2020-2021学年北师大版高中数学必修三模块过关测试卷及答案解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新(新课标)北师大版高中数学必修三
必修3模块过关测试卷
(150分,120分钟)
一、选择题(每题5分,共40分)
1. 完成下列两项调查:①一项对“小彩旗春晚连转四小时”的调查中有10 000人认为这是成为优秀演员的必经之路,有9 000人认为太残酷,有1 000人认为无所谓.现要从中随机抽取200人做进一步调查.②从某中学的15名艺术特长生中选出3名调查学习负担情况,宜采用的抽样方法依次是()A.①简单随机抽样,②系统抽样
B.①分层抽样,②简单随机抽样
C.①系统抽样,②分层抽样
D.①②都用分层抽样
2.〈陕西期末考〉容量为100的样本数据,按从小到大的顺序分为8组,如下表:
组号 1 2 3 4 5 6 7 8
频数10 13 x 14 15 13 12 9
第三组的频数和频率分别是( )
A.14和0.14 B.0.14和14 C.1
14和0.14 D.1
3
和1
14
图1 图2
3.〈福建质量检查文科〉如图1,面积为4的矩形ABCD中有一个阴影部分,若往矩形ABCD中随机投掷1 000个点,落在矩形ABCD的非阴影部分中的点数为400个,试估计阴影部分的面积为()
A.2.2 B.2.4 C.2.6 D.2.8 4.〈河南十所名校联考〉某学生在一门功课的22次考试中,所得分数如图2所示,则此学生该门功课考试分数的极差与中位数之和为( )
A.117 B.118 C.118.5 D.119.5 5.〈福建模拟〉为了解一片速生林的生长情况,随机测量了其中100株树木的底部周长(单位:cm).根据所得数据画出样本的频率分布直方图如图3所示,那么在这100株树木中,底部周长大于110 cm的株数是()
图3
A.70 B.60 C.30 D.80 6.〈泰安一模〉某射手在一次训练中五次射击的成绩(单位:环)分别为9.4,9.4,9.4,9.6,9.7,则该射手成绩的方差是()
A.0.127 B.0.016 C.0.08 D.0.216 7.〈易错题,河南中原名校联考〉如图4所示,现有一迷失方向的小青蛙在3处,它每跳动一次可以等可能地进入相邻的任意一格(若它在5处,跳动一
次,只能进入3处,若在3处,则跳动一次可以等机会进入1,2,4,5处),则它在第三次跳动后,首次进入5处的概率是()
图4
A.1
2B.1
4
C.3
16
D.1
6
8.〈福建普通高中质量检测〉某车间加工零件的数量x与加工时间y的统计数据如下表:
现已求得上表数据的线性回归方程y=bx+a中的b值为0.9,则据此回归模型可以预测,加工100个零件所需要的加工时间约为()
A.84分钟B.94分钟C.102分钟D.112分钟
二、填空题(每题5分,共30分)
9.〈吉林一中月考〉在如图5所示的程序框图中,输入N=40,按程序运行后输出的结果是.
图5
10.〈江苏月考〉据如图6所示的伪代码,最后输出的i的值为. T=1
i=3
Do
T=T+i
i=i+2
Loop While T<10
输出i
图6
11.〈安徽屯溪一中质量检测〉为了了解“预防禽流感疫苗”的使用情况,某市卫生部门对本地区9月份至11月份注射疫苗的所有养鸡场进行了调查,根据如图7中的图表提供的信息,可以得出这三个月本地区每月注射了疫苗的鸡的数量平均为万只.
12.〈江苏涟水中学期末考〉在随机抛掷一颗骰子一次的试验中,事件A表示“出现不大于4的偶数点”,事件B表示“出现小于4的点数”,则事件(A+B)发生的概率为.
13.〈山东期末考〉阅读如图8所示的程序框图,若输出y的值为0,则输入x
的值为.
14.〈齐齐哈尔二模〉已知函数f(x)=x2+bx+c,其中0≤b≤4,0≤c≤4,记事件A
为“函数f(x)满足条件:
()
()
212
11
f
f
≤
-≤
⎧⎪
⎨
⎪⎩
,
,
”则事件A发生的概率为.
三、解答题(19、20题每题14分,其余每题13分,共80分)
15.〈福建四地七校模拟〉某校从参加市联考的甲、乙两班数学成绩在110分以上的同学中各随机抽取8人,将这16人的数学成绩编成如图9所示的茎叶图.
(1)茎叶图中有一个数据污损不清(用△表示),若甲班抽出来的同学平均成绩为122分,试推算这个污损的数据是多少?
(2)现要从成绩在130分以上的5位同学中选2位做数学学习方法介绍,请将所有可能的结果列举出来,并求选出的两位同学不在同一个班的概率
.
图9
16.〈河南十所名校联考〉一河南旅游团到安徽旅游.看到安徽有很多特色食品,其中水果类较有名气的有:怀远石榴、砀山梨、徽州青枣等19种,点心类较有名气的有:一品玉带糕、徽墨酥、八公山大救驾等38种,小吃类较有名气的有:符离集烧鸡、无为熏鸭、合肥龙虾等57种.该旅游团的游客决定按分层抽样的方法从这些特产中买6种带给亲朋品尝.
(1)求应从水果类、点心类、小吃类中分别买回的种数;
(2)若某游客从买回的6种特产中随机抽取2种送给自己的父母,
①列出所有可能的抽取结果;
②求抽取的2种特产均为小吃的概率.
17.〈南昌二中月考〉如图10所示的算法框图.
图10
根据框图分别利用For语句和Do Loop语句写出算法程序.
18.〈牡丹江一中期末考〉已知某池塘养殖着鲤鱼和鲫鱼,为了估计这两种鱼的数量,养殖者从池塘中捕出两种鱼各1 000条,给每条鱼做上不影响其存活的标记,然后放回池塘,待完全混合后,再每次从池塘中随机地捕出1 000条鱼,记录下其中有记号的鱼的数目,立即放回池塘中.这样的记录做了10次,并将记录获取的数据做成茎叶图如图11所示.
图11
(1)根据茎叶图计算每次捕出的有记号的鲤鱼和鲫鱼数目的平均数,并估计池塘中的鲤鱼和鲫鱼的数量;
(2)为了估计池塘中鱼的总质量,现从中按照(1)的比例对100条鱼进行称重,根据称重鱼的质量介于(0,4.5](单位:千克)之间,将测量结果按如下方式分成九组:第一组[0,0.5),第二组[0.5,1),…,第九组[4,4.5].如图12所示是按上述分组方法得到的频率分布直方图的一部分.
图12
①估计池塘中鱼的质量在3千克以上(含3千克)的条数;
②若第二组、第三组、第四组鱼的条数依次成公差为7的等差数列,请将频率分布直方图补充完整;
③在②的条件下估计池塘中鱼的质量的众数、中位数及估计池塘中鱼的总质量.
19.〈黑龙江哈四中月考〉某连锁经营公司所属5个零售店某月的销售额和利润额资料如下表:
(1)画出散点图;
(2)用最小二乘法计算利润额y对销售额x的线性回归方程;
(3)当销售额为4(千万元)时,估计利润额的大小.
20.如图13所示的茎叶图是青年歌手电视大奖赛中7位评委给参加最后决赛的两位选手甲、乙评定的成绩,程序框图(如图14)用来编写程序统计每位选手的成绩(各评委所给有效分数的平均值).
图13
试回答下列问题:
(1)根据茎叶图,乙选手的成绩中,中位数和众数分别是多少?
(2)在程序框图中,用k表示评委人数,用a表示选手的最后成绩(各评委所给有效分数的平均值),那么图14中①②处应填什么?
(3)根据程序框图,甲、乙的最后成绩分别是多少?
(4)从甲、乙的有效分数中各取一个分数分别记作x,y,若甲、乙的最后成绩分别是a,b,求“|x-a|≤1且|y-b|≤1”的概率.
图14
参考答案及点拨
一、1. B 点拨:根据题意,由于①意见差异比较大,故选择分层抽样,对于②总体较少,则可知抽样方法为简单随机抽样,故答案为B.
2. A 点拨:由频数和为总数,构建方程,求得x后再求解.根据表格可知,10+13+x+14+15+13+12+9=100,解得x=14,因此频率为0.14,故答案为A.
3. B 点拨:向矩形ABCD内随机投掷1 000个点,相当于1 000个点均匀分布在矩形内,而有400个点落在非阴影部分,可知落入阴影部分的点数为600,所以,阴影部分的面积=600
×4=2.4.故选B.
1 000
4. B 学科思想:由数形结合思想,从茎叶图中还原出数据后,利用相关定义求解.由茎叶图可知,最小值为56,最大值为98,故极差为42,又从小到大排列,排在第11,12位的数为76,76,所以中位数为76,所以极差和中位数之和为42+76=118.
5. C 点拨:利用数形结合思想,由频率分布直方图得到周长大于110 cm的频率后求解.底部周长小于或等于110 cm的频率是(0.04+0.02+0.01)×10=0.7,所以,底部周长大于110 cm的频率为1-0.7=0.3,故底部周长大于110 cm的株数是30,选C.
×6. B 点拨:∵该射手在一次训练中五次射击的成绩的平均值x=1
5
×[(9.4-9.5)2×3+(9.6-(9.4+9.4+9.4+9.6+9.7)=9.5,∴该射手成绩的方差s2=1
5
9.5)2+(9.7-9.5)2]=0.016.
7. C 点拨:按规则,小青蛙跳动一次,可能的结果共有4种,跳动三次,可能的结果有16种,而三次跳动后首次跳到5的只有3种可能(3-1-3-5,3-2-3-5,3-4-3-5),所以,它在第三次跳动后,首次进入5处的概率是3
,
16
故选C.此题容易忽视“首次”,误认为可以3-5-3-5,得到答案B 而致错. 8. C 二、9. 105
10. 9 点拨:第一次循环时,T=1+3,i=5;第二次循环时,T=1+3+5,i=7,第三次循环时,T=1+3+5+7,i=9,结束循环,输出i 的值为9.
11. 90 点拨:9月份注射疫苗的鸡的数量是20×1=20(万只), 10月份注射疫苗的鸡的数量是50×2=100(万只), 11月份注射疫苗的鸡的数量是100×1.5=150(万只),这三个月本地区平均每月注射了疫苗的鸡的数量为
20100150
3++=90(万只). 12.2
3
点拨:∵事件B 表示“出现小于4的点数”,∴B 的对立事件是“出现大于或等于4的点数”,∴表示的事件为出现点数为4,5,6,∵事件A 表示“出现不大于4的偶数点”,它包含的事件是出现点数为2和4,故得到所求概率值为2
3
.
13. 0或2 学科思想:本题利用了分类讨论思想,按x >1,x=1,x <1分类,建立方程,利用方程思想求解.当x <1时,若y=0,则x=0;当x >1时,若y=0,则x 2-4x+4=0⇒x=2.故答案为:0或2. 14.
1
3
学科思想:利用数形结合思想,在平面直角坐标系中画出图形求解,由()2121)1
(f f ≤≤⎧⎪⎨
⎪⎩,-得4212,
11,
b c b c ++≤+≤⎧⎨
⎩-再由
0≤≤b ≤4,0≤c ≤4画出图形,如答图1,事件A 发生的概率即 答图1
为图中阴影三角形面积与边长为4的正方形面积的比,P(A)=8124
344
⨯⨯⨯ =13.
三、15. 解析:(1)根据平均数概念,求出污损不清的数字;(2)列举出所有结果,套用古典概型概率公式求解.
解:(1)设污损不清的数字为x ,由平均数的概念得
1103120313022280713
8
x ⨯+⨯+⨯++++++++=122,解得x=3.
(2)依据题意,甲班130分以上的有2人,编号为A ,B ,乙班130分以上的有3人,编号为c 、d 、e ,从5位同学中任选2位,所有的情况列举如下:AB,Ac,Ad,Ae,Bc,Bd,Be,cd,ce,de ,共10种结果,其中两位同学不在同一班的有Ac,Ad,Ae,Bc,Bd,Be ,共6种,所以所求概率为
610=35
. 16. 解析:(1)利用分层抽样的规则,按比例抽取;(2)利用古典概型概率公式即可求得:①先用字母分别表示各种小吃和点心,水果,再依次列举,②先把包含的基本事件列出来,再利用公式求解即可.
解:(1)因为19+38+57=114(种),所以从水果类、点心类、小吃类中分别抽取的种数为
19114×6=1,38114×6=2,57
114
×6=3.所以应从水果类、点心类、小吃类中分别买回的种数为1,2,3.
(2)①在买回的6种特产中,3种特色小吃分别记为A 1,A 2,A 3,2种点心分别记为a,b ,水果记为甲,则抽取的2种特产的所有可能情况为(A 1,A 2),(A 1,A 3),(A 1,a),(A 1,b),(A 1,甲),(A 2,A 3),(A 2,a),(A 2,b),(A 2,甲),(A 3,a),(A 3,b),(A 3,甲),(a ,b),(a ,甲),(b ,甲),共15种.
②记从买回的6种特产中抽取2种均为小吃为事件B ,则事件B 的所有可能结果为(A 1,A 2),(A 1,A 3),(A 2,A 3),共3种,所以P (B )=315=1
5
. 17.解:
用For 语句描述算法为:
a=1
S=0
For i=1 To 2 010
S=S+a
a=2a+1
Next
输出S
用Do Loop语句描述算法为:
a=1
S=0
i=1
Do
S=S+a
a=2a+1
i=i+1
Loop While i 2 010
输出S
18. 解:(1)根据茎叶图可知,每次捕出的有记号的鲤鱼与鲫鱼的平均数目为80条,20条,估计鲤鱼数目为16 000条,鲫鱼数目为4 000条.
(2)①根据题意,结合直方图可知,估计池塘中鱼的重量在3千克以上(含3千克)的条数为2 400条.
②将频率分布直方图补充完整如答图2.
答图2
③易得众数为2.25千克,中位数约为2.02千克,平均数约为2.02千克,所以估计鱼的总重量为2.02×20 000=40 400(千克). 19. 解:(1)略.
(2)设线性回归方程是:y=bx+a ,易得y =3.4,x =6;∴b=
1
2
1
()()
n
i
i
i n
i
i x x y y x x ==∑∑
--(-)=
()()()3 1.410.410.63 1.69119⨯+⨯+⨯+⨯+++----=1020=1
2
,
a=0.4,
∴y 对x 的线性回归方程为:y=0.5x+0.4.
(3)当销售额为4(千万元)时,利润额约为:y=0.5×4+0.4=2.4(百万元). 20. 解:(1)乙选手的成绩的中位数和众数分别是84,84. (2)①k >7;②a=
1
5
S . (3)x 甲=78+84+85+85+885=84, x 乙=84+84+84+86+875=85,所以甲、乙的最后成绩分别是84分, 85分.
(4)记“|x -a|≤1且|y -b|≤1”为事件A.甲的有效分数为78,84,85,85,
88,乙的有效分数是84,84,84,86,87,从中各取一个分数有5×5=25(种)方法,其
.
中满足条件的有3×4=12(种),故P(A)=12
25。