天津市自立中学数学全等三角形中考真题汇编[解析版]

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天津市自立中学数学全等三角形中考真题汇编[解析版]

一、八年级数学轴对称三角形填空题(难)

1.如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P有_____个.

【答案】4

【解析】

【分析】

由A点坐标可得OA=22,∠AOP=45°,分别讨论OA为腰和底边,求出点P在x轴正半轴和负半轴时,△APO是等腰三角形的P点坐标即可.

【详解】

(1)当点P在x轴正半轴上,

①如图,以OA为腰时,

∵A的坐标是(2,2),

∴∠AOP=45°,OA=22,

当∠AOP为顶角时,OA=OP=22,

当∠OAP为顶角时,AO=AP,

∴OPA=∠AOP=45°,

∴∠OAP=90°,

∴OP=2OA=4,

∴P的坐标是(4,0)或(22,0).

②以OA为底边时,

∵点A的坐标是(2,2),

∴∠AOP=45°,

∵AP=OP,

∴∠OAP=∠AOP=45°,

∴∠OPA=90°,

∴OP=2, ∴P 点坐标为(2,0).

(2)当点P 在x 轴负半轴上,

③以OA 为腰时,

∵A 的坐标是(2,2),

∴OA =22,

∴OA =OP =22,

∴P 的坐标是(﹣22,0).

综上所述:P 的坐标是(2,0)或(4,0)或(22,0)或(﹣22,0).

故答案为:4.

【点睛】

此题主要考查等腰三角形的判定及坐标与图形性质的综合运用,注意分类讨论思想的运用是解题关键.

2.如图,ABC ∆中,90BAC ∠=︒,AD BC ⊥,ABC ∠的平分线BE 交AD 于点F ,AG 平分DAC ∠.给出下列结论:①BAD C ∠=∠;②EBC C ∠=∠;③AE AF =;④//FG AC ;⑤EF FG =.其中正确的结论是______.

【答案】①③④

【解析】

【分析】

①根据等角的余角相等即可得到结果,故①正确;②如果∠EBC=∠C ,则

∠C=12

∠ABC ,由于∠BAC=90°,那么∠C=30°,但∠C 不一定等于30°,故②错误;③由BE 、AG 分别是∠ABC 、∠DAC 的平分线,得到∠ABF=∠EBD .由于

∠AFE=∠BAD+∠FBA ,∠AEB=∠C+∠EBD ,得到∠AFE=∠AEB ,可得③正确;④连接EG ,先证明△ABN ≌△GBN ,得到AN=GN ,证出△ANE ≌△GNF ,得∠NAE=∠NGF ,进而得到GF ∥AE ,故④正确;⑤由AE=AF ,AE=FG ,而△AEF 不一定是等边三角形,得到EF 不一定等于AE ,于是EF 不一定等于FG ,故⑤错误.

【详解】

∵∠BAC=90°,AD ⊥BC ,

∴∠C+∠ABC=90°,∠C+∠DAC=90°,∠ABC+∠BAD=90°,

∴∠ABC=∠DAC ,∠BAD=∠C ,

故①正确;

若∠EBC=∠C ,则∠C=

12

∠ABC , ∵∠BAC=90°,

那么∠C=30°,但∠C 不一定等于30°,

故②错误;

∵BE 、AG 分别是∠ABC 、∠DAC 的平分线,

∴∠ABF=∠EBD ,

∵∠AFE=∠BAD+∠ABF ,∠AEB=∠C+∠EBD ,

又∵∠BAD=∠C ,

∴∠AFE=∠AEF ,

∴AF=AE ,

故③正确;

∵AG 是∠DAC 的平分线,AF=AE ,

∴AN ⊥BE ,FN=EN ,

在△ABN 与△GBN 中, ∵90ABN GBN BN BN ANB GNB ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩

∴△ABN ≌△GBN (ASA ),

∴AN=GN ,

又∵FN=EN ,∠ANE=∠GNF ,

∴△ANE ≌△GNF (SAS ),

∴∠NAE=∠NGF ,

∴GF ∥AE ,即GF ∥AC ,

故④正确;

∵AE=AF ,AE=FG ,

而△AEF 不一定是等边三角形,

∴EF 不一定等于AE ,

∴EF 不一定等于FG ,

故⑤错误.

故答案为:①③④.

【点睛】

本题主要考查等腰三角形的判定和性质定理,全等三角形的判定和性质定理,直角三角形的性质定理,掌握掌握上述定理,是解题的关键.

3.如图,ABC 中,ABC=45∠︒,CD AB ⊥于D ,BE 平分ABC ∠,且BE AC ⊥于E ,与CD 相交于点F ,H 是BC 边的中点,连接DH 与BE 相交于点G ,下列结论:BF=AC ①;A=67.5∠︒②;DG=DF ③;ADGE GHCE S S =四边形四边形④,其中正确的有__________(填序号).

【答案】①②③

【解析】

【分析】

只要证明△BDF ≌△CDA ,△BAC 是等腰三角形,∠DGF=∠DFG=67.5°,即可判断①②③正确,作GM ⊥BD 于M ,只要证明GH <DG 即可判断④错误.

【详解】

解:∵CD ⊥AB ,BE ⊥AC ,

∴∠BDC=∠ADC=∠AEB=90°,

∴∠A +∠ABE=90°,∠ABE +∠DFB=90°,

∴∠A=∠DFB ,

∵∠ABC=45°,∠BDC=90°,

∴∠DCB=90°−45°=45°=∠DBC ,

∴BD=DC ,

在△BDF 和△CDA 中,

∠BDF=∠CDA ,∠A=∠DFB ,BD=CD ,

∴△BDF ≌△CDA (AAS ),

∴BF=AC ,故①正确.

∵∠ABE=∠EBC=22.5°,BE ⊥AC ,

∴∠A=∠BCA=67.5°,故②正确,

∵BE 平分∠ABC ,∠ABC=45°,

∴∠ABE=∠CBE=22.5°,

相关文档
最新文档