,则一腰上的高与底边所成角的度数是__________3、如图所示,在△ABC 中,AB=AC ,∠A=40°,CD 是△ABC 的高,则∠BCD =______4、如图所示,已知AB=AC=BD ,那么∠1与∠2之间满足的关系是( )A 、∠1=2∠2B 、∠1+3∠2=180°C 、2∠1+∠2=180°D 、3∠1-∠2=180°5、如图所示,点C ,E 和点B ,D ,F 分别在∠GAH 的两边上,且AB=BC=CD=DE=EF ,若∠A =17°,则∠GEF 的度数是_______6、等腰三角形底边长为6cm ,一腰的中线将其周长分成的两部分的差为3cm,求这个等腰三角形的周长7、如图所示,在直线l 上找一点P ,使△PAB 是等腰三角形,请问这样的P 点有几个?8、在△ABC 中,AB=AC(1)如图甲所示,如果∠BAD =30°,AD 是BC 边上的高,AD=AE ,则∠EDC =_________(2)如图乙所示,如果∠BAD =30°,AD 是BC 边上的高,AD=AE ,则∠EDC =_________(3)通过以上两题可以发现∠BAD 与∠EDC 之间有什么关系?请用式子表示:__________(4)如图丙所示,如果AD 不是BC 边上的高,AD=AE ,是否仍有上述关系?如有,请用式子表示,并说明理由第(3)题 第(4)题 第(5)题同步反馈答案:1、C2、42°3、20°4、D5、85°6、24cm7、4个8、15° 15°∠BAD=2∠CDE。

等腰三角形的性质习题附答案

等腰三角形的性质习题附答案

等腰三角形的性质5. 等腰三角形的底角一定是锐角.( )6. 已知如图, △ABC 是等边三角形, D 是BC 中点 DE ⊥AC 于E, 则 EC =AC()7. 等腰三角形的底角不一定是锐角. ( )8. 如图△ABC 中AB =AC, D 、E 分别为AC 、BC 上的点, 则DB >DE ()9. 等腰三角形底边上的高上任意一点到两腰的距离相等 ( ) 10. 等腰三角形两腰上中线的交点到底边的两端点距离相等.( ) 11. 如图, D 是等腰三角形底边BC 上一点. 则 ∠ADC >∠C. ( )12. 等腰三角形一腰上中线把它周长分为15cm 和6cm 两部分,则这个三角形三边长为10c13. 等腰三角形中, 两个角的比为1:4, 则顶角的度数为20°. ( )14. 等边三角形的边长为a, 则高为 a. ( ) 15. 等腰三角形的顶角可以是直角、锐角或钝角. ( )16. 如图, 已知: △ABC 的AB =AC, D 是AB 上一点, DE ⊥BC, E 是垂足, ED 的延长于F, 则AD =AF.17. 如图B 、D 、E 、C 在同一直线上, 若AB =AC, ∠1=∠2, 则 ∠3=∠4. (18. 等边三角形ABC 中, D 是AC 中点, E 为BC 延长线上一点, 且 DB =DE. 则 CE =CD()19. 已知, △ABC 中, AB =AC, ∠B =75°, CD ⊥AB 于D, 则CD =AB( )20. 等腰三角形底边上的中点到两腰的距离相等.( )21. 如图, B 、D 、E 、C 在同一直线上, 若AB =AC, ∠3=∠4, 则∠1=∠2.( )22. 因为等腰三角形的底角一定是锐角, 所以等腰三角形是锐角三角形. ( ) 23. 如图, △ABC 和△CDE 都是等边三角形, 则 AD =BE. ()24. 如图, 已知: 四边形ABCD 中, ∠ABC =∠ADC, AB =AD, 则 CB =CD. (25. 如果三角形一边上的中线等于这边的一半, 这个三角形不一定是直角三角形. ( 26. 等腰三角形角平分线、高线、中线在同一条直线上 ( )27. 已知如图, △ABC 中, ∠B >∠C, 点D 是AC 上的一点, 且AD =AB, 则∠DBC =()28. 如果等腰三角形的顶角为50°, 那么一腰上的高与底边的夹角是40°.( )29. 已知△ABC 中, AB =AC, D 在AB 上且∠DCB =∠A, 则 CD ⊥AB ( )30. 等腰三角形两腰上的中线相等. ( )31. 已知△ABC 中, AB =AC, CD ⊥AB 于D, 则 ∠DCB =∠A( )32. 如图, AB =AE, ∠B =∠E, CB =ED. F 是CD 的中点, 则AF ⊥CD. ()33. 等腰三角形顶角的顶点到两腰中线的距离相等. ( ) 34. 已知: 如图在△ABC 中, AB =AC, D 是BC 延长线上一点, E 是AB 上一点, DE 交AC 于点F , 则 AE <AF ( )35. 在△ABC 中, AB ≤AC, 延长CB 到D, 使BD =BA, 连结AD, 则 AD <AC.36. 已知: 如图, D 为等腰直角△ABC 的直角边BC 延长线上一点, 且CD =CE, BE 延BF ⊥AD37. 在△ABC 中, ∠A =2∠B, 则BC <2AC.38.已知, 如图AD=DC, DE平分∠ADB, F是AC中点, 则DE⊥DF. () 39.已知如图: △ABC和△ADE都是等腰三角形且顶角∠BAC=∠DAE, 则BD=CE ()40.如图, 已知: △ABC中, ∠ABC=2∠C, AH⊥BC, 垂足为H延长AB至D, 使BD=BH,DH的延长线交AC于点M, 则MA=MC()二.单选题 (本大题共 60 分)1.在△ABC中, AB=AC, ∠A=40°, 点O在三角形内且∠OBC=∠OCA, 则∠BOC的度数是[ ]A.110°B.35°C.140°D.55°2.如图在△ABC中, AB=AC, ∠A=40°, P为△ABC内的一点, 且∠PBC=∠PCA, 则∠BPC的度数是A.115°B.110°C.120°D.130°3.等腰三角形一边长5cm, 另一边长是3cm, 它的周长是 [ ]A.11cmB.13cmC.11cm或13cmD.以上都不对4.等腰三角形的一个角等于20°, 则它的另外两个角等于 [ ]A.20°、140°B.20°、140°或80°、80°C.80°、80°D.20°、80°5.已知等腰三角形的一边长为4, 另一边长为9, 则它的周长为[ ]A.17B.17或22C.22D.13 6. 一个等腰三角形的一个内角为70°, 则它一腰上的高与底边所夹的角的度数为[ ] A.55° B.55°或70° C.20° D.20°或35°7. 等腰三角形顶角的度数是底角度数的4倍, 那么,它的底角的度数是 [ ]A.120°B.30°C.60°D.90° 8. 有一个角是50°的等腰三角形其顶角的度数为 [ ] A.80° B.50° C.80°或50° D.65.5°9. 等腰三角形周长12厘M ,其中一边长2厘M ,其他两边分别长 [ ] A .2厘M ,8厘M B .5厘M ,5厘M C .5厘M ,5厘M 或2厘M ,8厘M D .无法确定10. 等腰三角形两边分别为35厘M 和22厘M, 则它的第三边长为 [ ]A.35cmB.22cmC.35cm 或22cmD.15cm 11. 已知等腰三角形的两个角之比为1∶2, 则顶角的度数是 [ ]A.90°B.36°C.36°或90°D.120° 12. 等腰三角形两边长是9cm 和15cm, 则它的周长是 [ ]A.24cmB.33cmC.39cmD.33cm 或39cm13. 等边三角形ABC 中, CD 是∠ACB 的平分线, 过D 作BC 的平行线交AC 于E, 若△ABC 的边长 是a, 则△ADE 的周长是 [ ]A.2aB. aC. aD. a14. 如果等腰三角形的周长为21, 其中一边长为5, 那么此等腰三角形底边长是 [ A.11 B.5 C.5或11 D.815. 已知等腰三角形中一个角为50°, 则这个三角形腰上的高和底边夹角的度数为 [A.25°B.40°C.25°或40°D.以上答案都不对16. 在等腰△ABC 中, AB 的长是AC 的二倍, 三角形的周长是40, 则AB 的长等于. [A.20B.16C.20或16D.1017. 等腰三角形的底边为a, 顶角是底角的4倍. 则腰上的高为 [ ]A.aB.C. aD.2a 18. 已知等腰三角形的一边长为5, 另一边长为6, 则它的周长为 [ ] A.16 B.16或17 C.17 D.1119. 等腰三角形底边长为5厘M ,一腰上的中线把三角形分成两部分,其周长之差为3厘它的腰长为 A .8厘M B .5厘MC .2厘M 或8厘MD .2厘M20. 等腰三角形有一个角是45°, 那么这个三角形是 [ ] A.锐角三角形 形 C.钝角三角形 D.不唯一确定21. 如图△ABC 中, AB =AC, 且EB =BD =DC =CF, ∠A =40°, 则∠EDF 的度数为[ ]A.70°B.110°C.55°D.60°22. 已知等腰三角形的一个角为20°, 则它的另外两个角分别为[ ]A.20°,140°B.80°,80°C.20°,140°或80°,80°D.20°,80° 23. 如果一个等腰三角形的一腰是顶角平分线的2倍, 那么这个三角形必有一个内角等于[ ]A.45°B.60°C.90°D.120°24. 如图, 在Rt △ABC 中, ∠C=90°, ∠DBC=26°,且AD=DB,则∠A=[ ]A.26°B.32 °C.64°D.52°25. 一个等腰三角形的角平分线、高线和中线的总数最多有A .3条B .5条C .7条D .9条26. 至少有两边相等的三角形是 [ ]A .等腰三角形B .等边三角形C .等腰直角三角形D .锐角三角形 27. 已知:等腰三角形的一边等于4, 一边等于8, 则这个等腰三角形的周长是 [A.20B.16C.20或16D.无28. 如图, AB =AC, FD ⊥BC 于D, DE ⊥AB 于E, 若∠AFD =155°, 那么∠EDF 的度数A.45°B.55°C.65°D.75°29. 一条等腰三角形底边上的高等于底边的一半, 那么这个等腰三角形的顶角 [ ]A.小于60°B.等于60°C.等于90°D.大于90°30. 等边三角形的高、中线、角平分线共有________条.[ ]A.9B.7C.6D.331. 等腰三角形有一个角是,则它顶角的大小为 [ ] A . B .C .D .32. 等腰三角形的两边长为25cm 和12cm, 那么它的第三条边长为[ ] A.25cm B.12cm C.25cm 或12cm D.37cm 33. 在等腰△ABC 中,AB =AC ,BD 平分∠ABC ,并交AC 于D .如果∠CDB =,那么∠A 等于 [ ] A . B . C .D .34. 若一个等腰三角形的两边分别是3cm 和6cm, 则它的周长为 [ ]A.15cmB.12cmC.12cm 或15cmD.18cm35. 如果一个三角形的三条高线的交点恰是这个三角形的一个顶点,那么此三角形 [ ] A .是锐角三角形B .是钝角三角形C .是直角三角形D .形状不确定36. 等腰三角形两边是9cm 和15cm, 则它的周长是 [ ] A.24cm B.33cm C.39cm D.33cm 或39cm 37. 等腰Rt △ABC 中, ∠C =90° D 是BC 上一点, 且AD =2CD 则 ∠ADB 的度数为 A.30° B.60° C.120° D.150°38. 已知等腰三角形的一边等于4, 一边等于8, 则这个等腰三角形的周长是 [A.20B.16C.20或16D.无法确定 39. 已知:如图, △ABD 和△ACE 均为等边三角形, 那么△ADC ≌△AEB 的根据是 [A.边,边,边B.边,角,边C.角,边,角D.角,角,边 40. 一个等腰三角形底边上的高等于底边的一半, 那么这个等腰三角形的顶角 [A.小于60°B.等于60°C.等于90°D.大于941. 在△ABC 中, AB =AC, ∠A+ ∠B =130°, 则∠A 、∠B 、∠C 的度数是A.∠A =50°、∠B =80°、∠C =80°B.∠A =50°、∠B =80°、∠C =50°C.∠A =50°、∠B =50°、∠C =80°D.∠A =80°、∠B =50°、∠C =50°42. 等腰三角形顶角是84°,则一腰上的高与底边所成角的度数是 [ ] A.42° B.6° C.36° D.46°43. 如图: AB =AC, ∠BAD =30°AD ⊥BC 且AD =AE, 则∠EDC =[ ]A.10°B.12.5°C.15°D.20°44. 等腰三角形一腰上的高与底所夹的角等于 [ ] A.顶角 B.顶角的 C.顶角的2倍 D.底角的45. 等腰三角形边长分别是3和6,这个三角形的周长是[ ]A .9B .12C .15D .12或1546. 用一条长为12cm 的铁丝做等腰三角形, 底和腰的长必须是正整数, 若底的长为xcm, 则腰的长y 可为 [ ]A.5cmB.5cm 或4cmC.4cmD.-5cm47. 一个等腰三角形底边为8cm, 从底边上一个端点引腰的中线, 分三角形周长为两部 分,其中一部分比另一部分长2cm, 则腰长为 [ ]A.6cmB.10cmC.6cm 或10cmD.以上都不对48. 一个等腰但非等边三角形, 它的角平分线, 中线和高线的条数共为 [ ]A.6B.7C.8D.949. 已知:如图在△ABC 中, AB=AC, CD 为∠ACB 平分线,DE ∥BC,∠A=40°, 则∠EDC 的度数是A.30°B.36°C.35°50. 等腰三角形两个角的比为4∶1, 则顶角为 [ ]A.120°B.20°C.120°或20°D.51. 如图已知: AB =AC =BD, 那么∠1与∠2之间的关系满足A.∠1=2∠2B.2∠1+∠2=180°C.∠1+3∠2=180°D.3∠1-∠2=180°52.若等腰三角形的两边a 、b 满足,则此等腰三角形的周长为[ ]A .7B .5C .8D .7或553.等腰△ABC 中,两腰上的中线BE 、CD 交于O ,则下列判断中错误的是[ ]A .△ADC ≌△AEB B .△DBC ≌△ECBC .△ABE ≌△BCDD . △BOD ≌△COE54.从等腰三角形底边上任一点,分别作两腰的平行线所成的四边形的周长等于此等腰三角形的[ ]A .周长B .周长一半C .一腰长D .两腰长的和55.等腰三角形一腰上的高与底边所成的角等于 [ ]A .顶角B .顶角的一半C .顶角的2倍D .底角的一半56.如下图,△ABC 中,AB=AC ,点D 、E 、F 分别在BC 、AB 、AC 上,且DE=BE ,DF=DC ,若∠A=,则∠EDF=A .B .C .D .57. 等腰三角形底边长为5厘M, 一腰上的中线把三角形分成两部分, 其周长之差为3厘它的腰长为 [ ]A.2厘MB.8厘MC.2厘M 或8厘MD.9厘M58. 如图△ABC 中, AB =AC, ∠A =50°, P 是△ABC 内的一点, 且∠PBC =∠PCA, 则的度数为A.115°B.100°C.130°59. 如图, △ABC 中, AB =AC, CD ⊥AB, 则关于∠A 正确的等式是[ ]A.∠A =∠BB.∠A =∠ACBC.∠A =2∠ACBD.∠A =2∠DCB60. 如图在△ABC 中, AB =AC, BC =BD, AD =DE =EB, 则∠A 的度数是[ ]A.30°B.36°C.45°D.54°三.填空题 (本大题共 30 分)1. 周长为20cm 的等腰三角形中, 底边长为acm, 则一腰长为________cm .2. 如图△ABC 中, AB =AC, ∠A =40°, ∠AED =∠F, 则∠F =___________度.3. 已知等腰三角形有两条边的长分别是3cm 和7cm, 那么这个三角形的周长等于_______4. 已知如图, A 、D 、C 在一条直线上AB =BD =CD, ∠C =40°, 则∠ABD =______度.5. 等腰三角形的周长为36, 腰比底长3, 则此等腰三角形的腰长为________, 底边长为___6. 等腰三角形的底边为12cm,且腰是底的, 则三角形的周长是_______cm7. 已知等腰三角形的一个底角等于顶角的4倍, 则这个等腰三角形的顶角为_______度8. 等腰三角形底边中线与________和________重合.9. 已知:如图: △ABC 中, AB =BC, ∠B =90°, AD ∥BC, ∠D =70°, 则∠EFA =10. 已知:等腰三角形的一个角为100°, 则另两个角的度数为________.11.△ABC 中,如果AB=AC ,点M 是BC 边中点,那么M 到______两边的距离相等,A _两点的距离相等。

等腰三角形的性质经典练习题易错易考(重点中学精品)

等腰三角形的性质经典练习题易错易考(重点中学精品)

等腰三角形性质:1、若等腰三角形的底角等于︒15,则顶角等于2、若等腰三角形的一个角为︒50,则其他两个角的度数为 ; 若一个角为︒100,则其他两个角为3、若等腰三角形的顶角为︒n ,则底角为4、如图,在ABC ∆中,AC AB =,点D 在AC 上,且AD BC BD ==,则A ∠的度数为5、如图,BC AD //,AC AB =,︒=∠80BAC ,则=∠B ,=∠DAC6、如图,在ABC ∆中,C B ∠=∠,BC FD ⊥,AB DE ⊥,︒=∠158AFD ,则=∠EDF7、如图,ABC ∆中,AC AB =,E 为BC 中点,AC BD ⊥于D ,若︒=∠20EAC ,则=∠DBC ,=∠ABD 8、如图,等边ABC ∆中,CE BD =,AD 、BE 相交于P ,则=∠APE9、等腰三角形一腰上的高与另一腰的夹角为︒30,它的腰长为a ,则底边上的高为10、如上图,在ABC ∆中,D 、E 是BC 上两点,并且BD AB =,EC AC =,若︒=∠100BAC ,则=∠DAE11、若等腰三角形的两边a 、b ,满足0)1132(22=-+++-b a b a ,则此等腰三角形的周长为12、等腰三角形的一个底角的补角( )A.可以是钝角B. 可以是锐角C. 可以是直角D. 只能是钝角13、等腰三角形的一个底角的余角( )A.顶角B. 顶角的一半C. 顶角的两倍D. 一腰上的高与另一腰的夹角14、下列命题为假命题的是( )A.等腰三角形顶角的外角平分线与底边平行B.等腰三角形的高、中线、角平分线互相重合C.有一角为︒150且有一腰相等的两个三角形全等D.等腰三角形的底边不可以是腰的二倍15、如图,在ABC ∆中AC AB =,BD BC =, EB DE AD ==,=∠A16、等腰三角形一边长等于4,一边长等于9,它的周长为17、如图,ABC ∆中,BC AC =,AD 是BC 边上的高,AE 是BAC ∠的平分线,︒=∠48EAD ,则为=∠ACD18、如图,ABC ∆中,AC AB =,AD 和BE 是高,它们相交于点H ,且BE AE =,求证:BD AH 2=19、在等边ABC ∆中,D 、E 分别为AB 、BC 上的点,且BE AD =,AE 、CD 相交于点F ,CD AG ⊥于G ,求证:FG AF 2=20、在ABC ∆中,BAC ∠的平分线与BC 边的垂直平分线相交于点P ,过点P 作AB 、AC 的垂线,垂足分别为M 、N ,求证:CN BM =21、在ABC ∆中,AD 平分BAC ∠,AC DE //交AB 于E ,EF 平分AED ∠交BC 延长线于F ,求证:B CAF ∠=∠22、在ABC ∆中,︒=∠90ACB ,CB CA =,AB CD ⊥于D ,CE 平分BCD ∠交AB 于E ,AF 平分CAD ∠交CD 于F ,求证:BC EF //23、已知:AD AB =,CE AE ⊥于点E ,AE 平分BAC ∠,求证:AC AB AE +=2等腰三角形性质答案:1、︒1502、︒50和︒80,︒65和︒65;︒40和︒403、2180︒-︒n 4、︒36 5、︒50,︒506、︒687、︒20,︒50 8、︒60 9、a 21(钝角三角形)或a 23(等边三角形)10、︒40 11、7 12、D 13、B 14、B 15、︒4516、22 17、︒56 第19题:易证CAE ∆≌BCD ∆,BCD CAE ∠=∠∴,由等边三角形知, CAE ACD DCB ACD ACB ∠+∠=∠+∠=︒=∠60,∴︒=∠60AFG , ︒=∠30FAG ,ΘCD AG ⊥,在∆Rt 中,︒30角所对的边是斜边的一半 ∴FG AF 2=第20题:线段垂直平分线上的点到线段两端距离相等;角平分线上的点到角的两边距离相等,连结PB 、PC ,易得PC PB =,PN PM =,由HL 定理 得CN BM =第21题:AD Θ平分BAC ∠,CAD EAD ∠=∠∴AC DE //Θ,EDA CAD ∠=∠∴,EDA EAD ∠=∠∴,EA ED =∴ ΘEF 平分AED ∠,由三线合一知,EF 垂直平分AD ,FA FD =∴ADF FAD ∠=∠∴,CAD FAC FAD ∠+∠=∠,BAD B ADF ∠+∠=∠ 而BDA CAD ∠=∠,∴B CAF ∠=∠第22题:Θ︒=∠90ACB ,CB CA =,∴︒=∠=∠45B CAB ΘAB CD ⊥于D ,∴DB CD =,︒=∠=∠45B DCB ΘCE 平分BCD ∠,∴︒=∠=∠5.22ECB DCE ΘAF 平分CAD ∠,∴︒=∠5.22CAF ,易证CAF ∆≌BCE ∆,∴EB CF = ∴DE FD =,∴︒=∠=∠45B FED ,∴BC EF //第23题:延长AB 至F ,使AC BF =;延长AE 至M ,使AE AM 2=;连结CM ,易证CM AC =,CME CAE ∠=∠;AE Θ平分BAC ∠ ∴BAD CAE ∠=∠,BAD CAM ∠=∠∴,CM AF //∴,又CM AC BF ==Θ,∴四边形BFMC 为平行四边形,FM BC //∴, AD AB =Θ, ADB ABD ∠=∠∴,FM BC //Θ, AMF F ∠=∠∴ AM AF =∴,∴AC AB AE +=2。

解等腰三角形的性质的练习题

解等腰三角形的性质的练习题

解等腰三角形的性质的练习题1. 设等腰三角形ABC中,AB=AC,以点D为底边BC的中点,连接AD。

证明:△ABD≌△ACD。

解析:首先,根据等腰三角形的定义,AB=AC。

其次,由于D为BC的中点,所以BD=DC。

再根据SSS(边边边)对应的性质,我们可以得出△ABD≌△ACD。

也就是说,两个三角形的三边分别对应相等,从而可以得出两个三角形全等。

2. 设等腰三角形ABC中,AB=AC,以AB为底边,且与AC相交于点D的高为AH。

证明:∠HAB=∠HAC。

解析:首先,我们知道等腰三角形ABC的两边AB和AC相等,所以可以得出∠A=∠B=∠C。

又因为AD为高,所以∠HAD=90°,而角HAB是等腰三角形ABC的顶角,所以角HAB也等于∠C。

综上所述,可以得出∠HAB=∠HAC。

3. 设等腰三角形ABC中,AB=AC,以AB为底边,且与AC相交于点D的中线DE。

证明:DE=BC/2。

解析:首先,我们知道等腰三角形ABC的两边AB和AC相等,所以可以得出DE=BC/2。

这是因为DE是底边BC的中线,所以根据中线分割定理,DE等于底边BC的一半,即DE=BC/2。

4. 设等腰三角形ABC中,AB=AC,以角A的平分线AM为旋转轴,将△ABC旋转180°得到△ADE。

证明:△ADE≌△ABC。

解析:首先,我们需要说明如何将△ABC旋转180°得到△ADE。

根据题意,我们以角A的平分线AM为旋转轴,将△ABC旋转180°。

旋转后,点A和点D重合,点B和点E重合,点C不动。

根据旋转的定义,可以得出△ADE≌△ABC。

5. 设等腰三角形ABC中,AB=AC,以角A的平分线AM为旋转轴,将△ABC旋转180°得到△ADE。

证明:BD=DC,BE=EC。

解析:如前一题所述,旋转后,点A和点D重合,点B和点E重合,点C不动。

由等腰三角形的定义可知,BD=DC,BE=EC。

等腰三角形的性质与判定练习题(含答案)

等腰三角形的性质与判定练习题(含答案)

等腰三角形的性质与判定练习题及答案一、填空题1、已知如图,A 、D 、C 在一条直线上AB =BD =CD, ∠C =40°,则∠ABD =__________________2、在等腰△ABC 中, AB =AC, AD ⊥BC 于D, △ABC 的周长为50cm, 而△ABD 的周长为40cm, 则AD =___________cm.3、如图, ∠P =25°, 又PA =AB =BC =CD, 则∠DCM =_______度.4、如图已知∠ACB =90°, BD =BC, AE =AC, 则∠DCE =__________度.第 1 题图 第 3 题图 第 4 题图二、选择题 1、 如图, 在△ABC 中, AB =AC, CD ⊥AB 于D, 则下列判断正确的是( ) A.∠A =∠B B.∠A =∠ACD C.∠A =∠DCB D.∠A =2∠BCD2、如图已知: AB =AC =BD, 那么∠1与∠2之间的关系满足( ) A.∠1=2∠2 B.2∠1+∠2=180° C.∠1+3∠2=180° D.3∠1-∠2=180°3、下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形; ③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有( )A .①②③B .①②④C .①③D .①②③④4、△ABC 中,AB=AC ,BD 平分∠ABC 交AC 边于点D ,∠BDC=75°,则∠A 的度数为 ( )A 、35°B 、40°C 、70°D 、110° 5、小明将两个全等且有一个角为60的直角三角形拼成如图所示的图形,其中两条较长直角边在同一直线上,则图中等腰三角形的个数是( )A.4 B.3 C.2 D.1AFCDH BMEG6、等腰三角形的底边为7cm ,一边上的中线把其周长分为两部分的差为3cm ,则腰长为( )A.20cm B.10cm C.10cm 或4cm D.4cm三、解答题1、如图:△ABC 中, AB=AC, AD ⊥BC, AD=AE, ∠BAD=30°, 求∠EDC 的度数.2、.如图:Rt △ABC 中,∠C=90°,∠A=22.5°,DC=BC, DE ⊥AB .求证:AE=BE .3、已知:如图,点D 、E 在△ABC 的边BC 上,AB =AC ,AD =AE . 求证:BD =CE .4、已知:BD 是∠ABC 的平分线,AD ⊥BD ,求证:∠BAD =∠DAC +∠CDCBA5、如图,在△ABC 中,AB=AC ,点D 、E 分别在AC 、AB 上,且BC=BD=DE=EA , 求∠A 的度数。

初中数学:等腰三角形练习(含答案)

初中数学:等腰三角形练习(含答案)

初中数学:等腰三角形练习(含答案)一、选择题1、等腰三角形一底角为50°,则顶角的度数为()A、65B、70C、80D、40【答案】C【解析】试题分析:根据三角形的内角和定理求解.解:等腰三角形的顶角度数=180°-50°-50°=80°.故应选C考点:等腰三角形的性质2、如图,在△ABC中,AB=AC,∠A=36°,BD,CE分别为∠ABC,∠ACB的角平分线,则图中等腰三角形共有()A. 5个B. 6个C.7个D.8个【答案】D【解析】试题分析:根据等腰三角形两底角相等和∠A=36°,求出∠ABC和∠ACB的度数,再根据角平分线的定义求出∠ABD、∠CBD、∠ACE、∠BCE的度数,利用三角形外角定理求出∠BOE、∠COD的度数,根据等角对等边进行判断.解:如下图所示,∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°,∵BD平分∠ABC,CE平分∠ACB,∴∠ABD=∠C BD=∠ACE=∠BCE=∠A=36°,∴△ABD、△BCD、△ACE、△BCE、△OBC是等腰三角形;∴∠BEC=∠A+∠ACE=72°,∠BOE=∠BCE+∠CBD=72°,∴∠BEC=∠BOE,同理可得:∠CDO=∠COD,∴△BOE、△COD是等腰三角形;又△ABC是等腰三角形,∴共有8个等腰三角形.故应选D.考点:1.等腰三角形的性质;2.等腰三角形的判定3、下列条件中不能确定是等腰三角形的是()A.三条边都相等的三角形B.一条中线把面积分成相等的两部分的三角形C.有一个锐角是45°的直角三角形D.一个外角的平分线平行于三角形一边的三角形【答案】D【解析】试题分析:根据等腰三角形的定义和等腰三角形的判定定理进行判断.解:A选项、三条边都相等的三角形是特殊的等腰三角形,故A选项正确;B选项、三角形任何一条边上的中线都能把三角形分成面积相等的两个三角形,故B选项错误;C选项、有一个锐角是45°的直角三角形的另一个锐角也是45°,根据等角对等边可得这是一个等腰三角形,故C选项正确;D选项、如果一个外角的平分线平行于三角形一边,利用平行线的性质可证三角形的两个角相等,根据等角对等边可证这是一个等腰三角形,故D选项正确.故应选B考点:等腰三角形的判定4、下列能断定△ABC为等腰三角形的是()A.∠A=30°,∠B=60°B.∠A=50°,∠B=80°C. AB=AC=2,BC=4 D.AB=3,BC=7,周长为13【答案】B【解析】试题分析:根据等腰三角形的判定定理进行判断.解:A选项、若∠A=30°,∠B=60°,则∠C=90°,不能判定△ABC为等腰三角形;B选项、若∠A=50°,∠B=80°,则∠C=50°,根据等角对等边能判定△ABC为等腰三角形;C选项、若AB=AC=2,BC=4,因为2+2=4,所以不能构成三角形;D选项、若AB=3,BC=7,周长为13,则AC=3,因为3+3<7,所以不能构成三角形.故应选B.考点:等腰三角形的判定5、已知下列各组数据,可以构成等腰三角形的是()A. 1,2,1 B.2,2,1 C. 1,3,1 D.2,2,5【答案】B【解析】试题分析:根据三角形三边的关系进行判断.解:A选项、因为1+1=2,所以不能构成三角形;B选项、因为2+1>2,能构成三角形,所以可以构成等腰三角形;C选项、因为1+1<3,所以不能构成三角形;D选项、因为2+2<5,所以不能构成三角形.故应选B.考点:三角形三边关系6、小明将两个全等且有一个角为60°的直角三角形拼成如图所示的图形,其中两条较长直角边在同一直线上,则图中等腰三角形的个数是()A.4 B.3 C.2 D.1【答案】B【解析】试题分析:根据直角三角形的性质求出各角的度数,根据等角对等边进行判断. 解:∵∠B=∠E=60°,∴∠A=∠D=30°,∴△MAD是等腰三角形;∵∠EMG-∠A+∠D=60°,∴△EGM是等腰三角形;同理可证△BHM是等腰三角形.∴共有三个等腰三角形.故应选B考点:1.直角三角形的性质;2.等腰三角形的判定二、填空题7、一个等腰三角形的两边分别为3cm和4cm,则它的周长为_________;【答案】10cm或11cm【解析】试题分析:根据三角形的周长公式分情况进行计算.解:当三角形三边分别是3cm、3cm、4cm时,三角形的周长是3+3+4=10cm;当三角形三边分别是3cm、4cm、4cm时,三角形的周长是3+4+4=11cm.故答案是10cm或11cm.考点:等腰三角形的性质8、在方格纸上有一个△ABC,它的顶点位置如图所示,则这个三角形是三角形.【答案】等腰【解析】试题分析:根据点A在BC的垂直平分线上,可证AB=AC,所以这个三角形是等腰三角形.解:∵点A在BC的垂直平分线上,∴AB=AC,∴△ABC是等腰三角形.故答案是等腰.考点:1.线段垂直平分线的性质;2.等腰三角形的定义9、如果一个三角形有两个角分别为80°,50°,则这个三角形是_________三角形.【答案】等腰【解析】试题分析:根据三角形内角和求出三角形的另一个内角,根据等角对等边进行判断.解:∵第三个角=180°-50°-80°=50°.∴这个三角形是等腰三角形.故答案是等腰.考点:等腰三角形的判定10、用若干根火柴(不折断)紧接着摆成一个等腰三角形,一边用了10根火柴,则至少还要用_________根火柴.【答案】11【解析】试题分析:根据用10根火柴组成的边是等腰三角形的底边和腰,分两种情况进行讨论.解:当用10根火柴组成的边是等腰三角形的底边时,则每个腰上至少用6根火柴棍,∴共需要12根火柴棍;当用10根火柴组成的边是等腰三角形的腰时,则另一个腰上需要用10根火柴棍,底边至少用1根火柴,∴共需要11根火柴棍.∴至少还要用11根火柴.故答案是11.考点:1.等腰三角形的定义;2.三角形三边关系11、如图,△ABC是等腰三角形,且AB=AC,BM,CM分别平分∠ABC,∠ACB,DE 经过点M,且DE∥BC,则图中有_________个等腰三角形.【答案】5【解析】试题分析:根据等腰三角形的性质可得∠ABC=∠ACB,根据平行线的性质可证∠ADE=∠AED,根据角平分线的性质可证∠DBM=∠MBC=∠DMB=∠EMC=∠ECM=∠BCM,根据等角对等边进行证明.解:∵△ABC是等腰三角形,∴∠ABC=∠ACB,∵DE∥BC,∴∠ADE=∠AED,∴△ADE是等腰三角形;∵BM平分∠ABC,∴∠DBM=∠CBM,∵BC∥DE,∴∠DMB=∠CBM,∴∠DBM=∠DMB,∴△DBM是等腰三角形,同理可得△EMC是等腰三角形;又∵∠ABC=∠ACB,∴∠MBC=∠MCB,∴△MBC是等腰三角形.∵△ABC是等腰三角形.∴共有5个等腰三角形.故答案是5.考点:1.等腰三角形的性质;2.等腰三角形的判定三、解答题12、已知:如图,OA平分∠BAC,∠1=∠2.求证:△ABC是等腰三角形.【答案】证明见解析【解析】试题分析:首先过点O作OE⊥AB于E,OF⊥AC于F,根据角平分线的性质可证OE=OF,根据HL可证Rt△OBE≌Rt△OCF,利用全等三角形的性质可证∠5=∠6,所以可证∠ABC=∠ACB,根据等角对等边可证结论成立.证明:如下图所示,过点O作OE⊥AB于E,OF⊥AC于F,∵AO平分∠BAC,∴OE=OF(角平分线上的点到角两边的距离相等).∵∠1=∠2,∴OB=OC.∴Rt△OBE≌Rt△OCF(HL).∴∠5=∠6.∴∠1+∠5=∠2+∠6.即∠ABC=∠ACB.∴AB=AC.∴△ABC是等腰三角形.考点:1.角平分线的性质;2.等腰三角形的判定定理;3.全等三角形的判定和性质13、如图,△ABC中,∠A=36°,AB=AC,CD平分∠ACB,试说明△BCD是等腰三角形.【答案】证明见解析【解析】试题分析:根据等腰三角形的性质求出∠B=∠ACB=72°,根据角平分线的定义可以求出∠ACD=∠A=36°,根据三角形外角的性质可以求出∠ADB=72°,再根据等角对等边可证结论成立.证明:∵∠A=36°,AB=AC,∴∠B=∠ACB=72°,∵CD平分∠ACB,∴∠ACD=∠A=36°,∴∠BDC=∠A+∠ACD,∴∠BDC=∠B=72°,∴△BCD是等腰三角形.考点:1.等腰三角形的性质;2.等腰三角形的判定14、如图,ABC△中,∠ABC、∠ACB的平分线交于点F,过点F作DE∥BC分别交AB、AC于D、E,已知△ADE的周长为20cm,且BC=12cm,求△ABC的周长【答案】32cm.【解析】试题分析:首先根据角平分线的性质可证∠DBF=∠FBC,根据平行线的性质可证∠DFB=∠DBF,所以可证BD=DF,同理可证EC=EF,所以可证AD+AE+DF+EF=20cm,再根据BC的长度求出△ABC的周长.解:∵∠ABC、∠ACB的平分线交于点F,∴∠DBF=∠FBC,又∵DE∥BC,∴∠DFB=∠FBC,∴∠DFB=∠DBF,∴BD=DF,同理EC=EF,∵△ADE的周长为20cm,∴AD+AE+DF+EF=20cm,∴AD+AE+BD+EC=AB+AC=20cm又∵BC=12cm,∴AB+AC+BC=32cm即△ABC的周长为32cm.考点:1.等腰三角形的判定;2.等腰三角形的性质。

等腰三角形的性质与判定(人教版)(含答案)

等腰三角形的性质与判定(人教版)(含答案)

等腰三角形的性质与判定(人教版)试卷简介:本套试卷主要考查等腰三角形的判定及性质,等边对等角、等角对等边;三线合一等,以此为载体考查同学们几何学习的有序操作能力.一、单选题(共10道,每道10分)1.已知等腰三角形的一个内角为70°,则另两个内角的度数是( )A.55°,55°B.70°,40°C.55°,55°或70°,40°D.以上都不对答案:C解题思路:此题仅告诉我们等腰三角形的一个内角为70°,并没有确定是顶角还是底角,所以需分两种情况考虑.①当70°为顶角时,另外两个角是底角,度数相等,为(180°-70°)÷2=55°,②当70°为底角时,另外一个底角也是70°,顶角是180°-140°=40°.综上,另两个内角度数为55°,55°或70°,40°.故选C.试题难度:三颗星知识点:等腰三角形的性质2.一个等腰三角形的两边长分别为2和5,则它的周长为( )A.7B.9C.12D.9或12答案:C解题思路:求等腰三角形的周长,即是确定等腰三角形的腰与底的长,题目给出等腰三角形有两条边长为2和5,而没有明确腰、底分别是多少,所以要进行讨论,还需应用三角形的三边关系验证能否组成三角形.①若2为腰长,5为底边长,由于2+2<5,则三角形不存在;②若5为腰长,2为底边长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为5+5+2=12.故选C试题难度:三颗星知识点:三角形的三边关系3.如图,在△ABC中,AB=AC,∠A=36°,BD,CE分别是∠ABC,∠BCD的角平分线,则图中的等腰三角形有( )A.5个B.4个C.3个D.2个答案:A解题思路:∵AB=AC,∴△ABC是等腰三角形.∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°.∵BD,CE分别是∠ABC,∠BCD的角平分线,∴,,∴∠DBC=∠BCE,∠CED=∠DBC+∠BCE=36°+36°=72°,∠A=∠ABD,∠BDC=180°-∠DBC-∠BCD=180°-72°-36°=72°,∴△EBC,△ABD是等腰三角形;∵∠BDC=∠BCD,∠CED=∠CDE,∴△BCD,△CDE是等腰三角形,∴图中的等腰三角形有5个.故选A试题难度:三颗星知识点:等腰三角形的判定及性质4.如图,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,则下列五个结论:①AD上任意一点到AB,AC两边的距离相等;②AD上任意一点到B,C两点的距离相等;③AD⊥BC,且BD=CD;④∠BDE=∠CDF;⑤AE=AF.其中正确的有( )A.2个B.3个C.4个D.5个答案:D解题思路:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一);故AD所在直线可以看成△ABC的对称轴,再根据角平分线的性质、垂直平分线的性质可得①②③④⑤都正确.故选D试题难度:三颗星知识点:全等三角形的判定与性质5.如图,在四边形ABCD中,对角线AC与BD相交于点E,若AC平分∠DAB,且AB=AC=AD,有如下四个结论:①AC⊥BD;②BC=DE;③;④△ABD一定是正三角形.请写出正确结论的序号是( )A.①②B.①③C.②④D.①②③答案:B解题思路:①∵AB=AC=AD,AC平分∠DAB∴AC垂直平分BD,①正确;②由①可知DC=CB,DE=BE,∠DEC=90°,∴DC>DE∴BC>DE,②错误;③在Rt△BCE中,∠DBC=90°-∠ACB,在等腰△ABC中,∠BAC=180°-2∠ACB,即∠DAC=180°-2∠ACB,∴,③正确;④△ABD是等腰三角形,但不一定是等边三角形,而且根据题中条件也推导不出△ABD是等边三角形,④错误.正确的为①③,故选B试题难度:三颗星知识点:等腰三角形的判定与性质6.如图,在△ABC中,BC=9cm,BP,CP分别是∠ABC和∠ACB的角平分线,且PD∥AB,PE∥AC,则△PDE的周长是( )A.6cmB.9cmC.10cmD.12cm答案:B解题思路:∵BP,CP分别是∠ABC和∠ACB的角平分线,∴∠ABP=∠PBD,∠ACP=∠PCE.∵PD∥AB,PE∥AC,∴∠ABP=∠BPD,∠ACP=∠CPE,∴∠PBD=∠BPD,∠PCE=∠CPE,∴BD=PD,CE=PE,∴PD+DE+PE=BD+DE+EC=BC=9,即△PDE的周长为9cm.故选B试题难度:三颗星知识点:等腰三角形的判定及性质7.如图,AD⊥BC于点D,D为BC的中点,连接AB,∠ABC的平分线交AD于点O,连接OC,若∠AOC=125°,则∠ABC的度数为( )A.60°B.65°C.70°D.75°答案:C解题思路:∵AD⊥BC,∠AOC=125°,∴∠C=∠AOC-∠ADC=125°-90°=35°,∵D为BC的中点,AD⊥BC,∴OB=OC,∴∠OBC=∠C=35°,∵BO平分∠ABC,∴∠ABC=2∠OBC=2×35°=70°.故选C试题难度:三颗星知识点:等腰三角形的性质8.如图,在等腰三角形ABC中,AB=AC=8,,点D为底边BC上一动点(不与点B,C重合),DE⊥AB,DF⊥AC,垂足分别为E,F,则DE+DF的长为( )A.2B.3C.4D.5答案:C解题思路:连接AD,∵AB=AC=8,∴DE+DF=4.故选C试题难度:三颗星知识点:等腰三角形的性质9.如图,在3×3的网格中,每个网格线的交点称为格点.已知图中A,B两个格点,请在图中再寻找另一个格点C,使△ABC成为等腰三角形,则满足条件的点C有( )A.4个B.6个C.8个D.10个答案:C解题思路:已知A,B两个定点,再寻找点C使得△ABC为等腰三角形,可知需要利用“两圆一线”解题,即:分别以A,B为圆心,以AB的长为半径画圆;作线段AB的垂直平分线.再来判断点C 的个数.如图所示,图中的10个格点均在圆或垂直平分线上,但是点M,N与A,B在同一直线上,构不成等腰三角形,故舍去,所以有8个点.故选C试题难度:三颗星知识点:等腰三角形的存在性10.如图,在平面直角坐标系中,O为原点,已知A(2,-1),P是x轴上的一个动点,如果以点P,O,A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为( )A.2B.3C.4D.5答案:C解题思路:已知O,A两个定点,再寻找点P使得△OAP为等腰三角形,可知需要利用“两圆一线”解题,即:分别以O,A为圆心,以OA的长为半径画圆;作线段OA的垂直平分线,与x轴的交点即为所求.如图所示,图中,,,即为所求.故选C.试题难度:三颗星知识点:等腰三角形的存在性。

等腰三角形的性质习题附答案

等腰三角形的性质习题附答案

等腰三角形的性质一.判断题 (本大题共 40 分)1. 等腰三角形内一点到底边两端点距离相等, 则这点和这个等腰三角形的顶点及底边 中点在同一直线上. ( )2. 已知如图AB =AC, OB =OC, 则∠ABO =∠ACO()3. 如图已知△ABC 中AB =AC, AD 平分△ABC 的外角∠EAC, 则AD ∥BC. ()4.()5. 等腰三角形的底角一定是锐角.( )6. 已知如图, △ABC 是等边三角形, D 是BC 中点 DE ⊥AC 于E, 则 EC =AC( )7. 等腰三角形的底角不一定是锐角. ( )8. 如图△ABC 中AB =AC, D 、E 分别为AC 、BC 上的点, 则DB >DE ()9. 等腰三角形底边上的高上任意一点到两腰的距离相等 ( ) 10. 等腰三角形两腰上中线的交点到底边的两端点距离相等.( ) 11. 如图, D 是等腰三角形底边BC 上一点. 则 ∠ADC >∠C. ( )12. 等腰三角形一腰上中线把它周长分为15cm 和6cm 两部分,则这个三角形三边长为10cm 、10cm 、1cm( )13. 等腰三角形中, 两个角的比为1:4, 则顶角的度数为20°. ( )14. 等边三角形的边长为a, 则高为 a. ( ) 15. 等腰三角形的顶角可以是直角、锐角或钝角. ( )16. 如图, 已知: △ABC 的AB =AC, D 是AB 上一点, DE ⊥BC, E 是垂足, ED 的延长线交CA 的 延长线于F, 则AD =AF. ( )17. 如图B 、D 、E 、C 在同一直线上, 若AB =AC, ∠1=∠2, 则 ∠3=∠4. ()18. 等边三角形ABC 中, D 是AC 中点, E 为BC 延长线上一点, 且 DB =DE. 则 CE =CD()19. 已知, △ABC 中, AB =AC, ∠B =75°, CD ⊥AB 于D, 则CD =AB( )20. 等腰三角形底边上的中点到两腰的距离相等.( )21. 如图, B 、D 、E 、C 在同一直线上, 若AB =AC, ∠3=∠4, 则∠1=∠2.()22. 因为等腰三角形的底角一定是锐角, 所以等腰三角形是锐角三角形. ( ) 23. 如图, △ABC 和△CDE 都是等边三角形, 则 AD =BE. ()24. 如图, 已知: 四边形ABCD 中, ∠ABC =∠ADC, AB =AD, 则 CB =CD. ()25. 如果三角形一边上的中线等于这边的一半, 这个三角形不一定是直角三角形. ( ) 26. 等腰三角形角平分线、高线、中线在同一条直线上 ( ) 27. 已知如图, △ABC 中, ∠B >∠C, 点D 是AC 上的一点, 且AD =AB, 则∠DBC =(∠ABC-∠C)( )28. 如果等腰三角形的顶角为50°, 那么一腰上的高与底边的夹角是40°.( )29. 已知△ABC 中, AB =AC, D 在AB 上且∠DCB =∠A, 则 CD ⊥AB ( )30. 等腰三角形两腰上的中线相等. ( )31. 已知△ABC 中, AB =AC, CD ⊥AB 于D, 则 ∠DCB =∠A( )32. 如图, AB =AE, ∠B =∠E, CB =ED. F 是CD 的中点, 则AF ⊥CD. ()33. 等腰三角形顶角的顶点到两腰中线的距离相等. ( )34. 已知: 如图在△ABC 中, AB =AC, D 是BC 延长线上一点, E 是AB 上一点, DE 交AC 于点F , 则 AE <AF ()35. 在△ABC 中, AB ≤AC, 延长CB 到D, 使BD =BA, 连结AD, 则 AD <AC.()36. 已知: 如图, D 为等腰直角△ABC 的直角边BC 延长线上一点, 且CD =CE, BE 延长线交AD 于F, 则BF ⊥AD()37. 在△ABC 中, ∠A =2∠B, 则BC <2AC. ()38. 已知, 如图 AD =DC, DE 平分∠ADB, F 是AC 中点, 则DE ⊥DF. ()39. 已知如图: △ABC 和△ADE 都是等腰三角形且顶角∠BAC =∠DAE, 则BD =CE ( )40. 如图, 已知: △ABC 中, ∠ABC =2∠C, AH ⊥BC, 垂足为H 延长AB 至D, 使 BD =BH,DH 的延长线交AC 于点M, 则MA =MC( )二.单选题 (本大题共 60 分)1. 在△ABC 中, AB=AC, ∠A=40°, 点O 在三角形内且∠OBC=∠OCA, 则 ∠BOC 的度数是 [ ]A.110°B.35°C.140°D.55°2. 如图在△ABC 中, AB =AC, ∠A =40°, P 为△ABC 内的一点, 且∠PBC =∠PCA,则∠BPC 的度数是[ ]A.115°B.110°C.120°D.130°3. 等腰三角形一边长5cm, 另一边长是3cm, 它的周长是 [ ] A.11cm B.13cm C.11cm 或13cm D.以上都不对4. 等腰三角形的一个角等于20°, 则它的另外两个角等于 [ ] A.20°、140° B.20°、140°或80°、80° C.80°、80° D.20°、80°5. 已知等腰三角形的一边长为4, 另一边长为9, 则它的周长为[ ]A.17B.17或22C.22D.136. 一个等腰三角形的一个内角为70°, 则它一腰上的高与底边所夹的角的度数为[ ]A.55°B.55°或70°C.20°D.20°或35°7. 等腰三角形顶角的度数是底角度数的4倍, 那么,它的底角的度数是[ ]A.120°B.30°C.60°D.90°8. 有一个角是50°的等腰三角形其顶角的度数为 [ ] A.80° B.50° C.80°或50° D.65.5°9. 等腰三角形周长12厘米,其中一边长2厘米,其他两边分别长 [ ] A .2厘米,8厘米 B .5厘米,5厘米 C .5厘米,5厘米或2厘米,8厘米 D .无法确定10. 等腰三角形两边分别为35厘米和22厘米, 则它的第三边长为 [ ]A.35cmB.22cmC.35cm 或22cmD.15cm 11. 已知等腰三角形的两个角之比为1∶2, 则顶角的度数是 [ ]A.90°B.36°C.36°或90°D.120° 12. 等腰三角形两边长是9cm 和15cm, 则它的周长是 [ ]A.24cmB.33cmC.39cmD.33cm 或39cm13. 等边三角形ABC 中, CD 是∠ACB 的平分线, 过D 作BC 的平行线交AC 于E, 若△ABC 的边长 是a, 则△ADE 的周长是 [ ]A.2aB. aC. aD. a14. 如果等腰三角形的周长为21, 其中一边长为5, 那么此等腰三角形底边长是 [ ] A.11 B.5 C.5或11 D.815. 已知等腰三角形中一个角为50°, 则这个三角形腰上的高和底边夹角的度数为 [ ] A.25° B.40° C.25°或40° D.以上答案都不对16. 在等腰△ABC 中, AB 的长是AC 的二倍, 三角形的周长是40, 则AB 的长等于. [ ] A.20 B.16 C.20或16 D.1017. 等腰三角形的底边为a, 顶角是底角的4倍. 则腰上的高为 [ ] A.a B. C. a D.2a 18. 已知等腰三角形的一边长为5, 另一边长为6, 则它的周长为 [ ]A.16B.16或17C.17D.1119. 等腰三角形底边长为5厘米,一腰上的中线把三角形分成两部分,其周长之差为3厘米,则 它的腰长为[ ]A .8厘米B .5厘米C .2厘米或8厘米D .2厘米20. 等腰三角形有一个角是45°, 那么这个三角形是 [ ] A.锐角三角形 B.直角三角形 C.钝角三角形 D.不唯一确定21. 如图△ABC 中, AB =AC, 且EB =BD =DC =CF, ∠A =40°, 则∠EDF 的度数为 [ ]A.70°B.110°C.55°D.60°22. 已知等腰三角形的一个角为20°, 则它的另外两个角分别为[ ]A.20°,140°B.80°,80°C.20°,140°或80°,80°D.20°,80°23. 如果一个等腰三角形的一腰是顶角平分线的2倍, 那么这个三角形必有一个内角等于[ ]A.45°B.60°C.90°D.120°24. 如图, 在Rt △ABC 中, ∠C=90°, ∠DBC=26°,且AD=DB,则∠A=[ ]A.26°B.32 °C.64°D.52° 25. 一个等腰三角形的角平分线、高线和中线的总数最多有 [ ]A .3条B .5条C .7条D .9条26. 至少有两边相等的三角形是 [ ] A .等腰三角形 B .等边三角形 C .等腰直角三角形D .锐角三角形27. 已知:等腰三角形的一边等于4, 一边等于8, 则这个等腰三角形的周长是 [ ] A.20 B.16 C.20或16 D.无法确定 28. 如图, AB =AC, FD ⊥BC 于D, DE ⊥AB 于E, 若∠AFD =155°, 那么∠EDF 的度数是[ ]A.45°B.55°C.65°D.75°29. 一条等腰三角形底边上的高等于底边的一半, 那么这个等腰三角形的顶角 [ ] A.小于60° B.等于60° C.等于90° D.大于90°30. 等边三角形的高、中线、角平分线共有________条.[ ]A.9B.7C.6D.3 31. 等腰三角形有一个角是,则它顶角的大小为 [ ] A . B .C .D .32. 等腰三角形的两边长为25cm 和12cm, 那么它的第三条边长为[ ]A.25cmB.12cmC.25cm 或12cmD.37cm 33. 在等腰△ABC 中,AB =AC ,BD 平分∠ABC ,并交AC 于D .如果∠CDB =,那么∠A 等于[ ]A .B .C .D .34. 若一个等腰三角形的两边分别是3cm 和6cm, 则它的周长为 [ ]A.15cmB.12cmC.12cm 或15cmD.18cm35. 如果一个三角形的三条高线的交点恰是这个三角形的一个顶点,那么此三角形 [ ] A .是锐角三角形 B .是钝角三角形 C .是直角三角形D .形状不确定36. 等腰三角形两边是9cm 和15cm, 则它的周长是 [ ]A.24cmB.33cmC.39cmD.33cm 或39cm37. 等腰Rt △ABC 中, ∠C =90° D 是BC 上一点, 且AD =2CD 则 ∠ADB 的度数为 [ ] A.30° B.60° C.120° D.150°38. 已知等腰三角形的一边等于4, 一边等于8, 则这个等腰三角形的周长是 [ ] A.20 B.16 C.20或16 D.无法确定39. 已知:如图, △ABD 和△ACE 均为等边三角形, 那么△ADC ≌△AEB 的根据是 []A.边,边,边B.边,角,边C.角,边,角D.角,角,边40. 一个等腰三角形底边上的高等于底边的一半, 那么这个等腰三角形的顶角 [ ]A.小于60°B.等于60°C.等于90°D.大于90° 41. 在△ABC 中, AB =AC, ∠A+ ∠B =130°, 则∠A 、∠B 、∠C 的度数是 [ ]A.∠A =50°、∠B =80°、∠C =80°B.∠A =50°、∠B =80°、∠C =50°C.∠A =50°、∠B =50°、∠C =80°D.∠A =80°、∠B =50°、∠C =50°42. 等腰三角形顶角是84°,则一腰上的高与底边所成角的度数是 [ ] A.42° B.6° C.36° D.46°43. 如图: AB =AC, ∠BAD =30°AD ⊥BC 且AD =AE, 则∠EDC =[ ]A.10°B.12.5°C.15°D.20° 44. 等腰三角形一腰上的高与底所夹的角等于 [ ] A.顶角 B.顶角的 C.顶角的2倍 D.底角的45. 等腰三角形边长分别是3和6,这个三角形的周长是[ ] A .9 B .12 C .15D .12或1546. 用一条长为12cm 的铁丝做等腰三角形, 底和腰的长必须是正整数, 若底的长为xcm, 则腰的长y 可为 [ ]A.5cmB.5cm 或4cmC.4cmD.-5cm47. 一个等腰三角形底边为8cm, 从底边上一个端点引腰的中线, 分三角形周长为两部 分, 其中一部分比另一部分长2cm, 则腰长为 [ ]A.6cmB.10cmC.6cm 或10cmD.以上都不对48. 一个等腰但非等边三角形, 它的角平分线, 中线和高线的条数共为 [ ] A.6 B.7 C.8 D.949. 已知:如图在△ABC 中, AB=AC, CD 为∠ACB 平分线,DE ∥BC,∠A=40°, 则∠EDC 的度数是[ ]A.30°B.36°C.35°D.54°50. 等腰三角形两个角的比为4∶1, 则顶角为 [ ]A.120°B.20°C.120°或20°D.150°51. 如图已知: AB =AC =BD, 那么∠1与∠2之间的关系满足[ ]A.∠1=2∠2B.2∠1+∠2=180°C.∠1+3∠2=180°D.3∠1-∠2=180°52. 若等腰三角形的两边a 、b 满足,则此等腰三角形的周长为[ ]A .7B .5C .8D .7或553. 等腰△ABC 中,两腰上的中线BE 、CD 交于O ,则下列判断中错误的是[ ]A .△ADC ≌△AEB B .△DBC ≌△ECB C .△ABE ≌△BCDD . △BOD ≌△COE54. 从等腰三角形底边上任一点,分别作两腰的平行线所成的四边形的周长等于此等腰三角形的[ ]A .周长B .周长一半C .一腰长D .两腰长的和 55. 等腰三角形一腰上的高与底边所成的角等于 [ ]A .顶角B .顶角的一半C .顶角的2倍D .底角的一半56. 如下图,△ABC 中,AB=AC ,点D 、E 、F 分别在BC 、AB 、AC 上,且DE=BE ,DF=DC ,若∠A=,则∠EDF=[ ]A .B .C .D .57.等腰三角形底边长为5厘米, 一腰上的中线把三角形分成两部分, 其周长之差为3厘米, 则它的腰长为 [ ]A.2厘米B.8厘米C.2厘米或8厘米D.9厘米58.如图△ABC中, AB=AC, ∠A=50°, P是△ABC内的一点, 且∠PBC=∠PCA, 则∠BPC的度数为[ ] A.115° B.100° C.130° D.140°59.如图, △ABC中, AB=AC, CD⊥AB, 则关于∠A正确的等式是[ ] A.∠A=∠B B.∠A=∠ACB C.∠A=2∠ACB D.∠A=2∠DCB60.如图在△ABC中, AB=AC, BC=BD, AD=DE=EB, 则∠A的度数是[ ]A.30°B.36°C.45°D.54°三.填空题 (本大题共 30 分)1.周长为20cm的等腰三角形中, 底边长为acm, 则一腰长为________cm.2.如图△ABC中, AB=AC, ∠A=40°, ∠AED=∠F, 则∠F=___________度.3.已知等腰三角形有两条边的长分别是3cm和7cm, 那么这个三角形的周长等于__________cm4.已知如图, A、D、C在一条直线上AB=BD=CD, ∠C=40°, 则∠ABD=______度.5.等腰三角形的周长为36, 腰比底长3, 则此等腰三角形的腰长为________, 底边长为________.6.等腰三角形的底边为12cm,且腰是底的, 则三角形的周长是_______cm7.已知等腰三角形的一个底角等于顶角的4倍, 则这个等腰三角形的顶角为_______度.8.等腰三角形底边中线与________和________重合.9.已知: 如图: △ABC中, AB=BC, ∠B=90°, AD∥BC, ∠D=70°, 则∠EFA=____度10.已知:等腰三角形的一个角为100°, 则另两个角的度数为________.11.△ABC中,如果AB=AC,点M是BC边中点,那么M到______两边的距离相等,AM上的点到_____ _两点的距离相等。

等腰直角三角形的性质(人教版)(含答案)

等腰直角三角形的性质(人教版)(含答案)

等腰直角三角形的性质(人教版)试卷简介:测试学生对于常见的等腰直角三角形的思考角度,从边、角、特殊的线、周长、面积等角度分别如何思考,初步体会结构化思考的意识。

一、单选题(共10道,每道10分)1.如图,a∥b,点A在直线a上,点C在直线b上,∠BAC=90°,AB=AC.若∠1=20°,则∠2的度数为( )A.25°B.65°C.70°D.75°答案:B解题思路:∵∠BAC=90°,AB=AC,∴∠B=∠ACB=45°,∵∠1=20°,∴∠ACE=65°,∵a∥b,∴∠2=∠ACE=65°.故选B.试题难度:三颗星知识点:等腰直角三角形2.如图,在Rt△ABC中,AB=AC,AD⊥BC,垂足为D.E,F分别是CD,AD上的点,且CE=AF.如果∠AED=62°,那么∠DBF=( )A.38°B.30°C.28°D.26°答案:C解题思路:在Rt△ABC中,AB=AC,AD⊥BC,∴BD=CD,∠ADB=∠ADC=90°,∵∠BAC=90°,∴BD=AD=CD,∵CE=AF,∴DF=DE.∴Rt△BDF≌Rt△ADE(SAS).∴∠DFB=∠AED,∵∠AED=62°∴∠DFB=62°,∴∠DBF=28°.故选C.试题难度:三颗星知识点:等腰直角三角形3.将一副三角板按如图所示方式叠放在一起,若AB=8,则阴影部分的面积是( )A.4B.6C.8D.10答案:C解题思路:在Rt△ABC中,∠B=30°,∠ACB=90°,AB=8,∴.∵BC⊥AE,DE⊥AE∴BC∥ED,∴∠AFC=∠ADE=45°,∴AC=CF=4.故.故选C.试题难度:三颗星知识点:等腰直角三角形4.如图,在等腰三角形ABC中,∠ABC=90°,D为AC边上中点,过D点作DE⊥DF,交AB于E,交BC 于F.若,则AB的长为( )A.3B.6C.9D.18答案:B解题思路:如图,连接BD.∵在等腰直角三角形ABC中,D为AC边上中点,∴BD=CD=AD,∠ABD=45°,BD⊥AC,∴∠C=45°,∴∠ABD=∠C,又∵DE⊥DF,∴∠FDC=∠EDB,∴△EDB≌△FDC(ASA),∴∴∴AB=6,故选B.试题难度:三颗星知识点:等腰直角三角形5.如图,在△ABC中,∠ACB=90°,CA=CB,点D为△ABC外一点,且点D在AC的垂直平分线上.若∠BCD=30°,则∠ABD的值为( )A.25°B.30°C.35°D.45°答案:B解题思路:∵在△ABC中,∠ACB=90°,CA=CB,∴△ABC为等腰直角三角形,∴∠ACB=90°,∠CAB=∠CBA=45°,∵∠BCD=30°,∴∠ACD=60°,∵D在AC的垂直平分线上,∴CD=AD,∴△ACD为等边三角形,∴AC=CD=AD,∴DC=AC=BC,∴∠CBD=∠CDB=75°,∴∠ABD=∠CBD-∠CBA=30°.故选B试题难度:三颗星知识点:等腰直角三角形6.已知在平面上有不重合的两个点A和B,以点A和点B为两个顶点作位置不同的等腰直角三角形,一共可以作出( )A.2个B.4个C.6个D.8个答案:C解题思路:如图所示,可作不同位置的等腰直角三角形6个.故选C.试题难度:三颗星知识点:等腰直角三角形7.如图,在△ABC中,∠ACB=90°,∠CAD=30°,AC=BC=AD,CE⊥CD,且CE=CD,连接BD,DE,BE.则下列结论:①∠ECA=165°;②BE=BC;③AD⊥BE;④.其中正确的是( )A.①②③B.①②④C.①③④D.①②③④答案:D解题思路:①∵∠CAD=30°,AC=BC=AD,∴,∵CE⊥CD,∴∠DCE=90°,∴∠ECA=165°,①正确.②∵CE⊥CD,∠ECA=165°,∴∠BCE=∠ECA-∠ACB=165°-90°=75°,∴△ACD≌△BCE(SAS),∴BE=BC,②正确.③如图,延长AD交BE于点F.∵∠ACB=90°,∠CAD=30°,AC=BC,∴∠CAB=∠ABC=45°∴∠BAD=∠BAC-∠CAD=45°-30°=15°,∵△ACD≌△BCE,∴∠CBE=30°,∴∠ABF=75°,∴∠AFB=90°,∴AD⊥BE.③正确.④证明:如图,过D作DM⊥AC于M,过D作DN⊥BC于N.∵∠CAD=30°,AC=AD∴,∵AC=AD,∠CAD=30°,∴∠ACD=75°,∴∠NCD=90°-∠ACD=15°,∠MDC=90°-∠ACD=15°,∴△CMD≌△DNC,∴,∴CN=BN.∵DN⊥BC,∴BD=CD.④正确.所以4个结论都正确.故选D.试题难度:三颗星知识点:等腰直角三角形8.如图,在等腰直角△ABC中,∠BAC=90°,AC=AB,BD⊥AH于D,CH⊥AH于H,HE,DF分别平分∠AHC和∠ADB.则下列结论中:①△AHC≌△BDA;②DF⊥HE;③DF=HE;④AE=BF.其中正确的结论有( )A.①③④B.①C.①②③D.①②③④答案:D解题思路:①∵∠BAC=90°,BD⊥AH,CH⊥AH,∴∠AHC=∠BDA=90°,∴∠CAH+∠BAD=90°,∠ABD+∠BAD=90°,∴∠CAH=∠ABD又∵AC=AB∴△AHC≌△BDA(AAS),①正确;②如图,延长BD与AC相交于点M,延长FD,HE交于点G.∵∠CHD+∠HDM=90°+90°=180°,∴CH∥BM∵DF平分∠ADB∴DG平分∠HDM又∵HE平分∠AHC∴∠HGD=90°∴DF⊥HE,②正确;③又∵∠CHA=∠ADB∴∠EHA=∠FDB又∵∠EAH=∠FBD,AH=BD∴△EHA≌△FDB∴DF=HE,∴③正确④∵△EHA≌△FDB∴AE=BF,④正确.故选D.试题难度:三颗星知识点:等腰直角三角形9.如图,在△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则∠EFC的度数为( )A.30°B.45°C.55°D.60°答案:B解题思路:∵DE垂直平分AB,∴AE=BE,∵BE⊥AC,∴△ABE是等腰直角三角形,∴∠BAC=∠ABE=45°,又∵AB=AC,∴∠ABC=∠ACB=67.5°,∴∠CBE=∠ABC-∠ABE=22.5°,∵AB=AC,AF⊥BC,∴BF=CF,∴BF=EF,∴∠BEF=∠CBE=22.5°,∴∠EFC=∠BEF+∠CBE=45°.故选B.试题难度:三颗星知识点:等腰直角三角形10.如图,在△ABC中,∠ACB=90°,AD⊥AB,AD=AB,BE⊥DC于点E,CA的垂线AF交EB的延长线于点F,连接CF,则∠ACF的度数为( )A.30°B.40°C.45°D.60°答案:C解题思路:∵∠ACB=90°,∴BC⊥AC,∵AF⊥AC,∴BC∥AF,∴∠EBC=∠AFB,∵EF⊥DE,∠ACB=90°,∴∠DCA+∠ECB=90°,∠ECB+∠EBC=90°,∴∠DCA=∠EBC,∴∠DCA=∠AFB,∵AD⊥AB,AF⊥AC,∴∠DAC=∠BAF,∴△DAC≌△BAF(AAS),∴AC=AF,∵AF⊥AC,∴∠ACF=45°.故选C.试题难度:三颗星知识点:等腰直角三角形。

(完整版)等腰三角形性质家庭作业及答案

(完整版)等腰三角形性质家庭作业及答案

等腰三角形的性质家庭作业 1.(5分)有一个角等于50°,另一个角等于__________2.(5分)有一个内角为140°的等腰三角形的另外两个内角的度数为3.(5分)如图, 在ΔABC 中,AB=AC ,AD ⊥BC ,D 是垂足,有以上两条件可得 (写出一个结论)4.(5分)等腰三角形ABC 中,AB=AC ,AD 是角平分线,则“①AD ⊥BC ,②BD=DC ,③∠B=∠C ,④∠BAD=∠CAD ”中,结论正确的个数是( )A .4B .3C .2D .1 5.(5分)等腰三角形的一个外角等于100°,则与它不相邻的两个内角的度数 分别为 ( ) A .40°,40° B .80°,20° C .50°,50° D .50°,50°或80°,20°6.(5分)如图,在△ABC 中,AB=AC ,AD=AE ,∠BAD=30°, ∠EDC 是 ( )A .10°B .12.5°C .15°D .20°7.(5分)等腰三角形一腰上的高与底边所成的角等于( )A .顶角B .顶角的一半C .顶角的2倍D .底角的一半8.(13分)如图,在ΔABC 中,D 是AC 上一点,且AB=DB=DC ,∠C=30°.求:∠ABD 的度数.9.(13分)如图,在△ABC 中,AB=AC ,AD ⊥BC 于点D ,E 是AD 延长线上一点,连接BE ,CE. 求证:BE=CE.10.(13分)如图,∠C=60°,∠A=50°,AB 的垂直平分线交AC 于D. 求:∠DBC 的度数.11.(13分)如图,已知:在ΔABC 中,AB=AC ,∠A=40°,点O 在ΔABC 内,且∠OBC=∠OCA ,求:∠BOC 的度数.12.(13分)如图,在△ABC 中,AC=BC ,AC ⊥BC ,D 为BC 的中点, CF ⊥AD 于E ,∠CBF=90°, 求证:AB 垂直平分DF .尖子班补充题1.如图,在△ABC 中,AC ⊥BC ,D 、E 为AB 上的点,且AD=AC ,BE=BC , A D F B CE第12题第3题 AD C E第6题 A B C D 第8题 AB C D E 第9题A B C O 第11题 ABD求证:∠ECD=45°2.如图,在ΔABC 中,AB=AC ,BE=CD ,∠B=70°,BD=CF . 求:∠EDF 的度数.答案(供参考) 家庭作业AEDC B第1题 A B CDE F 第2题1.50°或65°2.20°,20°3.∠1=∠2或BD=CD4.A5.D6.C7.B8.60°9.提示:∵AB=AC,AD⊥BC ∴BD=DC ∴BE=CE.10.20°11.110°12.提示:先证明ΔCAD≌ΔBCF,因此CD=BF,可证BD=BF,又∠DBA=∠FBA所以AB垂直平分DF.尖子班补充题1.略2.提示:先证明ΔDBE≌ΔFCD,因此∠BDE=∠CFD,∠BED=∠CDF∴∠EDB+∠CDF=(360°-2×70°)÷2=110°,所以∠EDF=70°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等腰三角形的性质练习题及答案
若按边(角)是否相等分类,两边(角)相等的三角形是等腰三角形.等腰三角形是一类特殊三角形,它的两底角相等;等腰三角形是轴对称图形,底边上的高、中线、顶角的平分线互相重合(简称三线合一),特别地,等边三角形的各边相等,各角都为60°.解与等腰三角形相关的问题,全等三角形依然是重要的工具,但更多的是思考运用等腰三角形的特殊性质,这些性质为角度的计算、线段相等的证明、直线位置关系的证明等问题提供了新的理论依据,因此,重视全等三角形的运用,又不囿于全等三角形,善于运用等腰三角形的性质探求新的解题途径.
例题求解
【例1】如图AOB是一钢架,且∠AOB=10°,为使钢架更加坚固,需在其内部添加一些钢管EF、FG、GH……添加的钢管长度都与OE相等,则最多能添加这样的钢管根.(山东省聊城市中考题)
思路点拨通过角度的计算,确定添加钢管数的最大值.
`
注角是几何中最活跃的元素,与角相关的知识异常丰富,在三角形中,角又有独特的等量关系,如三角形内角和定理、内外角关系定理.等腰三角形两底角相等,利用这些定理可以找到角与角之间的“和”、“差”、“倍”、“分”关系.
随着知识的丰富,我们分析问题、解决问题的方法和工具随之增加,因此,在使用什么方法解决问题时,需要综合与选择.
【例2】如图,若AB=AC,BG=BH,AK=KG,则∠BAC的度数为()
A.30°D.32° C 36°D.40°
(武汉市选拔赛试题)
思路点拨图中有很多相关的角,用∠BAC的代数式表示这些角,建立关于∠BAC的方程.
\
【例3】如图,在△ABC中,已知∠A=90°,AB=AC,D为AC上一点,AE⊥BD于E,延长AE交BC于F,问:当点D满足什么条件时,∠ADB=∠CDF,请说明理由.(安徽省竞赛题改编题)
思路点拨本例是探索条件的问题,可先假定结论成立,逐步逆推过去,找到相应的条件,若∠ADB=∠CDF,这一结论如何用因∠ADB与∠CDF对应的三角形不全等,故需构造
全等三角形,而作顶角的平分线或底边上的高(中线)是等腰三角形中一条常用辅助线.
{
【例4】如图,在△ABC 中,AC =BC ,∠ACB=90°,D 是AC 上一点,AE ⊥BD 交BD 的延长线于E ,且AE=21BD .求证:BD 是∠ABC 的角平分线. (北京市竞赛题)
思路点拨 AE 边上的高与∠ABC 的平分线重合,联想到等腰三角形,通过作辅助线构造全等三角形、等腰三角形.

注 若巳知图形中不存在证题所需的全等三角形,我们需要添加辅助战,构造全等三角形,使欲证的线段或角转移位置,最终使问题得以解决.
结论探索型、条件探索型、存在性判断是探索型问题的基本形式,相应的解题策略是:
(1)通过对符合条件的特例或简单情形的分析、观察、猜想结果,再给出证明;
(2)假设结论成立,逆推追寻相应的条件;
(3)假设在题设条件下的某一数学对象存在,进行推理,若由此导出矛盾,则否定假设;否则,给出肯定的结论.
【例5】如图,在△ABC 中,已知∠C =60°,AC>BC ,又△ABC ′、△BCA ′、△CAB ′都是△ABC 形外的等边三角形,而点D 在AC 上,且BC =DC
(1)证明:△C ′BD ≌△B ′DC ;
(2)证明:△AC ′D ≌△DB ′A ;

(3)对△ABC 、△ABC ′、△BCA ′、△CAB ′,从面积大小关系上,你能得出什么结论 (江苏省竞赛题)
思路点拨 (1)是基础,(2)是(1)的自然推论,(3) 由角的不等,导出边的不等关系,这是探索面积不等关系的关键.
学力训练
1.如图,△ABC 中,已知AD =AC ,要使AD=AE ,需要添加的一个条件是 . (济南市中考题)
2.等腰三角形一腰上的中线把这个三角形的周长分成12cm 和21cm 两部分,则这个等腰三角形底边的长为 .
3.△ABC 中,AB =AC ,∠A=40°,BP=CE ,BD=CP ,则∠DPF= 度.
-
4.如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC的大小是.
(烟台市中考题)
5.△ABC的一个内角的大小是40°,且∠A=∠B,那么∠C的外角的大小是( ) A.140°B.80°或100° C .100°或140°D.80°或140°

6.已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点F、F,给出以下四个结论:①AE=CF;②△EPF是等腰直角三角形,③
S
AEPF 四边形=
2
1
S ABC
;④EF=AP.当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合),
上述结论中始终正确的是( )
A.1个B.2个C.3个D.4个
(苏州市中考题)
7.如图,在△ABC中,∠ACB=90°,AC=AE,BC=BF,则∠ECF=( )
A.60°B.45°C.30°D.不确定
~
8.如图,在等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是( ) A.45°D.55°C.60°D.75°
(菏泽市中考题)
9.在△ABC中,已知AB=AC,且过△ABC某一顶点的直线可将△ABC分成两个等腰三角形,试求厶ABC各内角的度数.
(广州市中考题)
10.如图,已知A、D两点分别是正三角形DEF、正三角形ABC的中心,连结GH、AD,延长AD交BC于M,延长DA交EF于N,G是FD与AB的交点,H是ED与AC的交点.
(1)请写出三个不同类型的、必须经过至少两步推理才能得到的正确结论(不要求写出证明过程);
(2)问FE、GH、BC有何位置关系试证明你的结论.
(江西省中考题)
]
11.如图,在Rt△ABC中,已知∠ACB=90°,AC=BC,D为DC的中点,CE⊥AD于E,BF∥AC交CE的延长线于点F.求证:AB垂直平分DF.
(河南省中考题)
:
12.如图,O为等边三角形ABC内一点,BD=DA,BE=AB,∠DBE=∠DBC,则∠BED的度数是.
(河南省竞赛题)
13.如图,AA′、BB′分别是∠EAO、∠DBC的平分线,若AA′=BB′=AB,则∠BAC的度数为.(全国初中数学联赛题)
|
14.周长为100,边长为整数的等腰三角形共有种.
( “华杯赛”试题)
15.已知等腰三角形的两边a、b满足2)
+
-b
+
b
a=0,则此等腰三角形的周长
a
2-
3
13
+
2(
5
3
为.
>
16.如图,在△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是( ) A.20°B.25°C.30°D.45°
17.如图,在等腰直角△ABC中,AD为斜边上的高,以D为端点任作两条互相垂直的射线与两腰相交于E、F,连结EF与AD相交于G,则∠AED与∠AGF的关系为( )
A.∠AED>∠AGF B.∠AED=∠AGF C.∠AED<∠AGF D.不能确定(“学习报)公开赛试题)
18.如图,直线1l、2l、3l表示三条相交的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )
A.一处B.两处C.三处D.四处
(安徽省中考题)
19.△ABC 的三边为a 、b 、c ,且满足25.1225.3222b a c b a +⨯=++,则△ABC 是( ) A .直角三角形 B .等腰三角形 C .等边三角形 D .以上答案都不对 }
(河南省竞赛题)
20.如图,在△ABC 中,AB=AC ,P 底边BC 上一点,PD ⊥AB 于D ,PE ⊥AC 于E ,CF ⊥AB 于F .
(1)求证:PD+PE=CF ;
(2)若P 点在BC 的延长线上,那么PD 、PE 、CF 存在什么关系写出你的猜想并证明.
21.如图,在等腰直角△ABC 中,∠BAC =90°,AD=AE ,AF ⊥BE 交BC 于点F ,过F 作FG ⊥CD 交BE 延长线于G ,求证:BG=AF+FG . (重庆市竞赛题)
|
22.如图,在△ABC 中,AB =AC ,∠BAC =80°,O 为△ABC 内一点,且∠OBC=10°,∠OCA=20°,求∠BAO 的度数. (天津市竞赛题)

23.如图,等边△ABC 中,AB=2,点P 是AB 边上的任意一点(点P 可以与点A 重合,但不与点B 重合),过点P 作PE ⊥BC 于E ,过点E 作EF ⊥AC 于F ,过点F 作FQ ⊥AB 于Q ,设BP= x ,AQ =y .
(1)用x 的代数式表示y ;
(2)当PB 的长等于多少时,点P 与点Q 重合
(福州市中考题)
24.如图,△ABC 是边长为l 的等边三角形,△BDC 是顶角∠BDC =120°的等腰三角形,以D 为顶点作一个60°角,角的两边分别交AB 于M ,交AC 于N ,连结MN ,形成一个三角形,求证:△AMN 的周长等于2.
-。

相关文档
最新文档