解一元二次方程(因式分解法)习题精选附答案
用因式分解法解一元二次方程(知识点 经典例题 综合练习)---详细答案
用因式分解法解一元二次方程【主体知识归纳】1.因式分解法 若一元二次方程的一边是0,而另一边易于分解成两个一次因式时,例如,x 2-9=0,这个方程可变形为(x +3)(x -3)=0,要(x +3)(x -3)等于0,必须并且只需(x +3)等于0或(x -3)等于0,因此,解方程(x +3)(x -3)=0就相当于解方程x +3=0或x -3=0了,通过解这两个一次方程就可得到原方程的解.这种解一元二次方程的方法叫做因式分解法.2.因式分解法其解法的关键是将一元二次方程分解降次为一元一次方程.其理论根据是:若A ·B =0A=0或B =0.【基础知识讲解】1.只有当方程的一边能够分解成两个一次因式,而另一边是0的时候,才能应用因式分解法解一元二次方程.分解因式时,要根据情况灵活运用学过的因式分解的几种方法.2.在一元二次方程的四种解法中,公式法是主要的,公式法可以说是通法,即能解任何一个一元二次方程.但对某些特殊形式的一元二次方程,有的用直接开平方法简便,有的用因式分解法简便.因此,在遇到一道题时,应选择适当的方法去解.配方法解一元二次方程是比较麻烦的,在实际解一元二次方程时,一般不用配方法.而在以后的学习中,会常常用到因式分解法,所以要掌握这个重要的数学方法.【例题精讲】例1:用因式分解法解下列方程:(1)y 2+7y +6=0; (2)t (2t -1)=3(2t -1); (3)(2x -1)(x -1)=1. 解:(1)方程可变形为(y +1)(y +6)=0,y +1=0或y +6=0,∴y 1=-1,y 2=-6. (2)方程可变形为t (2t -1)-3(2t -1)=0,(2t -1)(t -3)=0,2t -1=0或t -3=0,∴t 1=21,t 2=3.(3)方程可变形为2x 2-3x =0.x (2x -3)=0,x =0或2x -3=0. ∴x 1=0,x 2=23. 说明:(1)在用因式分解法解一元二次方程时,一般地要把方程整理为一般式,如果左边的代数式能够分解为两个一次因式的乘积,而右边为零时,则可令每一个一次因式为零,得到两个一元一次方程,解出这两个一元一次方程的解就是原方程的两个解了.(2)应用因式分解法解形如(x -a )(x -b )=c 的方程,其左边是两个一次因式之积,但右边不是零,所以应转化为形如(x -e )(x -f )=0的形式,这时才有x 1=e ,x 2=f ,否则会产生错误,如(3)可能产生如下的错解:- 2 -原方程变形为:2x -1=1或x -1=1.∴x 1=1,x 2=2.(3)在方程(2)中,为什么方程两边不能同除以(2t -1),请同学们思考? 例2:用适当方法解下列方程:(1)3(1-x )2=27;(2)x 2-6x -19=0;(3)3x 2=4x +1;(4)y 2-15=2y ;(5)5x (x -3)-(x -3)(x +1)=0;(6)4(3x +1)2=25(x -2)2.剖析:方程(1)用直接开平方法,方程(2)用配方法,方程(3)用公式法,方程(4)化成一般式后用因式分解法,而方程(5)、(6)不用化成一般式,而直接用因式分解法就可以了.解:(1)(1-x )2=9,(x -1)2=3,x -1=±3,∴x 1=1+3,x 2=1-3.(2)移项,得x 2-6x =19,配方,得x 2-6x +(-3)2=19+(-3)2,(x -3)2=28,x -3=±27, ∴x 1=3+27,x 2=3-27. (3)移项,得3x 2-4x -1=0, ∵a =3,b =-4,c =-1,∴x =37232)1(34)4()4(2±=⨯-⨯⨯--±--, ∴x 1=372+,x 2=372-. (4)移项,得y 2-2y -15=0,把方程左边因式分解,得(y -5)(y +3)=0; ∴y -5=0或y +3=0,∴y 1=5,y 2=-3.(5)将方程左边因式分解,得(x -3)[5x -(x +1)]=0,(x -3)(4x -1)=0, ∴x -3=0或4x -1=0, ∴x 1=3,x 2=41. (6)移项,得4(3x +1)2-25(x -2)2=0, [2(3x +1)]2-[5(x -2)]2=0,[2(3x +1)+5(x -2)]·[2(3x +1)-5(x -2)]=0, (11x -8)(x +12)=0,∴11x -8=0或x +12=0,∴x 1=118,x 2=-12. 说明:(1)对于无理系数的一元二次方程解法同有理数一样,只不过要注意二次根式的化简.- 3 -(2)直接因式分解就能转化成两个一次因式乘积等于零的形式,对于这种形式的方程就不必要整理成一般式了.例3:解关于x 的方程:(a 2-b 2)x 2-4abx =a 2-b 2.解:(1)当a 2-b 2=0,即|a |=|b |时,方程为-4abx =0. 当a =b =0时,x 为任意实数.当|a |=|b |≠0时,x =0. (2)当a 2-b 2≠0,即a +b ≠0且a -b ≠0时,方程为一元二次方程. 分解因式,得[(a +b )x +(a -b )][(a -b )x -(a +b )]=0, ∵a +b ≠0且a -b ≠0, ∴x 1=b a a b +-,x 2=ba ba -+. 说明:解字母系数的方程,要注意二次项系数等于零和不等于零的不同情况分别求解.本题实际上是分三种情况,即①a =b =0;②|a |=|b |≠0;③|a |≠|b |.例4:已知x 2-xy -2y 2=0,且x ≠0,y ≠0,求代数式22225252yxy x y xy x ++--的值. 剖析:要求代数式的值,只要求出x 、y 的值即可,但从已知条件中显然不能求出,要求代数式的分子、分母是关于x 、y 的二次齐次式,所以知道x 与y 的比值也可.由已知x 2-xy -2y 2=0因式分解即可得x 与y 的比值.解:由x 2-xy -2y 2=0,得(x -2y )(x +y )=0,∴x -2y =0或x +y =0,∴x =2y 或x =-y .当x =2y 时,135y 13y 5y 5y y 22)y 2(y 5y y 22)y 2(y 5xy 2x y 5xy 2x 2222222222-=-=+⋅⋅+-⋅⋅-=++--. 当x =-y 时,21y 4y 2y 5y )y (2)y (y 5y )y (2)y (y 5xy 2x y 5xy 2x 222222222-=-=+⋅-⋅+--⋅-⋅--=++--2. 说明:因式分解法体现了“降次”“化归”的数学思想方法,它不仅可用来解一元二次方程,而且在解一元高次方程、二元二次方程组及有关代数式的计算、证明中也有着广泛的 应用.【同步达纲练习】 1.选择题(1)方程(x -16)(x +8)=0的根是( ) A .x 1=-16,x 2=8 B .x 1=16,x 2=-8C .x 1=16,x 2=8D .x 1=-16,x 2=-8- 4 -(2)下列方程4x 2-3x -1=0,5x 2-7x +2=0,13x 2-15x +2=0中,有一个公共解是( ) A ..x =21B .x =2C .x =1D .x =-1(3)方程5x (x +3)=3(x +3)解为( )A .x 1=53,x 2=3 B .x =53C .x 1=-53,x 2=-3D .x 1=53,x 2=-3(4)方程(y -5)(y +2)=1的根为( ) A .y 1=5,y 2=-2B .y =5C .y =-2D .以上答案都不对(5)方程(x -1)2-4(x +2)2=0的根为( ) A .x 1=1,x 2=-5B .x 1=-1,x 2=-5C .x 1=1,x 2=5D .x 1=-1,x 2=5(6)一元二次方程x 2+5x =0的较大的一个根设为m ,x 2-3x +2=0较小的根设为n ,则m +n 的值为( )A .1B .2C .-4D .4(7)已知三角形两边长为4和7,第三边的长是方程x 2-16x +55=0的一个根,则第三边长是( ) A .5B .5或11C .6D .11(8)方程x 2-3|x -1|=1的不同解的个数是( ) A .0B .1C .2D .32.填空题(1)方程t (t +3)=28的解为_______.(2)方程(2x +1)2+3(2x +1)=0的解为__________. (3)方程(2y +1)2+3(2y +1)+2=0的解为__________. (4)关于x 的方程x 2+(m +n )x +mn =0的解为__________. (5)方程x (x -5)=5 -x 的解为__________. 3.用因式分解法解下列方程: (1)x 2+12x =0; (2)4x 2-1=0;(3)x 2=7x ;(4)x 2-4x -21=0; (5)(x -1)(x +3)=12; (6)3x 2+2x -1=0;(7)10x2-x-3=0;(8)(x-1)2-4(x-1)-21=0.4.用适当方法解下列方程:(1)x2-4x+3=0;(2)(x-2)2=256;(3)x2-3x+1=0;(4)x2-2x-3=0;(5)(2t+3)2=3(2t+3);(6)(3-y)2+y2=9;(7)(1+2)x2-(1-2)x=0;(8)5x2-(52+1)x+10=0;(9)2x2-8x=7(精确到0.01);(10)(x+5)2-2(x+5)-8=0.5.解关于x的方程:(1)x2-4ax+3a2=1-2a;(2)x2+5x+k2=2kx+5k+6;(3)x2-2mx-8m2=0; (4)x2+(2m+1)x+m2+m=0.- 5 -- 6 -6.已知x 2+3xy -4y 2=0(y ≠0),试求yx yx +-的值.7.已知(x 2+y 2)(x 2-1+y 2)-12=0.求x 2+y 2的值.8.请你用三种方法解方程:x (x +12)=864.9.已知x 2+3x +5的值为9,试求3x 2+9x -2的值.10.一跳水运动员从10米高台上跳水,他跳下的高度h (单位:米)与所用的时间t (单位:秒)的关系式h =-5(t -2)(t +1).求运动员起跳到入水所用的时间.11.为解方程(x 2-1)2-5(x 2-1)+4=0,我们可以将x 2-1视为一个整体,然后设x 2-1=y ,则y 2=(x 2-1)2,原方程化为y 2-5y +4=0,解此方程,得y 1=1,y 2=4.当y =1时,x 2-1=1,x 2=2,∴x =±2. 当y =4时,x 2-1=4,x 2=5,∴x =±5.∴原方程的解为x 1=-2,x 2=2,x 3=-5,x 4=5. 以上方法就叫换元法,达到了降次的目的,体现了转化的思想. (1)运用上述方法解方程:x 4-3x 2-4=0.(2)既然可以将x 2-1看作一个整体,你能直接运用因式分解法解这个方程吗- 7 -参考答案【同步达纲练习】1.(1)B (2)C (3)D (4)D (5)B (6)A (7)A (8)D2.(1)t 1=-7,t 2=4(2)x 1=-21,x 2=-2(3)y 1=-1,y 2=-23(4)x 1=-m ,x 2=-n (5)x 1=5,x 2=-1 3.(1)x 1=0,x 2=-12;(2)x 1=-21,x 2=21;(3)x 1=0,x 2=7;(4)x 1=7,x 2=-3;(5)x 1=-5,x 2=3;(6)x 1=-1,x 2=31;(7)x 1=53,x 2=-21;(8)x 1=8,x 2=-2.4.(1)x 1=1,x 2=3;(2)x 1=18,x 2=-14;(3)x 1=253+,x 2=253-;(4)x 1=3,x 2=-1;(5)t 1=0,t 2=-23;(6)y 1=0,y 2=3;(7)x 1=0,x 2=22-3;(8)x 1=55,x 2=10;(9)x 1≈7.24,x 2=-3.24;(10)x 1=-1,x 2=-7.5.(1)x 2-4ax +4a 2=a 2-2a +1, (x -2a )2=(a -1)2, ∴x -2a =±(a -1), ∴x 1=3a -1,x 2=a +1.(2)x 2+(5-2k )x +k 2-5k -6=0,x 2+(5-2k )x +(k +1)(k -6)=0,[x -(k +1)][x -(k -6)]=0, ∴x 1=k +1,x 2=(k -6).(3)x 2-2mx +m 2=9m 2,(x -m )2=(3m )2∴x 1=4m ,x 2=-2m(4)x 2+(2m +1)x +m (m +1)=0, (x +m )[x +(m +1)]=0, ∴x 1=-m ,x 2=-m -16.(x +4y )(x -y )=0,x =-4y 或x =y当x =-4y 时,y x y x +-=3544=+---y y y y ; 当x =y 时,y x y x +-=yy yy +-=0. 7.(x 2+y 2)(x 2+y 2-1)-12=0, (x 2+y 2)2-(x 2+y 2)-12=0, (x 2+y 2-4)(x 2+y 2+3)=0, ∴x 2+y 2=4或x 2+y 2=-3(舍去)8.x 1=-36,x 2=249.∵x 2+3x +5=9,∴x 2+3x =4,- 8 -∴3x 2+9x -2=3(x 2+3x )-2=3×4-2=1010.10=-5(t -2)(t +1),∴t =1(t =0舍去)11.(1)x 1=-2,x 2=2(2)(x 2-2)(x 2-5)=0, (x +2)(x -2)(x +5)(x -5)=。
因式分解解一元二次方程136题
分解因式法解一元二次方程专项练习136题(有答案)1.3(x﹣2)2﹣x(x﹣2)=0,2.3x(x+2)=5(x+2)3.2x2﹣8x=04.x2﹣3x﹣4=0.5.x2﹣2x﹣3=0.6.x(x﹣3)﹣4(3﹣x)=0,7. 3(x﹣2)2=x(x﹣2);8. 2x2﹣5x﹣3=09. (3x﹣1)2=(x+1)210. x(x﹣6)=2(x﹣8)11.4+4(1+x)+4(1+x)2=19 12.x2﹣4x﹣5=013. 3(5﹣x)2=2(5﹣x)14.(x﹣3)2=2(3﹣x).15.2x2+x﹣6=0.16.2x2﹣x﹣1=0;17. 3x(x﹣1)=2(x﹣1)2.18.x(x﹣5)+4x=019. x2﹣2x=020.(x﹣3)2+2x(x﹣3)=0;21.x2﹣3x=0;22.(x﹣2)2=(2x+3)223.3x2﹣11x﹣4=0.24.2x(x﹣1)﹣x+1=0 25. 2x2+x﹣3=026.x2﹣2x﹣15=0;27. 2x(x﹣3)+x=3.28. x(x﹣3)=15﹣5x;29.(x﹣1)2﹣2(x﹣1)=0 30.x(x﹣2)﹣x+2=0;31. 2x2﹣3x﹣5=0.32..4x2﹣x﹣1=3x﹣2,33.34.(x﹣3)2﹣2(x﹣1)=x﹣7.35. 3x(x﹣2)﹣2(x﹣2)=036. 3x2﹣x﹣2=0;37. (x﹣6)2﹣(3﹣2x)2=0.38.(x﹣3)2=5(3﹣x)(x﹣3)2=5(3﹣x)39.(2x+1)2=2(2x+1)40.(3x﹣1)(x﹣1)=(4x+1)(x﹣1).41.x2﹣x﹣6=0,42.x2﹣8(x+6)=043.2x2﹣6x=0.44.(x﹣3)(x+1)=545.2x2﹣8x=0;46.x2+2x﹣15=047. 2x2﹣5x﹣7=048. 2y(y﹣3)=4(y﹣3)49. x2﹣7x﹣18=050. 3x2+8x﹣3=051. 2x(x﹣3)=9﹣3x 52.x2﹣4x=553. ﹣8x2+10x=054.3x2+4x﹣7=0,55. 3x2﹣5x+2=056. 2(x﹣3)2=x2﹣3x 57.x2=3x;58. (3x﹣2)2=(2x﹣3)259. (y﹣2)2+2y(y﹣2)=060.2y(y+2)=y+2.61. 5x2+3x=062. (3x﹣2)2=(2x﹣3)263. x(x﹣3)=5(x﹣3);64. (2x+3)2﹣5(2x+3)+4=0.65. (2x﹣7)2﹣5(2x﹣7)+4=066. (3x﹣1)2=x2+6x+967.(2x+2)2=3(2x+2)(x﹣1)68.(x+7)(x﹣3)+4x(x+1)=069.2x(x+3)﹣3(x+3)=070. x﹣2=x(x﹣2)71. x2+8x﹣9=072.x(2x﹣5)=4x﹣10.73.(2x﹣5)2﹣(x+4)2=074.2(x﹣1)2=x2﹣175.76. 4x(2x﹣1)=3(2x﹣1);77. 2x2+x﹣1=0.78. (3x﹣2)(x+4)=(3x﹣2)(5x ﹣1);79. (x+1)(x+3)=15.80.x2﹣5x﹣6=081. x2﹣2x=9982. (x﹣3)2﹣4x+12=083. 4(x+1)2=9(x﹣2)284. x2=2x85. (x+4)2=5(x+4)87. 16(x﹣1)2=22588. 4x2﹣4x+1=x2﹣6x+989. 9(x+1)2=4(x﹣1)2(4)x2﹣4x+4=(3﹣2x)290. (x﹣2)2=(3﹣2x)2.91. (x+2)2﹣10(x+2)+25=0 92.x2﹣2(p﹣q)x﹣4pq=0.93.x2+10x+21=0,94.2(x﹣2)2=3(x﹣2)95. 3(x﹣5)2=2(5﹣x),96. ,97. 5x2﹣4x﹣12=0,98. (x ﹣)=5x (﹣x),99.9(x﹣2)2﹣4(x+1)2=0.100..101.(2)x2﹣8x+15=0;103. 6x2﹣x﹣12=0.104. 2x2﹣x﹣6=0105. ﹣x2+6x﹣5=0106. (x﹣5)2=(2x﹣1)(5﹣x)107. (x+1)(x+2)=3x+6.108. x2﹣9=0,109. x2+3x﹣4=0,110. x2﹣3x+2=0,111. 4(3x﹣1)2 =25(2x+1)2.112. (3x+5)2﹣4(3x+5)+3=0113. (3x+2)(x+3)=x+14114. 3(x+1)2=(x+1)115.(x ﹣2)2﹣4=0116.(x ﹣3)2+2x (x ﹣3)=0117.(3x ﹣1)2=(x+1)2118.(x+5)2﹣2(x+5)﹣8=0.119. x 2﹣8x=9120. (x ﹣2)2=(2x+3)2. 121. x 2﹣3=3(x+1); 122. (y ﹣3)2+3(y ﹣3)+2=0 123. 7x (5x+2)=6(5x+2) 124.(3)6(x+4)2﹣(x+4)﹣2=0125. x 2﹣(3m ﹣1)x+2m 2﹣m=0,126.x 2﹣2x ﹣224=0. 127..128.5x (x ﹣3)﹣(x ﹣3)(x+1)=0.129.x 2﹣11x+28=0130. 4y 2﹣25=0;131.(2x+3)2﹣36=0;132. x 2﹣3x+2=0;133. 2t 2﹣7t ﹣4=0;134. 5y (y ﹣1)=2(y ﹣1)135. x 2+(1+2)x+3+=0;136.(x﹣3)2+(x+4)2﹣(x﹣5)2=17x+24.137.x2﹣3|x|﹣4=0 参考答案:1.3(x﹣2)2﹣x(x﹣2)=0,(x﹣2)(3x﹣6﹣x)=0,x﹣2=0或2x﹣6=0,解得:x1=2,x2=3;2.3x(x+2)=5(x+2)原方程可化为3x(x+2)﹣5(x+2)=0,(3x﹣5)(x+2)=0,解得x1=﹣2,3.2x2﹣8x=0因式分解,得2x(x﹣4)=0,于是得,2x=0或x﹣4=0,即x1=0,x2=4.4. x2﹣3x﹣4=0.因式分解,得(x﹣4)(x+1)=0,于是得,x﹣4=0或x+1=0,解得:x1=4,x2=﹣15.x2﹣2x﹣3=0.原方程可以变形为(x﹣3)(x+1)=0x﹣3=0,x+1=0∴x1=3,x2=﹣1.6.x(x﹣3)﹣4(3﹣x)=0,(x﹣3)(x+4)=0,x﹣3=0或x+4=0,解得:x1=3,x2=﹣4;7. 3(x﹣2)2=x(x﹣2);整理得3(x﹣2)2﹣x(x﹣2)=0 即(x﹣2)(x﹣3)=0x1=2,x2=38. 2x2﹣5x﹣3=0(2x+1)(x﹣3)=0 x1=﹣0.5,x2=39. (3x﹣1)2=(x+1)2原方程可化为:(3x﹣1)2﹣(x+1)2=0,(3x﹣1+x+1)(3x﹣1﹣x﹣1)=0,∴4x=0或2x﹣2=0,解得:x1=0,x2=1;10. x(x﹣6)=2(x﹣8)x2﹣6x=2x﹣16x2﹣8x+16=0(x﹣4)2=0x1=x2=411.4+4(1+x)+4(1+x)2=19原式可变为4(1+x)2+4(1+x)﹣15=0 [2(1+x)﹣3][2(1+x)+5]=0x1=,x2=﹣12.x2﹣4x﹣5=0(x﹣5)(x+1)=0x﹣5=0或x+1=0x1=5,x2=﹣113. 3(5﹣x)2=2(5﹣x)原方程可变形为:3(5﹣x)2﹣2(5﹣x)=0(5﹣x)[3(5﹣x)﹣2]=0(5﹣x)(13﹣3x)=0则x1=5,x2=14.(x﹣3)2=2(3﹣x).原式可变为(x﹣3)2﹣2(3﹣x)=0(x﹣3)(x﹣1)=0x1=3,x2=115.2x2+x﹣6=0.2x2+x﹣6=0(x+2)(2x﹣3)=0x+2=0或2x﹣3=0∴x1=﹣2,x2=.16.2x2﹣x﹣1=0;原方程可化为:(x﹣1)(2x+1)=0,x﹣1=0或2x+1=0,解得:x1=1,x2=﹣.17. 3x(x﹣1)=2(x﹣1)2.原方程可化为:3x(x﹣1)﹣2(x﹣1)2=0,(x﹣1)(3x﹣2x+2)=0,x﹣1=0或x+2=0,解得:x1=1,x2=﹣218.x(x﹣5)+4x=0即x(x﹣5+4)=0x(x﹣1)=0∴x1=0,x2=119. x2﹣2x=0x(x﹣2)=0∴x=0或x﹣2=0∴x1=0,x2=2.20.(x﹣3)2+2x(x﹣3)=0;原方程可化为:(x﹣3)(x﹣3+2x)=0(x﹣3)(x﹣1)=0x1=3,x2=1.21.x2﹣3x=0;x(x﹣3)=0∴x1=0,x2=322.(x﹣2)2=(2x+3)2(x﹣2)2=(2x+3)2即(x﹣2)2﹣(2x+3)2=0(3x+1)(x+5)=0x1=﹣5,x2=23.3x2﹣11x﹣4=0.把方程3x2﹣11x﹣4=0即(x﹣4)(3x+1)=0,解得x1=4,x2=.24.2x(x﹣1)﹣x+1=0原方程变形为:2x(x﹣1)﹣(x﹣1)=0∴(x﹣1)(2x﹣1)=0∴x﹣1=0或2x﹣1=0解得x1=1,x2=;25. 2x2+x﹣3=0原方程变形为:(x﹣1)(2x+3)=0∴x1=1,x2=26.x2﹣2x﹣15=0;原式可化为:(x﹣5)(x+3)=0得x1=5,x2=﹣327. 2x(x﹣3)+x=3.原式可化为:(x﹣3)(2x+1)=0得,x2=328. x(x﹣3)=15﹣5x;x(x﹣3)=﹣5(x﹣3)(x﹣3)(x+5)=0x1=3,x2=﹣529.(x﹣1)2﹣2(x﹣1)=0(x﹣1)2﹣2(x﹣1)=0,(x﹣1)(x﹣1﹣2)=0,∴x﹣1=0或x﹣3=0,∴x1=1,x2=330.x(x﹣2)﹣x+2=0;原方程可化为:x(x﹣2)﹣(x﹣2)=0,(x﹣2)(x﹣1)=0,解得:x1=2,x2=1;31. 2x2﹣3x﹣5=0.原方程可化为:(2x﹣5)(x+1)=0,2x﹣5=0或x+1=0,解得:x1=,x2=﹣132..∵4x2﹣x﹣1=3x﹣2,∴4x2﹣4x+1=0即(2x﹣1)2=0,解得33.解:∴∴34.(x﹣3)2﹣2(x﹣1)=x﹣7.移项,合并同类项得,(x﹣3)2﹣3x+9=0,即,(x﹣3)2﹣3(x﹣3)=0,因式分解得,(x﹣3﹣3)(x﹣3)=0则x﹣3=0或(x﹣6)=0,解得,x1=3,x2=6.35. 3x(x﹣2)﹣2(x﹣2)=0(x﹣2)(3x﹣2)=0x1=2,x2=;36. 3x2﹣x﹣2=0;原方程变形得,(3x+2)(x﹣1)=0∴,x2=1;37. (x﹣6)2﹣(3﹣2x)2=0.原方程变形得,(x﹣6+3﹣2x)(x﹣6﹣3+2x)=0(x+3)(3x﹣9)=0∴x1=3,x2=﹣338.(x﹣3)2=5(3﹣x)(x﹣3)2=5(3﹣x)(x﹣3)2+5(x﹣3)=0(x﹣3)(x+2)=0∴x1=3,x2=﹣2.39.(2x+1)2=2(2x+1)原方程可化为:(2x+1)2﹣2(2x+1)=0,(2x+1)(2x+1﹣2)=0,(2x+1)(2x﹣1)=0,解得:x1=﹣,x2=.40.(3x﹣1)(x﹣1)=(4x+1)(x﹣1).(3x﹣1)(x﹣1)﹣(4x+1)(x﹣1)=0,(x﹣1)[(3x﹣1)﹣(4x+1)]=0,(x﹣1)(x+2)=0,∴x1=1,x2=﹣2.41.∵x2﹣x﹣6=0,∴(x+2)(x﹣3)=0,∴x+2=0或x﹣3=0,解得x1=3,x2=﹣2.42.x2﹣8(x+6)=0原方程化为x2﹣8x﹣48=0(x+4)(x﹣12)=0解得x1=﹣4,x2=12.43.2x2﹣6x=0.原方程变形为2x(x﹣3)=0∴2x=0或x﹣3=0∴x1=0,x2=344.(x﹣3)(x+1)=5x2﹣2x﹣8=0,(x﹣4)(x+2)=0∴x1=4,x2=﹣2.45.2x2﹣8x=0;因式分解,得2x(x﹣4)=0,2x=0或x﹣4=0,解得,x=0或x=4;46.x2+2x﹣15=0(x+5)(x﹣3)=0x+5=0或x﹣3=0∴x1=﹣5,x2=3;47. 2x2﹣5x﹣7=0因式分解得(x+1)(2x﹣7)=0解得:,x2=﹣1;48. 2y(y﹣3)=4(y﹣3)2y(y﹣3)﹣4(y﹣3)=0(y﹣3)(2y﹣4)=0(2分)∴y1=3,y2=249. x2﹣7x﹣18=0解:(x﹣9)(x+2)=0x﹣9=0或x+2=0∴x1=9,x2=﹣250. 3x2+8x﹣3=0解:方程可以化为(x+3)(3x﹣1)=0 ∴x+3=0或3x﹣1=0即x1=﹣3,x2=.51. 2x(x﹣3)=9﹣3x2x(x﹣3)﹣(9﹣3x)=02x(x﹣3)+3(x﹣3)=0(x﹣3)(2x+3)=0x1=3,x2=﹣52.x2﹣4x=5x2﹣4x﹣5=0(x﹣5)(x+1)=0∴x﹣5=0,x+1=0∴原方程的解为:x1=5,x2=﹣1.53. ﹣8x2+10x=0x(10﹣8x)=0∴x1=0,x2=54.3x2+4x﹣7=0,(x﹣1)(3x+7)=0,x﹣1=0或3x+7=0,解得:55. 3x2﹣5x+2=0原式变形为:(3x﹣2)(x﹣1)=0∴x1=1,x2=56. 2(x﹣3)2=x2﹣3x原方程变形为:2(x﹣3)2=x(x﹣3)(x﹣3)[2(x﹣3)﹣x]=0(x﹣3)(x﹣6)=0∴x1=3,x2=657.(1)x2=3x;移项得,x2﹣3x=0,因式分解得,x(x﹣3)=0,解得,x1=0,x2=3;58. (3x﹣2)2=(2x﹣3)2解:3x﹣2=±(2x﹣3)3x﹣2=2x﹣3或3x﹣2=﹣(2x﹣3)解得:x1=﹣1,x2=1;59. (y﹣2)2+2y(y﹣2)=0解:(y﹣2)(y﹣2+2y)=0解得:y1=2,y2=60..2y(y+2)=y+2.原方程变形为:2y(y+2)﹣(y+2)=0,即(y+2)(2y﹣1)=0,解得y1=﹣2,y2=.61. 5x2+3x=0x(5x+3)=0,即:x=0或5x+3=0,∴x1=0,x2=﹣.62. (3x﹣2)2=(2x﹣3)2(3x﹣2)2﹣(2x﹣3)2=0,(3x﹣2+2x﹣3)(3x﹣2﹣2x+3)=0,5(x﹣1)(x+1)=0,即:x﹣1=0或x+1=0∴x1=1,x2=﹣163. x(x﹣3)=5(x﹣3);x(x﹣3)﹣5(x﹣3)=0,(x﹣3)(x﹣5)=0,∴x1=3,x2=5;64. (2x+3)2﹣5(2x+3)+4=0.(2x+3)2﹣5(2x+3)+4=0(2x+3﹣4)(2x+3﹣1)=0(2x﹣1)(x+1)=0,∴x1=,x2=﹣165. (2x﹣7)2﹣5(2x﹣7)+4=0 (2x﹣7﹣4)(2x﹣7﹣1)=0;x2=466. (3x﹣1)2=x2+6x+9(3x﹣1)2﹣(x﹣3)2=0即(2x+1)(x﹣2)=0x1=2,x2=﹣0.567.(2x+2)2=3(2x+2)(x﹣1)(2x+2)2﹣3(2x+2)(x﹣1)=0即(2x+2)【2x+2﹣3(x﹣1)】=0∴(x﹣5)(x+1)=0x1=﹣1,x2=568.(x+7)(x﹣3)+4x(x+1)=0化简:(x+7)(x﹣3)+4x(x+1)=0整理得,5x2+8x﹣21=0,因式分解得,(5x﹣7)(x+3)=0,即5x﹣7=0或x+3=0,所以x1=,x2=﹣3.69..2x(x+3)﹣3(x+3)=0根据题意,原方程可化为:(x+3)(2x﹣3)=0,∴方程的解为:x1=,x2=﹣370. x﹣2=x(x﹣2)即x﹣2﹣x(x﹣2)=0(x﹣2)(1﹣x)=0x1=2,x2=1;71. x2+8x﹣9=0(x+9)(x﹣1)=0x1=﹣9,x2=172.x(2x﹣5)=4x﹣10.原方程可变形为:x(2x﹣5)﹣2(2x﹣5)=0,(2x﹣5)(x﹣2)=0,2x﹣5=0或x﹣2=0;解得x1=,x2=2.74.(2x﹣5)2﹣(x+4)2=0因式分解,得[(2x﹣5)+(x+4)][(2x﹣5)﹣(x+4)]=0,整理得,(3x﹣1)(x﹣9)=0解得,x1=,x2=9.74.2(x﹣1)2=x2﹣1原方程即为2(x﹣1)2﹣(x2﹣1)=0,2(x﹣1)2﹣(x+1)(x﹣1)=0,(x﹣1)[2(x﹣1)﹣(x+1)]=0,(x﹣1)(x﹣3)=0,x1=1,x2=3;75.(x﹣1)(x ﹣+3)=0,∴x1=1,x2=-376. 4x(2x﹣1)=3(2x﹣1);原方程可化为:4x(2x﹣1)﹣3(2x﹣1)=0,(2x﹣1)(4x﹣3)=0,2x﹣1=0或4x﹣3=0,解得:,;77. 2x2+x﹣1=0.原方程可化为:(2x﹣1)(x+1)=0,2x﹣1=0或x+1=0,解得:,x2=﹣1.78. (3x﹣2)(x+4)=(3x﹣2)(5x﹣1);解:(3x﹣2)(x+4)﹣(3x﹣2)(5x﹣1)=0 (3x﹣2)[(x+4)﹣(5x﹣1)]=0(3x﹣2)(﹣4x+5)=03x﹣2=0或﹣4x+5=0;79. (x+1)(x+3)=15.方程整理得:x2+4x﹣12=0( x+6)(x﹣2)=0x1=﹣6,x2=2.80. x2﹣5x﹣6=0解:(x﹣6)(x+1)=0,x﹣6=0或x+1=0,∴原方程的解是x1=6,x2=﹣1.81. x2﹣2x=99解:(x﹣11)(x+9)=0,x﹣11=0或x+9=0,∴原方程的解是x1=11,x2=﹣9.82. (x﹣3)2﹣4x+12=0解:(x﹣3)2﹣4(x﹣3)=0,(x﹣7)(x﹣3)=0,x﹣3=0或x﹣7=0,∴原方程的解是x1=3,x2=7.83. 4(x+1)2=9(x﹣2)2解:(2x+2)2=(3x﹣6)2,(2x+2+3x﹣6)(2x+2﹣3x+6)=0,即:(5x﹣4)(8﹣x)=0,x=8或x=,∴原方程的解是84. x2=2x移项,得x2﹣2x=0,因式分解,得x(x﹣2)=0,所以x=0或x=2.85. (x+4)2=5(x+4)移项,得,(x+4)2﹣5(x+4)=0,因式分解得,(x+4)[(x+4)﹣5]=0,x+4=0或x﹣1=0,解得,x1=﹣4,x2=187. 16(x﹣1)2=22516(x﹣1)2﹣152=0,所以[4(x﹣1)+15][4(x﹣1)﹣15]=0,即4x+11=0,4x﹣19=0,得x1=﹣,x2=.88. 4x2﹣4x+1=x2﹣6x+9方程变为(2x﹣1)2﹣(x﹣3)2=0,所以[(2x﹣1)+(x﹣3)][(2x﹣1)﹣(x﹣3)]=0,即3x﹣4=0,x+2=0,得x1=,x2=﹣2.89. 9(x+1)2=4(x﹣1)2(4)x2﹣4x+4=(3﹣2x)2原方程变为[3(x+1)]2﹣[2(x﹣1)]2=0,所以[3(x+1)+2(x﹣1)][3(x+1)﹣2(x﹣1)]=0,即(5x+1)(x+5)=0,得x1=﹣,x2=﹣5.90. (x﹣2)2=(3﹣2x)2.(x﹣2)2﹣(3﹣2x)2=0,(x﹣2+3﹣2x)(x﹣2﹣3+2x)=0,(1﹣x)(3x﹣5)=0,所以x1=1,x2=91. (x+2)2﹣10(x+2)+25=0因式分解得,[(x+2)﹣5]2=0,解得,x1=x2=392.x2﹣2(p﹣q)x﹣4pq=0.∵x2﹣2(p﹣q)x﹣4pq=0∴(x﹣2p)(x+2q)=0,∴x1=2p,x2=﹣2q.93.x2+10x+21=0,把左边分解因式得:(x+3)(x+7)=0,则:x+3=0,x+7=0,解得:x1=﹣3,x2=﹣7.94.2(x﹣2)2=3(x﹣2)∵2(x﹣2)2=3(x﹣2),∴(x﹣2)(2x﹣4﹣3)=0,即x﹣2=0或2x﹣7=0,解得:x1=2,x2=;95. 3(x﹣5)2=2(5﹣x),变形得:3(5﹣x)2=2(5﹣x),移项得:3(5﹣x)2﹣2(5﹣x)=0,分解因式得:(5﹣x)(13﹣3x)=0,则:5﹣x=0,13﹣3x=0,解得:x1=5,x2=;96. ,分解因式得:(x ﹣)(x ﹣)=0,则x ﹣=0,x ﹣=0,解得:x1=,x2=.97. 5x2﹣4x﹣12=0,(5x+6)(x﹣2)=0,5x+6=0,x﹣2=0,x1=﹣,x2=2.98. (x ﹣)=5x (﹣x),(x ﹣)+5x(x ﹣)=0,(x ﹣)(1+5x)=0,x ﹣=0,1+5x=0,x1=,x2=﹣.99.9(x﹣2)2﹣4(x+1)2=0.9(x﹣2)2﹣4(x+1)2=0(3x﹣6+2x+2)(3x﹣6﹣2x﹣2)=0,整理得:(5x﹣4)(x﹣8)=0,解方程得:x1=,x2=8100..x(x﹣2)=2(x+6),x2﹣2x=2x+12,x2﹣4x﹣12=0,(x﹣6)(x+2)=0,x1=6,x2=﹣2.∴原方程的根为x1=6,x2=﹣2101.(2)x2﹣8x+15=0;把左边分解因式得:(x﹣3)(x﹣5)=0,则x﹣3=0,x﹣5=0,解得:x1=5,x2=3;102. ;移项得:y2﹣2y+2=0,(y ﹣)2=0,两边开方得:y ﹣=0,则y1=y2=;103. 6x2﹣x﹣12=0.由原方程,得(2x﹣3)(3x+4)=0,解得,x=,或x=﹣104. 2x2﹣x﹣6=0原方程化为(2x+3)(x﹣2)=0,解得x1=﹣,x2=2;105. ﹣x2+6x﹣5=0原方程化为x2﹣6x+5=0分解因式,得(x﹣1)(x﹣5)=0,解得x1=1,x2=5;106. (x﹣5)2=(2x﹣1)(5﹣x)移项,得(x﹣5)2+(2x﹣1)(x﹣5)=0,提公因式,得(x﹣5)(x﹣5+2x﹣1)=0,解得x1=5,x2=2107. (x+1)(x+2)=3x+6.∵(x+1)(x+2)=3x+6,∴(x+1)(x+2)=3(x+2),∴(x+1)(x+2)﹣3(x+2)=0,∴(x+2)(x+1﹣3)=0,∴x+2=0或x+1﹣3=0∴x1=﹣2,x2=2108. x2﹣9=0,x2=9,解得:x1=3,x2=﹣3,109. x2+3x﹣4=0,(x﹣1)(x+4)=0,解得:x1=1,x2=﹣4,110. x2﹣3x+2=0,(x﹣1)(x﹣2)=0,解得:x1=1,x2=2111. 4(3x﹣1)2 =25(2x+1)2.∵4(3x﹣1)2﹣25(2x+1)2=0,∴[2(3x﹣1)﹣5(2x+1)][2(3x﹣1)+5(2x+1)]=0,∴2(3x﹣1)﹣5(2x+1)=0或2(3x﹣1)+5(2x+1)=0,∴x1=﹣,x2=﹣.112. (3x+5)2﹣4(3x+5)+3=0 设3x+5=y,则原方程变为y2﹣4y+3=0,∴(y﹣1)(y﹣3)=0,解得,y=1或y=3;①当y=1时,3x+5=1,解得x=﹣;②当y=3时,3x+5=3,解得,x=﹣;∴原方程的解是x=﹣,或x=﹣;113. (3x+2)(x+3)=x+14 由原方程,得(x+4)(3x﹣2)=0,解得x=﹣4,或x=;114. 3(x+1)2=(x+1)移项得,3(x+1)2﹣(x+1)=0,提公因式得,(x+1)(3x+3﹣1)=0,即x+1=0或3x+3﹣1=0,解得x1=﹣1,x2=﹣115.(x﹣2)2﹣4=0∵(x﹣2﹣2)(x﹣2+2)=0,∴x﹣2﹣2=0或x﹣2+2=0,∴x1=4,x2=0;116.(x﹣3)2+2x(x﹣3)=0∵(x﹣3)(x﹣3+2x)=0,∴x﹣3=0或x﹣3+2x=0,∴x1=3,x2=1;117.(3x﹣1)2=(x+1)2∵3x﹣1=±(x+1),即3x﹣1=x+1或3x﹣1=﹣(x+1),∴x1=1,x2=0;118.(x+5)2﹣2(x+5)﹣8=0.∵[(x+5)﹣4][(x+5)+2]=0,∴(x+5)﹣4=0或(x+5)+2=0,∴x1=﹣1,x2=﹣7.119. x2﹣8x=9变形为:x2﹣8x﹣9=0,(x﹣9)(x+1)=0,则:x﹣9=0或x+1=0,解得:x1=9,x2=﹣1;120. (x﹣2)2=(2x+3)2.变形为:(x﹣2)2﹣(2x+3)2=0,(x﹣2+2x+3)(x﹣2﹣2x﹣3)=0,(3x+1)(﹣x﹣5)=0,则:3x+1=0,﹣x﹣5=0,解得:x1=﹣,x2=﹣5.121. x2﹣3=3(x+1);整理得x2﹣3x﹣4=0,∴(x+1)(x﹣4)=0,∴x+1=0或x﹣4=0,∴x1=﹣1,x2=4;122. (y﹣3)2+3(y﹣3)+2=0 ∵(y﹣3+2)(y﹣3+1)=0,∴y﹣3+2=0或y﹣3+1=0,∴y1=1,y2=2;123. 7x(5x+2)=6(5x+2)∵7x(5x+2)﹣6(5x+2)=0,∴(5x+2)(7x﹣6)=0,∴5x+2=0或7x﹣6=0,∴x1=﹣,x2=124.(3)6(x+4)2﹣(x+4)﹣2=06(x+4)2﹣(x+4)﹣2=0,[3(x+4)﹣2][2(x+4)+1]=0,(3x+4)(2x+7)=0,3x+4=0,2x+7=0,解得:x1=﹣,x2=﹣;125. x2﹣(3m﹣1)x+2m2﹣m=0,(x﹣m)[x﹣(2m﹣1)]=0,x﹣m=0,x﹣(2m﹣1)=0,解得:x1=m,x2=2m﹣1126.x2﹣2x﹣224=0.x2﹣2x﹣224=0(x﹣16)(x+14)=0,解得:x1=16;x2=﹣14.127..方程两边同时乘以2,得(x+3)2=4(x+2)2,移项,得(x+3)2﹣4(x+2)2,=0,(x+3+4x+8)(x+3﹣4x﹣8)=0,即5x+11=0或﹣3x﹣5=0,解得x1=﹣,x2=﹣;128.5x(x﹣3)﹣(x﹣3)(x+1)=0.∵(x﹣3)(5x﹣x﹣1)=0,∴x﹣3=0或5x﹣x﹣1=0,∴x1=3,x2=129.x2﹣11x+28=0x2﹣11x+28=0,(x﹣4)(x﹣7)=0,x﹣4=0,x﹣7=0,x1=4,x2=7130. 4y2﹣25=0;(2y+5)(2y﹣5)=0,所以y1=﹣,y2=;131.(2x+3)2﹣36=0;(2x+3)2﹣36=0;(2x+3+6)(2x+3﹣6)=0,所以x1=﹣,x2=;132. x2﹣3x+2=0;(x﹣1)(x﹣2)=0,所以x1=1,x2=2;133. 2t2﹣7t﹣4=0;(t﹣4)(2t+1)=0,所以t1=4,t2=﹣;134. 5y(y﹣1)=2(y﹣1)方程变形得:5y(y﹣1)﹣2(y﹣1)=0,因式分解得:(y﹣1)(5y﹣2)=0,可得y﹣1=0或5x﹣2=0,解得:y1=1,y2=.135. x2+(1+2)x+3+=0;(x+)(x+1+)=0x+=0或x+1+=0∴x1=﹣,x2=﹣1﹣.136.(x﹣3)2+(x+4)2﹣(x﹣5)2=17x+24.原方程整理得:x2﹣5x﹣24=0(x﹣8)(x+3)=0∴x1=8,x2=﹣3.137.x2﹣3|x|﹣4=0|x|2﹣3|x|﹣4=0 (|x|﹣4)(|x|+1)=0 |x|﹣4=0|x|+1≠0∴|x|=4∴x1=4,x2=﹣4.。
因式分解法解一元二次方程练习题及答案
【因式分解法解一元二次方程练习题1.选择题(1)方程(x -16)(x +8)=0的根是( )A .x 1=-16,x 2=8B .x 1=16,x 2=-8C .x 1=16,x 2=8D .x 1=-16,x 2=-8(2)下列方程4x 2-3x -1=0,5x 2-7x +2=0,13x 2-15x +2=0中,有一个公共解是( ) A .x =21B .x =2C .x =1D .x =-1(3)方程5x (x +3)=3(x +3)解为( ) A .x 1=53,x 2=3 B .x =53C .x 1=-53,x 2=-3D .x 1=53,x 2=-3!(4)方程(y -5)(y +2)=1的根为( ) A .y 1=5,y 2=-2 B .y =5C .y =-2D .以上答案都不对(5)方程(x -1)2-4(x +2)2=0的根为( ) A .x 1=1,x 2=-5 B .x 1=-1,x 2=-5C .x 1=1,x 2=5D .x 1=-1,x 2=5(6)一元二次方程x 2+5x =0的较大的一个根设为m ,x 2-3x +2=0较小的根设为n ,则m +n 的值为( ) A .1B .2C .-4D .4(7)已知三角形两边长为4和7,第三边的长是方程x 2-16x +55=0的一个根,则第三边长是( ) A .5B .5或11C .6D .11'2.填空题(1)方程t (t +3)=28的解为_______.(2)方程(2x +1)2+3(2x +1)=0的解为__________. (3)方程(2y +1)2+3(2y +1)+2=0的解为__________. (4)关于x 的方程x 2+(m +n )x +mn =0的解为__________. (5)方程x (x -5)=5 -x 的解为__________.3.用因式分解法解下列方程:(1)x2+12x=0; (2)4x2-1=0;(3)x2=7x;?(4)x2-4x-21=0; (5)(x-1)(x+3)=12; (6)3x2+2x-1=0;~(7)10x2-x-3=0; (8)(x-1)2-4(x-1)-21=0.,4.用适当方法解下列方程:(1)x2-4x+3=0; (2)(x-2)2=256;(3)x2-3x+1=0;(4)x2-2x-3=0; (5)(2t+3)2=3(2t+3); (6)(3-y)2+y2=9;%(7)2x2-8x=7; (8)(x+5)2-2(x+5)-8=0.、5.解关于x的方程:(1)x2-4ax+3a2=1-2a; (2)x2+5x+k2=2kx+5k+6;(3)x2-2mx-8m2=0; (4)x2+(2m+1)x+m2+m=0.!6.已知(x2+y2)(x2-1+y2)-12=0.求x2+y2的值.|7.解方程:x(x+12)=864.8.已知x2+3x+5的值为9,试求3x2+9x-2的值.。
九年级数学上册《解一元二次方程(因式分解法)》练习题
九年级数学上册《解一元二次方程(因式分解法)》练习题(含答案解析)学校:___________姓名:___________班级:______________一、单选题1.方程x 2﹣x =0的解是( )A .x =0B .x =1C .x 1=0,x 2=﹣1D .x 1=0,x 2=12.关于x 的方程x (x ﹣5)=3(x ﹣5)的根是( )A .x =5B .x =﹣5C .x 1=﹣5;x 2=3D .x 1=5;x 2=33.如图,在Rt △ABC 中,∠C =90°,放置边长分别为3,4,x 的三个正方形,则x 的值为( )A .12B .7C .6D .54.若m ,n 是方程x 2-x -2 022=0的两个根,则代数式(m 2-2m -2 022)(-n 2+2n +2 022)的值为()A .2 023B .2 022C .2 021D .2 0205.下列关于x 的一元二次方程()200++=≠ax bx c a 的命题中,真命题有( )∠若0a b c -+=,则240b ac -≥;∠若方程()200++=≠ax bx c a 两根为1和-2,则0a b -=;∠若方程()200++=≠ax bx c a 有一个根是()0c c -≠,则1b ac =+A .∠∠∠B .∠∠C .∠∠D .∠∠6.若函数y =m 22m m x +++4是二次函数,则m 的值为( )A .0或﹣1B .0或1C .﹣1D .17.一个等腰三角形的两条边长分别是方程x 2﹣9x +18=0的两根,则该等腰三角形的周长是( )A .12B .9C .15D .12或158.下列式子运算正确的是( )A .(2a+b )(2a ﹣b )=2a 2﹣b 2B .(a+2)(b ﹣1)=ab ﹣2C .(a+1)2=a 2+1D .(x ﹣1)(x ﹣2)=x 2﹣3x+29.已知方程x 2+2x ﹣3=0的解是x 1=1,x 2=﹣3,则另一个方程(x +3)2+2(x +3)﹣3=0的解是( )A .x 1=﹣1,x 2=3B .x 1=1,x 2=﹣3C .x 1=2,x 2=6D .x 1=﹣2,x 2=﹣6 10.下列解方程变形:∠由3x +4=4x -5,得3x +4x =4-5;∠由1132x x +-=,去分母得2x -3x +3=6; ∠由()()221331x x ---=,去括号得4x -2-3x +9=1;∠由344x =,得x =3.其中正确的有( ) A .0个 B .1个 C .2个 D .3个二、填空题11.一元二次方程()()120x x --=可化为两个一次方程为______________,方程的根是_________.12.方程2x 2+1=3x 的解为________.13.已知()()212x kx x a x b ++=++,()()215x kx x c x d ++=++,其中a b c d ,,,均为整数,则k =____________ 14.已知()()2222142x y x y ++-=,则22x y +的值是___________.15.若a ,b 是一元二次方程2220220x x +-=的两个实数根,则242a a b ++的值是_________.三、解答题16.已知关于x 的方程()()2222130k k x k x +-++-=(k 为常数).(1)该方程一定是一元二次方程吗?如果一定是,请说明理由;如果不一定是,请求出当方程不是一元二次方程时k 的值;(2)求1k =时方程的解;(3)求出一个()1k k ≠的值,使这个k 的值代人原方程后,所得的方程中有一个解与(2)中方程的一个解相同.(本小题只需求一个k 的值即可)17.为解方程(x 2﹣1)2﹣5(x 2﹣1)+4=0,我们可以将x 2﹣1视为一个整体,然后设x 2﹣1=y ,则原方程可化为y 2﹣5y +4=0,解此方程得y 1=1,y 2=4.当y =1时,x 2﹣1=1,所以x =当y =4时,x 2﹣1=4,所以x =所以原方程的根为1x =,2x =3x =4x =.以上解方程的方法叫做换元法,利用换元法达到了降次的目的,体现了数学的转化思想.运用上述方法解下列方程:(1)(x 2﹣x )(x 2﹣x ﹣4)=﹣4;(2)x 4+x 2﹣12=0.参考答案与解析:1.D【分析】因式分解后求解即可.【详解】x 2﹣x =0,x (x -1)=0,x =0,或x -1=0,解得x 1=0,x 2=1,故选:D【点睛】此题考查因式分解法解一元二次方程,因式分解法解一元二次方程的一般步骤:∠移项,使方程的右边化为零;∠将方程的左边分解为两个一次因式的乘积;∠令每个因式分别为零,得到两个一元一次方程;∠解这两个一元一次方程,它们的解就都是原方程的解.2.D【分析】利用因式分解法求解可得.【详解】解:∠x (x ﹣5)﹣3(x ﹣5)=0,∠(x ﹣5)(x ﹣3)=0,则x ﹣5=0或x ﹣3=0,解得x =5或x =3,故选:D .【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.3.B【分析】根据已知条件可以推出△CEF∠∠OME∠∠PFN然后把它们的直角边用含x的表达式表示出来,利用对应边的比相等,即可推出x的值.【详解】解:∠在Rt△ABC中(∠C=90°),放置边长分别3,4,x的三个正方形,∠OM∠AB∠PN∠EF,EO∠FP,∠C=∠EOM=∠NPF=90°,∠∠CEF∠∠OME∠∠PFN,∠OE:PN=OM:PF,∠EF=x,MO=3,PN=4,∠OE=x-3,PF=x-4,∠(x-3):4=3:(x-4),∠(x-3)(x-4)=12,即x2-4x-3x+12=12,∠x=0(不符合题意,舍去)或x=7.故选:B.【点睛】本题主要考查相似三角形的判定和性质、正方形的性质,解题的关键在于找到相似三角形,用x 的表达式表示出对应边.4.B【详解】解:∠m、n是方程x2-x-2022=0的两个根,∠m2-m-2022=0,n2-n-2022=0,mn=-2022,∠m2-m=2022,n2-n=2022,∠(m2-2m-2 022)(-n2+2n+2 022)=(m2-m-m-2022)(-(n2-n)+n+2022)=(2022-m-2022)((-2022+n+2022)=-mn=2022,故选:B.【点睛】本题考查了一元二次方程的解的定义和一元二次方程根与系数的关系,能根据已知条件得出m 2-m -2022=0,n 2-n -2022=0,mn =-2022是解此题的关键.5.A【分析】把b =a +c 代入判别式中得到24b ac -=(a -c )2≥0,则可对∠进行判断;利用根与系数的关系得到2c a=-,根据根的定义可得0a b c ++=,于是可对∠进行判断;由方程的根的定义可得20ac bc c -+=,即可对∠进行判断.【详解】解:a -b +c =0,则b =a +c ,24b ac -=(a +c )2-4ac =(a -c )2≥0,所以∠正确;∠方程ax 2+bx +c =0两根为1和-2, ∠2c a=-,则2c a =-,0a b c ++= 20a b a ∴+-=∠0a b -=,所以∠正确;∠方程()200++=≠ax bx c a 有一个根是()0c c -≠,∠20ac bc c -+=0c ≠∠10ac b -+=∠1b ac =+所以∠正确.故选:A .【点睛】本题考查了一元二次方程根的判别式,根与系数的关系,掌握以上知识是解题的关键.6.C【分析】利用二次函数定义可得m 2+m +2=2,且m ≠0,再解即可.【详解】解:由题意得:m 2+m +2=2,且m ≠0,解得:m =﹣1,故C 正确.故选:C .【点睛】本题主要考查了二次函数定义,关键是掌握形如y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)的函数,叫做二次函数.7.C【分析】利用因式分解法求出x 的值,再根据等腰三角形的性质分情况讨论求解【详解】解:∠ x 2﹣9x +18=0,∠(x﹣3)(x﹣6)=0,则x﹣3=0或x﹣6=0,解得x=3或x=6,当3是腰时,三角形的三边分别为3、3、6,不能组成三角形;当6是腰时,三角形的三边分别为3、6、6,能组成三角形,周长为3+6+6=15.故选:C.【点睛】本题考查了因式分解法解一元二次方程,三角形的三边关系,等腰三角形的性质,要注意分情况讨论.8.D【分析】A、原式利用平方差公式计算即可得到结果;B、原式利用多项式乘以多项式法则计算得到结果,即可做出判断;C、原式利用完全平方公式计算得到结果,即可做出判断;D、原式利用多项式乘以多项式法则计算得到结果,即可做出判断.【详解】解:A、原式=4a2-b2,错误;B、原式=ab-a+2b-2,错误;C、原式=a2+2a+1,错误;D、原式=x2-3x+2,正确.故选D.【点睛】此题考查了平方差公式,多项式乘多项式,以及完全平方公式,熟练掌握公式及法则是解本题的关键.9.D【分析】根据已知方程的解得出x+3=1,x+3=﹣3,求出两个方程的解即可.【详解】解:∠方程x2+2x﹣3=0的解是x1=1,x2=﹣3,∠方程(x+3)2+2(x+3)﹣3=0中x+3=1或﹣3,解得:x=﹣2或﹣6,即x1=﹣2,x2=﹣6,故选:D.【点睛】本题考查了解一元二次方程,换元法解一元二次方程,能根据方程的解得出x+3=1,x+3=﹣3,是解此题的关键.10.B【分析】根据解一元一次方程的步骤进行逐一求解判断即可.【详解】解:∠由3x +4=4x -5,得3x -4x =-5-4;方程变形错误,不符合题意;∠由1132x x +-=,去分母得2x -3x -3=6;方程变形错误,不符合题意; ∠由()()221331x x ---=,去括号得4x -2-3x +9=1;正确,符合题意;∠由344x =,得x =163.方程变形错误,不符合题意; 综上,正确的是∠,只1个,故选:B .【点睛】本题主要考查了解一元一次方程,解题的关键在于能够熟练掌握解一元一次方程的方法. 11. x ﹣1=0,x ﹣2=0 11x =,22x =【分析】两个因式的积为0,这两个因式都可以为0,得到两个一次方程,然后求出方程的根.【详解】解:(x ﹣1)(x ﹣2)=0∠x ﹣1=0或x ﹣2=0∠11x =,22x =.故答案分别是:x ﹣1=0,x ﹣2=0;11x =,22x =. 【点睛】本题考查的是用因式分解法解一元二次方程,因式分解得到两个因式的积为0,这两个因式分别为0,得到两个一次方程,然后求出方程的根.12.1211,2x x == 【分析】先移项,再利用因式分解法解答,即可求解.【详解】解:移项得:22310x x -+=,∠()()2110x x --=,∠210x -=或10x -=, 解得:1211,2x x ==, 故答案为:1211,2x x ==. 【点睛】此题主要考查了解一元二次方程,熟练掌握一元二次方程的解法,并灵活选用合适的方法解答是解题的关键.13.8±.【分析】根据等式两边对应相等的关系,可得到ab 和cd 的值,以及a+b 和c+d 的关系,再根据a 、b 、c 、d 是整数,即可得到结果.【详解】解:由题可得()()()2x a x b x a b x ab ++=+++,()()()2x c x d x c d x cd ++=+++12ab ∴=,15cd =,a b c d k +=+=又a b c d ,,,均为整数,∠2a =,6b =,3c =,5d =或2a =-,6b =-,3c =-,5d =-即8k =±.故答案为:±8.【点睛】本题考查多项式乘多项式,属基础知识.14.7【分析】换元法,令22x y t +=,将原方程化为t (t -1)=42(t 0≥), 求解一次方程即可.【详解】令22x y t +=(t 0≥),∠原方程化为t (t -1)=42,解得t =7,或t =-6(舍),∠227x y +=,故答案为:7.【点睛】本题考查用换元法求解方程.解题关键是要注意换元之后一定要考虑新未知数的取值范围,换元法的实际应用,是解题关键.15.2018【分析】先根据一元二次方程的解的定义得到222022a a +=,再根据根与系数的关系得到2a b +=-,然后利用整体代入的方法计算.【详解】解:∠a ,b 是一元二次方程2220220x x +-=的两个实数根,∠2220220a a +-=∠222022a a +=∠a ,b 是一元二次方程2220220x x +-=的两个实数根,∠2a b +=-,∠242a a b ++2222a a a b =+++()222a a a b=+++()202222=+⨯-2018=故答案为:2018.【点睛】本题考查的是一元二次方程的解的定义和根与系数的关系,还有整体的思想,熟练掌握一元二次方程的解的定义和根与系数的关系是解本题的关键.16.(1)不一定是,1k=-(2)x1=1,x2=-3;(3)4-或8 3 -【分析】(1)不一定,当2220k k+-=时该方程为一元一次方程,解得k的值即可;(2)把k=1代入方程计算即可;(3)把(2)中解得的x的值代入原方程解得k的值即可.(1)解:不一定是.当2220k k+-=时该方程为一元一次方程,解得:1k=-±答:方程不一定是一元二次方程,当方程不是一元二次方程时k的值为1-(2)解:当k=1代入得:2230x x+-=解得:x1=1,x2=-3;(3)解:x=1代入得k=-4,或x=-3代入得k=83 -,答:k的值为4-或83 -.【点睛】本题考查了一元二次方程的定义、一元二次方程的解以及解一元二次方程,掌握定义与解法是解题的关键.17.(1)x 1=2,x 2=﹣1;(2)12x x ==【分析】(1)设x 2﹣x =a ,原方程可化为a 2﹣4a +4=0,求出a 的值,再代入x 2﹣x =a 求出x 即可;(2)设x 2=y ,原方程化为y 2+y ﹣12=0,求出y ,再把y 的值代入x 2=y 求出x 即可.【详解】解:(1)(x 2﹣x )(x 2﹣x ﹣4)=﹣4,设x 2﹣x =a ,则原方程可化为a 2﹣4a +4=0,解此方程得:a 1=a 2=2,当a =2时,x 2﹣x =2,即x 2﹣x ﹣2=0,因式分解得:(x ﹣2)(x +1)=0,解得:x 1=2,x 2=﹣1,所以原方程的解是x 1=2,x 2=﹣1;(2)x 4+x 2﹣12=0,设x 2=y ,则原方程化为y 2+y ﹣12=0,因式分解,得(y ﹣3)(y +4)=0,解得:y 1=3,y 2=﹣4,当y =3时,x 2=3,解得:x =当y =﹣4时,x 2=﹣4,无实数根,所以原方程的解是1x 2x =【点睛】本题考查了用换元法解一元二次方程和用因式分解法解一元二次方程,能正确换元是解此题的关键.。
一元二次方程练习题及答案2篇
一元二次方程练习题及答案第一篇:一元二次方程练习题及答案1. 解方程:x^2 + 5x - 6 = 0解答:首先,可以试图将方程进行因式分解,即找到两个乘积为-6,且和为5的数。
很明显,这两个数为6和-1。
因此,可以写出方程的因式分解形式:(x + 6)(x - 1) = 0根据零乘积法则,要使得方程成立,其中一个因子必须为0。
所以,解得方程的两个解为:x = -6 和 x = 12. 解方程:4x^2 + 8x - 7 = 0解答:这是一个难以通过因式分解来解出精确解的方程。
所以,我们可以使用求根公式来求解。
求根公式是对于一元二次方程ax^2 + bx + c = 0,解的公式为:x = (-b ± √(b^2 -4ac)) / 2a对于该方程,a = 4,b = 8,c = -7。
将这些值代入求根公式,得到:x = (-8 ± √(8^2 - 4 * 4 * -7)) / (2 * 4)化简后得:x = (-8 ± √(64 + 112)) / 8继续化简,得:x = (-8 ± √176) / 8再继续化简,得:x = (-8 ± 4√11) / 8进一步简化,得:x = -1 ± √11 / 2因此,该方程的两个解为:x = -1 + √11 / 2 和 x = -1 - √11 / 23. 解方程:2x^2 - 5x + 2 = 0解答:尝试将方程进行因式分解,找到两个乘积为2,且和为-5的数。
很明显,这两个数为-2和-1。
因此,可以写出方程的因式分解形式:(2x - 1)(x - 2) = 0根据零乘积法则,要使得方程成立,其中一个因子必须为0。
所以,解得方程的两个解为:x = 1/2 和 x = 24. 解方程:3x^2 + 5x + 2 = 0解答:同样,尝试将方程进行因式分解。
找到两个乘积为2,且和为5的数。
这两个数为1和2。
用因式分解法求解一元二次方程 (6种题型)-2023年新九年级数学常见题型(北师大版)(解析版)
用因式分解法求解一元二次方程 (6种题型)【知识梳理】一、用因式分解法解一元二次方程的步骤 ①将方程右边化为0;②将方程左边分解为两个一次式的积;③令这两个一次式分别为0,得到两个一元一次方程; ④解这两个一元一次方程,它们的解就是原方程的解. 二、常用的因式分解法提取公因式法,公式法(平方差公式、完全平方公式),十字相乘法等. 要点诠释:(1)能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次因式的积;(2)用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0; (3)用分解因式法解一元二次方程的注意点:①必须将方程的右边化为0;②方程两边不能同时除以含有未知数的代数式.【考点剖析】题型1利用提公因式法例1.解关于x 的方程(因式分解方法):(1)230x =; (2)7(3)39x x x −=−.【答案】(1)120x x ==, (2)12337x x ==,.【解析】(1)(30x x = (2)7(3)3(3)x x x −=−①0x = ②30x 7(3)3(3)0x x x −−−=∴120x x ==, (3)(73)0x x −−= ① 30x −= ②730x −=∴12337x x ==,. 【总结】本题考查了因式分解法解一元二次方程.【变式】(2023春·北京房山·八年级统考期末)方程224x x −=的解为:___________. 【答案】10x =,22x =−【分析】先移项,然后用分解因式法解方程即可.【详解】解:224x x −=,移项得:2240x x +=,分解因式得:()220x x +=,∴20x =或20x +=, 解得:10x =,22x =−. 故答案为:10x =,22x =−.【点睛】本题主要考查了一元二次方程的解法:因式分解法,是基础知识比较简单,解题的关键是分解因式.题型2利用平方差公式例2.用因式分解法解下列方程:(2x+3)2-25=0. 【答案与解析】(2x+3-5)(2x+3+5)=0,∴ 2x-2=0或2x+8=0,∴ x 1=1,x 2=-4.【变式】解关于x 的一元二次方程:22(2016)(2015)1x x −+−=. 【答案】1220162015x x ==,.【解析】移项,得:22(2016)1(2015)x x −=−−,2(2016)[1(2015)][1(2015)]x x x −=+−−−, 2(2016)(2014)(2016)x x x −=−−, 2(2016)(2014)(2016)0x x x −−−−=, (2016)(40302)0x x −−=,解得:1220162015x x ==,.【总结】本题考查了一元二次方程的解法,当系数比较大时,要注意寻找规律进行变型求解.题型3利用完全平方公式例3.解下列一元二次方程:(2x+1)2+4(2x+1)+4=0; 【答案与解析】(2x+1)2+4(2x+1)+4=0,(2x+1+2)2=0. 即, ∴ . 题型4十字相乘法因式分解例4.用合适的方法解下列关于x 的方程:(1)2(1(30x x −+=; (2)2(35)5(35)40x x +−++=;【答案】(1)121x x =, (2)124133x x =−=−,;【解析】(1)2(1(30x x −+=,[(11](0x x −=,解得:121x =−=, (2)2(35)5(35)40x x +−++=351354x x +−+−(351)(354)0x x +−+−=,解得:124133x x =−=−,;【总结】本题考查了一元二次方程的解法.题型5:选择合适的方法解一元二次方程例5.解关于x 的方程(合适的方法 ): (1)2110464x x −+=; (2)22((1x +=+. 【答案】(1)1218x x ==;(2)1211x x ==−−, 【解析】(1)因式分解法 (2)直接开方法2(23)0x +=1232x x ==−21()08x −= (1x +=±+108x −= ①1x + ②(1x =−∴1218x x ==; ∴1211x x ==−−, 【总结】本题考查了特殊一元二次方程的解法,注意重根的写法! 【变式1】解关于x 的方程(合适的方法):(1)236350x x +−=; (2)2(41)10(14)240x x −+−−=. 【答案】(1)1235136x x ==−,; (2)1213144x x ==−,. 【解析】(1)因式分解法 (2)把41x −看作一个整体,因式分解 (3635)(1)0x x −+= 2(41)10(14)240x x −−−−= ①36350x −= ②10x += (4112)(412)0x x −−−+= ∴1235136x x ==−,; (413)(41)0x x −+= ① 4130x −= ②410x +=∴1213144x x ==−,. 【变式2】用适当的方法解下列方程:(1)22((1x =; (2)2x x =;(3)(3)(1)5x x +−=; (4)2()()0()b a x a c x c b a b −+−+−=≠.【答案】(1)1211x x =−=−; (2)1201x x ==,; (3)1242x x =−=,; (4)121c bx x b a−==−,.【解析】(1)(1x =± (2)20x x −=① 1x +=− ②(1x =− , (1)0x x −=,解得:1211x x =−=−; 解得:1201x x ==,; (3)整理得:2235x x +−= (4)∵a b ≠原方程是一元二次方程,2280x x +−=, 2()()0()b a x a c x c b a b −+−+−=≠, (4)(2)0x x +−=,()()1b a xc b x −−−− 解得:1242x x =−=,; [()()](1)0b a x c b x −−−−=, 解得:121c bx x b a−==−,. 【总结】本题考查了一元二次方程的解法,注意方法的恰当选择.【答案】B【分析】根据题意进行分类讨论,当0x >时,可得2450x x −−=,求出x 的值即可;当0x <时,可得2250x x −−=求出x 的值即可.【详解】解:当0x >时,则0x x >>−, ∴{}2max ,35x x x x x −==−−,即2450x x −=,解得:125,1x x ==−(不符合题意,舍去),当0x <时,则0x x −>>,∴{}2max ,35x x x x x −=−=−−,即2250x x −−=,解得:11x =,21x =综上:x 的值是5或1 故选:B .【点睛】本题主要考查了新定义下的运算和解一元二次方程,解题的关键是正确理解题目所给新定义的运算法则,熟练掌握解一元二次方程的方法和步骤.【变式】在正数范围内定义运算“※”,其规则为2a b a b =+※,则方程()15x x +=※的解是( ) A .4x =或1x = B .2x =C .1x =或4x =−D .1x =【答案】D【分析】根据规则可得:()215x x ++=,再解此方程,即可求解.【详解】解:根据题意得:()()2115x x x x +=++=※,得2340x x +−=,得()()410x x +−=,故40x +=或10x −=,解得14x =−(舍去),21x =, 所以,原方程的解为1x =, 故选:D .【点睛】本题考查了新定义,一元二次方程的解法,理解题意,得到方程并求解是解决本题的关键.【答案】3【分析】先通过因式分解法解方程260x x −−=,求出12x x ,,根据新定义的运算规则,12x x ※的值为1x 和2x 中较大的那个数,由此可解.【详解】解:方程260x x −−=,分解因式得:()()320x x −+=,解得:3x =或=2x −, 则()12323x x =−=※※或()233−=※.故答案为:3.【点睛】本题考查新定义运算和解一元二次方程,读懂题意,理解新定义的运算规则是解题的关键. 题型7:因式分解综合应用(1)问梯子的长是多少?(2)若梯子的长度保持不变,梯子的顶端从A 处沿墙AC 下滑的距离与点B 向外移动的距离有可能相等吗?为什么?请你利用学过的知识解答上面的问题. 【答案】(1)2.69m (2)有可能,理由见解析【分析】(1)根据梯子长度不变进而得出等式求出即可;(2)设梯子顶端从A 处下滑y 米,点B 向外也移动y 米代入(1)中方程,求出y 的值符合题意. 【详解】(1)解:设A C '的长是m x ,根据题意得出:2222A C B C BC AC ''+=+,2222(0.41)1(0.2)x x ∴++=++,解得: 2.3x =,2.69m AB ∴≈,答:梯子的长是2.69m ; (2)有可能.设梯子顶端从A 处下滑y 米,点B 向外也移动y 米,则有22(1)(2.5)7.25y y ++−=,解得:1 1.5y =或20y =(舍)∴当梯子顶端从A 处下滑1.5米时,点B 向外也移动1.5米,即梯子顶端从A 处沿墙AC 下滑的距离与点B 向外移动的距离有可能相等.【点睛】本题考查的是勾股定理的应用,根据题意得出关于y 的一元二次方程是解答此题的关键. 【变式1】(2023·河北石家庄·统考二模)老师就式子39⨯+−,请同学们自己出问题并解答. (1)小磊的问题:若W 代表()22−,代表()31−,计算该式的值;(2)小敏的问题:若398⨯+−=□,W 代表某数的平方,代表该数与1的和的平方,求该数.【答案】(1)22 (2)0或1【分析】(1)根据代数式代入值进行计算即可; (2)设该数为a ,则()22391=8a a ⨯+−+,再进行求解即可.【详解】(1)解:由题意可得:原式()()233291=⨯−+−−()3491=⨯+−−22=;(2)解:设该数为a ,则()22391=8a a ⨯+−+,解得:10a =,21a =,∴求该数为0或1.【点睛】本题考查代数值求值、解一元二次方程,熟练掌握解一元二次方程的方法是解题的关键. 【变式2】(2023·河北石家庄·校考一模)发现:存在三个连续整数使得这三个连续整数的和等于这三个连续整数的积;验证:连续整数1−,2−,3−______(填“满足”或“不满足”)这种关系; 连续整数2,3,4,______(填“满足”或“不满足”)这种关系; 延伸:设中间整数为n(1)列式表示出三个连续整数的和、积,并分别化简; (2)再写出一组符合“发现”要求的连续整数(直接写结果).【答案】验证:满足;不满足;(1)和为3n ,积为3n n −;(2)1−,0,1(答案不唯一)【分析】先分别计算123−−−和()()()123−⨯−⨯−的值,比较两组值是否相等;再分别计算234++和234⨯⨯的值,比较两组值是否相等即可;(1)设中间整数为n ,则三个连续整数可表示为:n 1−,n ,1n +,将n 1−,n ,1n +三数相加得其和;将n 1−,n ,1n +三数相乘得其积;(2)令(1)中的和等于积,解方程,求得n 的值,从而可得符合要求的连续整数.【详解】验证:解:1236−−−=−,()()()1236−⨯−⨯−=− ()()()123123∴−−−=−⨯−⨯−1∴−,2−,3−满足这种关系;2349++=,23424⨯⨯=,924≠, 234234∴++≠⨯⨯,∴2,3,4不满足这种关系.延伸:设中间整数为n ,则三个连续整数可表示为:n 1−,n ,1n +, (1)三个连续整数的和可表示为:()()113−+++=n n n n ,三个连续整数的积可表示为:()()311−⋅⋅+=−n n n n n ,(2)当33=−n n n 时,340−=n n ()()220∴+−=n n n解得:0n =,2n =−或2n =,∴符合要求的一组连续整数为:1−,0,1.【点睛】本题考查了探究某类数的规律性问题,其中涉及到了因式分解方法的运用,按照要求写出相关数或式子,按照规则计算,是解答本题的关键.【过关检测】一、单选题【答案】D【分析】变形后利用因式分解法解一元二次方程即可. 【详解】解:()()2131x x x −=−移项,得2(1)3(1)0x x x −−−=, 因式分解,得()()2310x x −−=,则10x −=或230x −=,解得2131,2x x ==.故选:D【点睛】此题考查了一元二次方程的解法,熟练掌握因式分解法是解题的关键. 2.(2023·全国·九年级假期作业)已知20x ax b +−=的解是11x =,24x =−,则方程()()223230x a x b +++−=的解是( )A .11x =−,2 3.5x =−B .11x =,2 3.5x =−C .11x =−,2 3.5x =D .11x =,2 3.5x =【答案】A【分析】由这两个方程结合整体思想,可得231x +=,234x +=−,解这两个一元一次方程即得方程()()223230x a x b +++−=的解.【详解】解:令23x y +=,∵方程20x ax b +−=的解是11x =,24x =−,∴方程20y ay b +−=的解是11y =,24y =−,∴对于方程方程()()223230x a x b +++−=而言,231x +=或234x +=−,解得=1x −或 3.5x =−,故选A .【点睛】本题考查了一元二次方程的解,整体思想解一元二次方程,关键是把方程()()22332340m x x +++−=中的23x +当作一个整体,则此方程与²340mx x +−=毫无二致.3.(2023·全国·九年级假期作业)方程29180x x −+=的两个根是等腰三角形的底和腰,则这个三角形是周长是( ) A .12 B .15 C .12或15 D .9或15或18【答案】B【分析】利用因式分解法求出方程的解得到x 的值,分类讨论腰与底,利用三角形边角关系判断即可确定出周长.【详解】解:29180x x −+=,(3)(6)0x x −−=,30x −=,60x −=,13x =,26x =,有两种情况:①三角形的三边为3,3,6,此时不符合三角形三边关系定理,②三角形的三边为3,6,6,此时符合三角形三边关系定理,此时三角形的周长为36615++=, 故选:B .【点睛】此题考查了因式分解法解一元二次方程,等腰三角形的定义,熟练掌握分解因式的方法是解本题的关键.【答案】C【分析】利用换元法求解即可.【详解】解:设33x m y +=,∵()()3333130x y x y +−++=,∴()()130m m −+=,∴10m −=或30m +=, 解得1m =或3m =−,∴331x y +=或333x y +=−,故选C .【点睛】本题主要考查了换元法解一元二次方程,熟知换元法是解题的关键.【答案】D【分析】利用因式分解法求出两个根,再从中找出较小的根即可.【详解】解:提公因式,得:331()()0442x x x −−+−=, 整理得:35()(2)044x x −−=,∴123548x x ==,, ∵3548>,∴较小的根是58,故选:D .【点睛】本题考查了因式分解法解一元二次方程,解题的关键是通过提取公因式将等号左边的式子进行因式分解.【答案】B【分析】由2212m m +=可得42210m m −+=,则有21m =,即1m =,然后问题可求解.【详解】解:∵2212m m +=,∴42210m m −+=,解得:21m =,∵0m >, ∴1m =,∴2251254m m −+=−+=;故选B .【点睛】本题主要考查一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键. 7.(2023·全国·九年级假期作业)实数x 满足方程222()()20x x x x +++−=,则2x x +的值等于( ) A .2− B .1 C .2−或1 D .2或1−【答案】B【分析】运用换元法解方程,再根据根的判别式判断根的情况,由此即可求解.【详解】解:根据题意,设2x x M +=,则原式变形得220M M +−=,因式分解法解一元二次方程得,22(1)(2)0M M M M +−=−+=, ∴12M =−,21M =,当2M =−时,22x x +=−,变形得,220x x ++=,根据判别式24141270b ac ∆=−=−⨯⨯=−<,无实根;当1M =时,21x x +=,变形得,210x x +−=,根据判别式24141(1)50b ac ∆=−=−⨯⨯−=>,方程有两个实根;∴21x x +=,故选:B .【点睛】本题主要考查换元法解高次方程,掌握换元法解方程的方法,根的判别式判断根的情况等知识是解题的关键.8.(2023·全国·九年级假期作业)若关于x 的一元二次方程()230x k x k +++=的一个根是2−,则另一个根是( ) A .1 B .1−C .3−D .2【答案】A【分析】将2x =−代入方程得:()4230k k −++=,解得:2k =−,再把2k =−代入原方程求解.【详解】解:将2x =−代入方程得:()4230k k −++=,解得:2k =−,∴原方程为:220x x +−=,则()2(1)0x x +−=,解得:2x =−或1x =, ∴另一个根为1. 故选:A .【点睛】本题考查了一元二次方程的根,因式分解法解一元二次方程,属于基础题.【答案】D【分析】设221x y x −=,则原方程可变形为15y y +=,再化为整式方程即可得出答案.【详解】解:设221x y x −=,则原方程可变形为15y y +=,即2510y y −+=;故选:D.【点睛】本题考查了利用换元法解方程,正确变形是关键,注意最后要化为整式方程.10.(2023春·重庆合川·九年级重庆市合川中学校考阶段练习)我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”(如图)就是一例.这个三角形给出了()()12345na b n +=⋯,,,,,的展开式的系数规律(其中,字母按a 的降幂排列,b 的升幂排列).例如,在三角形中第2行的三个数1,2,1,恰好对应()2222a b a ab b +=++展开式中各项的系数;第三行的的4个数1,3,3,1,恰好对应()3322333a b a a b ab b +=+++展开式中各项的系数;第4行的五个数1,4,6,4,1;恰好对应着()4432234464a b a a b a b ab b +=++++展开式中各项的系数,有如下结论:①()3322333b a b a a ab b −−+=−; ②“杨辉三角”中第9行所有数之和1024; ③“杨辉三角”中第20行第3个数为190; ④32993993991+⨯+⨯+的结果是610;⑤当代数式4328243216a a a a ++++的值是1时,实数a 的值是1−或3−,上述结论中,正确的有( )A .2个B .3个C .4个D .5个【答案】C【分析】把()3322333a b a a b ab b +=+++中b 换成b −后可得,()()()()3233233a b a a b a b b −−+−⋅+−=+,由此即可判断①;观察并计算可以发现第n 行所有数字之和为2n,由此即可判断②;观察并计算可以发现第n 行(n 大于2)第三个数诶为()12n n −,由此即可判断③;991a b ==,时,()326399139939999110=+++=+⨯⨯,即可判断④;当2b =时,()443228243216a a a a a +=++++,再由4328243216a a a a ++++的值为1,得到()421a +=,解方程即可判断⑤.【详解】解:∵()3322333a b a a b ab b +=+++,∴把上述式子中的b 换成b −后可得,()()()()3233233a b a a b a b b −−+−⋅+−=+,∴()3322333b a b a a ab b −−+=−,故①正确;第1行的所有数字之和为11122+==,第2行的所有数字之和为212124++==,第3行的所有数字之和为3133128+++==,第4行的所有数字之和为414641216++++==,……,∴可以得到规律第n 行所有数字之和为2n,∴“杨辉三角”中第9行所有数之和92512=,故②错误;第2行第三个数为()22112⨯−=, 第3行第三个数为()33132⨯−=,第4行第三个数为()44162⨯−=,第5行第三个数为()551102⨯−=,……,∴第n 行(n 大于2)第三个数为()12n n −, ∴“杨辉三角”中第20行第3个数为()202011902−=,故③正确;∵()3322333a b a a b ab b +=+++,∴当991a b ==,时,()326399139939999110=+++=+⨯⨯,故④正确;∵()4432234464a b a a b a b ab b +=++++,∴当2b =时,()443228243216a a a a a +=++++,∵4328243216a a a a ++++的值为1,∴()421a +=, ∴()221a +=,∴21a +=±, ∴1213a a =−=−,,故⑤正确;故选C .【点睛】本题主要考查了多项式乘法中得规律探索,正确理解题意找到规律是解题的关键.二、填空题11.(2023·全国·九年级假期作业)若关于x 的一元二次方程230ax bx +−=(0a ≠)有一个根为5x =,则方程()213a x bx b −+−=必有一根为______. 【答案】6x = 【分析】把()213a x bx b−+−=化为()2(1)130,a xb x −+−−=再结合题意得到15,x −=解出即可.【详解】解:()213a x bx b−+−=,()2(1)130a xb x ∴−+−−=.令1x t −=,则230,at bt +−=∵方程230ax bx +−=(0a ≠)有一个根为5x =,∴方程230at bt +−=有一根为5t =,()2(1)130a xb x ∴−+−−=有一根为15x −=,15,x ∴−=6.x ∴=故答案为: 6.x =【点睛】本题主要考查了一元二次方程的根的含义,掌握利用整体未知数求解方程的根是解此题的关键. 12.(2023·全国·九年级假期作业)一元二次方程220x x +−=的解是________. 【答案】122,1x x =−= 【分析】原方程可转化为()()210x x +−=,再化为两个一次方程即可.【详解】解:∵220x x +−=,∴()()210x x +−=,∴20x +=或10x −=, 解得122,1x x =−=.故答案为:122,1x x =−=.【点睛】本题考查的是一元二次方程的解法,熟练的掌握因式分解的方法解一元二次方程是解本题的关键. 13.(2023·全国·九年级假期作业)一元二次方程()()23121x x =−−的解是________.【答案】12531,x x ==【分析】先移项,再提取公因式分解因式,把原方程化为两个一次方程,再解一次方程即可. 【详解】∵()()23121x x =−−,∴()()231201x x −−−=.∴()()13120x x −−−⎤⎣⎦=⎡.∴10x −=或()3120x −−=,解得12531,x x ==.故答案为:12531,x x ==.【点睛】本题考查的是一元二次方程的解法,熟练的利用因式分解的方法解方程是解本题的关键. 14.(2023·河南信阳·校考三模)小明在解方程2320x x −+=时,发现用配方法和公式法计算量都比较大,因此他又想到了另外一种方法,快速解出了答案: 方法如下: 2320x x −+=2220x x x −−+= 第①步222x x x −=− 第②步()22x x x −=− 第③步1x = 第④步老师看到后,夸小明很聪明,方法很好,但是有一步做错了,请问小明出错的步骤为________(填序号). 【答案】④ 【分析】由()22x x x −=−,()()120x x −−=,解得1x =或2x =,进而判断作答即可.【详解】解:()22x x x −=−,()()120x x −−=,解得1x =或2x =,∴第④步错误, 故答案为:④.【点睛】本题考查了解一元二次方程.解题的关键在于正确的解一元二次方程.15.(2023秋·湖南常德·九年级统考期末)若()()22222340x y x y +−+−=,则22x y +=______.【答案】4【分析】设22t x y =+,则0t >,根据换元法解一元二次方程,即可求解.【详解】解:设22t x y =+,则0t >,∴原方程可以化为2340t t −−=,解得:4t =或1t =−(舍去)即22x y +=4 故答案为:4.【点睛】本题考查了换元法解一元二次方程,掌握换元法解一元二次方程是解题的关键.16.(2022秋·甘肃平凉·九年级校考阶段练习)已知实数x 满足2220()(23)x x x x −−−−=,则代数式22020x x −+的值为_______.【答案】2023【分析】设2t x x =−,则原方程转化为关于t 的一元二次方程2230t t −−=,利用因式分解法解该方程即可求得t 的值;然后整体代入所求的代数式进行解答,注意判断方程的根的判别式0≥,方程有解.【详解】解:设2t x x =−,由原方程,得2230t t −−=,整理,得()()310t t −+=,所以3t =或1t =−.当3t =时,23−=x x ,则220202023x x −+=;当1t =−时,21x x −=−即210x x −+=时,()214110∆=−−⨯⨯<,方程无解,此种情形不存在.故答案是:2023.【点睛】本题考查了换元法解一元二次方程.换元的实质是转化,关键是构造元和设元,理论依据是等量代换.三、解答题17.(2023·江苏·九年级假期作业)用适当的方法解下列各一元二次方程: (1)(2)15x x −=;(2)23680x x +−=(用配方法); (3)2(2)10(2)210x x +−++=; (4)23520x x −+=;(5)22(2)(1)6x x ++−=. 【答案】(1)15a =,23a =−(2)11x =−,21x =−(3)15=x ,21x = (4)123x =,21x =(5)1x =,2x =【分析】(1)(4)用因式分解的十字相乘法求解比较简便;(2)先把常数项移到等号的另一边,把二次项系数化为1,配方,利用直接开平方法求解; (3)把(2)x +看成一个整体,利用因式分解的十字相乘法求解比较简便; (5)先整理方程,用公式法比较简便. 【详解】(1)解:(2)15x x −=,整理,得22150a a −−=,(5)(3)0a a ∴−+=.50a ∴−=或30a +=.15a ∴=,23a =−;(2)23680x x +−=(用配方法),移项,得2368x x +=,二次项系数化为1,得2823x x +=,配方,得211213x x ++=,211(1)3x ∴+=.1x ∴+=.11x ∴=−,21x =−;(3)2(2)10(2)210x x +−++=,[(2)7][(2)3]0x x ∴+−+−=,即(5)(1)0x x −−=.50x ∴−=或10x −=.15x ∴=,21x =;(4)23520x x −+=,(32)(1)0x x −−=,320x −=或10x −=,123x ∴=,21x =;(5)22(2)(1)6x x ++−=,方程整理,得22210x x +−=,x ===.1x ∴=,2x =. 【点睛】本题考查了解一元二次方程,掌握一元二次方程的直接开平方法、配方法、因式分解法、公式法是解决本题的关键.18.(2023·全国·九年级假期作业)已知()()22222150a b a b +++−=,求22a b +的值. 【答案】3【分析】先用换元法令22(0)a b x x +=>,再解关于x 的一元二次方程即可. 【详解】解:令22(0)a b x x +=>,则原等式可化为:(2)150x x +−=,解得:123,5x x ==−,0x >,3x ∴=,即223a b +=.22a b +的值为3.【点睛】本题考查了换元法、一元二次方程的解法,注意22a b +为非负数是本题的关键.【答案】2x = 【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:2211x x x =+−方程两边同乘()()11x x +−, 得()12x x −=,整理得,220x x −−=,∴()()120x x +−=,解得:11x −=,22x =,检验:当=1x −时,()()110x x +−=,=1x −是增根, 当2x =时,()()1130x x +−=≠,∴原方程的解为2x =.【点睛】本题考查了分式方程的解法,属于基本题型,熟练掌握解分式方程的方法是解题关键.【答案】,21x −+【分析】先对分式进行化简,然后求出一元二次方程的解,进而代值求解即可.【详解】2222421121x x x x x x x −−−÷+−−+()()()()222121112x x x x x x x −−=−⋅++−−()21211x x x x −=−++, 2221x x x −+=+ 21x =+解方程220x x +−=得:2x =−或1x =,如果已知分式有意义,必须x 不等于2,1−,1,∵x 为方程220x x +−=的根,∴x 只能为2−,∴当2x =−时,原式2221−+==−.【点睛】本题主要考查分式的化简求值及一元二次方程的解法,解题的关键是熟练掌握各个运算方法. 21.(2023·陕西榆林·校考模拟预测)已知数字A 为负数,将其加6得到数字B ,若数字A 与数字B 的积为7,求数字A .【答案】7A =−【分析】根据题意得()67A A +=,解一元二次方程即可求解.【详解】解:由题意得6A B +=,7A B ⨯=,∴()67A A +=,∴2670A A +−=,即()()710A A +−=, 解得7A =−或1A =,∵数字A 为负数,∴7A =−.【点睛】本题考查了一元二次方程的应用,掌握“因式分解法”解一元二次方程是解题的关键.22.(2023·全国·九年级假期作业)阅读下面的材料:【答案】(1)1x =,2x =,3x ,4x =;(2)5【分析】(1)设2y x x =+,则2540y y −+=,整理,得(1)(4)0y y −−=,解关于y 的一元二次方程,然后解关于x 的一元二次方程即可求解;(2)设22x a b =+,则23100x x −−=,整理,得−+=(5)(2)0x x ,解一元二次方程即可求解.【详解】(1)解:设2y x x =+,则2540y y −+=,整理,得(1)(4)0y y −−=,解得11y =,24y =,当21x x +=即210x x +−=时,解得x = ;当24x x +=即240x x +−=时,解得x ;∴原方程的解为112x −=, 212x −=, 312x −=, 412x −=;(2)设22x a b =+,则23100x x −−=,整理,得−+=(5)(2)0x x ,解得15y =,2(2y =−舍去),225a b +=.【点睛】本题考查了换元法解一元二次方程,熟练掌握换元法是解题的关键.【答案】(1)1x =±(2)114x =−,21x =【分析】(1)设2x y =,则由已知方程得到:2560y y −=+,利用因式分解法求得该方程的解,然后解关于x 的一元二次方程;(2)设1x y x +=,则由已知方程得到:260y y +−=,利用因式分解法求得该方程的解,然后进行检验即可.【详解】(1)令2x y =∴2560y y −=+∴(6)(1)0y y +−=∴16y =−,21y =∴26x =−(舍去),21x =∴1x =±;(2)令1x y x += ∴610y y −+=∴260y y +−=∴(3)(2)0y y +−=∴13y =−,22y = ∴13x x +=−,12x x += ∴114x =−,21x = 经检验,114x =−,21x =为原方程的解.【点睛】本题主要考查了换元法解一元二次方程,分式方程,即把某个式子看作一个整体,用一个字母去代替它,实行等量替换.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.任务:(1)判断:方程2560x x −+= ______ “邻根方程”(填“是”或“不是”);(2)已知关于x 的一元二次方程()210(x m x m m +++=是常数)是“邻根方程”,求m 的值.【答案】(1)是(2)0m =或2m =【分析】(1)先利用因式分解法解一元二次方程,然后根据“邻根方程”的定义进行判断;(2)先利用因式分解法解一元二次方程得到1x m =,21x =−,再根据“邻根方程”的定义得到11m −=−或11+=−m ,然后解关于m 的方程即可.【详解】(1)解方程2560x x −+=得13x =,22x =, 3比2大1,∴方程是“邻根方程”;(2)()210x m x m +++=, ()()10x m x ∴++=, 0x m ∴+=或10x +=,1x m ∴=−,21x =−,方程()210(x m x m m +++=是常数)是“邻根方程”,11m ∴−−=−或11m −+=−,0m ∴=或2m =.【点睛】本题考查了因式分解法解一元二次方程,熟练掌握解一元二次方程的方法是解题的关键.【答案】14x =,214x =m =m =代入方程得22520m m −+=,求出m 的值,再求出x 即可.m .原方程化为:22520m m −+=,解得:12m =,212m =.当2m =2,解得:14x =;当12m =12=,解得:214x =. 【点睛】本题主要考查了解一元二次方程,解题的关键是正确理解题意,会根据题目所描述的换元法求解方程.。
(完整版)用因式分解法解一元二次方程(知识点+经典例题+综合练习)---详细答案
用因式分解法解一元二次方程【主体知识归纳】1.因式分解法 若一元二次方程的一边是0,而另一边易于分解成两个一次因式时,例如,x 2-9=0,这个方程可变形为(x +3)(x -3)=0,要(x +3)(x -3)等于0,必须并且只需(x +3)等于0或(x -3)等于0,因此,解方程(x +3)(x -3)=0就相当于解方程x +3=0或x -3=0了,通过解这两个一次方程就可得到原方程的解.这种解一元二次方程的方法叫做因式分解法.2.因式分解法其解法的关键是将一元二次方程分解降次为一元一次方程.其理论根据是:若A ·B =0A =0或B =0.【基础知识讲解】1.只有当方程的一边能够分解成两个一次因式,而另一边是0的时候,才能应用因式分解法解一元二次方程.分解因式时,要根据情况灵活运用学过的因式分解的几种方法.2.在一元二次方程的四种解法中,公式法是主要的,公式法可以说是通法,即能解任何一个一元二次方程.但对某些特殊形式的一元二次方程,有的用直接开平方法简便,有的用因式分解法简便.因此,在遇到一道题时,应选择适当的方法去解.配方法解一元二次方程是比较麻烦的,在实际解一元二次方程时,一般不用配方法.而在以后的学习中,会常常用到因式分解法,所以要掌握这个重要的数学方法.【例题精讲】例1:用因式分解法解下列方程:(1)y 2+7y +6=0; (2)t (2t -1)=3(2t -1); (3)(2x -1)(x -1)=1.解:(1)方程可变形为(y +1)(y +6)=0,y +1=0或y +6=0,∴y 1=-1,y 2=-6.(2)方程可变形为t (2t -1)-3(2t -1)=0,(2t -1)(t -3)=0,2t -1=0或t -3=0,∴t 1=21,t 2=3.(3)方程可变形为2x 2-3x =0.x (2x -3)=0,x =0或2x -3=0.∴x 1=0,x 2=23. 说明:(1)在用因式分解法解一元二次方程时,一般地要把方程整理为一般式,如果左边的代数式能够分解为两个一次因式的乘积,而右边为零时,则可令每一个一次因式为零,得到两个一元一次方程,解出这两个一元一次方程的解就是原方程的两个解了.(2)应用因式分解法解形如(x -a )(x -b )=c 的方程,其左边是两个一次因式之积,但右边不是零,所以应转化为形如(x -e )(x -f )=0的形式,这时才有x 1=e ,x 2=f ,否则会产生错误,如(3)可能产生如下的错解:原方程变形为:2x -1=1或x -1=1.∴x 1=1,x 2=2.(3)在方程(2)中,为什么方程两边不能同除以(2t -1),请同学们思考?例2:用适当方法解下列方程: (1)3(1-x )2=27;(2)x 2-6x -19=0;(3)3x 2=4x +1;(4)y 2-15=2y ;(5)5x (x -3)-(x -3)(x +1)=0;(6)4(3x +1)2=25(x -2)2.剖析:方程(1)用直接开平方法,方程(2)用配方法,方程(3)用公式法,方程(4)化成一般式后用因式分解法,而方程(5)、(6)不用化成一般式,而直接用因式分解法就可以了.解:(1)(1-x )2=9,(x -1)2=3,x -1=±3,∴x 1=1+3,x 2=1-3.(2)移项,得x 2-6x =19,配方,得x 2-6x +(-3)2=19+(-3)2,(x -3)2=28,x -3=±27, ∴x 1=3+27,x 2=3-27.(3)移项,得3x 2-4x -1=0,∵a =3,b =-4,c =-1, ∴x =37232)1(34)4()4(2±=⨯-⨯⨯--±--, ∴x 1=372+,x 2=372-. (4)移项,得y 2-2y -15=0,把方程左边因式分解,得(y -5)(y +3)=0;∴y -5=0或y +3=0,∴y 1=5,y 2=-3.(5)将方程左边因式分解,得(x -3)[5x -(x +1)]=0,(x -3)(4x -1)=0,∴x -3=0或4x -1=0,∴x 1=3,x 2=41. (6)移项,得4(3x +1)2-25(x -2)2=0,[2(3x +1)]2-[5(x -2)]2=0,[2(3x +1)+5(x -2)]·[2(3x +1)-5(x -2)]=0,(11x -8)(x +12)=0,∴11x -8=0或x +12=0,∴x 1=118,x 2=-12. 说明:(1)对于无理系数的一元二次方程解法同有理数一样,只不过要注意二次根式的化简.(2)直接因式分解就能转化成两个一次因式乘积等于零的形式,对于这种形式的方程就不必要整理成一般式了.例3:解关于x 的方程:(a 2-b 2)x 2-4abx =a 2-b 2.解:(1)当a 2-b 2=0,即|a |=|b |时,方程为-4abx =0.当a =b =0时,x 为任意实数.当|a |=|b |≠0时,x =0.(2)当a 2-b 2≠0,即a +b ≠0且a -b ≠0时,方程为一元二次方程.分解因式,得[(a +b )x +(a -b )][(a -b )x -(a +b )]=0,∵a +b ≠0且a -b ≠0,∴x 1=b a a b +-,x 2=ba b a -+. 说明:解字母系数的方程,要注意二次项系数等于零和不等于零的不同情况分别求解.本题实际上是分三种情况,即①a =b =0;②|a |=|b |≠0;③|a |≠|b |.例4:已知x 2-xy -2y 2=0,且x ≠0,y ≠0,求代数式22225252y xy x y xy x ++--的值. 剖析:要求代数式的值,只要求出x 、y 的值即可,但从已知条件中显然不能求出,要求代数式的分子、分母是关于x 、y 的二次齐次式,所以知道x 与y 的比值也可.由已知x 2-xy -2y 2=0因式分解即可得x 与y 的比值.解:由x 2-xy -2y 2=0,得(x -2y )(x +y )=0,∴x -2y =0或x +y =0,∴x =2y 或x =-y . 当x =2y 时,135y13y 5y 5y y 22)y 2(y 5y y 22)y 2(y 5xy 2x y 5xy 2x 2222222222-=-=+⋅⋅+-⋅⋅-=++--. 当x =-y 时,21y 4y 2y 5y )y (2)y (y 5y )y (2)y (y 5xy 2x y 5xy 2x 222222222-=-=+⋅-⋅+--⋅-⋅--=++--2. 说明:因式分解法体现了“降次”“化归”的数学思想方法,它不仅可用来解一元二次方程,而且在解一元高次方程、二元二次方程组及有关代数式的计算、证明中也有着广泛的 应用.【同步达纲练习】1.选择题(1)方程(x -16)(x +8)=0的根是( )A .x 1=-16,x 2=8B .x 1=16,x 2=-8C .x 1=16,x 2=8D .x 1=-16,x 2=-8(2)下列方程4x 2-3x -1=0,5x 2-7x +2=0,13x 2-15x +2=0中,有一个公共解是( )A ..x =21B .x =2C .x =1D .x =-1(3)方程5x (x +3)=3(x +3)解为( )A .x 1=53,x 2=3 B .x =53C .x 1=-53,x 2=-3D .x 1=53,x 2=-3 (4)方程(y -5)(y +2)=1的根为( )A .y 1=5,y 2=-2B .y =5C .y =-2D .以上答案都不对 (5)方程(x -1)2-4(x +2)2=0的根为( )A .x 1=1,x 2=-5B .x 1=-1,x 2=-5C .x 1=1,x 2=5D .x 1=-1,x 2=5 (6)一元二次方程x 2+5x =0的较大的一个根设为m ,x 2-3x +2=0较小的根设为n ,则m +n 的值为( )A .1B .2C .-4D .4 (7)已知三角形两边长为4和7,第三边的长是方程x 2-16x +55=0的一个根,则第三边长是( )A .5B .5或11C .6D .11 (8)方程x 2-3|x -1|=1的不同解的个数是( )A .0B .1C .2D .32.填空题(1)方程t (t +3)=28的解为_______.(2)方程(2x +1)2+3(2x +1)=0的解为__________.(3)方程(2y +1)2+3(2y +1)+2=0的解为__________.(4)关于x 的方程x 2+(m +n )x +mn =0的解为__________.(5)方程x (x -5)=5 -x 的解为__________.3.用因式分解法解下列方程:(1)x 2+12x =0;(2)4x 2-1=0; (3)x 2=7x ;(4)x 2-4x -21=0;(5)(x -1)(x +3)=12; (6)3x 2+2x -1=0;(7)10x2-x-3=0;(8)(x-1)2-4(x-1)-21=0.4.用适当方法解下列方程:(1)x2-4x+3=0;(2)(x-2)2=256;(3)x2-3x+1=0;(4)x2-2x-3=0;(5)(2t+3)2=3(2t+3);(6)(3-y)2+y2=9;(7)(1+2)x2-(1-2)x=0;(8)5x2-(52+1)x+10=0;(9)2x2-8x=7(精确到0.01);(10)(x+5)2-2(x+5)-8=0.5.解关于x的方程:(1)x2-4ax+3a2=1-2a;(2)x2+5x+k2=2kx+5k+6;(3)x2-2mx-8m2=0; (4)x2+(2m+1)x+m2+m=0.6.已知x 2+3xy -4y 2=0(y ≠0),试求yx y x +-的值.7.已知(x 2+y 2)(x 2-1+y 2)-12=0.求x 2+y 2的值.8.请你用三种方法解方程:x (x +12)=864.9.已知x 2+3x +5的值为9,试求3x 2+9x -2的值.10.一跳水运动员从10米高台上跳水,他跳下的高度h (单位:米)与所用的时间t (单位:秒)的关系式h =-5(t -2)(t +1).求运动员起跳到入水所用的时间.11.为解方程(x 2-1)2-5(x 2-1)+4=0,我们可以将x 2-1视为一个整体,然后设x 2-1=y ,则y 2=(x 2-1)2,原方程化为y 2-5y +4=0,解此方程,得y 1=1,y 2=4.当y =1时,x 2-1=1,x 2=2,∴x =±2.当y =4时,x 2-1=4,x 2=5,∴x =±5.∴原方程的解为x 1=-2,x 2=2,x 3=-5,x 4=5.以上方法就叫换元法,达到了降次的目的,体现了转化的思想.(1)运用上述方法解方程:x 4-3x 2-4=0.(2)既然可以将x 2-1看作一个整体,你能直接运用因式分解法解这个方程吗参考答案【同步达纲练习】1.(1)B (2)C (3)D (4)D (5)B (6)A (7)A (8)D2.(1)t 1=-7,t 2=4(2)x 1=-21,x 2=-2(3)y 1=-1,y 2=-23(4)x 1=-m ,x 2=-n (5)x 1=5,x 2=-1 3.(1)x 1=0,x 2=-12;(2)x 1=-21,x 2=21;(3)x 1=0,x 2=7;(4)x 1=7,x 2=-3;(5)x 1=-5,x 2=3;(6)x 1=-1,x 2=31; (7)x 1=53,x 2=-21;(8)x 1=8,x 2=-2. 4.(1)x 1=1,x 2=3;(2)x 1=18,x 2=-14;(3)x 1=253+,x 2=253-;(4)x 1=3,x 2=-1; (5)t 1=0,t 2=-23;(6)y 1=0,y 2=3;(7)x 1=0,x 2=22-3; (8)x 1=55,x 2=10;(9)x 1≈7.24,x 2=-3.24;(10)x 1=-1,x 2=-7. 5.(1)x 2-4ax +4a 2=a 2-2a +1,(x -2a )2=(a -1)2,∴x -2a =±(a -1),∴x 1=3a -1,x 2=a +1.(2)x 2+(5-2k )x +k 2-5k -6=0, x 2+(5-2k )x +(k +1)(k -6)=0,[x -(k +1)][x -(k -6)]=0,∴x 1=k +1,x 2=(k -6).(3)x 2-2mx +m 2=9m 2,(x -m )2=(3m )2∴x 1=4m ,x 2=-2m(4)x 2+(2m +1)x +m (m +1)=0,(x +m )[x +(m +1)]=0,∴x 1=-m ,x 2=-m -16.(x +4y )(x -y )=0, x =-4y 或x =y当x =-4y 时,y x y x +-=3544=+---y y y y ; 当x =y 时,y x y x +-=y y y y +-=0. 7.(x 2+y 2)(x 2+y 2-1)-12=0,(x 2+y 2)2-(x 2+y 2)-12=0,(x 2+y 2-4)(x 2+y 2+3)=0,∴x 2+y 2=4或x 2+y 2=-3(舍去)8.x 1=-36,x 2=249.∵x 2+3x +5=9,∴x 2+3x =4,∴3x2+9x-2=3(x2+3x)-2=3×4-2=10 10.10=-5(t-2)(t+1),∴t=1(t=0舍去) 11.(1)x1=-2,x2=2(2)(x2-2)(x2-5)=0,(x+2)(x-2)(x+5)(x-5)=0。
一元二次方程的解法综合练习题及答案
一元二次方程的解法专题训练1、因式分解法 ①移项:使方程右边为0②因式分解:将方程左边因式分解;方法:一提,二套,三十字,四分组③由A ∙B=0,那么A=0或B=0,解两个一元一次方程2、开平方法 )0(2≥=a a x3、配方法 ①移项:左边只留二次项与一次项,右边为常数项 〔移项要变号.....〕 ②同除:方程两边同除二次项系〔每项都要除.....〕 ③配方:方程两边加上一次项系数一半的平方.......④开平方:注意别忘根号与正负⑤解方程:解两个一元一次方程4、公式法① 将方程化为一般式② 写出a 、b 、c③ 求出ac b 42-,④ 假设b 2-4ac <0,那么原方程无实数解⑤ 假设b 2-4ac >0,那么原方程有两个不相等的实数根,代入公式x= ⑥ 假设b 2-4ac =0,那么原方程有两个相等的实数根,代a x a x -==21入公式2b x a=-求解。
例1、利用因式分解法解以下方程(x -2) 2=(2x-3)2 042=-x x 3(1)33x x x +=+ x 2()()0165852=+---x x例2、利用开平方法解以下方程51)12(212=-y 4〔x-3〕2=25 24)23(2=+x例3、利用配方法解以下方程7x=4x 2+2 01072=+-x x 例4、利用公式法解以下方程-3x 2+22x -24=0 2x 〔x -3〕=x -3. 3x 2+5(2x+1)=0课后练习1、方程2x 2-3x+1=0化为(x+a)2=b 的形式,正确的选项是 ( )A 、 23162x ⎛⎫-= ⎪⎝⎭B 、2312416x ⎛⎫-= ⎪⎝⎭C 、 231416x ⎛⎫-= ⎪⎝⎭ D 、以上都不对2、用__________________法解方程(x-2)2=4比拟简便。
3、一元二次方程x 2-ax+6=0, 配方后为(x-3)2=3, 那么a=______________.4、解方程〔x+a 〕2=b 得〔 〕A 、x=-a B 、x=±039922=--x xC 、当b ≥0时,x=-aD 、当a ≥0时,x=a5、关于x 的方程〔a 2-1〕x 2+〔1-a 〕x+a-2=0,以下结论正确的选项是〔 〕A 、当a ≠±1时,原方程是一元二次方程。
一元二次方程计算练习 (含答案)
一元二次方程计算练习1.解方程:(1)x2=4x(因式分解法);(2)2x2﹣4x﹣3=0(公式法).2.解下列方程:(1)x2﹣2x=0;(2)x2﹣3x﹣4=0.3.解方程:①x2﹣8x+12=0;②x2﹣2x﹣8=0.4.用适当的方法解下列方程:(1)x2﹣10x+16=0;(2)2x(x﹣1)=x﹣1.5.选用适当的方法解下列方程.(1)x2﹣4x﹣3=0(2)5x(x+1)=2(x+1)6.解方程(1)(x+1)2﹣25=0(2)x2﹣4x﹣2=07.(1)(x﹣1)2=2(x﹣1)(2)2x2﹣5x﹣2=08.解方程(1)x2﹣4x﹣4=0(2)2(x+5)2=x(x+5)9.解方程:(1)x2﹣6x﹣7=0(2)(x+2)(x+3)=110.解下列方程:(1)3x2﹣2x﹣1=0(2)(x﹣1)2﹣16=0 11.解方程:(1)2x2﹣16=0;(2)2x2﹣3x﹣1=0.12.解方程(1)(2x+3)2﹣81=0;(2)y2﹣7y+6=0.13.用合适的方法解下列方程.(1)x2﹣x﹣1=0(2)2(x﹣1)2=1﹣x.14.解方程:2x2+4x﹣3=0.15.解方程:(1)x2+10x+9=0(2)x2﹣x﹣=0(3)3x2+6x﹣4=0(4)4x2﹣6x﹣3=0(5)x2+4x﹣9=2x﹣11(6)x(x+4)=8x+12.参考答案与试题解析1.解方程:(1)x2=4x(因式分解法);(2)2x2﹣4x﹣3=0(公式法).【分析】(1)根据因式分解的方法解方程即可;(2)根据公式法解方程即可.【解答】(1)x2=4x,解:x2﹣4x=0,x(x﹣4)=0,∴x1=0,x2=4;(2)2x2﹣4x﹣3=0,解:a=2,b=﹣4,c=﹣3,代入求根公式,得:,∴,.【点评】此题考查了解一元二次方程﹣因式分解法、公式法,利用因式分解法解方程时,首先将方程右边化为0,左边化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.2.解下列方程:(1)x2﹣2x=0;(2)x2﹣3x﹣4=0.【分析】(1)利用因式分解法把方程化为x=0或x﹣2=0,然后解一次方程即可;(2)利用因式分解法把方程化为x﹣4=0或x+1=0,然后解一次方程即可.【解答】解:(1)x(x﹣2)=0,x=0或x﹣2=0,所以x1=0,x2=2;(2)(x﹣4)(x+1)=0,x﹣4=0或x+1=0,所以x1=4,x2=﹣1.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了配方法解方程.3.解方程:①x2﹣8x+12=0;②x2﹣2x﹣8=0.【分析】利用因式分解法求解可得.【解答】解:①∵x2﹣8x+12=0,∴(x﹣2)(x﹣6)=0,则x﹣2=0或x﹣6=0,解得x=2或x=6;②∵x2﹣2x﹣8=0,∴(x+2)(x﹣4)=0,则x+2=0或x﹣4=0,解得x=﹣2或x=4.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.4.用适当的方法解下列方程:(1)x2﹣10x+16=0;(2)2x(x﹣1)=x﹣1.【分析】(1)根据因式分解法节即可求出答案.(2)根据因式分解法即可求出答案.【解答】解:(1)∵x2﹣10x+16=0,∴(x﹣2)(x﹣8)=0,∴x=2或x=8.(2)∵2x(x﹣1)=x﹣1,∴(x﹣1)(2x﹣1)=0,∴x=1或x=.【点评】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.5.选用适当的方法解下列方程.(1)x2﹣4x﹣3=0(2)5x(x+1)=2(x+1)【分析】(1)根据配方法即可求出答案.(2)根据因式分解法即可求出答案.【解答】解:(1)∵x2﹣4x﹣3=0,∴x2﹣4x+4=7,∴(x﹣2)2=7,∴x1=2+,x2=2﹣.(2)∵5x(x+1)=2(x+1),∴(5x﹣2)(x+1)=0,∴x1=,x2=﹣1.【点评】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.6.解方程(1)(x+1)2﹣25=0(2)x2﹣4x﹣2=0【分析】(1)利用直接开平方法解出方程;(2)先求出一元二次方程的判别式,再解出方程.【解答】解:(1)(x+1)2﹣25=0,(x+1)2=25,x+1=±5,x=±5﹣1,x1=4,x2=﹣6;(2)x2﹣4x﹣2=0,∵a=1,b=﹣4,c=﹣2,∴Δ=b2﹣4ac=(﹣4)2﹣4×1×(﹣2)=24>0,∴x==2±,即x1=2+,x2=2﹣.【点评】本题考查的是一元二次方程的解法,掌握直接开平方法、公式法解一元二次方程的一般步骤是解题的关键.7.(1)(x﹣1)2=2(x﹣1)(2)2x2﹣5x﹣2=0【分析】(1)根据一元二次方程的解法即可求出答案.(2)根据一元二次方程的解法即可求出答案.【解答】解:(1)∵(x﹣1)2=2(x﹣1),∴(x﹣1)2﹣2(x﹣1)=0,∴(x﹣1)(x﹣1﹣2)=0,∴x﹣1=0或x﹣1﹣2=0,∴x1=1,x2=3.(2)∵2x2﹣5x﹣2=0,∴a=2,b=﹣5,c=﹣2,∴△=25﹣4×2×(﹣2)=41>0,∴x=,∴x1=,x2=.【点评】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.8.解方程(1)x2﹣4x﹣4=0(2)2(x+5)2=x(x+5)【分析】(1)根据配方法即可解方程;(2)根据因式分解法解方程即可.【解答】解:(1)x2﹣4x+4=8(x﹣2)2=8x﹣2=∴x1=2+2,x2=2﹣2;(2)2(x+5)2﹣x(x+5)=0(x+5)(2x+10﹣x)=0x+5=0或x+10=0∴x1=﹣5,x2=﹣10.【点评】本题考查了因式分解法和配方法解一元二次方程,解决本题的关键是掌握因式分解法和配方法.9.解方程:(1)x2﹣6x﹣7=0(2)(x+2)(x+3)=1【分析】(1)利用因式分解法解方程;(2)先把方程化为一般式,然后利用求根公式法解方程.【解答】解:(1)(x﹣7)(x+1)=0,x﹣7=0或x+1=0,所以x1=7,x2=﹣1;(2)x2+5x+5=0,△=52﹣4×5=5,x=,所以x1=,x2=.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了配方法.10.解下列方程:(1)3x2﹣2x﹣1=0(2)(x﹣1)2﹣16=0【分析】根据一元二次方程的解法即可求出答案.【解答】解:(1)∵3x2﹣2x﹣1=0,∴(x﹣1)(3x+1)=0,∴x=1或x=;(2)∵(x﹣1)2﹣16=0,∴(x﹣1)2=16,∴x﹣1=±4,∴x=5或x=﹣3【点评】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.11.解方程:(1)2x2﹣16=0;(2)2x2﹣3x﹣1=0.【分析】(1)根据直接开方法即可求出答案;(2)根据公式法即可求出答案.【解答】解:(1)∵2x2﹣16=0,∴x2=8,∴x=±2,∴x1=﹣2,x2=2.(2)∵2x2﹣3x﹣1=0,∴a=2,b=﹣3,c=﹣1,∴△=9﹣4×2×(﹣1)=17>0,∴x=,∴x1=,x2=【点评】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.12.解方程(1)(2x+3)2﹣81=0;(2)y2﹣7y+6=0.【分析】(1)先变形为(2x+3)2=81,然后利用直接开平方法解方程;(2)利用因式分解法解方程.【解答】解:(1)(2x+3)2=81,2x+3=±9,所以x1=3,x2=﹣6;(2)(y﹣1)(y﹣6)=0,y﹣1=0或y﹣6=0,所以y1=1,y2=6.【点评】本题考查了解一元二次方程﹣因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了直接开平方法解一元二次方程.13.用合适的方法解下列方程.(1)x2﹣x﹣1=0(2)2(x﹣1)2=1﹣x.【分析】(1)直接利用公式法解方程得出答案;(2)直接利用提取公因式法分解因式进而解方程得出答案.【解答】解:(1)x2﹣x﹣1=0Δ=b2﹣4ac=1+4=5>0,则x=,故x1=,x2=;(2)2(x﹣1)2=1﹣x2(1﹣x)2=1﹣x,则2(1﹣x)2﹣(1﹣x)=0,故(1﹣x)[2(1﹣x)﹣1]=0,解得:x1=1,x2=.【点评】此题主要考查了公式法以及因式分解法解方程,熟练掌握解方程的方法是解题关键.14.解方程:2x2+4x﹣3=0.【分析】先计算判别式的值,然后根据求根公式解方程.【解答】解:△=42﹣4×2×(﹣3)=40>0,x==,所以x1=,x2=.【点评】本题考查了解一元二次方程﹣公式法:用求根公式解一元二次方程的方法是公式法.15.解方程:(1)x2+10x+9=0(2)x2﹣x﹣=0(3)3x2+6x﹣4=0(4)4x2﹣6x﹣3=0(5)x2+4x﹣9=2x﹣11(6)x(x+4)=8x+12.【分析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)求出b2﹣4ac的值,代入公式求出即可;(3)求出b2﹣4ac的值,代入公式求出即可;(4)求出b2﹣4ac的值,代入公式求出即可;(5)求出b2﹣4ac的值,即可得出答案;(6)整理后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(1)x2+10x+9=0,(x+1)(x+9)=0,x+1=0,x+9=0,x1=﹣1,x2=﹣9;(2)x2﹣x﹣=0,b2﹣4ac=(﹣1)2﹣4×1×(﹣)=8,x=,x1=,x2=;(3)3x2+6x﹣4=0,b2﹣4ac=62﹣4×3×(﹣4)=84,x=,x1=,x2=;(4)4x2﹣6x﹣3=0,b2﹣4ac=(﹣6)2﹣4×4×(﹣3)=84,x=,x1=,x2=;(5)x2+4x﹣9=2x﹣11,x2+2x+2=0,b2﹣4ac=22﹣4×1×2<0,此方程无解;(6)x(x+4)=8x+12,整理得:x2﹣4x﹣12=0,(x﹣6)(x+2)=0,x﹣6=0,x+2=0,x1=6,x2=﹣2.【点评】本题考查了解一元二次方程的应用,能选择适当的方法解一元二次方程是解此题的关键,难度适中.。
一元二次方程的解法练习题(带答案
2. 如果关于 的方程
是一元二次方程,那么 的值为
.
【答案】
【解析】 ∵方程
∴
且
解得
.
故答案填 .
是一元二次方程, ,
【标注】【知识点】由一元二次方程定义求参数的值
3. 已知 A.
是一元二次方程 B.
的解,则 C.
的值为( ). D.
【答案】 C 【解析】 将
代入原方程,得
,∴
.
1
【标注】【知识点】利用根求代数式的值
6. 用直接开平方法解方程.
(1)
.
(2)
.
(3)
.
2
【答案】( 1 )
,
.
(2)
,
.
( 3 ) 当 时,
,
;
当 时,
;
当 时,方程无实数根.
【解析】( 1 ) 方程两边同时除以 ,得
方程两边同时开方,得
移项、两边同时除以 ,得
( 2 ) 方程两边直接开方得:
,或
∴
,或
,
解得:
,
.
( 3 ) 当 时,
,
当 时,
;
当 时,方程无实数根.
,
,
,
.
,
;
【标注】【知识点】直接开平方法求一元二次方程的根 【能力】运算能力
7. 用配方法解方程:
(1)
.
(2)
.
(3)
.
【答案】( 1 ) (2) (3)
,
.
,
.
,
.
【解析】( 1 ) ∴
(2) ∴
(3)
,
,
.
,
,
(完整版)初中数学用因式分解法解一元二次方程及答案
初中数学用因式分解法解一元二次方程一.选择题(共7小题)1.(2013秋?广州校级期中)用因式分解法解一元二次方程x (x- 1) -2 (1-x) =0,正确的步骤是()A .(x+1 )(x+2) =0 B. (x+1 )(x-2) =0C. (x-1)(x- 2)=0D. (x-1)(x+2)=02.(2012春?萧山区校级期中)解一元二次方程2x2+5x=0的最佳解法是()A.因式分解法B.开平方法C.配方法D.公式法3,解一元二次方程(y+2) 2-2 (y+2) - 3=0时,最简单的方法是()A.直接开平方法B.因式分解法C.配方法D.公式法4.(2015?东西湖区校级模拟)一元二次方A. 0B. 25.(2014?平顶山二模)一元二次方程一A . 3 B. - 36.(2011春?招远市期中)一元二次方程A. c4B. cv0 W x2 - 2x=0 的解是()C. 0, - 2D. 0, 2x2=3x的解是()C. 3, 0 D, - 3, 0x2+c=0实数解的条件是()C. c> 0D. c用7.(2011?北京模^若x= - 1是一元二次方程x2- ax=0的一个解,则a的值()A . - 1 B. 1 C. 0 D. 土二.填空题(共3小题)8.(2012秋?开县校级月考)一元二次方程3x2 -4x-2=0的解是.9.(2012?铜仁地区)一元二次方程x2-2x-3=0的解是.10.(2014秋?禹州市期中)一元二次方程(4-2x) 2—36=0的解是三.解答题(共10小题)11.(2006秋?阜宁县校级月考)用指定的方法解下列一元二次方程:(1)2x2- 4x+1=0 (配方法);(2)3x (x-1) =2-2x (因式分解法);(3)x2-x-3=0 (公式法).12.用因式分解法解下列关于x的一元二次方程.11) x2+x - k2x=0(2) x2-2mx+m 2-n2=0 .13. (2008?温州)(1)计算:曲-(b-1)(2)我们已经学习了一元二次方程的四种解法:因式分解法,开平方法,配方法和公式法.请从以下一元二次方程中任选一个,并选择你认为适当的方法解这个方程.① x2—3x+1=0;②(x-1) 2=3;③ x2— 3x=0;④ x2-2x=4.14.用因式分解法解下列一元二次方程:(1)5x2=\/2x(2) 4 (2x+3) - ( 2x+3) 2=0(3)(x-2) 2= (2x+3) 2(4)一(x+1 ) 2=A (x- 1) 2.4 g15.因式分解法解方程:3x2-12x=-12.16.用因式分解法解方程:x2-9x+18=0 .17.用因式分解法解方程:12x2+x-6=0.18. (2013秋?黄陂区校级月考)用因式分解法解方程: 3 (x-5)2=2 (5-x)19. (2013秋?富顺县校级期中)用因式分解法解方程(x+3)2=5 (x+3)(3t-1 ) 2t C21-3) 20.因式分解法解一元二次方程. +1 —初中数学用因式分解法解一元二次方程参考答案与试题解析一.选择题(共7 小题)1.(2013秋?广州校级期中)用因式分解法解一元二次方程x (x- 1) -2 (1-x) =0,正确的步骤是( )A. (x+1 ) (x+2) =0B. (x+1 ) (x-2) =0C. (x-1)(x- 2)=0D. (x-1)(x+2)=0考点:解一元二次方程-因式分解法.专题:计算题.分析:将方程左边第二项提取-1变形后,提取公因式化为积的形式,即可得到结果.解答:解:方程x (x — 1) — 2 (1 — x) =0,变形得:x (x-1) +2 (x- 1) =0,分解因式得:(x- 1) (x+2) =0, 故选D点评:此题考查了解一元二次方程-因式分解法,熟练掌握此解法是解本题的关键.2.( 2012 春?萧山区校级期中)解一元二次方程2x2+5x=0 的最佳解法是( )A.因式分解法B.开平方法C.配方法D.公式法考点:解一元二次方程-因式分解法.专题:计算题.分析:方程左边缺少常数项,右边为0,左边可以提公因式x,运用因式分解法解方程.解答:解:方程2x2+5x=0左边可提公因式x,分解为两个一次因式的积,而右边为0,运用因式分解法.故选A.点评:本题考查了解一元二次方程的解法的运用.解方程时,要根据方程左右两边的特点,合理地选择解法,可使运算简便.3,解一元二次方程(y+2) 2-2 (y+2) - 3=0时,最简单的方法是( )A.直接开平方法B.因式分解法C.配方法D.公式法考点:解一元二次方程-因式分解法.分析:此题考查了数学思想中白^整体思想,把( y+2)看做一个整体,设(y+2)为x,则原方程可变为x2-2x-3=0 ,可以发现采用因式分解法最简单.解答:解:设( y+2) =x原方程可变为x2 - 2x - 3=0,(x - 3) (x+1 ) =0 采用因式分解法最简单.故选B点评:此题考查了数学思想中的整体思想,也就是换元思想,解题的关键是要充分理解一元二次方程各种解法的应用条件.4.(2015?东西湖区校级模拟)一元二次方程x2-2x=0的解是()A . 0 B. 2 C. 0, - 2 D. 0, 2考点:解一元二次方程-因式分解法.分析:先提公因式x,然后根据两式相乘值为0,这两式中至少有一式值为0 .”进行求解. 解答:解:原方程化为:x(X-2) =0,解得x i=0, x2=2.故选D.点评:本题考查了解一元二次方程的方法,当把方程通过移项把等式的右边化为0 后方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0 的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.5.(2014?平顶山二模)一元二次方程- x2=3x的解是()A. 3B. -3C. 3, 0 D, - 3, 0考点:解一元二次方程-因式分解法.专题:计算题.分析:方程移项后,右边化为0,左边化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0 转化为两个一元一次方程来求解.解答:解:方程变形得:x2+3x=0,即x (x+3) =0,解得:x=0或x= - 3,故选D点评:此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键.6.(2011 春?招远市期中)一元二次方程x2+c=0 实数解的条件是()A. c 码B. cv 0C. c> 0D. c 不考点:根的判别式.专题:计算题.分析:由一元二次方程有实数根,得到根的判别式大于等于0,列出关于c的不等式,求出不等式的解集即可得到 c 的范围.解答:解:: 一元二次方程x2+c=0有实数解,2△ =b - 4ac= - 4c刃,解得:c旬.故选A点评:此题考查了一元二次方程根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式等于0,方程有两个相等的实数根;根的判别式小于0,方程没有实数根.7.(2011?北京模^若x= - 1是一元二次方程x2- ax=0的一个解,则a的值()A.TB. 1C. 0D. 土考点:一元二次方程的解.分析:由方程的解的定义,将 x=- 1代入方程,即可求得 a 的值解答:解:- 1是关于x 的方程:x 2-ax=0的一个解,,1+a=0,解得a= - 1,故选A.点评:本题主要考查了方程的解的定义,把求未知系数的问题转化为方程求解的问题. 二.填空题(共3小题)8. (2012秋?开县校级月考)一元二次方程考点:解一元二次方程-公式法.分析:利用公式法解此一元二次方程的知识,即可求得答案. 解答:解:--- a=3, b=—4, c= - 2,△ =b 2-4ac=(- 4) 2-4X3X ( -2) =40,.|4±y40j2±Vi0x=2a2X3 3故答案为:士屈. 3点评:此题考查了公式法解一元二次方程的知识.此题难度不大,注意熟记公式是关键.9. ( 2012?铜仁地区)一元二次方程 x2-2x - 3=0的解是 x 』=3. xg= - 1考点:解一元二次方程-因式分解法. 专题:计算题;压轴题.分析:根据方程的解x 1x 2=-3,x 1+x 2=2可将方程进行分解,得出两式相乘的形式,再根据 两 式相乘值为0,这两式中至少有一式值为 0”来解题.解答:解:原方程可化为:(x-3) (x+1) =0,x — 3=0 或 x+1=0 , x 1=3, x 2= — 1 .点评:本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方 法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.本题运用的是因 式分解法.10. (2014秋?禹州市期中)一元二次方程( 4-2x ) 2 — 36=0的解是 x j = — 1 : x 2=5 .考点:解一元二次方程-直接开平方法.分析:先移项,写成(x+a ) 2=b 的形式,然后利用数的开方解答. 解答:解:移项得,(4- 2x ) 2=36,开方得,4 - 2x= =6, 解得 x 1= - 1, x 2=5. 故答案为x 1= - 1, x 2=5.点评:本题考查了解一元二次方程-直接开平方法,注意:(1)用直接开方法求一元二次方程的解的类型有: x 2=a (a 涮);ax 2=b (a, b 同号且a^0); (x+a ) 2=b (b 用);a (x+b ) 2=c (a, c 同号且a 加).法则:要把方程化为 左3x2 - 4x- 2=0 的解是 2 土 力°一3平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解(2)运用整体思想,会把被开方数看成整体.(3)用直接开方法求一元二次方程的解,要仔细观察方程的特点.三.解答题(共10小题)11. (2006秋?阜宁县校级月考)用指定的方法解下列一元二次方程:(1) 2x 2-4x+1=0 (配方法);(2) 3x (x-1) =2-2x (因式分解法);(3) x 2-x-3=0 (公式法).考点:解一元二次方程-配方法;解一元二次方程-公式法;解一元二次方程 -因式分解法. 专题:计算题.分析:(1)用配方法,用配方法解方程,首先二次项系数化为1,移项,把常数项移到等号的右边,然后在方程的左右两边同时加上一次项系数的一半,即可使左边是完全平方 式,右边是常数,直接开方即可求解;(2)用因式分解法,用提公因式法解方程,方程左边可以提取公因式x-1,即可分解,转化为两个式子的积是0的形式,从而转化为两个一元一次方程求解;(3)利用公式法即可求解.解答:解:(1) 2x2 - 4x+1=0x2- 2x+—=0 2 (x T) 2=_!.…也■ - x1=1+——, x2=1 ---;2 2(2) 3x ( x T ) =2 - 2x 3x (x - 1) +2 (x- 1) =0 (x- 1) (3x+2) =0-2• - x 1=1 , x 2=—;J 本题考查了解一元二次方程的方法,因式分解法是解一元二次方程的一种简便方法, 要会灵活运用.当化简后不能用分解因式的方法即可考虑求根公式法,此法适用于任 何一元二次方程.12.用因式分解法解下列关于 x 的一元二次方程.(1) x 2+x - k 2x=0(2) x 2-2mx+m 2-n 2=0 .考点:解一元二次方程-因式分解法.专题:计算题.x=(3) x 2-x- 3=01 ±、氐 x 1 = 2----- ,x2= --- --2 2 点评:分析:两方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.解答:解:(1)分解因式得:x (x+1 - k2) =0,解得:X1=0, x2=k2_ 1;(2)分解因式得:(x-m+n)(x-m-n) =0,解得:x i=m-n, x2=m+n .点评:此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键.13. (2008?温州)(1)计算:展-(例-1)口+|-1|;(2)我们已经学习了一元二次方程的四种解法:因式分解法,开平方法,配方法和公式法.请从以下一元二次方程中任选一个,并选择你认为适当的方法解这个方程.① x2—3x+1=0;②(x-1)2=3;③ x2— 3x=0 ;④ x2-2x=4.考点:实数的运算;解一元二次方程 -直接开平方法;解一元二次方程 -配方法;解一元二次方程-公式法;解一元二次方程-因式分解法.专题:计算题.分析:(1)本题涉及零指数哥还有绝对值,解答时要注意它们的性质.(2)①x2- 3x+1=0采用公式法;②(x-1) 2=3采用直接开平方法;③x2- 3x=0采用因式分解法;④x2- 2x=4采用配方法.解答:解:(1)场-[炳-1)(2)① x2- 3x+1=0 ,刎/日抖而Vs解得町二丁厂,¥.2二一^;②(xT) 2=3,x - 1=V^或x -1= - Vs解得x1 = 1 + \!, 3,x2=1 h/s③ x2-3x=0,x (x - 3) =0解得x1=0, x2=3;④ x2-2x=4,即x2 - 2x - 4=02- 2x=4x即x2- 2x+1=5(x T) 2=5解得x1=l-V^0二计听.点评:本题考查实数的综合运算能力,解决此类题目的关键熟记零指数哥和绝对值的运 算.解一元二次方程时要注意选择适宜的解题方法.14.用因式分解法解下列一元二次方程: (1) 5x 2=V2x(2) 4 (2x+3) - ( 2x+3) 2=0 (3) (x- 2) 2= (2x+3) 2(4)一(x+1 ) 2=1 (x- 1) 2.4 9考点:解一元二次方程-因式分解法. 分析:(1)移项后提公因式即可;(1) 移项后因式分解即可; (2) 移项后因式分解即可; (3) 直接开平方即可解答.解答:解:(1) 5x 2=/2x ,移项得 5x 2 - J^x=0 ,提公因式得x (5x-=0, 解得 x 1=0 x 2=Y2.5(4) 4 (2x+3) - ( 2x+3) 2=0,提公因式得,(2x+3) [4- (2x+3) ]=0, 解得,2x+3=0 , 1 - 2x=0 ,(5) (x — 2) 2= (2x+3) 2,移项得,(x-2) 2- ( 2x+3) 2=0,因式分解得,(x- 2 - 2x - 3) (x-2+2x+3) =0 , 则—x — 5=0, 3x+1=0 , 解得,x 1= - 5, x 2=- ';(6) — (x+1) 2」(x- 1) 2,4 9直接开平方得 J (x+1) =W(x-1), £ J解得x 1= - 5,点评:本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方 法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.15.因式分解法解方程: 3x 2-12x=-12.则[(x+1) 2=4 (xT),(x+1)考点:解一元二次方程-因式分解法.分析:先移项,再两边都除以3,分解因式,即可得出两个一元一次方程,求出方程的解即可. 解答:解:3x2- 12x= -12,移项得:3x2- 12x+12=0 ,2- 4x+4=0 ,x(x-2) (x-2) =0,x-2=0, x-2=0, x i=x2=2.点评:本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元- 次方程,题目比较好,难度适中.16.用因式分解法解方程:x2-9x+18=0 .考点:解一元二次方程-因式分解法.分析:分解因式,即可得出两个一元一次方程,求出方程的解即可.解答:解:x2 - 9x+18=0 ,(x - 3) (x - 6) =0,x — 3=0 , x — 6=0, x1=3, x2=6.点评:本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元- 次方程.17.用因式分解法解方程:12x2+x-6=0.考点:解一元二次方程-因式分解法.分析:分解因式,即得出两个一元一次方程,求出方程的解即可.解答:解:分解因式得:(3x-2) (4x+3) =0,3x - 2=0, 4x+3=0 ,点评:本题考查了解一元二次方程的应用, 解此题的关键是能把一元二次方程转化成一元次方程.18.(2013秋?黄陂区校级月考)用因式分解法解方程: 3 (x-5) 2=2 (5-x)考点:解一元二次方程-因式分解法.专题:因式分解.分析:先移项,然后提公因式,这样转化为两个一元一次方程,解一元一次方程即可.解答:解:移项,得3 (x-5) 2+2 (x-5) =0,(x-5) (3x-13) =0,•• x - 5=0 或3x - 13=0 ,所以x1=5, x2=-^y.第11页(共11页)点评:本题考查了利用因式分解法把一元二次方程转化为两个一元一次方程求解的能力.要熟练掌握因式分解的方法. 19. (2013秋?富顺县校级期中)用因式分解法解方程(x+3) 2=5 (x+3)考点:实数范围内分解因式.分析:利用因式分解法进行解方程得出即可.解答:解:(x+3) 2-5 (x+3) =0, (x+3) [ (x+3) — 5]=0,(x+3) =0 或(x+3) - 5=0,解得:x i = - 3, x 2=2.点评:此题主要考查了因式分解法解一元二次方程,正确分解因式是解题关键.考点:解一元二次方程-因式分解法.分析:首先移项,然后利用平方差公式使方程的左边进行因式分解,再进行去分母,最后解 两个一元一次方程即可."解:「『—况”、t (2L3) 5 52 .(t+3)2 (3fl ) 2 2?-3t-2 .. ------- = , 5 5 2(t+3- (t+3+3t-l) (2t+lJ (t-2)-4 (t-2) C2t11)(2t+D (t-2? - 8 (t-2) (2t+1) =5 (t —2) (2t+1), 13 (t —2) (2t+1) =0,. . t — 2=0 或 2t+1=0,t 1=2 , t 2=一点评:本题主要考查了因式分解法解一元二次方程的知识,解答本题的关键是熟练掌握平方差公式的应用,此题难度不大. 20.因式分解法解一元二次方程.32+1—(孕-1)二9” 5 52。
因式分解法解一元二次方程(含答案)
因式分解法解一元二次方程一.解答题(共11小题)1.用适当的方法解下列一元二次方程:(1)x2﹣2x﹣15=0;(2)(x+4)2﹣5(x+4)=0.2.解方程:(1)(x﹣3)2﹣16=0;(2)x2+2x﹣3=0.3.解下列方程:(1)x2﹣4x=0;(2)x(x﹣2)=x﹣2.4.解方程:(1)(x﹣1)2﹣4=0;(2)(x﹣2)2=3x﹣6.5.解一元二次方程:(1)(x﹣2)2=9;(2)x2+2x﹣3=0.6.解下列方程:(1)x2﹣3x=0(2)x2+4x﹣5=07.请用适当的方法解下列方程:(1)4x﹣2=2x2;(2)(x+1)2+2=3(x+1).8.用适当的方法解下列方程:(1)2x2+5x=7.(2)x2+8x+15=0.9.解方程:(1)x2﹣2x﹣15=0;(2)(x+4)2﹣5(x+4)=0.10.用适当的方法解方程:(1)x2=7x;(2)x2+4x﹣5=0.11.阅读下面例题的解题过程,体会、理解其方法,并借鉴该例题的解法解方程.例:解方程:x2﹣|x|﹣2=0解:当x≥0时,原方程化为x2﹣x﹣2=0.解得:x1=2,x2=﹣1∵x≥0,故x=﹣1舍去,∴x=2是原方程的解;当x<0时,原方程化为x2+x﹣2=0.解得:x1=﹣2,x2=1∵x<0,故x=1舍去,∴x=﹣2是原方程的解;综上所述,原方程的解为x1=2,x2=﹣2.解方程x2+2|x+2|﹣4=0.参考答案与试题解析一.解答题(共11小题)1.用适当的方法解下列一元二次方程:(1)x2﹣2x﹣15=0;(2)(x+4)2﹣5(x+4)=0.【分析】(1)利用十字相乘法把方程的左边变形,进而解出方程;(2)利用提公因式法把方程的左边变形,进而解出方程.【解答】(1)∵x2﹣2x﹣15=0,∴(x﹣5)(x+3)=0,∴x﹣5=0或x+3=0,∴x1=5,x2=﹣3;(2)∵(x+4)2﹣5(x+4)=0,∴(x+4)(x+4﹣5)=0,∴x+4=0或x﹣1=0,∴x1=﹣4,x2=1.【点评】本题考查了解一元二次方程,掌握因式分解法解一元二次方程的一般步骤是解题的关键.2.解方程:(1)(x﹣3)2﹣16=0;(2)x2+2x﹣3=0.【分析】(1)先移项得到(x﹣3)2=16,然后利用直接开平方法解方程;(2)利用因式分解法解方程.【解答】解:(1)(x﹣3)2=16,x﹣3=±4,所以x1=7,x2=﹣1;(2)x2+2x﹣3=0,(x+3)(x﹣1)=0,x+3=0或x﹣1=0,所以x1=﹣3,x2=1.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了直接开平方法.3.解下列方程:(1)x2﹣4x=0;(2)x(x﹣2)=x﹣2.【分析】(1)将等号左边提公因式,用因式分解法即可求出方程的解;(2)移项将等号右边化为0,左边因式分解,再用因式分解法求出方程的解.【解答】解:(1)∵x2﹣4x=0,∴(x﹣4)=0,∴x=0或x﹣4=0,∴x1=0,x2=4;(2)∵x(x﹣2)=x﹣2,∴(x﹣2)(x﹣1)=0,∴x﹣2=0或x﹣1=0,∴x1=2,x2=1.【点评】本题考查用因式分解法解一元二次方程,解题的关键是掌握因式分解法解一元二次方程的一般步骤.4.解方程:(1)(x﹣1)2﹣4=0;(2)(x﹣2)2=3x﹣6.【分析】(1)将方程变形后用直接开平方法可求出方程的解;(2)将方程变形,右边化为0,左边分解因式,即可把原方程化为两个一元一次方程,从而求出原方程的解.【解答】解:(1)(x﹣1)2=4,∴x﹣1=2或x﹣1=﹣2,∴x1=3,x2=﹣1;(2)(x﹣2)2﹣3(x﹣2)=0,∴(x﹣2)(x﹣2﹣3)=0,∴x﹣2=0或x﹣5=0,∴x1=2,x2=5.【点评】本题考查解一元二次方程,解题的关键是掌握直接开平方法和因式分解法解一元二次方程.5.解一元二次方程:(1)(x﹣2)2=9;(2)x2+2x﹣3=0.【分析】(1)利用直接开平方法求解即可;(2)利用因式分解法求解即可.【解答】(1)解:(x﹣2)2=9,x﹣2=±3,x﹣2=3或x﹣2=﹣3,∴x1=5,x2=﹣1.(2)解:x2+2x﹣3=0,∴(x﹣1)(x+3)=0,则x﹣1=0或x+3=0,∴x1=1,x2=﹣3.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.6.解下列方程:(1)x2﹣3x=0(2)x2+4x﹣5=0【分析】(1)利用因式分解法把原方程化为x=0或x﹣3=0,然后解两个一次方程即可;(2)利用因式分解法把原方程化为x+5=0或x﹣1=0,然后解两个一次方程即可.【解答】解:(1)x(x﹣3)=0,x=0或x﹣3=0,所以x1=0,x2=3;(2)(x+5)(x﹣1)=0,x+5=0或x﹣1=0,所以x1=﹣5,x2=1..【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.7.请用适当的方法解下列方程:(1)4x﹣2=2x2;(2)(x+1)2+2=3(x+1).【分析】(1)先化成一般式,再因式分解即可;(2)把x+1看成一个整体,利用因式分解法解即可.【解答】解:(1)原方程化为x2﹣2x+1=0;∴(x﹣1)2=0,∴x﹣1=0或x﹣1=0,∴x1=x2=1;(2)移项得(x+1)2﹣3(x+1)+2=0,因式分解得(x+1﹣1)(x+1﹣2)=0,∴x+1﹣1=0或x+1﹣2=0,∴x1=0,x2=1.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程右边变形为0,然后把方程左边进行因式分解,这样把一元二次方程转化为两个一元一次方程,再解一次方程可得到一元二次方程的解.也考查了直接开平方法解一元二次方程.8.用适当的方法解下列方程:(1)2x2+5x=7.(2)x2+8x+15=0.【分析】(1)利用十字相乘法因式分解,解出x的值即可;(2)利用十字相乘法因式分解,解出x的值即可.【解答】解:(1)2x2+5x=7,因式分解得,(2x+7)(x﹣1)=0,所以x1=﹣,x2=1;(2)x2+8x+15=0,因式分解得(x+3)(x+5)=0,所以x1=﹣3,x2=﹣5.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).9.解方程:(1)x2﹣2x﹣15=0;(2)(x+4)2﹣5(x+4)=0.【分析】(1)利用解一元二次方程﹣因式分解法,进行计算即可解答;(2)利用解一元二次方程﹣因式分解法,进行计算即可解答.【解答】解:(1)x2﹣2x﹣15=0,(x﹣5)(x+3)=0,x﹣5=0或x+3=0,x1=5,x2=﹣3;(2)(x+4)2﹣5(x+4)=0,(x+4)(x+4﹣5)=0,(x+4)(x﹣1)=0,x+4=0或x﹣1=0,x1=﹣4,x2=1.【点评】本题考查了解一元二次方程﹣因式分解法,熟练掌握解一元二次方程的方法是解题的关键.10.用适当的方法解方程:(1)x2=7x;(2)x2+4x﹣5=0.【分析】(1)先移项,再利用提公因式法将方程的左边因式分解,继而得出两个关于x 的一元一次方程,再进一步求解即可;(2)利用十字相乘法将方程的左边因式分解,继而得出两个关于x的一元一次方程,再进一步求解即可.【解答】解:(1)∵x2=7x,∴x2﹣7x=0,∴x(x﹣7)=0,则x=0或x﹣7=0,解得x1=0,x2=7;(2)∵x2+4x﹣5=0,∴(x+5)(x﹣1)=0,则x+5=0或x﹣1=0,解得x1=﹣5,x2=1.【点评】本题主要考查解一元二次方程,解一元二次方程常用的方法有:直接开平方法、因式分解法、公式法及配方法,解题的关键是根据方程的特点选择简便的方法.11.阅读下面例题的解题过程,体会、理解其方法,并借鉴该例题的解法解方程.例:解方程:x2﹣|x|﹣2=0解:当x≥0时,原方程化为x2﹣x﹣2=0.解得:x1=2,x2=﹣1∵x≥0,故x=﹣1舍去,∴x=2是原方程的解;当x<0时,原方程化为x2+x﹣2=0.解得:x1=﹣2,x2=1∵x<0,故x=1舍去,∴x=﹣2是原方程的解;综上所述,原方程的解为x1=2,x2=﹣2.解方程x2+2|x+2|﹣4=0.【分析】分x+2大于等于0与小于0两种情况,利用绝对值的代数意义化简所求方程,求出解即可.【解答】解:当x+2≥0,即x≥﹣2时,方程变形得:x2+2x=0,即x(x+2)=0,解得:x1=0,x2=﹣2;当x+2<0,即x<﹣2时,方程变形得:x2﹣2x﹣8=0,即(x﹣4)(x+2)=0,解得:x1=4(不合题意,舍去),x2=﹣2(不合题意,舍去),综上,原方程的解为x=0或x=﹣2.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.。
因式分解法解一元二次方程练习题及答案
因式分解法解一元二次方程练习题1.选择题(1)方程(x -16)(x +8)=0的根是( )A .x 1=-16,x 2=8B .x 1=16,x 2=-8C .x 1=16,x 2=8D .x 1=-16,x 2=-8(2)下列方程4x 2-3x -1=0,5x 2-7x +2=0,13x 2-15x +2=0中,有一个公共解是( )A .x =21B .x =2C .x =1D .x =-1 (3)方程5x (x +3)=3(x +3)解为( )A .x 1=53,x 2=3 B .x =53 C .x 1=-53,x 2=-3 D .x 1=53,x 2=-3(4)方程(y -5)(y +2)=1的根为( )A .y 1=5,y 2=-2B .y =5C .y =-2D .以上答案都不对(5)方程(x -1)2-4(x +2)2=0的根为( )A .x 1=1,x 2=-5B .x 1=-1,x 2=-5C .x 1=1,x 2=5D .x 1=-1,x 2=5(6)一元二次方程x 2+5x =0的较大的一个根设为m ,x 2-3x +2=0较小的根设为n ,则m +n 的值为( )A .1B .2C .-4D .4(7)已知三角形两边长为4和7,第三边的长是方程x 2-16x +55=0的一个根,则第三边长是( )A .5B .5或11C .6D .112.填空题(1)方程t (t +3)=28的解为_______.(2)方程(2x +1)2+3(2x +1)=0的解为__________.(3)方程(2y +1)2+3(2y +1)+2=0的解为__________.(4)关于x 的方程x 2+(m +n )x +mn =0的解为__________.(5)方程x (x -5)=5 -x 的解为__________.3.用因式分解法解下列方程:(1)x 2+12x =0; (2)4x 2-1=0; (3) x 2=7x ;(4)x 2-4x -21=0; (5)(x -1)(x +3)=12; (6)3x 2+2x -1=0;(7)10x 2-x -3=0; (8)(x -1)2-4(x -1)-21=0.4.用适当方法解下列方程:(1)x2-4x+3=0;(2)(x-2)2=256;(3)x2-3x+1=0;(4)x2-2x-3=0;(5)(2t+3)2=3(2t+3);(6)(3-y)2+y2=9;(7)2x2-8x=7;(8)(x+5)2-2(x+5)-8=0.5.解关于x的方程:(1)x2-4ax+3a2=1-2a;(2)x2+5x+k2=2kx+5k+6;(3)x2-2mx-8m2=0;(4)x2+(2m+1)x+m2+m=0.6.已知(x2+y2)(x2-1+y2)-12=0.求x2+y2的值.7.解方程:x(x+12)=864.8.已知x2+3x+5的值为9,试求3x2+9x-2的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解一元二次方程(因式分解法) 习题精选(一)
(时间60分钟,满分100分)
(一)基础测试:(每题3分,共18分)
1.x x 52-因式分解结果为 ,)3(5)3(2---x x x 因式分解结果为 . 2.96202-+x x 因式分解结果为 ,096202=-+x x 的根
为 .
3.一元二次方程(1)x x x -=的解是 .
4.小华在解一元二次方程x 2-4x=0时.只得出一个根是x=4,则被他漏掉的一个根是x=____.
5.若关于x 的方程250x x k -+=的一个根是0,则另一个根是 .
6.经计算整式1+x 与4-x 的积为432--x x ,则0432=--x x 的所有根为( )
A .4,121-=-=x x
B .4,121=-=x x
C .4,121==x x
D .4,121-==x x
(二)能力测试:(7,8,9,10题每题3分,11题每个方程7分,共47分)
7.三角形一边长为10,另两边长是方程214480x x -+=的两实根,则这是一个
三角形.
8.三角形的每条边的长都是方程2680x x -+=的根,则三角形的周长是 . 9.关于x 的一元二次方程(m -1)x 2+x +m 2-1=0有一根为0,则m 的值为( ).
A . 1
B . -1
C . 1或-1
D . 1
2
10.将4个数a b c d ,,,排成2行、2列,两边各 加一条竖直线记成a b c d
,定义
a b c d ad bc =-,上述记号就叫做2阶行列式.若1111x x x x +--+ 6=,则x = .
11.用因式分解法解下列方程:
(1)035122=+-x x (2)04)13(2=--x (3)
0)32(2)32(32=---x x (4)22)52(16)2(9-=+x x (5)
06)3(5)3(2=++-+x x (三)拓展测试:(12,13,14每题5分,15,16每题10分,共35分)
12.若
04)3)((2222=--++b a b a ,则=+22b a .
13.关于x 的一元二次方程052
=+-p x x 的两实根都是整数,则整数p 的取值可以有( )
A .2个
B .4个
C .6个
D .无数个
14.若关于x 的多项式x 2-px -6含有因式x -3,则实数p 的值为( )
A .-5
B .5
C .-1
D .1
15.如果方程062=--bx ax 与方程01522=-+bx ax 有一个公共根是3,求b a ,的
值,并分别求出两个方程的另一个根. 16.如图所示,在长和宽分别是a 、b 的矩形纸片的四个角都剪去一个边长为x 的正方形.
(1)用a ,b ,x 表示纸片剩余部分的面积;
(2)当a =6,b =4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.
参考答案 1.(50),(3)(250)x x x x --- 2.4,24),4)(24(21=-=-+x x x x
3.1,021==x x 4.0 5.5 6.S 7.直角1 8.6或10或12
9.B 10.2±
11.(1)7,521==x x (2)31,1
-==x x
1114,526)4(611,23)3(21====x x x x
1,0)5(21-==x x
12.4 13.D 14.C
15.,1==b a 另一根为-5.
16.(1)a b -4x 2;(2)正方形的边长为。