离散数学题库简答题

合集下载

离散数学期末考试题及详细答案

离散数学期末考试题及详细答案

离散数学期末考试题及详细答案一、选择题(每题5分,共20分)1. 在离散数学中,下列哪个概念用来描述元素与集合之间的关系?A. 并集B. 交集C. 子集D. 元素答案:D2. 布尔代数中,下列哪个运算符表示逻辑“与”?A. ∨B. ∧C. ¬D. →答案:B3. 下列哪个命题的否定是正确的?A. 如果今天是周一,则明天是周二。

B. 如果今天是周一,则明天不是周二。

答案:B4. 在图论中,一个图的顶点数为n,边数为m,下列哪个条件可以保证该图是连通的?A. m > nB. m ≥ nC. m = nD. m > n-1答案:D二、填空题(每题5分,共20分)1. 在集合论中,一个集合的幂集包含该集合的所有______。

答案:子集2. 如果一个函数f: A → B是单射的,那么对于任意的a1, a2 ∈ A,如果a1 ≠ a2,则f(a1) ≠ f(a2)。

这种性质称为函数的______。

答案:单射性3. 在图论中,一个图的直径是指图中任意两个顶点之间的最短路径的最大值。

如果一个图的直径为1,则该图被称为______。

答案:完全图4. 一个布尔表达式可以表示为一系列逻辑运算符和变量的组合。

布尔表达式(A ∧ B) ∨ (¬ A ∧ C)的真值表中,当A为真,B为假,C为真时,整个表达式的值为______。

答案:真三、简答题(每题10分,共30分)1. 请简述什么是图的哈密顿回路,并给出一个例子。

答案:哈密顿回路是图中的一个回路,它恰好访问每个顶点一次。

例如,在一个完全图中,任意一个顶点出发,依次访问其他顶点,最后回到出发点的路径就是一个哈密顿回路。

2. 请解释什么是二元关系,并给出一个二元关系的例子。

答案:二元关系是定义在两个集合上的一个关系,它关联了第一个集合中的元素和第二个集合中的元素。

例如,小于关系是实数集合上的一个二元关系,它关联了每一对实数,如果第一个数小于第二个数。

(完整版)离散数学题目及答案

(完整版)离散数学题目及答案

数理逻辑习题判断题1.任何命题公式存在惟一的特异析取范式 ( √ ) 2. 公式)(q p p →⌝→是永真式 ( √ ) 3.命题公式p q p →∧)(是永真式 ( √ ) 4.命题公式r q p ∧⌝∧的成真赋值为010 ( × ) 5.))(()(B x A x B x xA →∃=→∀ ( √ )6.命题“如果1+2=3,则雪是黑的”是真命题 ( × ) 7.p q p p =∧∨)( ( √ )8.))()((x G x F x →∀是永真式 ( × ) 9.“我正在撒谎”是命题 ( × ) 10. )()(x xG x xF ∃→∀是永真式( √ )11.命题“如果1+2=0,则雪是黑的”是假命题 ( × ) 12.p q p p =∨∧)( ( √ )13.))()((x G x F x →∀是永假式 ( × )14.每个命题公式都有唯一的特异(主)合取范式 ( √ ) 15.若雪是黑色的:p ,则q →p 公式是永真式 ( √ ) 16.每个逻辑公式都有唯一的前束范式 ( × ) 17.q →p 公式的特异(主)析取式为q p ∨⌝ ( × ) 18.命题公式 )(r q p →∨⌝的成假赋值是110 ( √ ) 19.一阶逻辑公式)),()((y x G x F x →∀是闭式( × )单项选择题1. 下述不是命题的是( A )A.花儿真美啊! B.明天是阴天。

C.2是偶数。

D.铅球是方的。

2.谓词公式(∀y)(∀x)(P(x)→R(x,y))∧∃yQ(x,y)中变元y (B)A.是自由变元但不是约束变元B.是约束变元但不是自由变元C.既是自由变元又是约束变元D.既不是自由变元又不是约束变元3.下列命题公式为重言式的是( A )A.p→ (p∨q)B.(p∨┐p)→qC.q∧┐q D.p→┐q4.下列语句中不是..命题的只有(A )A.花儿为什么这样红?B.2+2=0C.飞碟来自地球外的星球。

《离散数学》题库及标准答案

《离散数学》题库及标准答案

《离散数学》题库及标准答案《离散数学》题库及答案————————————————————————————————作者:————————————————————————————————日期:《离散数学》题库与答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)?Q=>Q→P (2)?Q=>P→Q (3)P=>P→Q (4)?P∧(P∨Q)=>?P答:在第三章里面有公式(1)是附加律,(4)可以由第二章的蕴含等值式求出(注意与吸收律区别)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→?R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q)答:(2),(3),(4)可用蕴含等值式证明3、设有下列公式,请问哪几个是永真蕴涵式?( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ?(P→Q)=>P (6) ?P∧(P∨Q)=>?P答:(2)是第三章的化简律,(3)类似附加律,(4)是假言推理,(3),(5),(6)都可以用蕴含等值式来证明出是永真蕴含式4、公式?x((A(x)→B(y,x))∧?z C(y,z))→D(x)中,自由变元是( ),约束变元是( )。

答:x,y, x,z(考察定义在公式?x A和?x A中,称x为指导变元,A为量词的辖域。

在?x A和?x A的辖域中,x的所有出现都称为约束出现,即称x为约束变元,A中不是约束出现的其他变项则称为自由变元。

于是A(x)、B(y,x)和?z C(y,z)中y为自由变元,x和z为约束变元,在D(x)中x为自由变元)5、判断下列语句是不是命题。

若是,给出命题的真值。

( )(1)北京是中华人民共和国的首都。

(2) 陕西师大是一座工厂。

(3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。

离散数学考试题及详细参考答案

离散数学考试题及详细参考答案

离散数学考试题(后附详细答案)一、命题符号化(共6小题,每小题3分,共计18分)1.用命题逻辑把下列命题符号化a)假如上午不下雨,我去看电影,否则就在家里读书或看报。

b)我今天进城,除非下雨。

c)仅当你走,我将留下。

2.用谓词逻辑把下列命题符号化a)有些实数不是有理数b)对于所有非零实数x,总存在y使得xy=1。

c) f 是从A到B的函数当且仅当对于每个a∈A存在唯一的b∈B,使得f(a)=b.二、简答题(共6道题,共32分)1.求命题公式(P→(Q→R)) (R→(Q→P))的主析取范式、主合取范式,并写出所有成真赋值。

(5分)2.设个体域为{1,2,3},求下列命题的真值(4分)a)x y(x+y=4)b)y x (x+y=4)3.求x(F(x)→G(x))→(xF(x)→xG(x))的前束范式。

(4分)4.判断下面命题的真假,并说明原因。

(每小题2分,共4分)a)(A B)-C=(A-B) (A-C)b)若f是从集合A到集合B的入射函数,则|A|≤|B|5.设A是有穷集,|A|=5,问(每小题2分,共4分)a)A上有多少种不同的等价关系?b)从A到A的不同双射函数有多少个?6.设有偏序集<A,≤>,其哈斯图如图1,求子集B={b,d,e}的最小元,最大元、极大元、极小元、上界集合、下界集合、上确界、下确界,(5分)f g图17.已知有限集S={a1,a2,…,a n},N为自然数集合,R为实数集合,求下列集合的基数S;P(S);N,N n;P(N);R,R×R,{o,1}N(写出即可)(6分)三、证明题(共3小题,共计40分)1.使用构造性证明,证明下面推理的有效性。

(每小题5分,共10分)a)A→(B∧C),(E→ F)→ C, B→(A∧ S) B→Eb)x(P(x)→ Q(x)), x(Q(x)∨R(x)),x R(x) x P(x)2.设R1是A上的等价关系,R2是B上的等价关系,A≠ 且B≠ ,关系R满足:<<x1,y1>,<x2,y2>>∈R,当且仅当< x1, x2>∈R1且<y1,y2>∈R2。

离散数学题库简答题

离散数学题库简答题

离散数学题库简答题(总17页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除236,49,64,81,100构造一棵最优二叉树。

答题集合X={<1,2>, <3,4>, <5,6>, …},R={<<x1,y1>,<x2,y2>>|x1+y2 = x2+y1} 。

1)说明R是X上的等价关系。

(6分)2)求出X关于R的商集。

(2分)答: 1)、1、自反性:yxyxXyx+=+>∈<∀由于,,2、对称性:XyxXyx>∈<∀>∈<∀2211,,,3、传递性:XyxXyxXyx>∈<∀>∈<∀>∈<∀332211,,,,即1331yxyx+=+由(1)(2)(3)知:R是X上的先等价关系。

2)、X/R=}]2,1{[R><简答题8 4.4 3设集合A={ a ,b , c , d }上关系R={< a, b > , < b , a > , < b , c > , < c , d >}要求1)、写出R的关系矩阵和关系图。

(4分)2)、用矩阵运算求出R的传递闭包。

(4分)答:1、⎪⎪⎪⎪⎪⎭⎫⎝⎛=1111RM;关系图2、⎪⎪⎪⎪⎪⎭⎫⎝⎛==11112RRRMMM∴t (R)={<a , a> , <a , b> , < a , c> , <a , d > , <b , a > , < b ,b > , < b , c . > , < b ,d > , < c , d > }。

简答题8 4.1;4.3 434利用主析取范式,判断公式R Q Q P ∧∧→⌝)(的类型。

离散数学考试题及答案

离散数学考试题及答案

离散数学考试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项不是离散数学的研究对象?A. 图论B. 组合数学C. 微积分D. 逻辑学答案:C2. 在逻辑学中,下列哪个命题是真命题?A. 如果今天是周一,那么明天是周二。

B. 如果今天是周一,那么明天是周三。

C. 如果今天是周一,那么明天是周四。

D. 如果今天是周一,那么明天是周五。

答案:A3. 在集合论中,下列哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 在图论中,下列哪个术语描述的是图中的顶点集合?A. 边B. 路径C. 子图D. 顶点答案:D二、填空题(每题5分,共20分)1. 如果一个集合A包含5个元素,那么它的子集个数是______。

答案:322. 在逻辑学中,如果命题P和命题Q都是真命题,那么复合命题“P且Q”的真值是______。

答案:真3. 在图论中,如果一个图的顶点数为n,那么它的最大边数是______。

答案:n(n-1)/24. 如果一个二叉树的深度为3,那么它最多包含______个节点。

答案:7三、简答题(每题10分,共30分)1. 请简述什么是图的连通性,并给出一个例子。

答案:图的连通性是指在图中任意两个顶点之间都存在一条路径。

例如,在一个完全图K3中,任意两个顶点之间都可以通过一条边直接连接,因此它是连通的。

2. 解释什么是逻辑蕴含,并给出一个例子。

答案:逻辑蕴含是指如果一个命题P为真,则另一个命题Q也必须为真。

例如,命题P:“如果今天是周一”,命题Q:“明天是周二”。

如果今天是周一,那么根据逻辑蕴含,明天必须是周二。

3. 请描述什么是二叉搜索树,并给出它的一个性质。

答案:二叉搜索树是一种特殊的二叉树,其中每个节点的左子树只包含小于当前节点的数,右子树只包含大于当前节点的数。

它的一个性质是中序遍历可以得到一个有序序列。

四、计算题(每题15分,共30分)1. 给定一个集合A={1, 2, 3, 4, 5},请计算它的幂集,并列出所有元素。

离散数学试题总汇及答案

离散数学试题总汇及答案

离散数学试题总汇及答案一、单项选择题(每题2分,共20分)1. 在集合{1,2,3}和{3,4,5}的笛卡尔积中,元素(2,4)是否存在?A. 存在B. 不存在C. 无法确定D. 以上都不对2. 函数f: A→B是单射的,当且仅当对于任意的a1, a2∈A,若f(a1)=f(a2),则a1=a2。

A. 正确B. 错误C. 无法确定D. 以上都不对3. 以下哪个命题是真命题?A. 所有的狗都会游泳。

B. 有些狗不会游泳。

C. 所有的狗都不会游泳。

D. 以上都不是真命题。

4. 如果p蕴含q为假,那么p和q的真值可以是?A. p为真,q为假B. p为假,q为真C. p为真,q为真D. p为假,q为假5. 以下哪个图是连通图?A. 一个孤立点B. 两个不相连的点C. 一个包含三个点且每对点都相连的图D. 以上都不是连通图6. 在有向图中,如果存在从顶点u到顶点v的路径,那么称v是u的后继顶点。

A. 正确B. 错误C. 无法确定D. 以上都不对7. 以下哪个等价关系是集合{1,2,3}上的?A. {(1,1), (2,2), (3,3)}B. {(1,2), (2,1), (2,2), (3,3)}C. {(1,1), (2,3), (3,2), (3,3)}D. {(1,1), (2,2), (3,3), (1,3)}8. 以下哪个命题是假命题?A. 所有的鸟都有羽毛。

B. 有些鸟不会飞。

C. 所有的哺乳动物都是温血动物。

D. 以上都不是假命题。

9. 在图论中,一个图的生成树是包含图中所有顶点的最小连通子图。

A. 正确B. 错误C. 无法确定D. 以上都不对10. 如果命题p和q互为逆否命题,那么它们具有相同的真值。

A. 正确B. 错误C. 无法确定D. 以上都不对二、填空题(每题2分,共20分)1. 集合{1,2,3}和{3,4,5}的并集是________。

2. 函数f: A→B是满射的,当且仅当对于任意的b∈B,存在a∈A,使得f(a)=________。

离散数学试题及答案解析

离散数学试题及答案解析

离散数学试题及答案解析一、选择题1. 在集合{1,2,3,4}中,含有3个元素的子集有多少个?A. 4B. 8C. 16D. 32答案:B解析:含有3个元素的子集可以通过组合数公式C(n, k) = n! / [k!(n-k)!]来计算,其中n为集合的元素个数,k为子集中的元素个数。

在本题中,n=4,k=3,所以C(4, 3) = 4! / [3!(4-3)!] = 4。

2. 下列哪个命题是真命题?A. 所有偶数都是整数。

B. 所有整数都是偶数。

C. 所有整数都是奇数。

D. 所有奇数都是整数。

答案:A解析:偶数是指能被2整除的整数,因此所有偶数都是整数,选项A是真命题。

选项B、C和D都是错误的,因为并非所有整数都是偶数或奇数。

二、填空题1. 逻辑运算符“非”(NOT)的真值表是:当输入为真时,输出为______;当输入为假时,输出为真。

答案:假解析:逻辑运算符“非”(NOT)是一元运算符,它将输入的真值取反。

如果输入为真,则输出为假;如果输入为假,则输出为真。

2. 命题逻辑中,合取词“与”(AND)的真值表是:当两个命题都为真时,输出为真;否则输出为______。

答案:假解析:合取词“与”(AND)是二元运算符,只有当两个命题都为真时,输出才为真;如果其中一个或两个命题为假,则输出为假。

三、简答题1. 解释什么是等价关系,并给出一个例子。

答案:等价关系是定义在集合上的一个二元关系,它满足自反性、对称性和传递性。

例如,考虑整数集合上的“同余”关系。

对于任意整数a,b,如果a和b除以同一个正整数n后余数相同,则称a和b模n同余。

这个关系是自反的(a同余a),对称的(如果a同余b,则b同余a),并且是传递的(如果a同余b且b同余c,则a同余c)。

2. 什么是图的连通性?一个图是连通的需要满足什么条件?答案:图的连通性是指在无向图中,任意两个顶点之间都存在一条路径。

一个图是连通的需要满足以下条件:图中的任意两个顶点v和w,都可以通过图中的边相互到达。

大学离散数学期末考试题库和答案

大学离散数学期末考试题库和答案

大学离散数学期末考试题库和答案一、单项选择题(每题2分,共20分)1. 在集合论中,以下哪个符号表示“属于”?A. ∈B. ∉C. ⊆D. ⊂答案:A2. 如果A和B是两个集合,那么A∪B表示什么?A. A和B的交集B. A和B的并集C. A和B的差集D. A和B的补集答案:B3. 以下哪个命题是真命题?A. ∀x∈N, x^2 > xB. ∃x∈N, x^2 = x + 1C. ∀x∈N, x^2 ≥ xD. ∃x∈N, x^2 < x答案:C4. 在图论中,一个无向图的边数为E,顶点数为V,那么这个图的生成树的边数是多少?A. EB. V-1C. VD. E-1答案:B5. 以下哪个算法是用于解决旅行商问题(TSP)的?A. 动态规划B. 贪心算法C. 分支限界法D. 回溯法答案:D6. 在逻辑中,以下哪个符号表示“蕴含”?A. ∧B. ∨C. →D. ↔答案:C7. 以下哪个是二进制数?A. 1010B. 2A3C. 12BD. ZYX答案:A8. 在关系数据库中,以下哪个操作用于删除表中的行?A. SELECTB. INSERTC. UPDATED. DELETE答案:D9. 以下哪个是布尔代数的基本运算?A. 并集B. 交集C. 差集D. 所有以上答案:D10. 在离散数学中,以下哪个概念用于描述两个集合之间的关系?A. 函数B. 映射C. 序列D. 所有以上答案:D二、多项选择题(每题3分,共15分)11. 以下哪些是集合的基本运算?A. 并集B. 交集C. 差集D. 补集答案:ABCD12. 在图论中,以下哪些是图的基本类型?A. 无向图B. 有向图C. 完全图D. 二分图答案:ABCD13. 在逻辑中,以下哪些是命题逻辑的基本连接词?A. 与(∧)B. 或(∨)C. 非(¬)D. 蕴含(→)答案:ABCD14. 在关系数据库中,以下哪些是SQL的基本操作?A. SELECTB. INSERTC. UPDATED. DELETE答案:ABCD15. 在离散数学中,以下哪些是组合数学的基本概念?A. 排列B. 组合C. 二项式系数D. 图论答案:ABC三、填空题(每题3分,共30分)16. 如果集合A={1, 2, 3},集合B={2, 3, 4},那么A∩B=______。

离散数学期末考试题及答案

离散数学期末考试题及答案

离散数学期末考试题及答案一、选择题(每题2分,共20分)1. 在集合论中,以下哪个选项不是集合的基本运算?A. 并集B. 交集C. 差集D. 乘法答案:D2. 命题逻辑中,以下哪个命题不是基本的逻辑连接词?A. 与(∧)B. 或(∨)C. 非(¬)D. 等于(=)答案:D3. 在图论中,一个图的度数之和等于边数的几倍?A. 1B. 2C. 3D. 4答案:B4. 以下哪个是布尔代数的基本定理?A. 德摩根定律B. 布尔代数的分配律C. 布尔代数的结合律D. 所有选项都是答案:D5. 以下哪个不是组合数学中的计数原理?A. 加法原理B. 乘法原理C. 排列D. 组合答案:C6. 在关系数据库中,以下哪个操作不是基本的数据库操作?A. 选择B. 投影C. 连接D. 排序答案:D7. 以下哪个是有限自动机的组成部分?A. 状态B. 转移C. 输入符号D. 所有选项都是答案:D8. 以下哪个命题逻辑表达式是真命题?A. (p ∧ ¬p) ∨ qB. (p ∨ ¬p) ∧ qC. (p → q) ∧ (q → p)D. (p → q) ∧ (¬p → ¬q)答案:D9. 以下哪个是归纳法证明的基本步骤?A. 基础步骤B. 归纳步骤C. 反证法D. 所有选项都是答案:B10. 以下哪个是图的遍历算法?A. 深度优先搜索(DFS)B. 广度优先搜索(BFS)C. Dijkstra算法D. 所有选项都是答案:A二、简答题(每题10分,共30分)1. 简述命题逻辑中的德摩根定律。

答案:德摩根定律是命题逻辑中描述否定命题的两个重要定律。

它们分别是:- ¬(p ∧ q) ≡ ¬p ∨ ¬q- ¬(p ∨ q) ≡ ¬p ∧ ¬q2. 解释什么是图的连通分量,并给出一个例子。

答案:图的连通分量是指图中最大的连通子图。

离散数学考试题及答案

离散数学考试题及答案

离散数学考试题及答案一、选择题(每题2分,共20分)1. 在集合论中,下列哪个符号表示属于关系?A. ∈B. ∉C. ⊆D. ∩答案:A2. 对于命题逻辑,下列哪个是真值表的表示方法?A. 真值表B. 逻辑图C. 布尔代数D. 集合论答案:A3. 以下哪个是图论中的基本单位?A. 点B. 线C. 面D. 体答案:A4. 函数f(x) = x^2 + 3x + 2在x=-1处的值是:A. 0C. 4D. 6答案:C5. 在关系数据库中,以下哪个操作用于删除表中的记录?A. SELECTB. INSERTC. UPDATED. DELETE答案:D6. 以下哪个是离散数学中的归纳法证明方法?A. 直接证明法B. 反证法C. 归纳法D. 构造性证明法答案:C7. 在逻辑中,以下哪个是析取命题?A. P ∧ QB. P ∨ QC. ¬PD. P → Q答案:B8. 以下哪个是图的遍历算法?B. BFSC. Dijkstra算法D. Floyd算法答案:B9. 在集合{1, 2, 3}上,以下哪个是幂集?A. {∅, {1}}B. {1, 2}C. {1, 2, 3}D. 所有选项答案:D10. 以下哪个是递归算法的特点?A. 不能自我调用B. 必须有一个终止条件C. 必须有一个基本情况D. 所有选项答案:D二、填空题(每空2分,共20分)1. 在离散数学中,_________ 表示一个命题的否定。

答案:¬P2. 如果集合A和集合B的交集为空集,那么A和B被称为_________。

答案:不相交3. 一个函数f: A → B是_________,如果对于集合B中的每个元素b,集合A中至少有一个元素a与之对应。

答案:满射4. 在图论中,一个没有环的连通图被称为_________。

答案:树5. 一个命题逻辑公式是_________,如果它在所有可能的真值分配下都是真的。

答案:重言式6. 一个关系R在集合A上是_________,如果对于A中的任意两个元素a和b,如果(a, b)属于R,则(b, a)也属于R。

离散数学期末考试题及答案

离散数学期末考试题及答案

离散数学期末考试题及答案一、单项选择题(每题2分,共20分)1. 集合{1, 2, 3}的子集个数是:A. 3B. 4C. 8D. 2^3答案:C2. 命题逻辑中,命题p∧(q∨¬p)的真值表中,真值个数为:A. 1B. 2C. 3D. 4答案:B3. 函数f: A→B中,若A={1, 2},B={a, b},则f是单射的必要条件是:A. |A| ≤ |B|B. |A| < |B|C. |A| = |B|D. |A| > |B|答案:B4. 以下哪个图是无向图?A. 有向图B. 无向图C. 完全图D. 树答案:B5. 在图论中,一个图的生成树是:A. 包含图中所有顶点的最小连通子图B. 包含图中所有边的最小连通子图C. 包含图中所有顶点和边的连通子图D. 包含图中所有顶点和边的无环子图答案:A6. 以下哪个命题是真命题?A. 所有偶数都是整数B. 所有整数都是偶数C. 所有奇数都是整数D. 所有整数都是奇数答案:A7. 在布尔代数中,以下哪个运算符表示逻辑与?A. ∨B. ∧C. ¬D. →答案:B8. 有限状态机中,状态的转移是由以下哪个决定的?A. 当前状态B. 输入符号C. 当前状态和输入符号D. 输出符号答案:C9. 以下哪个是图的遍历算法?A. 深度优先搜索B. 广度优先搜索C. 动态规划D. 分治算法答案:A10. 在集合论中,以下哪个符号表示集合的交集?A. ∪B. ∩C. ×D. ÷答案:B二、填空题(每题2分,共20分)1. 集合{1, 2, 3}的幂集是{∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}},其中包含元素个数最多的子集是_。

答案:{1, 2, 3}2. 在命题逻辑中,如果p和q都为真,则p∨q的真值为_。

答案:真3. 函数f: A→B中,若A={1, 2},B={a, b, c},则f是满射的必要条件是_。

大学《离散数学》题库及答案

大学《离散数学》题库及答案

《离散数学》题库与答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( A )(1)⌝Q=>Q→P (2)⌝Q=>P→Q (3)P=>P→Q (4)⌝P∧(P∨Q)=>⌝P答:在第三章里面有公式(1)是附加律,(4)可以由第二章的蕴含等值式求出(注意与吸收律区别)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→⌝R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q)答:(2),(3),(4)可用蕴含等值式证明3、设有下列公式,请问哪几个是永真蕴涵式?( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ⌝(P→Q)=>P (6) ⌝P∧(P∨Q)=>⌝P答:(2)是第三章的化简律,(3)类似附加律,(4)是假言推理,(3),(5),(6)都可以用蕴含等值式来证明出是永真蕴含式4、公式∀x((A(x)→B(y,x))∧∃z C(y,z))→D(x)中,自由变元是( ),约束变元是( )。

答:x,y, x,z(考察定义在公式∀x A和∃x A中,称x为指导变元,A为量词的辖域。

在∀x A和∃x A的辖域中,x的所有出现都称为约束出现,即称x为约束变元,A中不是约束出现的其他变项则称为自由变元。

于是A(x)、B(y,x)和∃z C(y,z)中y为自由变元,x和z为约束变元,在D(x)中x为自由变元)5、判断下列语句是不是命题。

若是,给出命题的真值。

( )(1)北京是中华人民共和国的首都。

(2) 陕西师大是一座工厂。

(3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。

(5) 前进! (6) 给我一杯水吧!答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是(命题必须满足是陈述句,不能是疑问句或者祈使句。

)6、命题“存在一些人是大学生”的否定是( ),而命题“所有的人都是要死的”的否定是( )。

离散数学期末考试题及答案

离散数学期末考试题及答案

离散数学期末考试题及答案一、选择题(每题2分,共20分)1. 在集合论中,表示两个集合A和B的并集的符号是:A. ∩B. ∪C. ⊂D. ⊆2. 以下哪个命题逻辑表达式是真命题,当P为真,Q为假时?A. ¬PB. P ∧ QC. P ∨ QD. P → Q3. 如果函数f: A → B是一个单射,那么它不能是:A. 满射B. 双射C. 恒等函数D. 逆函数4. 在图论中,一个图G是连通的,当且仅当:A. G是无向图B. G是简单图C. G是完全图D. 对于任意两个顶点,都存在一条路径5. 以下哪个不是组合数学中的计数原理?A. 加法原理B. 乘法原理C. 排列D. 组合二、简答题(每题10分,共30分)6. 解释什么是二元关系,并给出一个例子。

7. 描述什么是有向图和无向图的区别。

8. 什么是等价关系,它有哪些性质?三、计算题(每题15分,共30分)9. 给定集合A = {1, 2, 3, 4},B = {a, b, c},定义函数f: A → B,其中f(1) = a, f(2) = b, f(3) = c, f(4) = a。

判断f是否是单射、满射或双射,并给出理由。

10. 计算以下命题逻辑表达式的真值表:(P ∧ Q) → (¬P ∨ R),其中P、Q、R是命题变量。

四、证明题(每题20分,共20分)11. 证明:如果一个图G是连通的,那么它的任意子图也是连通的。

答案一、选择题1. B2. C3. A4. D5. D二、简答题6. 二元关系是定义在两个集合上的一个关系,它将第一个集合中的每个元素与第二个集合中的元素相关联。

例如,如果A是人名的集合,B是年龄的集合,关系R可以是“比...年长”,那么(Alice, 30) ∈ R表示Alice比30岁年长。

7. 有向图由顶点和有向边组成,每条边都有一个方向,表示从一个顶点指向另一个顶点。

无向图由顶点和无向边组成,边没有方向。

离散数学考试试题及答案

离散数学考试试题及答案

离散数学考试试题及答案一、单项选择题(每题5分,共20分)1. 在离散数学中,以下哪个概念不是布尔代数的基本元素?A. 逻辑与B. 逻辑或C. 逻辑非D. 逻辑异或答案:D2. 下列哪个命题不是命题逻辑中的命题?A. 所有学生都是勤奋的B. 有些学生是勤奋的C. 学生是勤奋的D. 勤奋的学生答案:D3. 在集合论中,以下哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 以下哪个图不是无向图?A. 简单图B. 完全图C. 有向图D. 多重图答案:C二、填空题(每题5分,共20分)1. 如果一个命题的逆否命题为真,则原命题的________为真。

答案:逆命题2. 在图论中,如果一个图的任意两个顶点都由一条边连接,则称这个图为________图。

答案:完全3. 一个集合的幂集是指包含该集合的所有________的集合。

答案:子集4. 如果一个函数的定义域和值域都是有限集合,那么这个函数被称为________函数。

答案:有限三、简答题(每题10分,共30分)1. 请简述什么是图的欧拉路径。

答案:欧拉路径是一条通过图中每条边恰好一次的路径。

2. 解释什么是二元关系,并给出一个例子。

答案:二元关系是指定义在两个集合之间的关系,它将第一个集合中的元素与第二个集合中的元素联系起来。

例如,小于关系就是一个二元关系。

3. 请说明什么是递归函数,并给出一个简单的例子。

答案:递归函数是一种通过自身定义来计算函数值的函数。

例如,阶乘函数就是一个递归函数,定义为:n! = n * (n-1)!,其中n! = 1当n=0时。

四、计算题(每题10分,共30分)1. 计算以下逻辑表达式:(P ∧ Q) ∨ ¬R答案:首先计算P ∧ Q,然后计算¬R,最后计算两者的逻辑或。

2. 给定集合A = {1, 2, 3},B = {2, 3, 4},求A ∪ B。

答案:A ∪ B = {1, 2, 3, 4}3. 已知函数f(x) = 2x + 3,求f(5)。

离散数学(简答题)

离散数学(简答题)

1、设简单图G所有结点的度数之和为12,则G一定有_____条边。

问题反馈【教师释疑】正确答案:【6 】62、设X={a,b,c},Ix是X上恒等关系,要使Ix∪{〈a,b〉,〈b,c〉,〈c,a〉,〈b,a〉}∪R为X 上的等价关系,R应取_______. 问题反馈【教师释疑】正确答案:【{〈a,c〉,〈c,b〉} 】{〈a,c〉,〈c,b〉}3、命题公式的任意两个不同极小项的合取式一定为_________. 问题反馈【教师释疑】正确答案:【永假式】永假式4、一个公式在等价意义下,_______范式写法是唯一的。

问题反馈【教师释疑】正确答案:【主析取】主析取5、若P:他聪明;Q:他用功;则“他虽聪明,但不用功”,可符号化为_______ 问题反馈【教师释疑】正确答案:【P∧┐Q 】P∧┐Q6、设R是A上的二元关系,且RRR为R的子集,可以肯定R应是_____关系。

问题反馈【教师释疑】正确答案:【传递】传递7、设集合A={1, 2, 3, 4},A上的二元关系R={(1,1),(1,2),(2,3)}, S={(1,3),(2,3),(3,2)}。

则R×S =__________________, 问题反馈【教师释疑】正确答案:【{(1,3),(2,2)} 】{(1,3),(2,2)}8、设谓词的定义域为{a, b},将表达式"任意xR(x)→彐xS(x)"中量词消除,写成与之对应的命题公式是__________________. 问题反馈【教师释疑】正确答案:【(R(a)∧R(b))→(S(a)∨S(b)) 】(R(a)∧R(b))→(S(a)∨S(b))9、设集合A,B,其中A={1,2,3}, B= {1,2}, 则A - B=____________________; 问题反馈【教师释疑】正确答案:【{3} 】{3}10、设G是完全二叉树,G有7个点,其中4个叶点,则G的总度数为__________ 问题反馈【教师释疑】正确答案:【12 】1211、设A、B为两个集合, A= {1,2,4}, B = {3,4}, 则从A∩B=_________________________; 问题反馈【教师释疑】正确答案:【{4} 】{4}12、设A={a, b, {a, b}},B={a, b},则B-A =________ 问题反馈【教师释疑】正确答案:【Φ】Φ13、设G是具有8个顶点的树,则G中增加_________条边才能把G变成完全图。

离散数学试题及答案

离散数学试题及答案

离散数学试题及答案一、选择题(每题2分,共20分)1. 集合A={x|x<5},集合B={x|x>2},则A∩B为:A. {x|x>2}B. {x|x<2}C. {x|2<x<5}D. {x|x≥5}2. 命题p:"x>0"是命题q:"x^2>0"的:A. 必要条件B. 充分条件C. 充分必要条件D. 无关条件3. 函数f(x)=x^2+3x-2的值域是:A. (-∞, -1]B. [1, +∞)C. (-∞, 4]D. (-∞, 2]4. 逻辑表达式((P∨Q)∧(¬P))的真值表中,当P为真时,表达式的值为:A. 真B. 假C. 不确定D. 无法判断5. 已知二元关系R定义在集合A上,若对于任意a,b,c∈A,若aRb且bRc,则aRc,那么R是:A. 自反的B. 对称的C. 传递的D. 完全的6. 有限状态自动机(DFA)与确定有限状态自动机(DFA)的区别在于:A. DFA可以识别非正则语言B. DFA可以有多个起始状态C. DFA可以有多个接受状态D. DFA可以有多个状态7. 命题逻辑中,若命题P的否定为P',则P和P'的关系是:A. 互为对立B. 互为矛盾C. 互为等价D. 互为同一律8. 集合{1,2,3}的子集个数是:A. 3B. 4C. 7D. 89. 一个命题逻辑公式的真值表中,若存在一行结果为假,则该公式:A. 总是假B. 有时真,有时假C. 总是真D. 无法判断10. 布尔代数中,逻辑与(AND)操作的特点是:A. 有0则0B. 有1则1C. 非0即1D. 非1即0二、简答题(每题5分,共10分)1. 简述集合论中的幂集概念。

2. 描述图的邻接矩阵表示方法。

三、计算题(每题10分,共30分)1. 证明函数f(x)=x^3-3x^2+2x-1在R上是单调递增的。

离散数学试题及答案解析

离散数学试题及答案解析

离散数学试题及答案解析一、单项选择题(每题2分,共10分)1. 集合A={1,2,3},集合B={2,3,4},则A∩B等于:A. {1,2,3}B. {2,3}C. {1,4}D. {3,4}答案:B2. 以下哪个命题是真命题?A. 所有天鹅都是白色的。

B. 有些天鹅不是白色的。

C. 所有天鹅都不是白色的。

D. 没有天鹅是白色的。

答案:B3. 函数f: A→B的定义域是A,值域是B,那么f是:A. 单射B. 满射C. 双射D. 既不是单射也不是满射答案:D4. 逻辑表达式(p∧q)→r的逆否命题是:A. ¬r→¬(p∧q)B. ¬r→¬p∨¬qC. r→(p∧q)D. ¬r∧¬p∨¬q答案:B5. 有限集合A={a, b, c}的子集个数为:A. 3B. 4C. 7D. 8答案:D二、填空题(每题3分,共15分)1. 如果一个关系R在集合A上是自反的,那么对于A中的每一个元素a,都有___________。

答案:(a, a)∈R2. 命题逻辑中,合取(AND)的逻辑运算符用___________表示。

答案:∧3. 在图论中,一个连通图是指图中任意两个顶点之间都存在___________。

答案:路径4. 集合{1, 2, 3}的幂集包含___________个元素。

答案:85. 如果一个函数f是单射,那么对于任意的x1, x2∈A,如果f(x1)=f(x2),则x1___________x2。

答案:=三、解答题(每题10分,共20分)1. 证明:若p是q的充分条件,q是r的充分条件,则p是r的充分条件。

证明:假设p成立,由于p是q的充分条件,所以q成立。

又因为q是r的充分条件,所以r成立。

因此,p成立可以推出r成立,即p是r的充分条件。

2. 给定一个有向图,其中包含顶点A、B、C、D,边为(A, B),(B, C),(C, D),(D, A),(A, C)。

离散数学本科试题及答案

离散数学本科试题及答案

离散数学本科试题及答案一、选择题(每题5分,共20分)1. 在集合论中,空集的定义是:A. 包含所有集合的集合B. 不包含任何元素的集合C. 包含所有非空集合的集合D. 包含所有有限集合的集合答案:B2. 在逻辑运算中,非运算的符号是:A. ∧B. ∨C. ¬D. →答案:C3. 以下哪个选项是图的邻接矩阵表示法?A. 邻接表B. 顶点列表C. 边列表D. 所有选项都是答案:A4. 以下哪个命题是真命题?A. 所有的偶数都是整数B. 所有的整数都是偶数C. 所有的奇数都是整数D. 所有的整数都是奇数答案:A二、填空题(每题5分,共20分)1. 在布尔代数中,逻辑与运算的符号是________。

答案:∧2. 如果一个图是无向图且任意两个顶点都相连,则称这个图是________。

答案:完全图3. 在关系数据库中,关系模式的属性名集合称为________。

答案:关系模式4. 一个命题的逆否命题与其原命题的________是相同的。

答案:真假性三、简答题(每题10分,共30分)1. 描述什么是二元关系,并举例说明。

答案:二元关系是定义在两个集合上的一个关系,它由有序对组成,每个有序对的第一个元素来自第一个集合,第二个元素来自第二个集合。

例如,小于关系是实数集上的一个二元关系,因为对于任意两个实数a和b,如果a小于b,那么有序对(a, b)属于这个关系。

2. 解释什么是图的哈密顿回路,并给出一个例子。

答案:图的哈密顿回路是一条通过图中每个顶点恰好一次的闭合路径。

例如,在一个五边形的顶点上,可以画出一条哈密顿回路,即从任一顶点出发,依次经过其他顶点,最后回到起始顶点。

3. 什么是正规文法?请给出一个例子。

答案:正规文法是一种形式文法,它能够生成正规集合,即可以被有限自动机接受的字符串集合。

例如,正规文法可以定义为:S -> aSb| ε,其中S是开始符号,a和b是字母,ε表示空字符串。

这个文法生成的字符串集合是所有长度为偶数的字符串,其中a和b交替出现。

离散数学考试试题及答案

离散数学考试试题及答案

离散数学考试试题及答案一、选择题(每题2分,共20分)1. 在集合论中,以下哪个选项表示“属于”关系?A. ⊆B. ⊂C. ∈D. ⊇答案:C2. 以下哪个命题是真命题?A. p ∧ ¬pB. p ∨ ¬pC. p → ¬pD. ¬(p → q) → p答案:B3. 以下哪个选项是命题逻辑中的德摩根定律?A. ¬(p ∨ q) = ¬p ∧ ¬qB. ¬(p ∧ q) = ¬p ∨ ¬qC. ¬(p → q) = p ∧ ¬qD. ¬(p ∨ q) = ¬p ∨ ¬q答案:A4. 以下哪个选项是命题逻辑中的蕴含等价?A. p → q ≡ ¬p ∨ qB. p → q ≡ ¬q → ¬pC. p → q ≡ p ∨ ¬qD. p → q ≡ ¬p ∧ q答案:A5. 以下哪个选项是关系的性质?A. 反身性B. 对称性C. 传递性D. 所有选项都是答案:D6. 以下哪个选项是图论中的有向图?A. 无向图中的边没有方向B. 有向图中的边有方向C. 混合图中的边既有方向也有无方向D. 所有选项都是答案:B7. 在图论中,以下哪个选项是树的性质?A. 树是无环的B. 树是连通的C. 树是无向图D. 所有选项都是答案:D8. 以下哪个选项是布尔代数的基本运算?A. 与(AND)B. 或(OR)C. 非(NOT)D. 所有选项都是答案:D9. 以下哪个选项是组合数学中的排列?A. 从n个不同元素中取出m个元素的组合B. 从n个不同元素中取出m个元素的排列C. 从n个相同元素中取出m个元素的组合D. 从n个相同元素中取出m个元素的排列答案:B10. 以下哪个选项是集合论中的幂集?A. 一个集合的所有子集的集合B. 一个集合的所有真子集的集合C. 一个集合的所有超集的集合D. 一个集合的所有子集的个数答案:A二、简答题(每题10分,共30分)1. 简述命题逻辑中的等价命题是什么?答案:等价命题是指两个命题在所有可能的真值赋值下都具有相同真值的命题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
答:子群有<{[0]},+6>;<{[0],[3]},+6>;<{[0],[2],[4]},+6>;<{Z6},+6>
简答题
8
8.3
3
权数1,4,9,16,25,36,49,64,81,100构造一棵最优二叉树。
答:
简答题
8
7.2
3
集合X={<1,2>, <3,4>, <5,6>,
…},R={<<x1,y1>,<x2,y2>>|x1+y2=x2+y1}。
R对称
若 有 得 即
所以R对称;
因R自反且结点集非空,故R非反自反;
因R对称且结点集非空,并非全是孤立点,故R不是反对称;
由 得 所以 而
所以R4不是传递的。
简答题
8
4.3
4
求图的邻接矩阵和可达矩阵。
答:
, ,
, 。
所以可达矩阵
简答题
8
6.3
3
已知某有向图的邻接矩阵如下:
试求: 到 的长度为4的有向路径的条数。
简答题
8
4.3
3
如下图所示的赋权图表示某七个城市 及预先算出它们之间的一些直接通信线路造价,试给出一个设计方案,使得各城市之间能够通信而且总造价最小。
答:用Kruskal算法求产生的最优树。算法略。结果如图:
树权C(T)=23+1+4+9+3+17=57即为总造价。
简答题
8
7.2
3
设<Z6,+6>是一个群,这里+6是模6加法,Z6={[0 ],[1],[2],[3],[4],[5]},试求出<Z6,+6>的所有子群。
答:要设计一个方案使各城市间能够通讯且总造价最小,即要求该图连通、无回路、边权之和最小的子图即最小生成树,由避圈法或破圈法可得:
其最小生成树为:
其树权即最小造价为:1+2+3+5+7=18。
简答题
8
7.1;7.2
3
设S = R - {-1}(R为实数集), 。
说明 是否构成群;
答: 1) ,即运算*是封闭的。
答:解:传输它们的最佳前缀码如上图所示,happy new year的编码信息为:
10 011 0101 0101 001 110 111 0100 001 111 011 000
附:最优二叉树求解过程如下:
简答题
8
7.2
3
用washall方法求图的可达矩阵,并判断图的连通性。
答:
1:A[2,1]=1, ; 2:A[4,2]=1,
3:A[1,3]=A[2,3]=A[4,3]=1,
4:A[k,4]=1,k=1,2,3,4,
p中的各元素全为1,所以G是强连通图,当然是单向连通和弱连通。
简答题
8
6.3
3
设有a、b、c、d、e、f、g七个人,他们分别会讲的语言如下:a:英,b:汉、英,c:英、西班牙、俄,d:日、汉,e:德、西班牙,f:法、日、俄,g:法、德,能否将这七个人的座位安排在圆桌旁,使得每个人均能与他旁边的人交谈?
简答题
8
7.2
3
下图所示带权图中最优投递路线并求出投递路线长度(邮局在D点)。
答:图中奇数点为E、F,d(E)=3,d(F)=3,d(E,F)=28 p=EGF 复制道路EG、GF,得图G‘,则G‘是欧拉图。
由D开始找一条欧拉回路:DEGFGEBACBDCFD。
道路长度为:
35+8+20+20+8+40+30+50+19+6+12+10+23=281。
简答题
8
4.4
3
用Warshall算法,对集合A={1,2,3,4,5}上二元关系R={<1,1>,<1,2>,<2,4>,<3,5>,<4,2>}求t(R)。
答:
1时, [1,1]=1, A =
2时,M[1,2]=M[4,2]=1
A=
3时,A的第三列全为0,故A不变
4时,M[1,4]=M[2,4]=M[4,4]=1
2)

,即*可结合。
3)设S关于*有幺元e,则 。
而 。
4) 设有逆元 。则 ,
即 , ,即S中任意元都有逆元,综上得出, 构成群。
简答题
8
8.3
5
将公式
划为只含有联结词 的等价公式。
答:原式

简答题
8
2.1;2.2
3
设 和 都是群 的子群,问 和 是否是 的子群并说明理由。
答: 是 的子群, 不一定是 的子群。
4) , , , , , ,
综上所述, 构成群。
由 , , , , , 。所以,3为其生成元,3的逆元5也为其生成元。
故 为循环群。
简答题
8
8.1;8.3
R的关系矩阵为
关系R不是A到B的函数,因为
元素2,4的象不唯一(或元素9无象)。
简答题
8
5.2;4.2
4
设 是半群, 是左零元,对任 是否是左零元?为什么?
答: 仍是左零元。因为 ,由于 是左零元,所以, ,又
为半群,所以*可结合。
所以
某次会议有20人参加,其中每人至少有10个朋友,这20人拟围一桌入席,用图论知识说明是否可能每人邻做的都是朋友?(理由)
答:
(1)用0000传输a、0001传输b、001传输c、01传输f、10传输d、11传输e
传输它们的最优前缀码为{0000,0001,001,01,10,11}。
简答题
8
7.2
3
构造一个结点v与边数e奇偶性相反的欧拉图。
答:
简答题
8
6.4
5
设A={1,2,3,4},S={{1},{2,3},{4}},为A的一个分划,求由S导出的等价关系。
编号
题目
答案
题型
分值
大纲
难度
11
设集合A={a,b,c,d}上的关系R={<a , b > ,< b , a > ,< b, c > , < c , d >}用矩阵运算求出R的传递闭包t (R)。
答:

t (R)={<a , a> , <a , b> , < a , c> , <a , d > , <b , a > , < b ,b > , < b , c . > , < b , d > , < c , d > }
答: R={< 1 , 1 > , < 2 , 2> , < 2, 3 > , < 3 , 2 > , < 3 , 3 > < 4 , 4 > }
简答题
8
4.4
3
设 ,偏序集 的Hass图为
求 A中最小元与最大元; 的上界和上确界,下界和下确界。
答: A中最大元为 ,最小元不存在;
上界 ,上确界 ;下界无,下确界无。
答:
用a,b,c,d,e,f,g 7个结点表示7个人,若两人能交谈可用一条无向边连结,所得无向图为
此图中的Hamilton回路即是圆桌安排座位的顺序。
Hamilton回路为a b d f g e c a。
简答题
8
6.4
3
用Huffman算法求出带权为2,3,5,7,8,9的最优二叉树T,并求W(T)。若传递a,b,c,d,e,f的频率分别为2%,3%,5 %,7%,8%,9%求传输它的最佳前缀码。(
; ; 。
简答题
8
2.2;2.3
3
设 ,A上的关系 ,
求出 。
答: ,




简答题
8
4.1;4.3
3
已知 , 为模7乘法。试说明 是否构成群?是否为循环群?若是,生成元是什么?
答: 既构成群,又构成循环群,其生成元为3,5。因为: 的运算表为:
1)由运算表知, 封闭;
2) 可结合(可自证明)
3)1为幺元;
2)、画一个有一条欧拉回路,但没有一条汉密尔顿回路的图。
3)、画一个有一条欧拉回路,但有一条汉密尔顿回路的图。
答:
简答题
8
6.4
3
求 的主合取范式。
答:
简答题
8
2.3
3
在下面关系中:
判定关系的性质。
答: R自反
任意实数x,x-x+2>0,x-x-2<0 ,所以直线y=x上的点在区域内,即<x , x> ,故R自反;
要求1)、写出R的关系矩阵和关系图。(4分)2)、用矩阵运算求出R的传递闭包。(4分)
答:
1、 ;关系图
2、
t (R)={<a , a> , <a , b> , < a , c> , <a , d > , <b , a > , < b ,b > , < b , c . > , < b , d > , < c , d > }。
covS={<1,2>,<1,3>,<2,4>,<2,6>,<3,6>,<4,8>,<4,12>,<6,12> ,<8,24>,<12,24>}
相关文档
最新文档