静水压强与静水总压力
水力学知识点总结讲解
水力学知识点总结讲解《水力学》学习指南央广播电视大学水利水电工程专业(专科)同学们,你们好!这学期我们学习的水力学是水利水电工程专业重要的技术基础课程。
通过本课程的学习,要求大家掌握水流运动的基本概念、基本理论和分析方法,;能够分析水利工程一般的水流现象;学会常见的工程水力计算。
今天直播课堂的任务是给大家进行一个回顾性总结,使同学们在复习水力学时,了解重点和难点,同时全面系统的复习总结课程内容,达到考核要求。
第一章绪论(一)液体的主要物理性质1.惯性与重力特性:掌握水的密度ρ和容重γ;描述液体内部的粘滞力规律的是牛顿内摩擦定律: 下面我们介绍水力学的两个基本假设:水静力学包括静水压强和静水总压力两部分内容。
通过静水压强和静水总压力的计算,我们可以求作用在建筑物上的静水荷载。
(一)静水压强:主要掌握静水压强特性,等压面,水头的概念,以及静水压强的计算和不同表示方法。
(它是静水压强计算和测量的依据)p=p 0+γh 或其 : z —位置水头,p/γ—压强水头(z+p/γ)—测压管水头请注意,“水头”表示单位重量液体含有的能量。
4.压强的三种表示方法:绝对压强p′,相对压强p , 真空度p v , ↑ 它们之间的关系为:p= p′-p a p v =│p│(当p <0时p v 存在)↑相对压强:p=γh,可以是正值,也可以是负值。
要求掌握绝对压强、相对压强和真空度三者的概念和它们之间的转换关系。
1pa(工程大气压)=98000N/m 2=98KN/m 2下面我们讨论静水总压力的计算。
计算静水总压力包括求力的大小、方向和作用点,受压面可以分为平面和曲面两类。
根据平面的形状:对规则的矩形平面可采用图解法,任意形状的平面都可以用解析法进行计算。
(一)静水总压力的计算1)平面壁静水总压力(1)图解法:大小:P=Ωb, Ω--静水压强分布图面积方向:垂直并指向受压平面作用线:过压强分布图的形心,作用点位于对称轴上。
第二章水静力学
n
= p • D Ax
p =
n n
•
1 2
Dy
•
Dz
代入第一式
F F F px pncos(n, x) x =0 则:
1 2
Dy
Dz
px
1 2
Dy
Dz
pn
1 6
Dx Dy
Dz
fx
=
0
整理后,有
px
pn
1 Dx
3
fx
=
0
当四面体无限缩小到A点时,Dx
p x
=
p n
同理,我们可以推出:
0 因此:
△h
G
z1
2p 2
z2
0
h
G
p
0
(a)
(b)
圆柱上表面的静水压力 F1 = p1DA
圆柱下表面的静水压力 F2 = p2DA
小水柱体的重力
G = gDADh
力的平衡方程 p2DA p1DA gDADh = 0
p 0 ▽
h1 h2
△h
p
11
G
z1
2p 2
z2
0
(a)
p 0 ▽
h
G
p
0 (b)
单位重量的液体在某点所具有的位置势能(单位位
能):
z1
=
mgz1 mg
z 的能量意义是单位重量液体所具有的位置势能,
称为单位位能。
pa
p1 g
h12
1
z1
pa
p2 g
z2
0
0
Z Fpy
D Fpn Fpx
z
A y CBOFpzYX
相应面上的总压力为
静水总压力
Байду номын сангаас
C
D
C
C
5
2
总压力作用点
hc P F
h dP
α E
O
O O
D
C
dA
对Ob轴取矩得
2 A A
L
2
PLD Lp dA g L sin dA g sin L d A
A
令 I L A
2 b A
L’
6
表示平面EF对Ob轴的面积惯性矩。
由平行移轴定律得 化简
I b I c Lc A
方向: 垂直指向受压面
2
P 作用点:过 压强分布图 形心,且位于 对称轴上.
A
B
P C
3
(2)
O
解
析 法:
hc
P
F
h dP
α E
O
C D L
dA
P g sin Lc A g hc A pc A
4
大小: P=pcA, pc—形心处压强
方向: 垂直指向受压平面 作用点:
I y =y + y A
2
Ic LD Lc Lc A
(1-50)
可见,LD > LC 即,总压力的作用点在形心之下 (平面水平放置时重合)
上式控制总压力作用点深度位置。
7
bD 的确定:将静水压力对OL轴取矩,则
Pb D bp d A bL sin d A sin Lb d A
1-9
一
作用于平面上的静水总压力
压力图法(图解法), 解析法
两种方法:
静水压强分布图的绘制
•用一定比例的线段长度代表静水压强的大小; •用与作用面垂直的箭头表示静水压强方向。
第二部分 水静力学
§2—2 液体平衡的微 分方程及其积分
1.液体平衡的微分方程
设正交六面体中心 点处的静水压强为p,是 坐标的连续函数,即 p=p(x,y,z),用泰勒级数 展开得M和N点的压强为
pM
p 1 p dx 2 x
pN
p
1 p dx 2 x
ABCD面上的力(p 1 p dx)dydz 2 x
dp=ρ(Xdz+Ydy+Zdz)
积分:p= —ρ(a x +g z)+ C
由边界条件x = z = 0 ,p = p0 C = P0对任一点B(x ,y )
p p0 (ax gz)
p0
(a g
x
z)
p0
a g
x z
p0 (z z ) p0 h
pc p0 h2 p0 h1 (h2 h1) pA h
p p0 h
水静力学基本方程常用表达式 说明:
(1) 静水压强随深度按线性规律增加。
(2) 液体内任一点的静水压强由两部分组成, 一部分是自由液面上的表面压强po; 另一部分是单位面积上的垂直液柱重量γh 。
§2-3重力作用下静水压强的分布规律
思考: 点A质量为M的液体: 静止时有重力Mg,方向?与Z轴方向??在X、Y轴方向的投影为? 则:单位质量力为Mg / M = g ,方向??
任一点的单位质量力均为g,方向??
1 .水静力学基本方程
dp=ρ(Xdz+Ydy+Zdz)
液体平衡微分方程综合式
X 0, Y 0, Z g
思考: 平面上各点的静水压力方向?? 曲面上各点的静水压力方向??
水力计算学习单元静水压强与静水压力计算
学习单元二 静水压强与静水压力计算【教学基本要求】1.正确理解静水压强的两个重要特性和等压面的性质。
2.掌握静水压强基本公式和物理意义,会用基本公式进行静水压强计算。
3.掌握静水压强的单位和三种表示方法:绝对压强、相对压强和真空度;理解位置水头、压强水头和测管水头的物理意义和几何意义。
4.掌握静水压强的测量方法和计算。
5.会画静水压强分布图,并熟练应用图解法和解析法计算作用在平面上的静水总压力。
6.会正确绘制压力体剖面图,掌握曲面上静水总压力的计算。
【学习重点】1.静水压强的两个特性及有关基本概念。
2.重力作用下静水压强基本公式和物理意义。
3.静水压强的表示和计算。
4.静水压强分布图和平面上的静水总压力的计算。
5.压力体的构成和绘制以及曲面上静水总压力的计算。
【内容提要和学习指导】本章研究处于静止和相对平衡状态下液体的力学规律。
2.1 静水压强及其特性静止液体作用在每单位受压面积上的压力称为静水压强,单位为(N/ m 2),也称为帕斯卡(P a )。
某点的静水压强p 可表示为:(2—1) 静水压强有两个重要特性:(1)静水压强的方向垂直并且指向受压面;(2)静止液体内任一点沿各方向上静水压强的大小都相等,或者说每一点的静水压强仅是该点坐标的函数,与受压面的方向无关,可表示为p = p (x ,y ,z )。
这两个特性是计算任意点静水压强、绘制静水压强分布图和计算平面与曲面上静水总压力的理论基础。
2.2 等压面液体中由压强相等的各点所构成的面(可以是平面或曲面)称为等压面,静止液体的自由表面就是等压面。
对静止液体进行受力分析,导出液体平衡微分方程和压强全微方程,根据等压面定义,可得到等压面方程式:X d x+Y d y+Z d z = 0 (2—2) AP p A ∆∆=→∆0lim式中:X 、Y 、Z 是作用在液体上的单位质量力在x 、y 、z 坐标轴上的分量,并且(2—3) 其中:U 是力势函数。
第二章 流体静力学
d
例题3
考虑左侧水的作用
a a
a
a
b
b
b
b
c
c
c
c
ab段曲面(实 压力体)
bc段曲面(虚 压力体)
阴影部分相 互抵消
abc曲面(虚压 力体)
例题3
考虑右侧水的作用
a
b
c
bc段曲面 (实压力体)
例题3
合成
a a
a
a
b
b
b
b
c
c
c
c
左侧水的作 用
右侧水的作 用
abc曲面(虚压 力体)
例4
圆柱形压力水罐,半径R=0.5m,长l=2m,压 力表读值p=23.72kN/M2,试求(1)端部平 面盖板所受水压力;(2)上、下半圆筒所 受水压力。
分析思路
流体作用在曲面各微元面积上的压力 不是平行的,不能直接相加,而是采取 力学中“先分解,后合成”的方法确定总压 力。
§2.5 作用在曲面上的静水总压力
压力大小
dP ghd
一、静水总压力的水平分力
水平分力
dPx dP cos ghd cos ghd x
hd 为压力体体积
z
z
压力体
z
h d z
定义: 压力体相当于从曲面向上引至液 面(自由液面)的无数微小柱体的 体积总和,它是纯数学概念,与这 个体积内是否充满液体无关。
画法: (1)自由液面 (2)曲面 (3)根据静压强作用的方向找特殊点 (4)分段 (5)沿曲面的边界引垂直液面的铅垂面
空气 A 水
故A点的真空值为
p v p a p A (h2 h1 ) 1000 9.8 (2 1) 9800 Pa
静水力学
p0
相对压强为什么是负值? 什么位置处相对压强为零?
pk pa p 98 59.8 38.2kN / m2
返回
4 作用于平面上的静水总压力
静 水 总 压 力
图解法—适用于矩形平面
解析法—适用于任意形状平面
图解法——作用于矩形平面上的静水总压力的计算 表示静水压强沿受压面分布情况的几何图
为平面对OX轴的面积矩
A为受压面的面积。
其中p ρgh A (1) FP ρgsinαYc A c为受压面形心点的压强; c
所以静水总压力的大小为
FP Pc A
解析法——作用于任意形状平面上的静水总压力
(2) 静水总压力的方向 Fp垂直指向受压面 (3) 静水总压力的作用点 总压力Fp对OX轴的力矩为
液体平衡微分方程 重力作用下静水压强的分布规律 作用于平面上的静水总压力
1 什么是静水压强
FP Байду номын сангаасP
平衡液体内部相邻两部分之间相互作用的力或 液体对固体壁面的作用力为静水压力,用FP表示。 面平均静水压强 静水压强
p FP A
p lim
FP A0 A
单位:N/m2、kN/m2 、Pa 、kPa
ρfxdxdydz ρfydxdydz ρfzdxdydz
p p dx dx ( p p )dydz x x 2 2
dx
A dy
dz
p (p
p p dx dx )dydz x x2 2
依平衡条件: Fx 0
y
x
则
p dx p dx (p )dydz ( p )dydz f x dxdydz 0 x 2 x 2
p0=pa
静水总压力——精选推荐
平面静水总压力实验一、实验目的1.测定矩形平面上静水总压力2.验证平面上静水总压力的计算公式二、实验原理对矩形平面,由静水压强分布图可求出:矩形平面上静水总压力的大小等于压强分布图的体积,总压力的作用点通过压强分布图的形心,方向垂直指向作用面。
压强为三角形分布,总压力大小及作用点位置分别为压强为梯形分布,总压力大小及作用点位置分别为式中:b—矩形平面的宽度,m;H1—顶部水深,H2—底部水深,对三角形分布有H1=0,H2=H,m;e—压强分布图形心离底面的距离,m三、实验设备一个扇形体连接在杠杆上,以支点连接的方式放置在开口水箱上,杠杆上装有平衡锤。
防水后扇形体部分浸没在水中,由于支点位于扇形体圆弧面的中心线上,除了矩形端面上的静水压力外,其余各侧面上的静水压力对支点的力矩都为0。
利用称重砝码可推算出矩形平面上的静水总压力。
四、实验步骤1.熟悉仪器,记录有关常数2.调整底脚螺丝,使水准泡居中3.调整平衡锤,使杠杆处于水平状态,此时扇形体的矩形端面处于铅垂位置。
4.打开进水阀门,放水进入开口水箱,待水流上升到一定的高度,关闭进水阀5.加称重砝码到砝码架上,使平衡杆恢复到水平状态。
如有微差可通过加水或放水直至平衡。
6.记录砝码质量M,同时记录水位刻度数。
7.计算受力面积A和静水总压力作用点至支点的垂直距离Lp8.根据力矩平衡公式,求出铅垂平面上所受的静水总压力P实,同时用静水总压力理论公式求出相应铅垂平面上的静水总压力P理9.重复上述步骤4~8,压强为三角形分布做3次,梯形分布做3次。
五、注意事项1.加水或放水时要注意观察杠杆所处状态2.砝码每套专用,测度砝码时要看清所注克数六.实验数据记录与计算试验台编号:24有关常数:杠杆力臂L G=28.05cm,扇形体底端高程▽0= m;扇形体底面与支点的垂直距离L=20cm,扇形体矩形端面宽度b=7.64m,高度h= m。
水的温度T= ℃,水的密度ρ水= kg/m3。
静水压强与静水总压力
连通容器
连通容器
连通器被隔断
前进
2.3压强的量度与量测
绝对压强 ——以设想没有大气存在的绝对真空状态
压强的计示
作为零点计量的压强,用p′表示
相对压强 ——以当地大气压作为零点计量的压强,
用p表示。
若将当地大气压强用pa表示,则有 p p pa
举例
真空及真空度
——指绝对压强小于大气压强的数值, 用pk来表示
pk pa p
举例
应力单位:
压强的单位 工程大气压单位:
液柱高度:
1个工程大气压 =98kN/m2 =10m水柱 =736mm水银柱
前进
压强的测量 ——利用静水力学原理设计的液体测压计
1.测压管 pa
2.U形水银测压计
h A
B
pA pB gh
3.差压计 s
A
x
△h
L
A
α
pA gL sin
B
油
h A
h
ρ
b
PA'
gb
m
gh
ρm
Pa
PA' m gh gb Pa
PA mgh gb
△h
x
B s
举例
pA Ag(x h) = pB B g(s x) mgh
A
pA Ag(s x) n gh = pB Bg(x h)
返回
2.4静水总压力的计算
p p0 gh
图解法——适用于矩形平面 解析法——适用于任意形状平面
返回
作用于平面上的静水总把压某力一的受压计面算上压强随水深变化的函数关
系表示成图形,称为静水压强分布图。
静水压强分布图 的绘制规则:
水静力学
O φ ZD D
B
解:闸门前水深为
h R sin 2 sin 45 1.414m
h
α
R
水平分力: Px pc Ax hc Ax 9.8
1 1 2 铅直分力: Pz V ( R h h)b 22.34kN 8 2 P Px2 Pz2 45.11kN 静水总压力的大小:
表示在重力作用下静止流体中各点的测 压管都相等
例题2-1(见教材)
2-2
重力作用下的液体平衡
等压面:静水压强值相等的点连接成的 面,质量力仅为重力时,为水平面。 两水平面为等压面的判定条件 A、质量力仅为重力 B、两水平面被同一种液体联通
找出下列4组水平面中的等压面?
油 8 6 9 7
3
1 4 水 2 5
例题2-2(见教材)
2-4
作用在平面上的静水总压力
p p0 gh
作用在矩形平面上的静水总压力-图解法 作用在任意平面上的静水总压力-解析法
2-4
作用在平面上的静水总压力
作用在矩形平面上的静水总压力-图解法 1、静水压强分布图 静水压强p与水深h呈线性关系,把受压面上压 强与水深的这种函数关系表示成图形,称为静水 压强分布图。其绘制原则为: (1)用箭头长度代表该点静水压强的大小。 (2)用箭头的方向表示静水压强的方向,必须 垂直并指向受压面。 步骤:选择矩形平面水面下的上下两点,计算 压强大小,定性绘出两点的箭杆长度,连接箭杆 尾端,标注两点压强大小,图形中间以箭头填充。
2-2
2
h1
重力作用下的液体平衡
Z:位置水头, 单位位能
h2
静水压强基本方程式
p
第2章水静力学
第二章 水静力学
例题图示
第二章 水静力学
二、静水压强分布图
根据静水力学基本方程及静水压 强的两个特性,可用带箭头的直线表 示压强的方向,用直线的长度表示压 强的大小,将作用面上的静水压强分 布规律形象而直观地画出来。
w
FP pc w
w w
依力矩定理, P yD y dP y gy sin dw g sin y 2 dw
2 2 I I y y dw 其中 为平面对Ob轴的面积惯性矩,记为 x c c w
整理可得静水总压力的压心位置: yD yc
dP ghdw gy sin dw
P dP gy sin dw
w w
P dP
O (b) α h C dw M(x,y) C D YC
hc
D
g sin ydw
w
y
x
其中 为平面对Ox轴的面积矩 P g sin yc w ghc w 所以静水总压力的大小为
1 0.1 12h 6
得
4 h m 3
第二章 水静力学
【例题】一垂直放置的圆形平板闸
门如图所示,已知闸门半径R=1m, 形心在水下的淹没深度hc=8m,试用 解析法计算作用于闸门上的静水总压 力。 解:
R4pc w ghc R2 9.8 8 12 246kN
水静力学的主要内容
§2-1 静水压强 §2-2 静水压强的分布规律 §2-3 作用在平面上的静水总压力 §2-4 作用在曲面上的静水总压力
900水力学课件水静力学
LdA L
A
c
A
平面EF 对Ob轴的面积矩
34
P sin Lc A hc A pc A
P sin Lc A hc A pc A
式中,hc 平面形心点上的埋深,
pc 为平面形心点出的动水压强。
35
2 总压力作用点
hc P
h dP
α E
O
O O
17
1.3 重力作用下的静水压强的基本公式
1.3.1 重力作用下静水压强的基本形式
在实际工程中,作用于平衡液体上的质量力 常常只有重力,即静止液体。
18
重力作用下静水压强的计算公式: 化简得 z p z p =C
0
p p0 ( z 0 z )
0
式中,C 为常数,对于具体的问题是一个唯一的常数。
设总压力的作用点为(LD,bD) L sin dA sin C L dA dA
2
F
DA
令
I b L2 A
A
L
表示平面EF对Ob轴的面积惯性矩。
L’
由平行移轴定律得
I b I c L2c A
36
化简
Ic LD Lc Lc A
dx dy O y
设形心点坐标为 A=A(x,y,z) ,边长为dx,dy,dz
x
侧面中心点 左侧面 右侧面
dy , z) 2 dy (x, y , z) 2 (x, y
压强
(p
(p
面积
dxdz dxdz
8
p dy ) y 2
p dy ) y 2
质量力
x:
y: z:
水力学_静水压力ppt课件
sinJ x
si yC
说明各项意义,一般情况下D在C下方。
实际工程中的受压面多是轴对称面,总压力P的作用点 必位于对称轴上,这就完全确定了D的位置。
15
§2-8 作用在曲面上的静水总压力
一、原则 Px dpx
PZ dpZ
P Px2 Pz2
二、静水总压力的水平分力
p1d p2d (z1 z2 )d 0
整理
z1
p1
z2
p2
即 z+ p = c
(2-2-2)
4
或
p1d p2d hd 0
整理
p2 p1 h
(2-2-1)
当p柱=p体0 +上h底面与液面齐平时,若液面压强为p0,则(2-2-3)
式(2-2-2)和(2-2-3)为重力作用下水静力学基本方程的两 种表现形式,
❖
P =P -pa
abs
如图:若 p0 为相对压强,
P P rh P P rh P
B
0
Babs
0
a
7
若P0 为绝对压强,
p Babs
p 0
h
若开口(不封闭) p h B
p p h p
B
0
a
p p h
Babs
a
以后无特殊说明,指相对压强。
3、真空及真空度:当液体中某一点
的绝对压强小于当地大气压强时,
12
右图示: P1 h1lb
e1
2
P2
1
2
(h2
h1 )b
e2 3
P
P1
P2
1 2
(h1
h2
)b
Px P1e1 P2e2
水力学——水静力学
第一章 水静力学考点一 静水压强及其特性1、静水压强的定义:静止液体作用在受压面每单位面积上的压力称为静水压强。
2、静水压强的特性:(1)静水压强垂直于作用面,并指向作用面的内部; (2)静止液体中任一点处各个方向的静水压强大小相等。
考点二 几个基本概念1、绝对压强:以绝对真空为零点计量得到的压强,称为绝对压强,以abs p 或 p ’ 表示;2、相对压强:以当地大气压作为零点计量的压强,称之为相对压强,用p 表示。
3、真空与真空度:(1)真空现象:如果p ≤0,称该点存在真空; (2)真空度:指该点绝对压强小于当地大气压的数值。
p p p p a k =-='4、相对压强与绝对压强之间的关系:a p p p -='5、压强的表示方法:1 (atm )= 10 (mH 2O) = 98000 (N/m 2) = 98 (kN/m 2) =736(mm 汞柱)考点三 液体平衡微分方程式(Euler 方程)绝对压强计算基准面p’Np1、微分方程:液体平衡微分方程式,是表征液体处于平衡状态时作用于液体上的各种力之间的关系式。
2、综合表达式——压强差公式 :)=z Z y Y x X z zpy y p x x p p d d d (d d d d ++=∂∂+∂∂+∂∂ρ )=z Z y Y x X p d d d (d ++ρ 3、积分结果 :若存在一个与坐标有关的力势函数U (x ,y ,z ),使对坐标的偏导数等于单位质量力在坐标投影,即⎪⎪⎪⎩⎪⎪⎪⎨⎧∂∂=∂∂=∂∂=z U Z y U Y x UX 可得U z Z y Y x X z zUy y U x x U p d d d d (d d d d ρρ=++=∂∂+∂∂+∂∂)=U p d d ρ=积分上式得到: C U p +ρ= 或者 )(00U U p p -+ρ= 式中, 为自由液面上的压强和力势函数。
考点四 等压面1、定义:静止液体中压强相等的点所组成的面称为等压面。
静水总压力解-PPT
P bAP VP
垂直指向受压面
➢ c.静水总压力作用点—压力中心
➢矩形平面受到的静水总压力通过压强分布图的
形心,且落在对称轴上,见图
➢ 梯形压力分布 e L 2h H
图的形心距底
3 hH
b
h
➢ 三角形压力分
布图的形心距底
e L 3
P
Ap
L
e
H
(2) 任意平面上的静水总压力的计算 适用条件:受压面为任意平面。
p p' pa 94.8 98 3.2kPa
相对压强为负值,说明C 点存在真空。则
pv pa p' 98 94.8 3.2kPa
4. 压强的单位及表示方法
•一个工程大气压为 98kN/m2(Kpa), •相当于 10 m(H2O) 或 736 mm(Hg)
• 在静水压强分布公式 z p C 中,各项都为长度单
以当地大气压为
零点,记为 p
两者的关系为:
p p p a
水利工程中,自由面上的气体压强等于 大气压强,则液体内任一点的相对压强为
p ( pa h) pa h
(3)真空压强
相对相 对压强为负 值时,其绝 对值称为真 空压强
压强
大气压强 pa
pv pa p p
O
A
A点相 对压强
合力与水平线的夹角
tg 1( pz ) tg 1( 774.6) 16.91
px
2548
压力中心D
h D 4 10 sin16.91 6.91m
静水总压力为2663KN;合力作用线与水平 方向的夹角为16.91°,合力与闸门的交点到 水面的距离6.91米。
本章小结
1.概念 (1)静水压强的两个特性; (2)静水压强方程式的几何意义和物理意义; (3) p、p、p的V 定义及其相互关系;
水力学静水压力计算公式
水力学静水压力计算公式---------------------------------------------------------------------- 静水压力的计算方法为:P=ρgh,静水总压力的计算方法如下。
1、平面平面上静水总压力的大小,应等于分布在平面上各点静水压强作用的总压力的总和。
(矢量的加和性)作用在单位宽度的静水总压力,应等于静水压强分布图的面积。
因此整个矩形平面的静水总压力,则等于平面宽度乘以压强分布图的面积。
2、任意平面作用于任意平面上的静水总压力,等于平面形心点上的静水压强与平面面积的乘积。
形心点压强Pc,可理解成整个平面的平均静水压强。
扩展资料:静水压就是指液体所产生的压强,生理学上的静水压就是机体某部位积聚的液体对其周围组织产生的压强。
例如生理学中组织液对毛细血管壁的压力。
作用在平面上静水总压力的大小P等于该平面的面积 A与其形心处的压强pc的乘积,即p=pcA=γhcA,hc为平面形心处于液面下的深度,总压力的方向垂直于作用面。
总压力的作用点即压力中心的位置在平面图形形心的下方,二者间的距离,可由计算确定。
作用在曲面上的静水总压力p可分别计算其铅直分力pΖ和水平分力px,然后按力的合成法确定总压力的大小和作用点。
曲面上静水总压力的水平分量等于该曲面的铅直投影平面上的静水总压力,按平面静水总压力的计算方法确定其大小、方向和作用点。
静水总压力的铅直分量等于“压力体”体积内所含液体的重量。
压力体由如下诸面围成:过曲面周界上一切点的铅垂线所构成的曲面;与液面重合的水平面。
若压力体实际上充有液体,则该铅直分力的方向向下。
若压力体并未充有液体,则该铅直分力的方向向上。
水静力学3
yC = L/2 + h1 / sinα
Ic = 1/12 ×b h3
解:(续)
拖动闸门的拉力
T f P 0.25 2964 741 kN
3)若考虑闸门自重(3 吨)? 4)若将矩形平板闸门 圆形平板闸门 ?
§1.5 作用于曲面上的静水总压力
h
b
工程中,承受水压力的面可以是平面, 也可以是曲面。 实际工程中的受压曲面,如弧形闸门、 拱坝的挡水面等,以母线水平的二向曲 面(柱面)最为多见。
验证矩形受压面
图解法:
总压力 = 压强分布图的面积 * 宽度
2 P1 H b 2
H H b
1 2
pc
H
pc A
γH
b
总压力的作用点(压力中心)
定性分析: ∵ p ∝ h , h ↑ p↑
∴ 压力中心 D 通常低于 面积形心 C
例如:矩形面积——三角形压强分布
面积形心:距底边 1/2 H
图解法(矩形平面)
静水压强分布图
底边与液 面平行
把某一受压面上压强随水深的函数 关系表示成图形,称为静水压强分布图。
绘制规则
1)大小: 用一定比例的线段表示压强的大小 2)方向: 用箭头,沿平面内法向 (与该处作用面相
垂直)。
在静水中
p p0 h
p h
p0 = p a = 0
实压力体(压力体位于水中) 2)压力体与液体位于曲面异侧时,向上。 空压力体(压力体不位于水中)
复杂柱面的压力体
•分段(沿铅垂面相切处)
•分别求各压力体 •代数和 当曲面为凹凸相间的复杂
柱面时,可在曲面与铅垂
面相切处将曲面分开,分 别绘出各部分的压力体, 并定出各部分垂直水压力 的方向,然后合起来即可
第一章 水静力学
h1
h2
α
L
54
解: 绘制受压面的静水压强分布图。 受压面形心点的压强 pc :
h1 + h2 pc = γhc = γ 2
受压面的面积 A :
γh1
A = b⋅L
静水总压力 P :
γh2
c
55
L
=V
43
(2)静水总压力的作用点 ) 静水总压力的作用线与受压面的交点为静水总压 力的作用点,简称压心,以 D 表示。
P
D
受压面
44
静水总压力的作用线通过静水压强分布图的形 心C。
H
P
P
C
H 3
C
H 2
静水压强分布图
45
当静水压强分布图为梯形时,可将其分为一个三 S 角形和一个矩形,面积分别为 S 1 、 2 。 相应的两个静水压力为 P1 、 2 。 P 因 P = P1 + P2
b
L
b
矩形平面
γL
压强分布图
γL
压强分布图的立体图
42
0
b
dA
L
矩形平面受到静水总压力:
p = γL
P = ∫ pdA
A
c
1 = ∫ γ L ⋅ bdL = γ bL 2 0 2 1 = ( γ L )( bL ) = p c A 2
L
L
b
1 2 = γL b 2
= Ap ⋅ b
γL
测点
γ1
b
h
γ 2 h − γ 1b = p
γ2
27
三、差压计 用于测量两点的压强差。
水静力学
式(2-3)是重力作用下流体平衡方程的又一重要形式。由 它可得到三个重要结论:
(1)在重力作用下的静止水体中,静压强随深度按线 性规律变化,即随深度的增加,静压强值成正比增大。 (2)在静止液体中,任意一点的静压强由两部分组成: 一部分是自由液面上的压强p0;另一部分是该点到自由液 面的单位面积上的液柱重量ρgh。 (3)在静止液体中,位于同一深度(h=常数)的各点的 静压强相等,即任一水平面都是等压面。
流体静力学着重研究流体在外力作用下处于 平衡状态的规律及其在工程实际中的应用。 这里所指的静止包括绝对静止和相对静止两 种。以地球作为惯性参考坐标系,当流体相对于 惯性坐标系静止时,称流体处于绝对静止状态; 当流体相对于非惯性参考坐标系静止时,称流体 处于相对静止状态。 流体处于静止或相对静止状态,两者都表现 不出黏性作用,即切向应力都等于零。所以,流 体静力学中所得的结论,无论对实际流体还是理 想流体都是适用的。
pj pc 100% H 100% 1 pa pa
(2-8)
式中H通常称为真空度。 为了正确区别和理解绝对压强、相对(计示)压 强和真空之间的关系,可用图2-8来说明。 当地大气压强是某地气压表上测得的压强值,它 随着气象条件的变化而变化,所以当地大气压强 线是变动的。
第一节
流体பைடு நூலகம்压强及其特性
静止液体作用在每单位受压面积上的压力称为静 水压强,单位为(N/ m2),也称为帕斯卡(Pa)。
流体静压强有两个基本特性。
(1)流体静压强的方向与作用面垂直,并指向作用面。 这一特性可由反证法给予证明:
假设在静止流体中,流体静压强方向不与作用面相垂直, 而与作用面的切线方向成α角,如图2-1所示。
pn
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。