图形与证明(1)

合集下载

苏科版九年级数学上册第一单元《图形与证明》(1)小结+测试题

苏科版九年级数学上册第一单元《图形与证明》(1)小结+测试题

数学九年级(上)第一章知识点归纳总结1.1 等腰三角形的性质定理:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称“三线合一”)。

等腰三角形的两底角相等(简称“等边对等角”)。

等腰三角形的判定定理:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称“等角对等边”)。

1.2 直角三角形全等的判定定理:斜边和一条直角边对应相等的两个直角三角形全等(简称“HL”)。

角平分线的性质:角平分线上的点到这个角的两边的距离相等。

角平分线的判定:角的内部到角的两边距离相等的点,在这个角的平分线上。

直角三角形中,30°的角所对的直角边是斜边的一半。

1.3 平行四边形的性质与判定:定义:两组对边分别平行的四边形是平行四边形。

定理1:平行四边形的对边相等。

定理2:平行四边形的对角相等。

定理3:平行四边形的对角线互相平分。

判定——从边:1两组对边分别平行的四边形是平行四边形。

2一组对边平行且相等的四边形是平行四边形。

3两组对边分别相等的四边形是平行四边形。

从角:两组对角分别相等的四边形是平行四边形。

对角线:对角线互相平分的四边形是平行四边形。

矩形的性质与判定:定义:有一个角的直角的平行四边形是矩形。

定理1:矩形的4个角都是直角。

定理2:矩形的对角线相等。

定理:直角三角形斜边上的中线等于斜边的一半。

判定:1有三个角是直角的四边形是矩形。

2对角线相等的平行四边形是矩形。

菱形的性质与判定:定义:有一组邻边相等的平行四边形是菱形。

定理1:菱形的4边都相等。

定理2:菱形的对角线相互垂直,并且每一条对角线平分一组对角。

判定:1四条边都相等的四边形是菱形。

2对角线互相垂直的平行四边形是菱形。

正方形的性质与判定:正方形的4个角都是直角,4条边都相等,对角线相等且互相垂直平分,每一条对角线平分一组对角。

正方形即是特殊的矩形,又是特殊的菱形,它具有矩形和菱形的所有性质。

判定:1有一个角是直角的菱形是正方形。

初一数学图形与证明试题答案及解析

初一数学图形与证明试题答案及解析

初一数学图形与证明试题答案及解析1.如图,有一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30°B.25°C.20°D.15°【答案】B【解析】如图:根据题意可得:a∥b,∴∠3=∠1=20°,∵∠ABC=45°,∴∠2=∠ABC-∠3=45°-20°=25°,故选:B.【考点】1.平行线的性质;2.直角三角板的性质.2.(4分)如图所示的长方形或正方形三类卡片各有若干张,请你用这些卡片,拼成一个面积是2a2+3ab+b2长方形(要求:所拼图形中每类卡片都要有,卡片之间不能重叠。

)画出示意图,并计算出它的面积。

【答案】见解析【解析】因为第一类图形面积为ab,第二类图形面积为b2,第三类图形面积为a2,而要拼成的长方形的面积2a2+3ab+b2,所以需要第一B类卡片3张,第二类卡片1张,第三类卡片2张.试题解析:如图:因为第一类图形面积为ab,第二类图形面积为b2,第三类图形面积为a2,所以需要第一B类卡片3张,第二类卡片1张,第三类卡片2张,可以拼成一个长为2a+b,宽为a+b的长方形,所以长方形面积为(2a+b)(a+b)=2a2+3ab+b2.【考点】整式的运算.3.有两根13cm,15cm的木棒,要想以这两根木棒做一个三角形,可以选用第三根木棒的长为()A.2cm B.11cm C.28cm D.30cm【答案】B【解析】因为两边长13cm,15cm,所以第三边x的长满足:15-13<x<15+13,即2<x<28,所以选项A、C、D错误,B正确,故选:B.【考点】三角形的三边关系.4.(9分)如图,已知∠AOB是直角,∠BOC=600, OE平分∠AOC,OF平分∠BOC.(1)求∠EOF的度数;(2)若将条件“∠AOB是直角,∠BOC=600”改为:∠AOB= x0,∠EOF=y0,条件不变.①则请用x的代数式来表示y.②如果∠AOB+∠EOF=1560.则∠EOF是多少度?【答案】(1)45°;m(2)①y=x,②52°.【解析】(1)根据角平分线的定义和角的和差倍分的关系即可求得∠EOF的度数;(2)①把(1)中的数字换成字母即可解得x与y的关系;②根据x+y=156°,y=x即可解得x、y的值.试题解析:(1)∵∠AOB=90°,∠BOC=60°,OE平分∠AOC,OF平分∠BOC.∴∠EOF=∠EOC-∠FOC=∠AOC-∠BOC= (∠AOB+∠BOC)-∠BOC=∠AOB=×=90°=45°.(2)①∵∠AOB=x°,∠EOF=y°,OE平分∠AOC,OF平分∠BOC.∴∠EOF=∠EOC-∠FOC=∠AOC-∠BOC= (∠AOB+∠BOC)-∠BOC=∠AOB.即y=x.②∵∠AOB+∠EOF=156°.则x+y=156°,又∵y=x.代入解得x=104°,y=52°.即∠EOF=52°.【考点】角平分线的性质;角的计算.5.如图,要使图中平面展开图按虚线折叠成正方体后,相对面上的两个数相等,则x-2y=________.【答案】-6.【解析】由题意知:x=2,y=4,所以x-2y=2-8=-6.【考点】正方体的平面展开图.6.如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=128°,∠C=36°,则∠DAE= °.【答案】10.【解析】∵AE是△ABC的角平分线,∴∠EAC=∠BAC=64º,∵∠C=36°,AD⊥BC,∴∠DAC=54º,∴∠DAE=64-54=10º.【考点】角分线和直角三角形两锐角互余的应用.7.如图,AB∥CD,∠CED=900,EF⊥CD,F为垂足,则图中与∠EDF互余的角有().A.4个B.3个C.2个D.1个【答案】B.【解析】因为∠CED=900,所以∠EDF+∠ECD=90°,因为EF⊥CD,所以∠EDF+∠FED=90°,因为AB∥CD,所以∠ECD=∠AEC,所以图中与∠EDF互余的角有∠ECD,∠FED,∠AEC,共3个.故选:B.【考点】互余的定义;平行线的性质;垂直的定义.8.如图所示,∠AOB=∠AOC=90°,∠DOE=90°,OF平分∠AOD,∠AOE=36°.(1)求∠COD的度数;(2)求∠BOF的度数.【答案】(1)144°;(2)63°【解析】(1)先根据互余的关系求出∠COE=54°,然后利用∠COD=∠DOE+∠COE计算即可;(2)先根据互余的关系求出∠AOD=54°,再求出∠BOD和∠DOF,利用角的和差关系即可求出∠BOF.试题解析:(1)∵∠AOC=90°,∴∠COE=90°﹣AOE=90°﹣36°=54°,∴∠COD=∠DOE+∠COE=90°+54°=144°;(2)∵∠DOE=90°,∠AOE=36°,∴∠AOD=90°﹣36°=54°,∵∠AOB=90°,∴∠BOD=90°﹣54°=36°,∵OF平分∠AOD,∴∠DOF=∠AOD=27°,∴∠BOF=36°+27°=63°.【考点】1.余角和补角;2.角平分线的定义.9.如图,线段AD=18cm,线段AC=BD=12cm,E、F分别是线段AB、CD的中点,求线段EF的长.【答案】12cm【解析】先利用线段的和差故选求出BC的长,从而可得(AB+CD)的长,然后根据线段中点的性质,可得AE与AB的关系,FD与CD的关系,再根据线段的和差关系解答即可.试题解析:根据图形可知:AC+BD=AC+(CD+BC)=AC+CD+BC=12+12=24cm,由AD=18cm,得18+BC=24,解得BC=6cm.所以AB+CD=AD﹣BC=18﹣6=12cm.因为E、F分别是线段AB、CD的中点,所以AE= AB,FD= CD.所以AE+FD= AB+ CD=(AB+CD)=×12=6cm,所以EF=AD﹣AE﹣FD=18﹣6=12cm.【考点】两点间的距离.10.如图,把一块含有45°的直角三角板的两个顶点放在直尺的对边上,如果∠1=20°,那么∠2=.【答案】25°.【解析】如图:因为直尺的对边平行,所以∠1的内错角=∠1=20°,所以∠2=45°-20°=25°.【考点】平行线的性质.11.(本题满分12分)如图(1),四边形ABCD中,AD∥BC,点E是线段CD上一点,(1)说明:∠AEB=∠DAE+∠CBE;(2)如图(2),当AE平分∠DAC,∠ABC=∠BAC.①说明:∠ABE+∠AEB=900;②如图(3)若∠ACD的平分线与BA的延长线交于点F,且∠F=600,求∠BCD.【答案】(1)见解析;(2)见解析;(3)∠BCD=600【解析】(1)如图(1),过点E作EF∥BC,交AB于F.根据平行线的性质可证得结论;(2)①如图(2),根据平行线的性质和互为补角,角平分线的性质可证;②根据平行线的性质和角平分线的性质,可求结果.试题解析:解:(1)如图(1),过点E作EF∥BC,交AB于F.∵EF∥BC,AD∥BC∴EF∥AD∥BC∴∠DAE=∠AEF,∠CBE=∠BEF∴∠AEF+∠BEF=∠DAE+∠CBE∵∠AEB=∠AEF+∠BEF∴∠AEB=∠DAE+∠CBE.(2)如图(2)∠ABC+∠BAC+∠ACB=180°∵∠ABC=∠BAC,∠ACB=2∠DAE∴2∠ABC+2∠DAE=180°即∠ABC+∠DAE=90°∠ABC=∠ABE+∠CBE由(1)得∠AEB=∠DAE+∠CBE∴∠ABE+∠AEB=90°.(3)∠ACB=180°-∠ABC-∠BAC=180°-2∠BAC∵∠BAC=∠F+∠ACF∴∠ACB=180°-2(∠F+∠ACF)=180°-2×60°-2∠ACF∵CF平分∠ACD∴∠ACD=2∠ACF即∠ACB=180°-2×60°-∠ACD得∠ACB+∠ACD=60°即∠BCD=60°.【考点】平行线的性质,角平分线的性质,互为补角12.(3分)已知∠AOB=40°,∠CDE的边CD⊥OA于点D,边DE∥OB,那么∠CDE= .【答案】50°或130°.【解析】根据题意,作出草图,如图,DE∥OB,由平行线的性质可得∠AED=∠AOB=40°,又因CD⊥OA,可求得∠1=50°,∠2=130°,∠CDE可能是∠1也可能是∠2,所以∠CDE等于50°或130°.【考点】平行线的性质.13.有如下命题:①负数没有立方根;②同位角相等;③对顶角相等;④如果一个数的立方根是这个数本身,那么这个数是1或0,其中,是假命题的有()A.①②③B.①②④C.②④D.①④【答案】B【解析】因为负数有一个负的立方根,所以①为假命题;因为两直线平行,同位角相等,所以②为假命题;对顶角相等,所以③为真命题;因为如果一个数的立方根是这个数本身,那么这个数是1或0或﹣1,所以④为假命题.故选B.【考点】命题与定理.14.如图,钟表8时30分时,时针与分针所成的锐角的度数为.【答案】75°.【解析】8点30分,时针和分针中间相差2.5个大格,∵钟面12个大格,第相邻两个数字之间的夹角为30°,∴8时30分时,时针与分针的夹角是2.5×30°=75°.【考点】钟面角.15.如图,把弯曲的河道改直,能够缩短航程,这样做根据的道理是.【答案】两点之间线段最短.【解析】由两点之间线段最短可知,把弯曲的河道改直,能够缩短航程,这样做根据的道理:两点之间线段最短.【考点】线段的性质:两点之间线段最短.16.如图,已知AB∥CD,直线EF分别交 AB、CD于点E,F,EG平分∠BEF交CD于点G.如果∠1=70°,那么∠2的度数是()A.70° B.65° C.55° D.22.5°【答案】C【解析】根据平行线的性质可由EG平分∠BEF,得∠BEG=∠GEF,再根据平行线的性质:两直线平行,内错角相等,由AB∥CD,求得∠BEG=∠2,再根据等量代换可求∠2=∠GEF,因此由三角形的内角和定理知∠1=70°,∠1+∠2+∠GEF=180°,可得∠2=55°.故选C.【考点】平行线的性质17.如图,∠AOC=90°,ON是锐角∠COD的角平分线,OM是∠AOD的角平分线,那么,∠MON= °.【答案】45°【解析】根据ON是锐角∠COD的角平分线,OM是∠AOD的角平分线,得出∠AOM=∠MOD,∠CON=∠NOD,又∠AOC=90°即可得出∠AOM=∠MOD=45°+∠COD.进而求出∠MON的度数为45°.【考点】角平分线的定义18.把命题“同角的余角相等”改写成“如果…那么…”的形式.【答案】如果两个角是同一个角的余角,那么这两个角相等.【解析】根据命题的特点,可以改写为:“如果两个角是同一个角的余角,那么这两个角相等”,【考点】命题与定理.19.(7分)如图所示,O是直线AB上一点,∠AOC=∠BOC,OC是∠AOD的平分线.(1)求∠COD的度数.(2)判断OD与AB的位置关系,并说出理由.【答案】(1)45°(2)OD⊥AB.理由见试题解析。

数学中的几何图形与证明

数学中的几何图形与证明

数学中的几何图形与证明数学作为一门精确的科学,几何学是其中的重要分支之一。

几何学研究的是空间和形状,通过几何图形的研究来揭示事物的本质和规律。

在几何学中,图形是我们认识和研究的基本对象,而证明则是几何学的核心方法之一。

本文将探讨数学中的几何图形与证明的关系,以及一些有趣的几何图形和证明。

一、几何图形的分类几何图形可以分为二维图形和三维图形两大类。

二维图形是在平面上的图形,如点、线、圆等;而三维图形则是在空间中的图形,如球体、立方体等。

这些图形都有各自的特点和性质,通过对其进行研究和证明,可以揭示出许多有趣的数学定理和规律。

二、几何图形的性质与证明几何图形的性质是通过证明来得出的。

证明是数学中的一种推理方法,通过逻辑推理和演绎,以严密的语言和符号来证明一个命题的真实性。

在几何学中,证明是揭示几何图形性质的重要手段。

例如,我们可以通过证明来得出圆的性质。

圆是一个由一条曲线围成的图形,其内部的每一点到圆心的距离都相等。

这个性质可以通过构造和推理来证明。

我们可以通过构造一个等边三角形,然后证明其内切圆的性质,从而得出圆的性质。

另一个例子是证明平行线的性质。

平行线是指在同一个平面中,永远不会相交的两条直线。

我们可以通过利用平行线的定义和性质,进行角度推理和线段比较来证明平行线的性质。

这种证明方法可以帮助我们理解平行线的本质和特点。

三、有趣的几何图形与证明除了基本的几何图形和性质,还有一些有趣的几何图形和证明值得我们探索和研究。

1. 黄金分割黄金分割是指一条线段被分割成两部分,使得整条线段与较长部分的比值等于较长部分与较短部分的比值。

这个比值约为1.618,被认为是最美丽的比例之一。

黄金分割可以通过几何图形和代数方法进行证明,其中最著名的证明方法是欧几里得的证明方法。

2. 平面填充平面填充是指将一个平面完全填满,而不留下任何空隙或重叠。

平面填充有许多有趣的图形和方法,如著名的康威生命游戏和彼得斯图案。

这些图案和方法都可以通过几何图形和逻辑推理来证明其正确性。

图形与证明 第1课时 等腰三角形的性质和判定

图形与证明 第1课时 等腰三角形的性质和判定

图形与证明(二)第1课时等腰三角形的性质和判定1.一个等腰三角形的顶角为40°,则它的底角为_________°.2.若等腰三角形的一个外角为70°,则它的底角为_________°.3.某等腰三角形的边长分别是5 cm和8 cm,则此三角形的周长是( ) A.18 cm B.21 cm C.18 cm或21 cm D.18 cm或24 cm 4.三角形的一个外角平分线平行于三角形的一边,则这个三角形一定是( ) A.等腰三角形B.锐角三角形C.直角三角形D.等腰直角三角形5.求证:有一个角是60°的等腰三角形是等边三角形.6.如图,AB=AC,∠BAC=120°,AB的垂直平分线交BC于点D,那么∠ADC=__________.7.若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为( ) A.50°B.80°C.65°或50°D.50°或80°8.如图,在△ABC中,AC=DC=DB,∠ACD=100°,则∠B的度数为( ) A.50°B.40°C.25°D.20°9.如图,在边长为4的等边三角形ABC中,AD是BC边上的高,点E、F是AD上的两点,则图中阴影部分的面积是( )A.43B.33C.23D.310.如图,∠A=15°,AB=BC=CD=DE=EF,则∠DEF的度数为( ) A.90°B.75°C.70°D.60°11.如图,C为线段AE上一动点(不与点A、E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.恒成立的结论有________________________(把你认为正确的序号都填上).12.如图,BO平分∠CBA,CO平分∠ACB,且MN∥BC.若AB=12,△AMN的周长为29,求AC的长.13.在一次数学课上,王老师在黑板上画出图形(如图所示),并写下了四个等式:①AB=DC;②BE=CE;③∠B=∠C;④∠BAE=∠CDE.要求同学们从这四个等式中选出两个作为条件,推出△AED是等腰三角形.请你试着完成王老师提出的要求,并说明理由.(写出一种即可)已知:求证:△AED是等腰三角形.证明:14.(1)如图①,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC.求∠AEB的大小.(2)如图②,△OAB固定不动,保持△OCD的形状和大小不变,将△OCD绕着点O旋转(△OAB和△OCD不能重叠),求∠AEB的大小.参考答案1.70 2.35 3.C 4.A 5.略6.60°7.D 8.D 9.C 10.D 11.①②③⑤12.17 13.略14.(1)60°(2)∵△OCD和△ABO都是等边三角形,∴OD=OC,OB=OA,∠1=∠2=60°.又∵OD=OA,∴OD=OB,OA=OC.∴∠4=∠5,∠6=∠7.∵∠DOB=∠1+∠3,∠AOC=∠2+∠3,∴∠DOB=∠AOC.∵∠4+∠5+∠DOB=180°,∠6+∠7+∠AOC=180°,∴2∠5=2∠6.∴∠5=∠6.又∵∠AEB=∠8-∠5,∠8=∠2+∠6,∴∠AEB=∠2+∠5-∠5=∠2.∴∠AEB=60°。

图形证明题(一)

图形证明题(一)

图形证明题(一)1.如图,已知:梯形ABCD 中,AD ∥BC ,E 为AC 的中点,连接DE 并延长交BC 于点F ,连接AF .(1)求证:AD =CF ;(2)在原有条件不变的情况下,请你再添加一个条件(不再增添辅助线),使四边形AFCD 成为菱形,并说明理由.2. 如图,在ABC △中,D 是BC 边上的一点,E 是AD 的中点,过A 点作BC 的平行线交CE 的延长线于F ,且AF BD =,连结BF . (1)求证:D 是BC 的中点;(2)如果AB AC =,试判断四边形AFBD 的形状,并证明你的结论.3.如图,等腰梯形ABCD 中,AD ∥BC ,点E 是线段AD 上的一个动点(E 与A 、D 不重合),G 、F 、H 分别是BE 、BC 、CE 的中点.(1)试探索四边形EGFH 的形状,并说明理由.(2)当点E 运动到什么位置时,四边形EGFH 是菱形?并加以证明.(3)若(2)中的菱形EGFH 是正方形,请探索线段EF 与线段BC 的关系,并证明你的结论.4、将平行四边形纸片ABCD 按如图方式折叠,使点C 与A 重合,点D 落到D ′ 处,折痕为EF .(1)求证:△ABE ≌△AD ′F ;(2)连接CF ,判断四边形AECF 是什么特殊四边形?证明你的结论.5.如图,矩形ABCD 中,O 是AC 与BD 的交点,过O 点的直线EF 与AB CD ,的延长线分别交于E F ,.(1)求证:BOE DOF △≌△; (2)当EF 与AC 满足什么关系时,以A E C F ,,,为顶点的四边形是菱形?证明你的结论.6.如图,矩形A 1B l C 1D 1沿EF 折叠,使B 1点落在A 1D 1边上的B 处;沿BG 折叠,使D 1点落在D 处且BD 过F 点.(1)求证:四边形BEFG 是平行四边形;(2)连结B 1B ;判断△B 1BG 的形状,并写出判断过程.AB DCE FB O DCE 图87 已知等边△ABC 和等边△ADE 摆放如图1,点D,E 分别在边AB,AC 上,以AB,AE 为边作平行四边形ABFE ,连接CF,FD,DC 。

几何常见的基本图形及证明

几何常见的基本图形及证明

初中几何基本图形及证明说明:本资料中所有虚线为证明用的辅助线 一:与角平分线有关的基本图形 基本图形1结论:如图,若P 点是B ∠和C ∠的平分线的交点,则P ∠和A ∠的数量关系为:A P ∠+︒=∠2190B基本图形2结论:如图,若P 点是FBC ∠的平分线和ECB ∠的平分线的交点,则P ∠与A ∠的数量关系为:A P ∠-︒=∠2190基本图形3如图,若P 是ABC ∠的角平分线和ACB ∠的外角平分线的交点,则P ∠与A∠的数量关系为:A P ∠=∠21BE二:等腰直角三角形与其共斜边的直角三角形 基本图形4如图,在等腰直角三角形ABC 中,D 点与C 点分别在AB 两侧,且BD AD ⊥,形成共斜边的两个直角三角形。

结论:CD BDAD 2=+E(延长DA 使BD EA =)基本图形5如图,在等腰直角三角形ABC 中,点D 与C 在AB 同侧,且BD AD ⊥,形成共斜边的两个直角三角形。

结论:CD BDAD 2=-A(截取BD AE=)三:线段和最短与轴对称 基本图形6 两定点一动点如图,A ,B 为直线l 同侧两定点,P 为直线l 上一动点,A 和1A 关于l 成轴对称,连接BA 1交直线l 于P 点。

结论:PB PA +最短基本图形7 一定点两动点如图P 为AOB ∠内一点,点1P 与P 关于OB 成轴对称,2P 与P 关于OA 成轴对称,连接21P P 交OB 于E 点,交OA 于F 点。

结论:△PEF 的周长最短OA基本图形8 两定点两动点如图,A ,B 为直角坐标系中的两定点,1A 与A 关于y 轴对称,1B 与B 关于x 轴对称,连接11B A 分别交x 轴、y 轴于C 、D 两点,连A ,B ,C ,D 结论:四边形ABCD 周长最短。

基本图形9 一定点一动长如图,P 为一定点,AB 为直线l 上的定长。

结论:当P 在AB 的垂直平分线上时△PAB 的周长最短基本图形10 两定点一动定长如图,A ,B 为直线l 同侧的两点,DC 为直线l 上的一定长,作∥BE DC 且DC BE =,A 与1A 关于直线l 对称,连接E A 1交直线于D结论:BC AD +最短基本图形11 线段差最大如图,A ,B 分别位于直线l 的两侧,作1A 与A 点关于直线l 对称,连B A 1交直线l 于P 。

苏教版八下第十一章图形与证明(一)复习

苏教版八下第十一章图形与证明(一)复习

A
E B
D M F C P
探索研究3
如图:在△ABC中,P是∠ B 、∠ C角平分线的交点, ∠BPC与∠A有怎样的大小关系?说说你的理由。 A
P B C
如图:在△ABC中,P是∠ B 、∠ C外角的角平分线的交点, ∠BPC与∠A有怎样的大小关系?说说你的理由。 A 拓展1
B
C
P
如图:在△ABC中,P是∠ B的角平分线 和 ∠ C外角的角平分线的交点, ∠BPC与∠A有怎样的大小关系?说说你的理由。 拓展2 A P
改写成“如果……,那么……”的形式:
如果两个角不相等,那么这两个角不可能是对顶角
(3)两个无理数的乘积一定是无理数;
例题欣赏

已知:如图6-13,在△ABC中,AD平分∠EAC, AD∥BC. 求证:∠B= ∠C.
E
A
1 2
D
B
C
回顾与思考

三角形内角和定理
A
E
AE2 B C1DBCA
E
A
F
F E
直角三角形 两锐角互余
回顾与思考

学好几何的标志 是会“证明”
证明命题的一般步骤:
根据命题,画出图形; 根据命题,结合图形,写出已知、求证; 写出证明过程.
注:运用数学符号和数学语言条理清晰地写出证明过程; 检查表达过程是否正确,完善。
对名称或术语的含义进行描述,做出规定,就是给出 他们的定义.
例如: 互为相反数 “符号不同、绝对值相等的两个数”是“ 全等形 “能够完全重合的图形”是“_______”的定 义. 无理数: 无限不循环小数叫做无理数.
”的定义;
直角三角形:有一个角是直角的三角形叫做直角三角形.

第十一章图形的证明(一)全章节教案(表格式)

第十一章图形的证明(一)全章节教案(表格式)
课题
课型
新授
课时
1
执教
周永红
总课时
11.1你的判断对吗?
教学目标
1.经历一些观察、操作活动,并对获得的数学猜想进行试验验证,体验直观判断有时不一定正确,从而尝试从数学的角度运用所学的知识和方法寻求证据、给出证明.
2.在交流中,感受数学思考的合理性和严密性.
3.渗透辨证唯物注意思想。
教学重点
体会证明的必要性
学生通过实例,初步了解什么是定义。并尝试着下定义。
了解定义的规则。
通过实例,了解什么是命题,如何区分命题
通过例题知道命题是由两部分组成的。
尝试如何把一个命题改成如果,那么的形式。
了解真命题与假命题的概念,并尝试着判断。
学生尝试解题,师生共同评价,深入探索说明命题是真命题与假命题的方法。
课堂小结
什么叫命题?它由哪几部分组成?怎样判断真假?
归纳:用推理的方法证实真命题的过程叫做证明(proof).经过证明的真命题称为定理(theorem).已经证明的定理也可作为以后推理依据.
例1、如何证明“对顶角相等”
已知:如图直线AB、CD相交于点O.
求证:∠1=∠2.
证明:∵AB、CD相交于点O(已知),
∴∠1+∠BOD=180°,
∴∠1=180°-∠BOD,∠2+∠BOD=180°,
课堂小结
通过刚才的实验、观察、操作活动,我们感受到……
实验、观察、操作是人们认识事物的重要手段,但仅凭实验、观察、操作是不够的,所以正确地认识事物,不能单凭直觉,还要学会说理!
各抒己见
作业
假如用一根比地球赤道长1米的铁丝将地球赤道围起来,那么铁丝与赤道之间的间隙能有多大(把地球看成球形)?能放进一粒草莓吗?能放进一个拳头吗

图形与证明1

图形与证明1

第一章图形与证明复习题(1)一、基础练习1、若顺次连结一个四边形各边中点所得的图形是正方形,那么这个四边形的对角线 A 、互相垂直 B 、相等 C 、互相平分 D 、互相垂直且相等 ( )2、如图,在□ABCD 中,E 是BC 的中点,且∠AEC=∠DCE ,下列结论不正确...的是( ) A 、BF=21DF B 、S △FAD =2S △FBE C 、四边形AECD 是等腰梯形 D 、∠AEB=∠ADC , 3、如图所示,正方形ABCD 的面积为12,ABE △是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD PE 的和最小,则这个最小值为( )A. B. C .3 D4、如图,在梯形ABCD 中,AB ∥CD ,中位线EF 与对角线AC 、BD 交于M 、N 两点,若EF=18㎝,MN=8㎝,则AB 的长等于 。

5、如图,直线L 过正方形ABCD 的顶点B ,点A 、C 到直线L 的距离分别是1和2,则正方形的边长是 。

二、例题精讲例1、如图,把矩形纸片ABCD 沿EF 折叠,使点B 落在边AD 上的点B ′处,点A 落在点A ′处,(1)求证:B ′E=BF ;(2)设AE=a ,AB=b, BF=c,试猜想a、b 、c 之间有何数量关系,并给予证明.例2、如图在直角梯形ABCD 中,AD ∥BC ,AB ⊥AD ,AB =10 3 ,AD 、BC 的长是x 2-20x+75=0方程的两根,判断以点D 为圆心、AD 长为半径的圆与以C 圆心BC 为半径的圆的位置关系 。

21LDC BA 第5题图NM F E DC B A第4题图 A EP B C A CA BC D E F A ′ B ′例3、问题探究(1)请在图①的正方形ABCD 内,画出使∠APB =90°的一个..点P ,并说明理由. (2)请在图②的正方形ABCD 内(含边),画出使∠APB =60°的所有..的点P ,并说明理由. 问题解决如图③,现有一块矩形钢板ABCD ,AB =4,BC =3,工人师傅想用它裁出两块全等的、面积最大的△APB 和△CP ’D 钢板,且∠APB =∠CP ’D =60°,请你在图③中画出符合要求的点P 和P ’,并求出△APB 的面积(结果保留根号).第一章图形与证明复习题(2)1、将矩形纸片ABCD 按如图所示的方式折叠,AE 、EF 为折痕,∠BAE =30°,AB =3,折叠后,点C 落在AD 边上的C 1处,并且点B 落在EC 1边上的B 1处.则BC 的长为( ).A 、3B 、2C 、3D 、322、正方形ABCD 的边长为1,M 是AB 的中点,N 是BC 中点,AN 和CM相交于点O ,则四边形AOCD 的面积是( )(A )16 (B )34 (C )23 (D ) 343、在△ABC 中,BC =10,B 1、C 1分别是图①中AB 、AC 的中点,在图②中,2121、C 、C 、B B 分别是AB ,AC 的三等分点,在图③中921921;C 、C C B 、、BB 分别是AB 、AC 的10等分点,则992211C B C B C B +++ 的值是( ) A . 30 B . 45 C .55 D .60① ② ③ 4、如图,在平面直角坐标系中,平行四边形ABCD 的顶点A 、B 、D 的坐标分别是(0,0),(5,0),(2,3),则顶点C 的坐标是 。

初中数学九(上)第一章图形与证明讲学稿

初中数学九(上)第一章图形与证明讲学稿

课题:等腰三角形的性质和判定学习目标:①会阐述、推证等腰三角形的性质判定定理.②学会比较等腰三角形性质定理和判定定理的联系与区别.③经历综合应用等腰三角形性质定理和判定定理的过程,体验数学的应用价值.学习重点:等腰三角形的判定与性质的区别.学习难点:用“基本事实”和“已经证明的定理”为依据,证明等腰三角形性质定理和判定定理。

学习过程:一、情景创设:以前,我们曾经学习过三角形,你还记得按边分可以怎样分类吗?1、什么叫做等腰三角形?(等腰三角形的定义)2、等腰三角形有哪些性质?3、这些性质都是真命题吗?你能否用从基本事实出发,对它们进行证明?二、探索活动:1、合作与讨论:等腰三角形的两底角相等这是一道文字题,要分清题设和结论,画出图形,写出已知、求证和证明过程已知;在△ABC中,AB=AC求证;∠B=∠C2、思考与讨论怎样证明:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。

3、通过上面两个问题的证明,我们得到了等腰三角形的性质定理。

5、思考与探索“等腰三角形的两个底角相等”(1)写出它的逆命题:_________________(2)画出图形,写出已知、求证,并进行证明。

6、通过上面的证明,我们又得到了等腰三角形的判定定理:思考:1、在△ABC中,∠A=1100,∠C=350,则△ABC是三角形。

2、如图,在△ABC中,AB=AC,∠A=360,D是AC上一点,若∠BDC=720,则图形中共有()个等腰三角形。

A、1B、2C、3D、43有一个三角形,它的内角分别是200,400,1200,怎样把这个三角形分成两个等腰三角形?分成的两个等腰三角形的内角分别是多少?三、典例分析1、已知:如图,AB=AC,BD⊥AC,垂足为点D。

求证:∠DBC=21∠A。

2、已知:如图(1)∠EAC是△ABC的外角,AD平分∠EAC,且AD∥BC。

求证:AB=AC(1)(2)AB CDEAB CDEBDAAB CD2、在上图(2)中,如果AB=AC,AD∥BC,那么AD平分∠EAC吗?如果结论成立,你能证明这个结论吗?思:如图,△ABC中∠ABC与∠ACB的平分线交于点D.过点D作EF∥BC交AB于点E、交AC于点F.求证:EF=BE+CF.四练习巩固(一)基础练习1、如果等腰三角形有两边长为3和7,那么周长为_____。

八年级下学期数学相似图形和证明(一)单元练习

八年级下学期数学相似图形和证明(一)单元练习

八年级下学期数学相似图形和证明(一)单元练习一、 细心填一填1、已知:AB=3m ,CD=30cm ,则AB :CD= 。

2、两个三角形相似,其中一个三角形的两个内角是40°、60°。

那么另一个三角形的最大角是 度,最小角是 度。

3、一个主持人站在舞台的黄金分割点处最自然得体,如果舞台AB 长为20米,一个主持人现在站在A 处,则它应至少再走 米才最理想。

4、某一时刻,一根4米长的旗杆的影子长6米,同一时刻一座建筑物的影子长36米,则这座建筑物的高度为 米。

5、已知△ABC ∽△DEF ,S △ABC :S △DEF =1:9,△ABC 的周长为18厘米,则△DEF 的周长为 厘米。

6、在比例尺为1:6000000的中华人民共和国地图上,玉溪到昆明的图上距离是1.4厘米,则玉溪到昆明的实际距离是 千米。

7、已知,如图,ED//BC ,且31=AB AE ,则BC ED= 。

8、如图在△ABC 中,AC >AB ,点D 在AC 边上,(点D 不与A 、C 重合),若仅再增加一个条件就能使△ABD ∽△ACB ,则这个条件可以是 。

(只写一个即可) 9、(如图,△ABC 中,D 、E 分别为AB 、AC 边上的中点,若DE=6,则BC= 。

10、在中国地图上,连结上海、香港、台湾三地构成一个三角形,用刻度尺测得它们之间的距离如图所示。

飞机从台湾直飞上海的距离约为1286千米,那么飞机从台湾绕到香港再到上海的空中飞行距离是 千米。

11、命题“相等的角是对顶角”的条件是 __________ ,结论是______ 。

它是一个 命题。

(填真或假)12、在△ABC 中,∠A=50°,∠B —∠C=40°,则∠C= ,∠B= 。

13、如图,AB ∥CD ,EG ⊥AB ,垂足为G .若∠1=50°,则∠E =________度。

14、如图,∠1+∠2+∠3+∠4=________度.15、 如图,CD 平分∠ACB ,AE ∥DC 交BC 的延长线于点E ,若∠ACE =80°,则∠CAE = 度。

2013年苏教版八下第十一章图形与证明(一)期末复习教学案

2013年苏教版八下第十一章图形与证明(一)期末复习教学案

苏科版八年级(下)数学复习教学案(5)第十一章 图形与证明(一)基础知识练习:1、把下列命题“对顶角相等”改写成:如果 ,那么2、举反例说明命题是假命题:同旁内角互补。

3、写出命题“同角的余角相等”的题设: , 结论:4、如下图左,DH ∥GE ∥BC ,AC ∥EF ,那么与∠HDC 相等的角有 .5、如上图右:△ABC 中,∠B=∠C ,E 是AC 上一点,ED ⊥BC ,DF ⊥AB ,垂足分别为D 、F ,若∠AED=140°,则∠C= ∠A= ∠BDF= .6、写出命题“直角三角形斜边上的中线等于斜边的一半”的逆命题: ;它是 命题(填“真”或“假”)。

7、三角形的一个外角是锐角,则此三角形的形状是( )A 、锐角三角形B 、钝角三角形C 、直角三角形D 、无法确定 8、下列命题中的真命题是( )A 、锐角大于它的余角B 、锐角大于它的补角C 、钝角大于它的补角D 、锐角与钝角之和等于平角 9、已知下列命题:①相等的角是对顶角;②互补的角就是平角;③互补的两个角一定是一个锐角,另一个为钝角;④平行于同一条直线的两直线平行;⑤邻补角的平分线互相垂直.其中,正确命题的个数为( )A 、0B 、1个C 、2个D 、3个 10、如图,直线1l ∥2l ,3l ⊥4l .有三个命题:①︒=∠+∠9031;②︒=∠+∠9032;③42∠=∠.下列说法中,正确的是( )(A )只有①正确 (B )只有②正确 (C )①和③正确 (D )①②③都正确 .典型例题分析: 例1.如图:已知CB ⊥AB ,CE 平分∠BCD ,DE 平分∠ADC , ∠1+∠2=90°, 求证:AB ∥CDFED C BA MHGEDCBA21E DCBA例2.求证: n 边形的内角和等于 (n-2).180° 已知: 求证: 证明:例3 E 、F 为平行四边形ABCD 的对角线DB 上三等分点,连AE 并延长交DC 于P ,连PF 并延长交AB 于Q ,如图①,在备用图中,画出满足上述条件的图形,记为图②,试用刻度尺在图①、②中量得AQ 、BQ 的长度,估计AQ 、BQ 间的关系,并填入下表(长度单位:cm )由上表可猜测AQ 、BQ 间的关系是__________________(1) 上述(1)中的猜测AQ 、BQ 间的关系成立吗?为什么?(2) 若将平行四边形ABCD 改为梯形(AB ∥CD )其他条件不变,此时(1)中猜测AQ 、BQ间的关系是否成立?(不必说明理由)(3) 在△ABC 中,点D 、E 分别在边AB 和AC 上,且DE ∥BC ,如果AD =2,DB =4,AE=3,那么EC =例4: 如图,已知ABC ∆为等边三角形,D 、E 、F 分别在边BC 、CA 、AB 上,且DEF ∆也是等边三角形.(1)除已知相等的边以外,请你猜想还有哪些相等线段,并证明你的猜想是正确的; (2)你所证明相等的线段,可以通过怎样的变化相互得到?写出变化过程.F ED C B A课后练习巩固:一、填空题1.命题“两条对角线互相平分的四边形是平行四边形”的条件是:________,结论是:___________.2.如图1,∠1=_________,∠2=__________.(1) (2)3.如图2,在△ABC中,DE∥BC,∠A=45°,∠C=70°,则∠ADE=_______°.4.如图3,在△ABC中,BE平分∠ABC,CE平分∠ACB,∠A=65°,则∠BEC=______°.(3) (4) (5)5.如图4,∠1、∠2、∠3分别是△ABC的3个外角,则∠1+∠2+∠3=_______°.6.•若一个三角形的3•个内角度数之比为4:•3:•2,•则这个三角形的最大内角为___°.7.如图5,Rt△ABC中,∠C=90°,AD平分∠BAC,BD平分∠CBE,则∠ADB=______°.二、选择题8.下列语句中,不是命题的是().(A)同位角相等(B)延长线段AD(C)两点之间线段最短(D)如果x>1,那么x+1>59.下面有3个命题:①同旁内角互补;②两直线平行,内错角相等;•③垂直于同一直线的两直线互相平行.其中真命题为().(A)①(B)③(C)②③(D)②10.下面有3个判断:①一个三角形的3个内角中最多有1个直角;②一个三角形的3个内角中至少有两个锐角;③一个三角形的3个内角中至少有1个钝角.•其中正确的有().(A)0个(B)1个(C)2个(D)3个11.一个三角形的一个内角等于另外两个内角的和,则这个三角形是().(A)直角三角形(B)锐角三角形(C)钝角三角形(D)何类三角形不能确定12.已知点A在点B的北偏东40°方向,则点B在点A的().(A)北偏东50°方向(B)南偏西50°方向(C)南偏东40°方向(D)南偏西40°方向13.如图6,已知AB∥CD∥EF,∠ABC=50°,∠CEF=150°,则∠BCE的值为().(A)50°(B)30°(C)20°(D)60°(6) (7) 14.如图7,已知FD ∥BE ,则∠1+∠2-∠A=( ).(A )90° (B )135° (C )150° (D )180° 15.下面有2句话:(1)真命题的逆命题一定是真命题.(2)假命题的逆命题不一定是假命题,其中,正确的( ).(A )只有(1) (B )只有(2) (C )只有(1)和(2) (D )一个也没有 三、解答题16.请把下列证明过程补充完整:已知:如图,DE ∥BC ,BE 平分∠ABC .求证:∠1=∠3.证明:因为BE 平分∠ABC (已知), 所以∠1=______( ). 又因为DE ∥BC (已知),所以∠2=_____( ).所以∠1=∠3( ). 17.如图,在△AFD 和△CEB 中,点A 、E 、F 、C 在同一直线上,下面有4个判断: (1)AD=CB ;(2)AE=FC ;(3)∠B=∠D ;(4)AD ∥BC .请用其中3个作为已知条件,余下1个作为结论,编一道数学问题,•并写出解答过程.18.如图,长方形ABCD 是一块釉面砖,•居室装修时需要在此砖上截取一块呈梯形 状的釉面砖APCD .(1)请在AB 边上找一点P ,使∠APC=120°;(2)试着叙述选取点P 的方法及其选取点P 的理由.。

八下图形与证明(一)复习

八下图形与证明(一)复习

司徒中学 陈志军
已知:如图,已知AD是 已知:如图,已知AD是△ABD AD ACD的公共边 和△ACD的公共边 求证: 求证:∠BDC=∠BAC+∠B+∠C
A
B
D C
你还有其他方法解决这个问题吗? 你还有其他方法解决这个问题吗
司徒中学 陈志军
随堂练习

A
证明:等边对等角. 证明 等边对等角. 等边对等角
三角形内角和等于180° 三角形内角和等于 ° 推论
三角形的一个 外角等于和它 不相邻的两个 内角的和 三角形的一个 外角大于任何 一个和它不相 邻的内角
直角三角形 两锐角互余
司徒中学 陈志军
回顾与思考

学好几何的标志 是会“证明”
证明命题的一般步骤: 证明命题的一般步骤
根据命题,画出图形; 根据命题,画出图形; 根据命题,结合图形,写出已知、求证; 根据命题,结合图形,写出已知、求证; 写出证明过程. 写出证明过程.
A
C
这里的结论,以后可以直接运用.
司徒中学 陈志军
回顾与思考

三角形内角和定理
如图. ∠1是△ABC的一个外角 ∠1与图中的其它角有 如图. ∠1是 的一个外角, ∠1与图中的其它角有 的一个外角 什么关系? 什么关系? A 2
3 B
4 1 C
D
∠1+∠4=1800 ; 1+∠4= ∠1=∠2+∠3; ∠1=∠2+∠3; ∠1>∠ 2; 2; 3. ∠1>∠ 3.
条件: 一个三角形的两条边相等; 条件 一个三角形的两条边相等 结论: 它们所对的角也相等. 结论 它们所对的角也相等 已知:如图, 已知 如图,△ABC中,AB=AC, 如图 中 , 求证∠ ∠ 求证∠B=∠C.

图形与证明(1)

图形与证明(1)

第一章图形与证明复习题(1)一、基础练习1、若顺次连结一个四边形各边中点所得的图形是正方形,那么这个四边形的对角线 A 、互相垂直 B 、相等 C 、互相平分 D 、互相垂直且相等 ( )2、如图,在□ABCD 中,E 是BC 的中点,且∠AEC=∠DCE ,下列结论不正确...的是( ) A 、BF=21DF B 、S △FAD =2S △FBE C 、四边形AECD 是等腰梯形 D 、∠AEB=∠ADC , 3、如图所示,正方形ABCD 的面积为12,ABE △是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD PE 的和最小,则这个最小值为( )A. B. C .3 D4、如图,在梯形ABCD 中,AB ∥CD ,中位线EF 与对角线AC 、BD 交于M 、N 两点,若EF=18㎝,MN=8㎝,则AB 的长等于 。

5、如图,直线L 过正方形ABCD 的顶点B ,点A 、C 到直线L 的距离分别是1和2,则正方形的边长是 。

二、例题精讲例1、如图,把矩形纸片ABCD 沿EF 折叠,使点B 落在边AD 上的点B ′处,点A 落在点A ′处,(1)求证:B ′E=BF ;(2)设AE=a ,AB=b, BF=c,试猜想a 、b 、c 之间有何数量关系,并给予证明.21LDC BA 第5题图NM F E DC B A第4题图 A EP B C ABCDEFA ′B ′例2、如图在直角梯形ABCD 中,AD ∥BC ,AB ⊥AD ,AB =10 3 ,AD 、BC 的长是x 2-20x+75=0方程的两根,判断以点D 为圆心、AD 长为半径的圆与以C 圆心BC 为半径的圆的位置关系 。

例3、问题探究(1)请在图①的正方形ABCD 内,画出使∠APB =90°的一个..点P ,并说明理由. (2)请在图②的正方形ABCD 内(含边),画出使∠APB =60°的所有..的点P ,并说明理由. 问题解决如图③,现有一块矩形钢板ABCD ,AB =4,BC =3,工人师傅想用它裁出两块全等的、面积最大的△APB 和△CP ’D 钢板,且∠APB =∠CP ’D =60°,请你在图③中画出符合要求的点P 和P ’,并求出△APB 的面积(结果保留根号).AC第一章图形与证明复习题(2)1、将矩形纸片ABCD 按如图所示的方式折叠,AE 、EF 为折痕,∠BAE =30°,AB =3,折叠后,点C 落在AD 边上的C 1处,并且点B 落在EC 1边上的B 1处.则BC 的长为( ).A 、3B 、2C 、3D 、322、正方形ABCD 的边长为1,M 是AB 的中点,N 是BC 中点,AN 和CM相交于点O ,则四边形AOCD 的面积是( )(A )16 (B )34 (C )23 (D ) 343、在△ABC 中,BC =10,B 1、C 1分别是图①中AB 、AC 的中点,在图②中,2121、C 、C 、B B 分别是AB ,AC 的三等分点,在图③中921921;C 、C C B 、、BB 分别是AB 、AC 的10等分点,则992211C B C B C B +++ 的值是( ) A . 30 B . 45 C .55 D .60① ② ③4、如图,在平面直角坐标系中,平行四边形ABCD 的顶点A 、B 、D 的坐标分别是(0,0),(5,0),(2,3),则顶点C 的坐标是 。

初二数学图形与证明试题答案及解析

初二数学图形与证明试题答案及解析

初二数学图形与证明试题答案及解析1.如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:①四边形CFHE是菱形;②EC平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时,EF=2.以上结论中,你认为正确的有()个.A.1B.2C.3D.4【答案】C【解析】∵FH与CG,EH与CF都是矩形ABCD的对边AD、BC的一部分,∴FH∥CG,EH∥CF,∴四边形CFHE是平行四边形,由翻折的性质得,CF=FH,∴四边形CFHE是菱形,∴①正确;∴∠BCH=∠ECH,∴只有∠DCE=30°时EC平分∠DCH,∴②错误;点H与点A重合时,设BF=x,则AF=FC=8-x,在Rt△ABF中,,即,解得x=3,点G与点D重合时,CF=CD=4,∴BF=4,∴线段BF的取值范围为3≤BF≤4,∴③正确;过点F作FM⊥AD于M,则ME=(8-3)-3=2,由勾股定理得EF=2,∴④正确;【考点】图形的翻折、勾股定理.2.如图,沿折叠后,点落在边上的处,DE∥BC,,则的度数为.【答案】80°.【解析】先根据折叠的性质可得∠ADE=∠ED,再由平行线的性质可得∠B=∠ADE=50°,由平角的性质即可求=180°-∠ADE-∠ED=180°-50°-50°=80°.【考点】折叠的性质;平行线的性质;平角的性质.3.如图,在□ABCD中,DB=DC,∠C=70°,AE⊥BD于E,则∠DAE=_____度.【答案】20.【解析】∵ DB=DC,∴∠DBC=∠C=70°,∵是□ABCD,∴AD∥BC,∴∠ADB=∠DBC=70º,∵AE⊥BD于E,∴∠AED=90º,∴∠DAE=90-70=20º.【考点】平行四边形性质.4.如图,△ABC为等腰三角形,如果把它沿底边BC翻折后,得到△DBC,那么四边形ABDC为().A.菱形B.正方形C.矩形D.一般平行四边形【答案】A.【解析】此题先判定四边形ABDC为平行四边形,再通过邻边相等判定四边形ABDC为菱形,∵△ABC为等腰三角形,∴∠ABC=∠ACB,又∵折叠角相等,∴∠ABC=∠DBC,∠ACB=∠DCB,∴∠ABC=∠DCB,∠ACB=∠DBC,∴AB∥DC,AC∥BD,∴四边形ABDC为平行四边形,又∵折叠边相等,AB=BD,∴四边形ABDC为菱形.【考点】菱形的判定.5.将四根木条钉成的长方形木框变形为平行四边形ABCD的形状,并使其面积为长方形面积的倍(木条宽度忽略不计),则这个平行四边形的最小内角为度.【答案】45【解析】如图所示:过点C作AB的垂线垂足是E,∵将四根木条钉成的矩形木框变形为平行四边形木框ABCD的形状,并使其面积为矩形木框的,∴BC=CE,∵sin∠CBE==,∴∠CBE=∠A=45°.【考点】1.矩形的性质;2.平行四边形的性质.6.(本题10分)如图1,正方形ABCD的边长为6cm,点F从点B出发,沿射线AB方向以1cm/秒的速度移动,点E从点D出发,向点A以1cm/秒的速度移动(不到点A).设点E,F 同时出发移动t秒.(1)在点E,F移动过程中,连接CE,CF,EF,则△CEF的形状是,始终保持不变;(2)如图2,连接EF,设EF交BD于点M,当t=2时,求AM的长;(3)如图3,点G,H分别在边AB,CD上,且GH=cm,连接EF,当EF与GH的夹角为45°,求t的值.【答案】(1)等腰直角三角形;(2);(3)3.【解析】(1)判断三角形CDE和三角形CBF全等是解题的关键;(2)此题过点E作EN∥AB,交BD于点N,证明△EMN≌△FMB,得出EM=FM,于是AM是直角三角形AEF斜边EF中线,只要求出EF长,AM长就求出来了;(3)设EF与GH交于P,连接CE,CF,若∠EPH=45°,前面已证∠EFC=45º,显然GH∥CF,又有AF∥DC,可判断四边形GFCH是平行四边形,CF=GH=,在Rt△CBF中,用勾股定理求出BF长,即t值求出.试题解析:(1)∵点E,F的运动速度相同,且同时出发移动t秒,∴DE=BF=t,又∵CD=CB,∠CDE=∠CBF,∴△CDE≌△CBF,∴CE=CF,∠DCE=∠BCF,∠ECF=∠ECB+∠BCF=∠ECB+∠DCE=90º,∴△CEF的形状是等腰直角三角形;(2)先证△EMN≌△FMB,过点E作EN∥AB,交BD于点N,∴∠END=∠ABD=∠EDN=45°,∴EN="ED=BF=2" ,可证△EMN≌△FMB(AAS),∴EM=FM,Rt△AEF中,AE=4,AF=6+2=8,EF=,∴AM=EF=.(3)连接CE,CF,设EF与GH交于P,由(1)得∠CFE=45°,又∠EPH=45°,∴GH∥CF,又AF∥DC,∴四边形GFCH是平行四边形,∴CF=GH=,在Rt△CBF中,得BF=3,∴t=3.【考点】1.正方形性质;2.三角形全等及勾股定理的运用;3.平行四边形的判定与性质.7.下列命题中是真命题的有()个.①相等的角是对顶角;②两直线被第三条直线所截,内错角相等;③若m2=n2,则m=n;④平行四边形的对角线互相平分;⑤一组对边平行,一组对边相等的四边形是平行四边形.A.0B.1C.2D.3【答案】B.【解析】命题①相等的角是对顶角,如两个直角相等,但两个直角不一定是对顶角,命题①错误;命题②两直线被第三条直线所截,内错角相等,命题②错误,正确的为两条平行线被第三条直线所截,所得的内错角相等;命题③若m2=n2,则m=n,如,但2≠-2,命题③错误;命题④平行四边形的对角线互相平分,根据平行四边形的性质可得,命题④正确;命题⑤一组对边平行,一组对边相等的四边形是平行四边形,根据平行四边形的判定可得一组对边平行且相等的四边形是平行四边形,命题⑤错误.故答案选B.【考点】命题与定理.8.已知,如图,点B、E、C、F四点在同一条直线上,AB∥DE,AB=DE,AC、DE相交于点O,BE=CF.求证:AC=DF.【答案】详见解析.【解析】已知AB∥DE,根据平行线的性质可得∠B=∠E,再由BE=CF可得BC=EF,根据SAS可判定△ABC≌△DEF,即可得AC=DF.试题解析:证明:∵AB∥DE,∴∠B=∠DEF,∵BE=CF,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴AC=DF.【考点】平行线的性质;全等三角形的判定及性质.9.(3分)下列各组数据中,不可以构成直角三角形的是()A.7,24,25B.1.5,2,2.5C.,1,D.40,50,60【答案】D【解析】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.由勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可.解:A、72+242=625=252,故是直角三角形,不符合题意;B、1.52+22=6.25=2.52,故是直角三角形,不符合题意;C、12+()2==()2,故是直角三角形,不符合题意;D、402+502=4100≠602,故不是直角三角形,符合题意.故选:D.【考点】勾股定理的逆定理.10.已知一直角三角形的木板,三边的平方和为1800,则斜边长为.【答案】30.【解析】∵在直角三角形中斜边的平方等于两直角边的平方和,又∵已知三边的平方和为1800,则斜边的平方为三边平方和的一半,即斜边的平方为=900,∴斜边长==30.故斜边长为30.【考点】勾股定理.11.顺次连接四边形各边中点所得的四边形是()A.平行四边形B.矩形C.菱形D.以上都不对【答案】A.【解析】如图四边形ABCD,E、N、M、F分别是DA,AB,BC,DC中点,连接AC,DE,根据三角形中位线定理可得:EF平行且等于AC的一半,MN平行且等于AC的一半,根据平行四边形的判定,可知四边形为平行四边形.故选A.【考点】三角形中位线定理.12.已知三组数据:①2,3,4;②3,4,5;③1,,2.分别以每组数据中的三个数为三角形的三边长,构成直角三角形的有()A.②B.①②C.①③D.②③【答案】D.【解析】①∵22+32=13≠42,∴以这三个数为长度的线段不能构成直角三角形,故不符合题意;②∵32+42=52,∴以这三个数为长度的线段能构成直角三角形,故符合题意;③∵12+()2=22,∴以这三个数为长度的线段能构成直角三角形,故符合题意.故构成直角三角形的有②③.故选D.【考点】勾股定理的逆定理.13.如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是.【答案】8【解析】∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∵四边形ABCD是矩形,∴OC=AC=2,OD=BD,AC=BD,∴OC=OD=2,∴四边形CODE是菱形,∴DE=CE=OC=OD=2,∴四边形CODE的周长=2×4=8;【考点】1.菱形的判定与性质;2.矩形的性质.14.一个零件的形状如图所示,按规定这个零件中∠A和∠DBC都应为直角,工人师傅量出了这个零件各边尺寸,那么这个零件符合要求吗?求出四边形ABCD的面积.【答案】36.【解析】根据勾股定理的逆定理,判断出△ABD、△BDC的形状,从而判断这个零件是否符合要求;这个零件的面积=△ABD的面积+△BDC的面积,再根据三角形面积公式即可求解.试题解析:∵AD=4,AB=3,BD=5,DC=13,BC=12,∴AB2+AD2=BD2,BD2+BC2=DC2,∴△ABD、△BDC是直角三角形,∴∠A=90°,∠DBC=90°,∴这个零件的面积=△ABD的面积+△BDC的面积=3×4÷2+5×12÷2,=6+30,=36.故这个零件的面积是36.【考点】1.勾股定理的逆定理;2.勾股定理.15.等腰△ABC的腰长AB=10cm,底BC为16cm,面积为 .【答案】48cm2.【解析】如图所示,∵AB=AC=10cm,AD⊥BC,∴BD=CD=BC=8cm,在Rt△ABD中,根据勾股定理得:AD=cm.∴S△ABC=BC•AD=×16×6=48cm2.【考点】1.勾股定理;2.等腰三角形的性质.16.如图,在△ABC中,∠ACB=90°,CD是AB边上的高,∠BAC的平分线AE交C于F,EG⊥AB于G,请判断四边形GECF的形状,并证明你的结论.【答案】四边形GECF是菱形,理由详见解析.【解析】根据全等三角形的判定定理HL进行证明Rt△AEG≌Rt△AEC(HL),得到GE=EC;根据平行线EG∥CD的性质、∠BAC平分线的性质以及等量代换推知∠FEC=∠CFE,易证CF=CE;从而根据邻边相等的平行四边形是菱形进行判断.试题解析:四边形GECF是菱形,理由如下:∵∠ACB=90°,∴AC⊥EC.又∵EG⊥AB,AE是∠BAC的平分线,∴GE=CE.在Rt△AEG与Rt△AEC中,,∴Rt△AEG≌Rt△AEC(HL),∴GE=EC,∵CD是AB边上的高,∴CD⊥AB,又∵EG⊥AB,∴EG∥CD,∴∠CFE=∠GEA,∵Rt△AEG≌Rt△AEC,∴∠GEA=∠CEA,∴∠CEA=∠CFE,即∠CEF=∠CFE,∴CE=CF,∴GE=EC=FC,又∵EG∥CD,即GE∥FC,∴四边形GECF是菱形.【考点】菱形的判定.17.将一副常规的三角尺如图放置,则图中∠AOB的度数是()A.75°B.95°C.105°D.120°【答案】C【解析】由已知可得∠ACO=45°-30°=15°,根据三角形外角的性质可得∠AOB=∠A+∠ACO=90°+15°=105°.故答案选C.【考点】三角形外角的性质.18.下列说法错误的是()A.一个三角形中至少有一个角不少于60°B.三角形的中线不可能在三角形的外部C.三角形的中线把三角形的面积平均分成相等的两部分D.直角三角形只有一条高【答案】D【解析】选项A,根据三角形的内角和定理可知一个三角形中至少有一个角不少于60°,选项A正确;选项B,三角形的中线都在三角形的内部,不可能在三角形的外部,选项B正确;选项C,根据等底同高的两个三角形的面积相等可知三角形的中线把三角形的面积平均分成相等的两部分,选项C正确;选项D,直角三角形由三条高,其中两条是直角边,选项D错误.故答案选D.【考点】三角形的内角和定理;三角形的高线、中线.19.如图,若△ABC≌△ADE,∠EAC=35°,则∠BAD=_______.【答案】35°.【解析】已知△ABC≌△ADE,根据全等三角形的性质可得∠CAB=∠EAD,所以∠EAC=∠CAB-∠EAB,∠BAD=∠EAD-∠EAB,即∠BAD=∠EAC=35°.【考点】全等三角形的性质.20.如图,AB∥ED,点F、C在AD上,AB=DE,AF=DC,试说明BC=EF.【答案】详见解析.【解析】由已知AB∥ED,AF=DC可以得出∠A=∠D,AC=DF,又因为AB=DE,根据SAS可得△ABC≌△DEF,再由全等三角形的对应边相等即可得出BC=EF.试题解析:证明:∵AB∥ED,∴∠A=∠D,又∵AF=DC,∴AC=DF.在△ABC与△DEF中,∴△ABC≌△DEF.∴BC=EF.【考点】全等三角形的判定及性质.21.(3分)如图,菱形ABCD的周长为16cm,BC的垂直平分线EF经过点A,则对角线BD 长为_____________cm.【答案】4.【解析】连接AC,∵菱形ABCD的周长为16cm,∴AB=4cm,AC⊥BD,∵BC的垂直平分线EF经过点A,∴AC=AB=4cm,∴OA=AC=2cm,∴OB==2cm,∴BD=2OB=4cm.故答案为:4.【考点】菱形的性质;线段垂直平分线的性质.22.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是()A.1,2,3B.1,1,C.1,1,D.1,2,【答案】D.【解析】A、∵1+2=3,不能构成三角形,故选项错误;B、∵12+12=()2,是等腰直角三角形,故选项错误;C、底边上的高是,可知是顶角120°,底角30°的等腰三角形,故选项错误;D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定义,故选项正确.故选:D.【考点】解直角三角形.23.下列说法正确的是()A.全等三角形是指形状相同的两个三角形B.全等三角形的周长和面积分别相等C.全等三角形是指面积相等的两个三角形D.所有的等边三角形都是全等三角形【答案】B.【解析】试题解析:A、全等三角形的形状相同,但形状相同的两个三角形不一定是全等三角形.故该选项错误;B、全等三角形是指能够完全重合的两个三角形,则全等三角形的周长和面积一定相等,故B正确;C、全等三角形面积相等,但面积相等的两个三角形不一定是全等三角形.故该选项错误;D、两个等边三角形,形状相同,但不一定能完全重合,不一定全等.故错误.故选B.【考点】全等三角形的应用.24.如果等腰三角形的一个角为80°,那么它的一个底角为__________.【答案】50°或80°.【解析】试题解析:由题意知,分两种情况:(1)当这个80°的角为顶角时,则底角=(180°-80°)÷2=50°;(2)当这个80°的角为底角时,则另一底角也为80°.【考点】等腰三角形的性质25.一圆柱高8cm,底面半径2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程(取3)是_________.【答案】10cm.【解析】如图,可以把A和B展开到一个平面内,即圆柱的半个侧面是矩形:矩形的长是圆柱底面周长的一半即2π=6.矩形的宽是圆柱的高8.根据勾股定理可得,爬行的最短路程是矩形的对角线的长为10cm.【考点】最短路径问题;勾股定理.26.在等腰三角形中有一个角是50°,它的顶角是()或().【答案】50°,80°.【解析】因为题目中没有指明该角是顶角还是底角,所以要分两种情况进行分析.①50°是底角,则顶角为:180°-50°×2=80°;②50°为顶角;所以顶角的度数为50°或80°.【考点】三角形内角和定理、等腰三角形的性质.27.(12分)如图,在五角星ABCDE中,试说明:∠A+∠B+∠C+∠D+∠E=180°.【答案】详见解析.【解析】如图,根据三角形外角的性质可得∠B+∠D=∠1,∠A+∠C=∠2,在由三角形内角和定理可知∠1+∠2+∠E=180°,即可得∠B+∠D+∠A+∠C+∠E=180°.试题解析:解:如图∵∠1是△BDF的外角,∴∠B+∠D=∠1,同理∠A+∠C=∠2,由三角形内角和定理可知∠1+∠2+∠E=180°,即,∠B+∠D+∠A+∠C+∠E=180°.【考点】三角形外角的性质;三角形内角和定理.28.如图,△ABC中,AB=5,AC=8,BD,CD分别平分∠ABC,∠ACB,过点D作直线平行于BC,交AB,AC于E,F,则△AEF的周长为()A.12B.13C.14D.18【答案】B.【解析】∵EF∥BC,∴∠EDB=∠DBC,∠FDC=∠DCB,∵△ABC中,∠ABC和∠ACB的平分线相交于点D,∴∠EBD=∠DBC,∠FCD=∠DCB,∴∠EDB=∠EBD,∠FDC=∠FCD,∴ED=EB,FD=FC,∵AB=5,AC=8,∴△AEF的周长为:AE+EF+AF=AE+ED+FD+AF=AE+EB+FC+AF=AB+AC=5+8=13.故选B.【考点】1.等腰三角形的判定与性质;2.平行线的性质.29.如图,Rt△ABC中,∠C=90°,D是AB的中点,若AB=10,则CD的长等于.【答案】5.【解析】∵Rt△ABC中,∠ACB=90°,D是AB的中点,∴CD=AB,∵AB=10,∴CD=×10=5.故答案为:5.【考点】直角三角形斜边上的中线.30.等腰三角形中有一个角等于70º,则它的底角度数是()A.70ºB.55ºC.40º或55ºD.70º或55º【答案】D.【解析】①当这个角是顶角时,底角=(180°﹣70°)÷2=55°;②当这个角是底角时,另一个底角为70°,因为70°+70°<180°,符合三角形内角和定理;故选D.【考点】1.等腰三角形的性质;2.分类讨论.31.到三角形三边距离相等的点是()A.三角形三边垂直平分线的交点B.三角形有三条高的交点C.三角形三条角平分线的交点D.三角形三条中线的交点【答案】C.【解析】∵OG⊥AB,OF⊥AC,OG=OF,∴O在∠A的平分线上,同理O在∠B的平分线上,O在∠C的平分线上,即O是三条角平分线的交点,故选C.【考点】1.角平分线的性质;2.三角形的角平分线、中线和高.32.若等腰三角形一个外角等于100,则它的顶角度数为().A.20°B.80°C.20°或80°D.无法确定【答案】C.【解析】①若100°是顶角的外角,则顶角=180°﹣100°=80°;②若100°是底角的外角,则底角=180°﹣100°=80°,那么顶角=180°﹣2×80°=20°.故选C.【考点】1.等腰三角形的性质;2.分类讨论.33.下列说法中,错误的有()①周长相等的两个三角形全等;②周长相等的两个等边三角形全等;③有三个角对应相等的两个三角形全等;④有两边及一角对应相等的两个三角形全等.A.1个B.2个C.3个D.4个【答案】C.【解析】①全等三角形的周长相等,但周长相等的两个三角形不一定全等,故①错误;②周长相等的等边三角形,边长也相等,根据SSS可判定两三角形全等,故②正确;③判定全等三角形的过程中,必须有边的参与,故③错误;④有两边对应相等,且两边的夹角对应相等的两三角形全等(SAS),故④错误;所以错误的结论有①③④,故选C.【考点】全等三角形的判定.34.(本题7分)△ABC中,∠C是最小内角.若过顶点B的一条直线把这个三角形分成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为△ABC的关于点B的伴侣分割线.例如:如图1,△ABC中,∠A=90°,∠C=20°,若过顶点B的一条直线BD交AC于点D,且∠DBC=20°,则直线BD是△ABC的关于点B的伴侣分割线.(1)如图2,△ABC中,∠C=20°,∠ABC=110°.请在图中画出△ABC关于点B 的伴侣分割线,并注明角度;(2)△ABC中,设∠B的度数为y,最小内角∠C的度数为x.试探索y与x应满足什么要求时,△ABC存在关于点B的伴侣分割线.【答案】(1)答案见试题解析;(2)当y=90°﹣x或y=90°+x或x=45°且y>x或y=135°﹣或y=135°﹣x时△ABC存在伴侣分割线.【解析】(1)首先了解伴侣分割线的定义,然后把角ABC分成90°角和20°角即可;(2)设BD为△ABC的伴侣分割线,分以下两种情况.第一种情况:△BDC是等腰三角形,△ABD是直角三角形;第二种情况:△BDC是直角三角形,△ABD是等腰三角形分别进行分析.试题解析:(1)如图所示:(2)设BD为△ABC的伴侣分割线,分以下两种情况.第一种情况:△BDC是等腰三角形,△ABD是直角三角形,易知∠C和∠DBC必为底角,∴∠DBC=∠C=x.当∠A=90°时,△ABC存在伴侣分割线,此时y=90°﹣x,当∠ABD=90°时,△ABC存在伴侣分割线,此时y=90°+x,当∠ADB=90°时,△ABC存在伴侣分割线,此时x=45°且y>x;第二种情况:△BDC是直角三角形,△ABD是等腰三角形,当∠DBC=90°时,若BD=AD,则△ABC存在伴侣分割线,此时180°﹣x﹣y=y﹣90°,∴y=135°﹣,当∠BDC=90°时,若BD=AD,则△ABC存在伴侣分割线,此时∠A=45°,∴y=135°﹣x.综上所述,当y=90°﹣x或y=90°+x或x=45°且y>x或y=135°﹣或y=135°﹣x时△ABC存在伴侣分割线.【考点】1.作图—应用与设计作图;2.分类讨论.35.如图,正方形ABCD的对角线相交于点O,△OEF是正三角形,且AE=BF,则∠AOE= .【答案】15°.【解析】试题解析:∵四边形ABCD是正方形,∴OA=OB,∠AOB=90°.∵△OEF是正三角形,∴OE=OF,∠EOF=60°.在△AOE和△BOF中,,∴△AOE≌△BOF(SSS),∴∠AOE=∠BOF,∴∠AOE=(∠AOB﹣∠EOF)÷2=(90°﹣60°)÷2=15°.【考点】1.全等三角形的判定与性质;2.等边三角形的性质;3.正方形的性质.36.如图,△ABC中,∠C=90°.(1)在BC边上作一点P,使得点P到点C的距离与点P到边AB的距离相等(尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AC=4,BC=3,求CP的长.【答案】(1)作图见解析;(2)CP的长为.【解析】(1)作∠CAB的平分线,交BC于点P,过点P作PD⊥AB于D,则PC=PD;(2)先利用HL证明Rt△ADP≌Rt△ACP,得出AD=AC=3,再设PC=x,则PD=x,BP=4-x,在Rt△BDP中,由勾股定理得出(4-x)2=x2+12,解出x的值即可.试题解析:(1)如图,点P即为所求;(2)∵AP平分∠CAB,PD⊥AB于D,∠C=90°,∴PD=PC.在Rt△ADP和Rt△ACP中,∴Rt△ADP≌Rt△ACP(HL).∴AD=AC=4.在Rt△ABC中,由勾股定理,得AB=5.∴BD=5﹣4=1.设PC=x,则PD=x,BP=3﹣x,在Rt△BDP中,由勾股定理,得PD2+BD2=PB2,即(3﹣x)2=x2+12,解得:x=.答:CP的长为.【考点】1.角平分线的性质;2.勾股定理;3.作图—基本作图.37.若等腰三角形底角为72°,则顶角为()A.108°B.72°C.54°D.36°【答案】D【解析】根据三角形内角和以及等腰三角形的性质可得:顶角的度数为:180-72×2=36°.【考点】等腰三角形38.(10分)如图,在等腰RT△中,,,点是斜边的中点,点、分别为、边上的点,且.(1)判断与的大小关系,并说明理由;(2)若,,求△的面积.【答案】(1)(1分)连接,证明全等(其它方法酌情给分);(2)【解析】(1)连接AD,利用三线合一可得到AD⊥BC,AD=CD=BD,从而得到∠CDF=∠ADE,然后利用ASA证得△DCF≌△ADE后即可证得DF=DE;(2)根据(1)中结论可证:△EDF为等腰直角三角形,在Rt△AEF中,利用勾股定理可将EF的值求出,进而可求出DE、DF的值,代入三角形面积公式计算即可.试题解析:(1)连接AD,∵AB=AC,D为BC的中点,∴AD⊥BC,AD=CD=BD,∵DE⊥DF,∴∠CDF+∠ADF=∠EDA+∠ADF,即∠CDF=∠ADE,在△DCF和△ADE中,∠C=∠DAE,∠CDF=∠ADE,CD=AD,∴△DCF≌△ADE(AAS),∴DF=DE;(2)解:由(1)知:AE=CF=6,同理AF=BE=8.∵∠EAF=90°,∴.∴EF=10,又∵由(1)知:△AED≌△CFD,∴DE=DF,∴△DEF为等腰直角三角形,,,【考点】等腰三角形的性质、勾股定理、全等三角形的判定与性质.39.如图,△ABC中,∠BAC=100°,EF, MN分别为AB,AC的垂直平分线,如果BC="12" cm,那么△FAN的周长为 cm,∠FAN= .【答案】12,20°.【解析】∵EF,MN分别为AB,AC的垂直平分线,∴AF=BF,AN=CN,∴△FAN的周长为:AF+FN+AN=BF+FN+CN=BC=12cm;∴∠BAF=∠B,∠CAN=∠C,∵△ABC中,∠BAC=100°,∴∠BAF+∠CAN=∠B+∠C=180°﹣∠BAC=80°,∴∠FAN=∠BAC﹣(∠BAF+∠CAN)=20°.故答案为:12,20°.【考点】线段垂直平分线的性质.40.一个三角形的两边长为3和8,第三边长为奇数,则第三边长为()A.5或7B.7或9C.7D.9【答案】B【解析】根据三角形的三边关系,得:第三边大于8-3=5,而小于两边之和8+3=11.又第三边应是奇数,则第三边等于7或9.故选B.【考点】三角形三边关系41.如图,△ABC为等边三角形,D为射线BC上一点,∠ADE=60°,DE与∠ACB的外角平分线交于点E.(1)如图1,点D在BC上,求证:CA=CD+CE;(2)如图2,若D在BC的延长线上,直接写出CA、CD、CE之间的数量关系.【答案】(1)证明见试题解析;(2)CA=CE-CD.【解析】(1)首先在AC上截取CM=CD,由△ABC为等边三角形,易得△CDM是等边三角形,继而可证得△ADM≌△EDC,即可得AM=EC,则可证得CA=CD+CE;(2)首先在AC延长线上截取CM=CD,由△ABC为等边三角形,易得△CDM是等边三角形,继而可证得△ADM≌△EDC,即可得AM=EC,则可证得CA=CE﹣CD.试题解析:证明:(1)在AC上截取CM=CD,∵△ABC是等边三角形,∴∠ACB=60°,∴△CDM是等边三角形,∴MD=CD=CM,∠CMD=∠CDM=60°,∴∠AMD=120°,∵∠ADE=60°,∴∠ADE=∠MDC,∴∠ADM=∠EDC,∵DE与∠ACB的外角平分线交于点E,∴∠ACE=60°,∴∠DCE=120°=∠AMD,在△ADM和△EDC中,∵∠ADM=∠EDC,MD=CD,∠AMD=∠ECD,∴△ADM≌△EDC(ASA),∴AM=EC,∴CA=CM+AM=CD+CE;(2)CA=CE﹣CD.证明:在AC的延长线上截取CM=CD,∵△ABC是等边三角形,∴∠ACB=60°,∴∠DCM=60°,∴△CDM是等边三角形,∴MD=CD=CM,∠CMD=∠CDM=60°,∵DE与∠ACB的外角平分线交于点E,∴∠ACE=∠DCE=60°,∴∠ECD=∠AMD,∵∠ADE=60°,∴∠ADE=∠CDM,∴∠ADM=∠EDC,在△ADM和△EDC中,∵∠ADM=∠EDC,MD=CD,∠AMD=∠ECD,∴△ADM≌△EDC(ASA),∴AM=EC,∴CA=AM﹣CM=CE﹣CD.【考点】1.等边三角形的性质;2.全等三角形的判定与性质.42.下列三条线段,能组成三角形的是()A.3,3,3B.3,3,6C.3,2,5D.3,2,6【答案】A.【解析】选项B, 3+3=6;选项C, 3+2=5;选项D, 3+2<6.根据三角形的三边关系可得选项B、C、D不能构成三角形,故答案选A.【考点】三角形的三边关系.43.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3= .【答案】55°.【解析】试题分析:在△ABD与△ACE中,因∠BAC=∠DAE,即∠1+∠CAD=∠CAE+∠CAD,可得∠1=∠CAE.又因为AB=AC,AD=AE,根据SAS可判定△ABD≌△ACE,根据全等三角形的对应角相等可得∠2=∠ABD.再由三角形外角的性质可得∠3=∠1+∠ABD=∠1+∠2 =25°+30°=55°.【考点】全等三角形的判定及性质.44.将等边三角形、正方形、正五边形按如图所示的位置摆放,如果∠1=41°,∠2=51°,那么∠3的度数等于.【答案】10°.【解析】等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是:(5﹣2)×180°=108°,则∠3=360°﹣60°﹣90°﹣108°﹣∠1﹣∠2=10°.故答案为:10°.【考点】1.多边形内角与外角;2.三角形内角和定理.45.如图,将长AB=5cm,宽AD=3cm的矩形纸片ABCD折叠,使点A与C重合,折痕为EF,则AE长为 cm.【答案】3.4【解析】根据矩形的性质可得:BC=AD=3cm,设AE=xcm,则BE=(5-x)cm,根据折叠图形的性质可得CE=AE=xcm,根据Rt△BCE的勾股定理可得:,解得:x=3.4【考点】折叠图形的性质、勾股定理46.计算:如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD.求证:AC=DF.【答案】见解析【解析】根据FB=CE得出BC=EF,根据平行得出∠B=∠E,∠ACB=∠DFE,从而得出三角形全等.试题解析:∵FB=CE ∴BC=EF ∵ AB∥ED ∴∠B=∠E ∵ AC∥EF ∴∠ACB=∠DFE∴△ABC≌△DEF ∴AC=DF【考点】三角形全等的判定及性质47.已知等腰三角形的两条边长分别是3和7,则它的周长是()A.17B.15C.13D.13或17【答案】A【解析】当3为腰时,则3+3=6<7,不能构成三角形,则等腰三角形的腰长为7,底为3,则周长为:7+7+3=17.【考点】等腰三角形的性质48.如图,∠AOP=∠BOP=15°,PC∥OA,PQ⊥OA,若PC=4,则PQ=___ __.【答案】2【解析】过点P作PE⊥OB,根据题意可得:∠COP=∠CPO=15°,根据外角的性质可得:∠ECP=30°,根据直角三角形的性质可得:PE=2,根据角平分线的性质可得:PQ=PE=2.【考点】角平分线的性质、直角三角形49.下列判定直角三角形全等的方法,不正确的是()A.两条直角边对应相等B.斜边和一锐角对应相等C.斜边和一条直角边对应相等D.两锐角相等【答案】D【解析】A可利用SAS来判定全等,故正确;B可利用AAS来判定全等,故正确;C可利用HL判定全等,故正确;D面积相等不一定退出两直角三角形全等,没有相关的判定方法,故不正确.故选D【考点】直角三角形全等的判定50.在△ABC中,若∠B=∠C=2∠A,则∠A的度数为()A.72°B.45°C.36°D.30°【答案】C【解析】根据三角形的内角和可知∠A+∠B+∠C=180°,即5∠A=180°,解得∠A=36°.故选C【考点】三角形的内角和51.如图,∠1=∠2,要使△ABE ≌△ACE,则还需添加一个条件是.【答案】∠B=∠C等【解析】根据题意,易得∠AEB=∠AEC,又由AE公共边,所以根据全等三角形的判定方法容易寻找添加条件为:当∠B=∠C时,△ABE≌△ACE(AAS);或BE=CE时,△ABE≌△ACE(SAS);或∠BAE=∠CAE时,△ABE≌△ACE(ASA).【考点】全等三角形的判定52.△ABC中,AB=AC,D为AB上一点,且AD=CD=BC,则∠A的度数为()A.30°B.36°C.40°D.45°【答案】B.【解析】试题解析:∵AB=AC,AD=CD=BC,∴∠A=∠ACD,∠B=∠ACB=∠CDB,设∠A=x°,则∠ACD=∠A=x°,∴∠B=∠ACB=∠CDB=∠A+∠ACD=2x°∵∠A+∠B+∠ACB=180°,∴x+2x+2x=180,∴x=36,∴∠A=36°.故选B.【考点】等腰三角形的性质.53.如图,AB=AE,∠ABC=∠AED,BC=ED,点F是CD的中点.试说明:AF⊥CD.【答案】参见解析.【解析】连接AC、AD.利用已知条件证明△ABC≌△AED(SAS).得出AC=AD.因为点F 是CD的中点.所以利用等腰三角形性质即可得出AF⊥CD.试题解析:连接AC、AD.在△ABC和△AED中,∵AB=AE,∠B=∠E,BC=ED,∴△ABC≌△AED(SAS).∴AC=AD.∴△ACD为等腰三角形.∵F为CD的中点,∴AF⊥CD.【考点】1.全等三角形的判定与性质;2.等腰三角形性质.54.(2015秋•句容市月考)已知△ABC中,∠BAC=150°,AB、AC的垂直平分线分别交BC 于E、F.求∠EAF的度数.【答案】120°.【解析】根据三角形内角和定理可求∠B+∠C;根据垂直平分线性质,EA=EB,FA=FC,则∠EAB=∠B,∠FAC=∠C,∠EAF=∠BAC﹣∠EAB﹣∠FAC=140°﹣(∠B+∠C).解:设∠B=x,∠C=y.∵∠BAC+∠B+∠C=180°,∠BAC=150°∴x+y=30°.∵AB、AC的垂直平分线分别交BC于E、F,∴EA=EB,FA=FC,∴∠EAB=∠B,∠FAC=∠C.∴∠EAF=∠BAC﹣(x+y)=150°﹣30°=120°.【考点】线段垂直平分线的性质.55.下面每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是()A.3、4、5B.6、8、10C.D.5、12、13【答案】C【解析】能构成直角三角形则说明两条短的边的平方和等于长的边的平方.3²+4²=5²;6²+8²=10²;5²+12²=13².【考点】直角三角形的判定56.已知:如图,点D是△ABC内一点,AB=AC,∠1=∠2.求证:AD平分∠BAC.【答案】证明见解析.【解析】先根据∠1=∠2得出BD=CD,再由SSS定理得出△ABD≌△ACD,由全等三角形的性质即可得出结论.试题解析:∵∠1=∠2,∴BD=CD,在△ABD与△ACD中,∵,∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD,即AD平分∠BAC.【考点】全等三角形的判定与性质.57.如图,已知一块四边形的草地ABCD,其中∠A=60°,∠B=∠D=90°,AB=20米,CD=10米,求这块草地的面积.【答案】150.【解析】所求四边形ABCD的面积=S△ABE -S△CED.分别延长AD,BC交于点E,在直角三角形中解题,根据角的正弦值与三角形边的关系,可求出各边的长,然后代入三角函数进行求解.。

初一数学图形与证明试题答案及解析

初一数学图形与证明试题答案及解析

初一数学图形与证明试题答案及解析1.如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”. 则半径为2的“等边扇形”的面积为【答案】2【解析】根据扇形的面积公式S=lr,其中l=r,求解即可.解:∵S=lr,∴S=×2×2=2,故答案为2.本题是一个新定义的题目,考查了扇形面积的计算,注:扇形面积等于扇形的弧长与半径乘积的一半.2.如图,直线,∠1=40°,∠2=75°,则∠3等于()A.55°B.60°C.65°D.70°【答案】C.【解析】如图:∵直线l1∥l2,∠1=40°,∠2=75°,∴∠1=∠4=40°,∠2=∠5=75°,∴∠3=65°.故选C.【考点】1.三角形内角和定理;2.对顶角、邻补角;3.平行线的性质3.如图,C、D是线段AB上的两个点,CD="8" cm,M是AC的中点,N是DB的中点,MN="12" cm,那么线段AB的长等于 cm.【答案】16【解析】由CD=8cm,MN=12cm,可得MC+DN=4cm,由M是AC的中点,N是DB的中点可得AC+DB=2MC+2DN=8cm,即可求得AB=AC+CD+DB=16cm.【考点】比较线段的长短4.在一块长为,宽为的长方形草地上,有一条弯曲水泥小路,小路任何地方的水平宽度都是1个单位,则草地面积为_________.【答案】(ab-b).【解析】∵小路任何地方的水平宽度都是1个单位,∴通过平移把小路变成长为b,宽为1的面积相等的矩形,所以草地面积为(ab-b).【考点】1.图形的平移规律;2.矩形面积的计算.5.下列命题中,①对顶角相等.②等角的余角相等.③若,则.④同位角相等.其中真命题的个数有()A.1个B.2个C.3个D.4个【答案】B【解析】①对顶角相等,正确;②等角的余角相等,正确;③若|a|=|b|,则a=b,错误,如|-2|=|2|,但-2≠2;④同位角相等,错误,如图,∠1与∠2是同位角,但∠1≠∠2;故2个正确;故选B.【考点】真命题与假命题.6.下列长度的3条线段,能构成三角形的是()A.1,2,3B.2,3,4C.6,6,12D.5,6,12【答案】B【解析】三角形中任意两边之和大于第三边,任意两边之差小于第三边.A、1+2=3;C、6+6=12;D、5+6=11<12.故选B.【考点】三角形三边关系.7.已知点P是线段AB的中点,若AB=6cm,则PB= cm.【答案】3【解析】根据线段的中点平分线段的长度.根据点P是线段AB的中点,则PB=AB==3cm.【考点】两点间的距离.8.如图,若PE平分∠BEF,PF平分∠DFE,∠1=35°,∠2=55°,则AB与CD平行吗?为什么?【答案】见解析.【解析】先根据角平分线的性质得出∠BEF与∠DFE的度数,再由等式的性质得出∠BEF+∠DFE=180°,从而根据同旁内角互补,两直线平行得出结论.试题解析:AB∥CD.理由:∵PE平分∠BEF,PF平分∠DFE,∠1=35°,∠2=55°,∴∠BEF=2∠1=70°,∠DFE=2∠2=110°(角平分线的定义),∴∠BEF+∠DFE=70°+110°=180°(等式的性质),∴AB∥CD(同旁内角互补,两直线平行).【考点】平行线的判定9.下列命题中是假命题的是()A.对顶角相等B.同位角相等C.邻补角互补D.平行于同一条直线的两条直线平行【答案】B.【解析】根据正确的命题叫真命题,错误的命题叫做假命题可知:选项A,对顶角相等是真命题;选项B,同位角相等是假命题,只有两直线平行,同位角才相等;选项C,邻补角互补是真命题;选项D,平行于同一条直线的两条直线平行是真命题;故答案选B.【考点】真假命题.10.已知等腰三角形的一边长为4,另一边长为8,则这个等腰三角形的周长为.【答案】20.【解析】分两种情况:第1种情况,腰长为8,底边长为4,等腰三角形的周长为20;第2种情况,腰长为4,底边长为8,这种情况不存在,故答案为20.【考点】分类讨论;等腰三角形的性质.11.下列说法中:①因为对顶角相等,所以相等的两个角是对顶角;②在平面内,不相交的两条直线叫做平行线;③过一点有且只有一条直线与已知直线垂直;正确的有().A.个B.个C.个D.个【答案】C.【解析】①说法错误,因对顶角有特殊的位置关系,相等的角不一定是对顶角;②是平行线的定义,正确;③是垂线的性质,正确,故选C.【考点】1.对顶角的理解;2.平行线意义;3.垂线性质.12.如图,下列不能判定∥的条件是( ).A.B.C.D.【答案】B.【解析】选项A,根据同旁内角互补,两直线平行可判定∥;选项B,根据内错角相等,两直线平行可判定AD∥BC,不能判定∥;选项C,根据内错角相等,两直线平行可判定∥;选项D,根据同位角相等,两直线平行可判定∥.故答案选B.【考点】平行线的判定.13.如图,下列说法错误的是()A.∠A与∠B是同旁内角B.∠3与∠1是同旁内角C.∠2与∠3是内错角D.∠1与∠2是同位角【答案】D【解析】根据同位角、内错角、同旁内角的定义可知:∠A与∠B是同旁内角,所以A说法正确;∠3与∠1是同旁内角,所以B说法正确;∠2与∠3是内错角,所以C说法正确;∠1与∠2是邻补角,所以D说法错误,故选:D.【考点】1.同位角;2.内错角;3.同旁内角.14.如图,等边三角形ABC的边长为10厘米.点D是边AC的中点.动点P从点C出发,沿BC的延长线以2厘米/秒的速度作匀速运动,设点P的运动时间为t(秒).若△BDP是等腰三角形,则为t= .【答案】【解析】过点D作DG⊥BC,利用等边三角形的性质得出BD=5,再利用含30°的直角三角形得出BG=,即可得出PC的长度.过点D作DG⊥BC,如图:∵等边三角形ABC的边长为10厘米,点D是边AC的中点,∴BD=5,∠DBG=30°,∴BG=,∴PC=-5=,可得t=.【考点】等边三角形的性质;等腰三角形的判定15.(3分)下面是一个正方体纸盒的展开图,请把-10,7,10,-2,-7,2分别填入六个正方形,使得按虚线折成正方体后,相对面上的两数互为相反数。

(2021年整理)图形与证明(三条线段之间的数量关系)

(2021年整理)图形与证明(三条线段之间的数量关系)

(完整)图形与证明(三条线段之间的数量关系)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)图形与证明(三条线段之间的数量关系))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)图形与证明(三条线段之间的数量关系)的全部内容。

图形与证明(2)1(09河北)在图14-1至图14—3中,点B 是线段AC 的中点,点D 是线段CE 的中点.四边形BCGF 和CDHN 都是正方形.AE 的中点是M .(1)如图14—1,点E 在AC 的延长线上,点N 与点G重合时,点M 与点C 重合, 求证:FM = MH ,FM ⊥MH ;(2)将图14—1中的CE 绕点C 顺时针旋转一个锐角,得到图14-2,求证:△FMH 是等腰直角三角形; (3)将图14-2中的CE 缩短到图14—3的情况,△FMH 还是等腰直角三角形吗?(不必 说明理由)2. (10沈阳)如图1,在△ABC 中,点P 为BC 边中点,直线a 绕顶点A 旋转,若B 、P 在直线a 的异侧,BM 直线a 于点M ,CN 直线a 于点N ,连接PM 、PN ; (1) 延长MP 交CN 于点E (如图2)。

求证:△BPM △CPE ; 求证:PM = PN ; (2) 若直线a 绕点A 旋转到图3的位置时,点B 、P 在直线a 的同侧,其它条件不变。

此时PM =PN 还成立吗?若成立,请给予证明;若不成立,请说明理由;(3) 若直线a 绕点A 旋转到与BC 边平行的位置时,其它条件不变。

请直接判断四边形MBCN的形状及此时PM =PN 还成立吗?不必说明理由。

3.(08北京)请阅读下列材料:图14-1 A HC (M )DE BFG (N )G 图14-2AHC DEB F NMAHCDE 图14-3BFG MN aA BCPMNA BCM N aPA BCPNMa图1 图2 图3问题:如图1,在菱形ABCD 和菱形BEFG 中,点A B E ,,在同一条直线上,P 是线段DF 的中点,连结PG PC ,.若60ABC BEF ∠=∠=,探究PG 与PC 的位置关系及PGPC的值.小聪同学的思路是:延长GP 交DC 于点H ,构造全等三角形,经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题: (1)写出上面问题中线段PG 与PC 的位置关系及PGPC的值; (2)将图1中的菱形BEFG 绕点B 顺时针旋转,使菱形BEFG 的对角线BF 恰好与菱形ABCD 的边AB 在同一条直线上,原问题中的其他条件不变(如图2).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明.(3)若图1中2(090)ABC BEF αα∠=∠=<<,将菱形BEFG 绕点B 顺时针旋转任意角度,原问题中的其他条件不变,请你直接写出PGPC的值(用含α的式子表示).4。

初三数学图形与证明试题答案及解析

初三数学图形与证明试题答案及解析

初三数学图形与证明试题答案及解析1.顺次连接矩形ABCD各边的中点,所得四边形必定是()A.邻边不等的平行四边形B.矩形C.正方形D.菱形【答案】D【解析】如图:E,F,G,H为矩形的中点,则AH=HD=BF=CF,AE=BE=CG=DG,在Rt△AEH与Rt△DGH中,AH=HD,AE=DG,所以△AEH≌△DGH,因此根据全等三角形的性质可得EH=HG,同理,△AEH≌△DGH≌△BEF≌△CGF,因此可得EH=HG=GF=EF,所以四边形EFGH为菱形.故选A【考点】菱形的判定2.如图,某仓储中心有一斜坡AB,其坡度为,顶部A处的高AC为4m,B、C在同一水平地面上。

(1)求斜坡AB的水平宽度BC;(2)矩形DEFG为长方形货柜的侧面图,其中DE=2.5m,EF=2m.将该货柜沿斜坡向上运送,当BF=3.5m时,求点D离地面的高。

(,结果精确到0.1m)【答案】(1) 8m.(2) 4.5m.【解析】(1)根据坡度定义直接解答即可;(2)作DS⊥BC,垂足为S,且与AB相交于H.证出∠GDH=∠SBH,根据,得到GH=1m,利用勾股定理求出DH的长,然后求出BH=5m,进而求出HS,然后得到DS.试题解析:(1)∵坡度为i=1:2,AC=4m,∴BC=4×2=8m.(2)作DS⊥BC,垂足为S,且与AB相交于H.∵∠DGH=∠BSH,∠DHG=∠BHS,∴∠GDH=∠SBH,∵DG=EF=2m,∴GH=1m,∴DH=m,BH=BF+FH=3.5+(2.5-1)=5m,设HS=xm,则BS=2xm,∴x2+(2x)2=52,∴x=m,∴DS=+=2m≈4.5m.【考点】解直角三角形的应用-坡度坡角问题.3.如图,矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C与点A重合,则下列结论错误的是()A.AF=AE B.△ABE≌△AGF C.EF=D.AF=EF【答案】D.【解析】∵AD∥BC,∴∠AFE=∠FEC,∵∠AEF=∠FEC,∴∠AFE=∠AEF,∴AF=AE,∴选项A正确;∵ABCD是矩形,∴AB=CD,∠B=∠C=90°,∵AG=DC,∠G=∠C,∴∠B=∠G=90°,AB=AG,∵AE=AF,∴△ABE≌△AGF,∴选项B正确;设BE=x,则CE=BC﹣BE=8﹣x,∵沿EF翻折后点C与点A重合,∴AE=CE=8﹣x,在Rt△ABE中,,即,解得x=3,∴AE=8﹣3=5,由翻折的性质得,∠AEF=∠CEF,∵矩形ABCD的对边AD∥BC,∴∠AFE=∠CEF,∴∠AEF=∠AFE,∴AE=AF=5,过点E作EH⊥AD于H,则四边形ABEH是矩形,∴EH=AB=4,AH=BE=3,∴FH=AF﹣AH=5﹣3=2,在Rt△EFH中,EF=,∴选项C正确;由已知条件无法确定AF和EF的关系,故选D.【考点】翻折变换(折叠问题).4.(7分)如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE,DF.(1)求证:四边形CEDF是平行四边形;(2)①当AE= cm时,四边形CEDF是矩形;②当AE= cm时,四边形CEDF是菱形;(直接写出答案,不需要说明理由)【答案】(1)证明见解析;(2)①当AE=3.5cm时,四边形CEDF是矩形.②当AE=2cm时,四边形CEDF是菱形.【解析】(1)利用“ASA”即可得证;①当四边形CEDF是矩形时,则有EG=DG=1.5cm,又由已知可得∠ADC=60°,从而得△EGD为等边三角形,从而得DE=1.5cm,从而得AE=3.5cm;②.当四边形CEDF是菱形时,则有EF⊥CD,由已知可知∠ADC=60°,从而可得∠DEG=30°,从而得DE=2DG=3,从而得AE=2.试题解析:(1)∵四边形ABCD是平行四边形,∴ CF∥ED,∴∠FCG=∠EDG,∵ G是CD的中点,∴ CG=DG,在△FCG和△EDG中,,∴△FCG ≌△EDG(ASA),∴ FG=EG,∵ CG=DG,∴四边形CEDF是平行四边形;(2)①当AE=3.5cm时,四边形CEDF是矩形.②当AE=2cm时,四边形CEDF是菱形.【考点】1.平行四边形的性质;2.全等三角形的判定与性质;3.矩形的判定;4.菱形的判定.5.如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD= 度.【答案】60°.【解析】由四边形OABC为平行四边形,根据平行四边形对角相等,即可得∠B=∠AOC,由圆周角定理,可得∠AOC=2∠ADC,又由内接四边形的性质,可得∠B+∠ADC=180°,即可求得∠B=∠AOC=120°,∠ADC=60°,然后由三角形外角的性质,即可求得∠OAD+∠OCD的度数.试题解析:连接DO并延长,∵四边形OABC为平行四边形,∴∠B="∠AOC,"∵∠AOC="2∠ADC,"∴∠B="2∠ADC,"∵四边形ABCD是⊙O的内接四边形,∴∠B+∠ADC="180°,"∴3∠ADC="180°,"∴∠ADC="60°,"∴∠B="∠AOC=120°,"∵∠1="∠OAD+∠ADO,∠2=∠OCD+∠CDO,"∴∠OAD+∠OCD=(∠1+∠2)-(∠ADO+∠CDO)=∠AOC-∠ADC=120°-60°=60°.【考点】1.圆周角定理;2.平行四边形的性质.6.下列四个命题中真命题是()A.对角线互相垂直平分的四边形是正方形B.对角线垂直且相等的四边形是菱形C.对角线相等且互相平分的四边形是矩形D.四边都相等的四边形是正方形【答案】C【解析】因为对角线互相垂直平分的四边形是菱形,所以A错误;因为对角线垂直且相等的四边形可能是菱形也可能是等腰梯形,所以B错误;因为对角线相等且互相平分的四边形是矩形,所以C正确;因为四边都相等的四边形是菱形,所以D错误;故选:C.【考点】特殊的平行四边形的判定.7.挑游戏棒是一种好玩的游戏,游戏规则:当一根棒条没有被其它棒条压着时,就可以把它往上拿走。

图形与证明好题

图形与证明好题

图形与证明好题图形与证明好题1顺次连接等腰梯形两底及两对⾓线的中点所得的四边形是()A.平⾏四边形 B.矩形 C.菱形 D.正⽅形2、正⽅形四边中点的连线围成的四边形(最准确的说法)⼀定是()A.矩形 B.菱形 C.正⽅形 D.平⾏四边形3、由三⾓形的三条中位线围成的三⾓形的周长是6,则这个三⾓形的周长是()A.6 B.8 C.10 D.124、四边形ABCD是边长为16的菱形,顺次连接它的各边中点组成四边形EFGH(四边形EFGH称为原四边形ABCD的中点四边形),再顺次连接四边形EFGH的各边中点组成第⼆个中点四边形,…,则按上述规律组成的第⼋个中点四边形的周长等于()A.B.1 C.4 D.85、如图,△ABC的中线BE与CD交于点G,连接DE,下列结论不正确的是()A.点G是△ABC的重⼼ B.DE∥BCC.△ABC的⾯积=2△ADE的⾯积 D.BG=2GE6、如图,梯形ABCD中,DC∥AB,EF是梯形的中位线,对⾓线BD交EF于G,若AB=10,EF=8,则GF的长等于()A.2 B.3 C.4 D.57、如图,已知等腰梯形ABCD,AD∥BC,AB=DC,E、F、G、H 分别是AD、AB、BC、CD的中点,则四边形EFGH⼀定是()A.正⽅形 B.矩形 C.菱形 D.等腰梯形8、如图所⽰,S、R、Q在AP上,B、C、D、E在AF上,其中BS、CR、DQ 皆垂直于AF,且AB=BC=CD=DE,若PE=2公尺,则BS+CR+DQ的长是多少公尺()A.B.2 C.D.39、如图,梯形ABCD中,AD∥BC,EF是梯形的中位线,连接AC交EF于G,BD交EF于H,若AD:BC=2:3,则HG:AD等于()A.1:2 B.1:4 C.2:3 D.1:310、如图,△ABC、△ADE及△EFG都是等边三⾓形,D和G分别为AC和AE的中点.若AB=4时,则图形ABCDEFG外围的周长是()A.12 B.15 C.18 D.2111、如图,M是△ABC的边BC的中点,AN平分∠BAC,且BN⊥AN,垂⾜为N,且AB=6,BC=10,MN=1.5,则△ABC的周长是()A.28 B.32 C.18 D.2512、如图,在平⾯直⾓坐标系中,以O为圆⼼,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆⼼,⼤于MN的长为半径画弧,两弧在第⼆象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为()A.a=b B.2a+b=-1C.2a-b=1 D.2a+b=113、边长相等的下列两种正多边形的组合,不能作平⾯镶嵌的是()A.正⽅形与正三⾓形 B.正五边形与正三⾓形C.正六边形与正三⾓形 D.正⼋边形与正⽅形14、李明设计了下⾯四种正多边形的瓷砖图案,⽤同⼀种瓷砖可以平⾯密铺的是()A.①②④ B.②③④C.①③④ D.①②③15、如图,在△OAB中,C是AB的中点,反⽐例函数y=(k>0)在第⼀象限的图象经过A、C两点,若△OAB⾯积为6,则k的值为()A.2 B.4 C.8 D.1616、⿊⾊正三⾓形与⽩⾊正六边形的边长相等,⽤它们镶嵌图案,⽅法如下:⽩⾊正六边形分上下两⾏,上⾯⼀⾏的正六边形个数⽐下⾯⼀⾏少⼀个,正六边形之间的空隙⽤⿊⾊的正三⾓形嵌满.按第1,2,3个图案(如图)所⽰规律依次下去,则第n个图案中,⿊⾊正三⾓形和⽩⾊正六边形的个数分别是()A.n2+n+2,2n+1 B.2n+2,2n+1C.4n,n2﹣n+3 D.4n,2n+117、如图所⽰,已知AB=5 cm,AC=3 cm,且△ABD与△ACD的⾯积⽐为5∶3,则∠1与∠2的⼤⼩关系是________.18、如图所⽰,E为△ABC的边AC的中点,CN∥AB,过E点作直线交AB于M点,交CN于N点,若MB=6 cm,CN=4 cm,则AB=________.19、如图所⽰,在Rt△ABC中,BE平分∠ABC,ED⊥AB于D,若AC=3 cm,则AE+DE=________ cm.20、如图所⽰,要测量河岸相对的两点A、B之间的距离,先从B处出发与AB 成90°⾓⽅向,向前⾛50⽶到C处⽴⼀根标杆,然后⽅向不变继续朝前⾛50⽶到D处,在D处转90°沿DE⽅向再⾛17⽶,到达E处,通过⽬测使A、C与E在同⼀直线上,那么测得AB的长为________⽶.21、如图,菱形ABCD的两条对⾓线分别长6和8,点P是对⾓线AC上的⼀个动点,点M、N分别是边AB、BC的中点,则PM+PN的最⼩值是.22、如图,在边长为2cm的正⽅形ABCD中,点Q为BC边的中点,点P为对⾓线AC上??动点,连接PB、PQ,则△PBQ周长的最⼩值为cm(结果不取近似值).23、如图,△ABC和△A′B′C是两个完全重合的直⾓三⾓板,∠B=30°,斜边长为10cm.三⾓板A′B′C绕直⾓顶点C顺时针旋转,当点A′落在AB 边上时,CA′旋转所构成的扇形的弧长为cm.24、利⽤⽹格画图:(1)过点C画AB的平⾏线CD;(2)过点C画AB的垂线,垂⾜为E;(3)线段CE的长度是点C到直线的距离;(4)连接CA、CB,在线段CA、CB、CE中,线段最短,理由:.25、如图所⽰,已知∠MON的边OM上有两点A、B,边ON上有两点C、D,且AB=CD,P为∠MON的平分线上⼀点.问:(1)△ABP与△PCD是否全等?请说明理由.(2)△ABP与△PCD的⾯积是否相等?请说明理由.26、如图,C是线段AB的中点,CD平分∠ACE,CE平分∠BCD,CD=CE.(1)求证:△ACD≌△BCE;(2)若∠D=50°,求∠B的度数.27、如图所⽰,△ABC沿⼀直线运动到△A1B1C1的位置,延长AC、A1B1相交于D点.(1)试说明∠D与∠A的⼤⼩关系;(2)试说明BB1=CC1;(3)你还能发现其他信息吗?写出两个.28、如图所⽰,河旁有⼀座⼩⼭,从⼭顶A处测得河对岸点C的俯⾓为30°,测得岸边点D的俯⾓为45°,⼜知河宽CD为50⽶,现需从⼭顶A到河对岸点C拉⼀条笔直的缆绳AC,求缆绳AC的长.(结果保留根号)29、已知:如图,在Rt△ABC中,∠C=90°,∠ABC=60°,BC长为,BB是∠ABC的平分线,交AC于B1,过B1作B1B2⊥AB于B2,过B2作B2B3∥1BC交AC于B,过B3作B3B4⊥AB于B4,过B4作B4B5∥BC交AC于B5,过B53作B 5B 6⊥AB 于B 6……重复以上操作,设b 0=BB 1,b 1=B 1B 2,b 2=B 2B 3,b 3=B 3B 4,…,b n =B n B n +1,….(1)求b 0、b 3的长;(2)求b n 的表达式.(⽤含p 与n 的式⼦表⽰,其中n 为正整数) 30、如图,D 是△ABC 的边AC 上⼀点,CD =2AD ,AE⊥BC 交BC 于点E .若BD =8,,求AE 的长.31、如图所⽰,已知在△ABC 中,D 为AB 的中点,DC⊥AC ,且,求∠A 的各三⾓函数值.32、已知:在△ABC 中,∠BAC=90°,AB=AC ,AE 是过点A 的⼀条直线,且BD ⊥AE 于D ,CE ⊥AE 于E .(1)当直线AE 处于如图①的位置时,有BD=DE+CE ,请说明理由;(2)当直线AE 处于如图②的位置时,则BD 、DE 、CE 的关系如何?请说明理由;(3)归纳(1)、(2),请⽤简洁的语⾔表达BD 、DE 、CE 之间的关系.33、探究与发现:(1)探究⼀:三⾓形的⼀个内⾓与另两个内⾓的平分线所夹的⾓之间的关系已知:如图1,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系,并说明理由.图1 图2 图3(2)探究⼆:四边形的两个个内⾓与另两个内⾓的平分线所夹的⾓之间的关系已知:如图2,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试探究∠P与∠A+∠B的数量关系,并说明理由.(3)探究三:六边形的四个内⾓与另两个内⾓的平分线所夹的⾓之间的关系已知:如图3,在六边形ABCDEF中,DP、CP分别平分∠EDC和∠BCD,请直接写出∠P与∠A+∠B+∠E+∠F的数量关系:__ __ __.34、我们容易证明,三⾓形的⼀个外⾓等于与它不相邻的两个内⾓的和.那么,三⾓形的⼀个内⾓与它不相邻的两个外⾓的和之间存在怎样的数量关系呢?1.尝试探究:(1)如图1,∠DBC与∠ECB分别为△ABC的两个外⾓,试探究∠A与∠DBC +∠ECB之间存在怎样的数量关系?为什么?2.初步应⽤:(2) 如图2,在△ABC纸⽚中剪去△CED,得到四边形ABDE,∠1=130°,则∠2-∠C=_______________;(3) ⼩明联想到了曾经解决的⼀个问题:如图3,在△ABC中,BP、CP分别平分外⾓∠DBC、∠ECB,∠P与∠A有何数量关系?请利⽤上⾯的结论直接写出答案_ _.3.拓展提升:(4) 如图4,在四边形ABCD中,BP、CP分别平分外⾓∠EBC、∠FCB,∠P 与∠A、∠D有何数量关系?为什么?(若需要利⽤上⾯的结论说明,可直接使⽤,不需说明理由.)35、在等边△ABC中,点D、E分别是边AC、AB上的点(不与A、B、C重合),点P是平⾯内⼀动点。

九年级数学图形与证明1

九年级数学图形与证明1
(1)试判断四边形AODE的形状,说明理由;
(2)请你连结EB、EC,并证明EB=EC.
3、已知:平行四边形ABCD中,对角线AC和BD 相交于点O,M,N分别是OA,OC的中点, 求证:BM=DN ,BM∥DN.
4、如图所示,以△ABC的三边为边,分别作三个 等边三角形.
(1)求证四边形ADEF是平行四边形. (2)△ABC满足什么条件时,四边形ADEF是菱形?
是矩形? (3)这样的平行四边形ADEF是否总是存在?
E
F
D A
B
C
5、如图,在△ABC中,D是BC边上的一点,E是
AD的中点,过点A作BC的平行线交BE的延长线于 F,且AF=DC,连接CF. (1)求证:D是BC的中点; (2)如果AB=AC,试猜测四边形ADCF的形状,
并证明你的结论.
ቤተ መጻሕፍቲ ባይዱ
初中数学九年级上册 (苏科版)
第一章 图形与证明(二)
复习(2)
1、等腰三角形的一个底角为30°,则顶角的
度数是
度.
2、等腰三角形的两边长分别为4和9,则第三 边长为
3、下列命题为真命题的是( ) A:三角形的中位线把三角形的面积分成相等的两部分; B:对角线相等且相互平分的四边形是正方形; C:关于某直线对称的两个三角形是全等三角形; D:一组对边平行,另一组对边相等的四边形一定是 等腰梯形
外链代发/
低沉古怪的轰响,绿宝石色的大地开始抖动摇晃起来,一种怪怪的惨窜骷髅味在加速的空气中跳跃。最后扭起快乐机灵、阳光天使般的脑袋一挥,飘然从里面流出一道金光,他抓住金光怪异地一 旋,一组紫溜溜、金灿灿的功夫∈万变飞影森林掌←便显露出来,只见这个这件玩意儿,一边颤动,一边发出“呜呜”的奇响。……悠然间蘑菇王子全速地颤起神奇的星光肚脐,只见他天使般的 黑色神童眉中,突然弹出五十团转舞着∈追云赶天鞭←的酱缸状的飞沫,随着蘑菇王子的颤动,酱缸状的飞沫像病床一样在拇指神秘地搞出飘飘光烟……紧接着蘑菇王子又用自己挺拔威风的淡蓝 色雪峰牛仔裤秀出紫葡萄色闪电般跳跃的铁锹,只见他潇洒飘逸的、像勇士一样的海蓝色星光牛仔服中,变态地跳出五十组甩舞着∈追云赶天鞭←的仙翅枕头叉状的鸭掌,随着蘑菇王子的摇动, 仙翅枕头叉状的鸭掌像熊胆一样,朝着妃赫瓜中士飘浮的嘴唇怪踢过去!紧跟着蘑菇王子也转耍着功夫像细竹般的怪影一样朝妃赫瓜中士怪踢过去随着两条怪异光影的瞬间碰撞,半空顿时出现一 道淡绿色的闪光,地面变成了雪白色、景物变成了深蓝色、天空变成了灰蓝色、四周发出了奇特的巨响……蘑菇王子淡红色的古树般的嘴唇受到震颤,但精神感觉很爽!再看妃赫瓜中士老态的脖 子,此时正惨碎成手镯样的亮黑色飞光,全速射向远方,妃赫瓜中士猛咆着发疯般地跳出界外,疾速将老态的脖子复原,但元气和体力已经大伤神怪蘑菇王子:“你的业务怎么越来越差,还是先 回去修炼几千年再出来混吧……”妃赫瓜中士:“这次让你看看我的真功夫。”蘑菇王子:“你的假功夫都不怎么样,真功夫也好不到哪去!你的创意实在太垃圾了!”妃赫瓜中士:“等你体验 一下我的『蓝银缸圣耳塞爪』就知道谁是真拉极了……”妃赫瓜中士忽然跳动的手掌连续膨胀疯耍起来……凸凹的活似樱桃形态的脚透出深灰色的阵阵幽雾……平常的暗黑色脸盆耳朵跃出水蓝色 的隐约幽音。接着扭动纯白色灯泡模样的脑袋一吼,露出一副古怪的神色,接着晃动敦实的屁股,像墨灰色的六眼荒原蝶般的一扭,斑点的纯灰色瓦刀形态的鼻子立刻伸长了九十倍,紧缩的身材 也突然膨胀了一百倍!紧接着淡紫色肥肠般的身材闪眼间流出暗黄色的豹鬼残隐味……不大的的紫红色熊猫一样的皮鞭雪晓围腰透出残嗥坟茔声和咻咻声……圆圆的雪白色怪石似的猪精星怪盔忽 亮忽暗穿出妖精魂哼般的晃动!最后转起暗黑色脸盆耳朵一吼,变态地从里面喷出一道金辉,他抓住金辉残暴地一摆,一套黑森森、黄澄澄的兵器『紫鸟蚌精病床钩』便显露出来,只见这个这件 宝器儿,一边蠕动,一边
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章图形与证明复习题(1)
一、基础练习
1、若顺次连结一个四边形各边中点所得的图形是正方形,那么这个四边形的对角线 A 、互相垂直 B 、相等 C 、互相平分 D 、互相垂直且相等 ( )
2、如图,在□ABCD 中,E 是BC 的中点,且∠AEC=∠DCE ,下列结论不正确...
的是( ) A 、BF=
2
1
DF B 、S △FAD =2S △FBE C 、四边形AECD 是等腰梯形 D 、∠AEB=∠ADC , 3、如图所示,正方形ABCD 的面积为12,ABE △是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD PE 的和最小,则这个最小值为( )
A
. B
. C .3 D
4、如图,在梯形ABCD 中,AB ∥CD ,中位线EF 与对角线AC 、BD 交于M 、N 两点,若EF=18㎝,MN=8㎝,则AB 的长等于 。

5、如图,直线L 过正方形ABCD 的顶点B ,点A 、C 到直线L 的距离分别是1和2,则正方形的边长是 。

二、例题精讲
例1、如图,把矩形纸片ABCD 沿EF 折叠,使点
B 落在边AD 上的点B ′处,点A 落在点A ′处,
(1)求证:B ′E=BF ;
(2)设AE=a ,AB=b, BF=c,试猜想a 、b 、c 之间有何数量关系,并给予证明.
21
L
D
C B
A 第5题图
N
M F E D
C B A
第4题图 A E
P B C A
B
C
D
E
F
A ′
B ′
例2、如图在直角梯形ABCD 中,AD ∥BC ,AB ⊥AD ,AB =10 3 ,AD 、BC 的长是x 2
-20x+75=0方程的两根,判断以点D 为圆心、AD 长为半径的圆与以C 圆心BC 为半径的圆的位置关系 。

例3、问题探究
(1)请在图①的正方形ABCD 内,画出使∠APB =90°的一个..点P ,并说明理由. (2)请在图②的正方形ABCD 内(含边),画出使∠APB =60°的所有..的点P ,并说明理由. 问题解决
如图③,现有一块矩形钢板ABCD ,AB =4,BC =3,工人师傅想用它裁出两块全等的、面积最大的△APB 和△CP ’D 钢板,且∠APB =∠CP ’D =60°,请你在图③中画出符合要求的点P 和P ’,并求出△APB 的面积(结果保留根号).
A
C
第一章图形与证明复习题(2)
1、将矩形纸片ABCD 按如图所示的方式折叠,AE 、EF 为折痕,∠BAE =30°,AB =3,折叠后,点C 落在AD 边上的C 1处,并且点B 落在EC 1边上的B 1处.则BC 的长为( ).
A 、3
B 、2
C 、3
D 、32
2、正方形ABCD 的边长为1,M 是AB 的中点,N 是BC 中点,AN 和CM
相交于点O ,则四边形AOCD 的面积是( )(A )16 (B )34 (C )23 (D ) 3
4
3、在△ABC 中,BC =10,B 1、C 1分别是图①中AB 、AC 的中点,在图②中,2
121、C 、C 、B B 分别是AB ,AC 的三等分点,在图③中921921;C 、C C B 、
、B B 分别是AB 、AC 的10等分点,则992211C B C B C B +++ 的值是( ) A . 30 B . 45 C .55 D .60
① ② ③
4、如图,在平面直角坐标系中,平行四边形ABCD 的顶点A 、B 、D 的坐标分别是(0,0),(5,0),(2,3),则顶点C 的坐标是 。

5、如图,在等腰梯形ABCD 中,AD BC ∥,BC =4AD
=B ∠=45°.直角三角板含45°角的顶点E 在边BC 上移动,一直角边始终经过点,斜边与CD 交于点F .若ABE △为等腰三角形,则CF 的长等于 . 6、在平行四边形ABCD 中,10AB =,AD m =,60D ∠=°, 以AB 为直径作O ⊙, (1)求圆心O 到CD 的距离(用含m 的代数式来表示);
(2)当m 取何值时,CD 与O ⊙相切.
7、四个顶点都在正方形边上的四边形叫做正方形的内接四边形.如图1,正方形EFGH 就是
正方形ABCD 的内接正方形.已知正方形ABCD 的边长为a (1)请在图1中画出面积最小的正方形ABCD 的内接正方形
E ’
F ’
G ’
H ’(要求用文字标明取点方法); (2)如图2,2222E F G H 是正方形ABCD 的内接平行四边形,
2AE x =,2AH y =.请探讨
①当x 、y 满足什么条件时,2222E F G H 是矩形; ②用x 的代数式表示矩形2222E F G H 的面积S ,并写出
S 的取值范围.
8、如图,直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,已知AD =AB =3,BC =4,动点P 从B 点出发,沿线段BC 向点C 作匀速运动;动点Q 从点D 出发,沿线段DA 向点A 作匀速运动.过Q 点垂直于AD 的射线交AC 于点M ,交BC 于点N .P 、Q 两点同时出发,速度都为每秒1个单位长度.当Q 点运动到A 点,P 、Q 两点同时停止运动.设点Q 运动的时间为t 秒.
(1)求NC ,MC 的长(用t 的代数式表示);
(2)当t 为何值时,四边形PCDQ 构成平行四边形?
(3)是否存在某一时刻,使射线QN 恰好将△ABC 的面积和周长同时平分?若存在,求出此时t 的值;若不存在,请说明理由; (4)探究:t 为何值时,△PMC 为等腰三角形?
H 2G 2
F 2E 2D
C
B A。

相关文档
最新文档