用向量知识解决立体几何中典型问题
空间向量在立体几何中的应用和习题(含答案)[1]
空间向量在立体几何中的应用:(1)直线的方向向量与平面的法向量: ①如图,l 为经过已知点A 且平行于已知非零向量a 的直线,对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使得a t OA OP +=,其中向量a 叫做直线的方向向量.由此可知,空间任意直线由空间一点及直线的方向向量惟一确定.②如果直线l ⊥平面α ,取直线l 的方向向量a ,则向量a 叫做平面α 的法向量.由此可知,给定一点A 及一个向量a ,那么经过点A 以向量a 为法向量的平面惟一确定. (2)用空间向量刻画空间中平行与垂直的位置关系:设直线l ,m 的方向向量分别是a ,b ,平面α ,β 的法向量分别是u ,v ,则 ①l ∥m ⇔a ∥b ⇔a =k b ,k ∈R ; ②l ⊥m ⇔a ⊥b ⇔a ·b =0; ③l ∥α ⇔a ⊥u ⇔a ·u =0; ④l ⊥α ⇔a ∥u ⇔a =k u ,k ∈R ; ⑤α ∥⇔u ∥v ⇔u =k v ,k ∈R ; ⑥α ⊥β ⇔u ⊥v ⇔u ·v =0.(3)用空间向量解决线线、线面、面面的夹角问题: ①异面直线所成的角:设a ,b 是两条异面直线,过空间任意一点O 作直线a ′∥a ,b ′∥b ,则a ′与b ′所夹的锐角或直角叫做异面直线a 与b 所成的角.设异面直线a 与b 的方向向量分别是v 1,v 2,a 与b 的夹角为θ ,显然],2π,0(∈θ则⋅=><⋅|||||||,cos |212121v v v v v v②直线和平面所成的角:直线和平面所成的角是指直线与它在这个平面内的射影所成的角.设直线a 的方向向量是u ,平面α 的法向量是v ,直线a 与平面α 的夹角为θ ,显然]2π,0[∈θ,则⋅=><⋅|||||||,cos |v u v u v u③二面角及其度量:从一条直线出发的两个半平面所组成的图形叫做二面角.记作α -l -β 在二面角的棱上任取一点O ,在两个半平面内分别作射线OA ⊥l ,OB ⊥l ,则∠AOB 叫做二面角α -l -β 的平面角.利用向量求二面角的平面角有两种方法: 方法一:如图,若AB ,CD 分别是二面角α -l -β 的两个面内与棱l 垂直的异面直线,则二面角α -l -β的大小就是向量CD AB 与的夹角的大小.方法二:如图,m 1,m 2分别是二面角的两个半平面α ,β 的法向量,则<m 1,m 2>与该二面角的大小相等或互补.(4)根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题. 【例题分析】例1 如图,在长方体OAEB -O 1A 1E 1B 1中,OA =3,OB =4,OO 1=2,点P 在棱AA 1上,且AP =2P A 1,点S 在棱BB 1上,且B 1S =2SB ,点Q ,R 分别是O 1B 1,AE 的中点,求证:PQ ∥RS .【分析】建立空间直角坐标系,设法证明存在实数k ,使得.RS k PQ =解:如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,0),O 1(0,0,2),A 1(3,0,2),B 1(0,4,2),E (3,4,0).∵AP =2P A 1, ∴),34,0,0()2,0,0(32321===AA AP ∴⋅)34,0,3(P同理可得:Q (0,2,2),R (3,2,0),⋅)32,4,0(S,)32,2,3(RS PQ =-=∴RS PQ //,又R ∉PQ ,∴PQ ∥RS .【评述】1、证明线线平行的步骤:(1)证明两向量共线;(2)证明其中一个向量所在直线上一点不在另一个向量所在的直线上即可.2、本体还可采用综合法证明,连接PR ,QS ,证明PQRS 是平行四边形即可,请完成这个证明. 例2 已知正方体ABCD -A 1B 1C 1D 1中,M ,N ,E ,F 分别是棱A 1D 1,A 1B 1,D 1C 1,B 1C 1的中点,求证:平面AMN ∥平面EFBD .【分析】要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向量平行. 解法一:设正方体的棱长为4,如图建立空间直角坐标系,则D (0,0,0),A (4,0,0),M (2,0,4),N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).取MN 的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,4),G (1,3,4).MN =(2,2,0),EF =(2,2,0),AK =(-1,1,4),OG =(-1,1,4), ∴MN ∥EF ,OG AK =,∴MN//EF ,AK//OG ,∴MN ∥平面EFBD ,AK ∥平面EFBD , ∴平面AMN ∥平面EFBD .解法二:设平面AMN 的法向量是a =(a 1,a 2,a 3),平面EFBD 的法向量是 b =(b 1,b 2,b 3). 由,0,0==⋅⋅AN AM a a 得⎩⎨⎧=+=+-,042,0423231a a a a 取a 3=1,得a =(2,-2,1).由,0,0==⋅⋅BF DE b b得⎩⎨⎧=+-=+,042,0423132b b b b 取b 3=1,得b =(2,-2,1).∵a ∥b ,∴平面AMN ∥平面EFBD .注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试.例3 在正方体ABCD -A 1B 1C 1D 1中,M ,N 是棱A 1B 1,B 1B 的中点,求异面直线AM 和CN 所成角的余弦值.解法一:设正方体的棱长为2,如图建立空间直角坐标系,则D (0,0,0),A (2,0,0),M (2,1,2),C (0,2,0),N (2,2,1).∴),1,0,2(),2,1,0(==CN AM设AM 和CN 所成的角为θ ,则,52||||cos ==⋅CN AM CN AM θ ∴异面直线AM 和CN 所成角的余弦值是⋅52解法二:取AB 的中点P ,CC 1的中点Q ,连接B 1P ,B 1Q ,PQ ,PC . 易证明:B 1P ∥MA ,B 1Q ∥NC ,∴∠PB 1Q 是异面直线AM 和CN 所成的角. 设正方体的棱长为2,易知,6,52211=+===QC PC PQ Q B P B∴,522cos 11221211=-+=⋅Q B P B PQ Q B P B Q PB∴异面直线AM 和CN 所成角的余弦值是⋅52【评述】空间两条直线所成的角是不超过90°的角,因此按向量的夹角公式计算时,分子的数量积如果是负数,则应取其绝对值,使之成为正数,这样才能得到异面直线所成的角(锐角).例4 如图,正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为a 2,求直线AC 1与平面ABB 1A 1所成角的大小.【分析】利用正三棱柱的性质,适当建立空间直角坐标系,写出有关点的坐标.求角时有两种思路:一是由定义找出线面角,再用向量方法计算;二是利用平面ABB 1A 1的法向量求解.解法一:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),),2,0,0(1a A⋅-)2,2,23(1a aa C 取A 1B 1的中点D ,则)2,2,0(a a D ,连接AD ,C 1D .则),2,0,0(),0,,0(),0,0,23(1a AA a AB aDC ==-= ,0,0111==⋅⋅AA DC AB DC∴DC 1⊥平面ABB 1A 1,∴∠C 1AD 是直线AC 1与平面ABB 1A 1所或的角.),2,2,0(),2,2,23(1a aAD a a a AC =-= 23||||cos 111==∴AD AC AD C , ∴直线AC 1与平面ABB 1A 1所成角的大小是30°.解法二:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),A 1(0,0,a 2),)2,2,23(1a aa C -,从而⋅-===)2,2,23(),2,0,0(),0,,0(11a aa AC a AA a AB 设平面ABB 1A 1的法向量是a =(p ,q ,r ), 由,0,01==⋅⋅AA AB a a得⎩⎨⎧==,02,0ar aq 取p =1,得a =(1,0,0). 设直线AC 1与平面ABB 1A 1所成的角为],2π,0[,∈θθ.30,21|||||||,cos |sin 111 ===〉〈=⋅θθa a a AC AC AC 【评述】充分利用几何体的特征建立适当的坐标系,再利用向量的知识求解线面角;解法二给出了一般的方法,即先求平面的法向量与斜线的夹角,再利用两角互余转换.例5 如图,三棱锥P -ABC 中,P A ⊥底面ABC ,AC ⊥BC ,P A =AC =1,2=BC ,求二面角A-PB -C 的平面角的余弦值.解法二图解法一:取PB 的中点D ,连接CD ,作AE ⊥PB 于E . ∵P A =AC =1,P A ⊥AC , ∴PC =BC =2,∴CD ⊥PB . ∵EA ⊥PB ,∴向量EA 和DC 夹角的大小就是二面角A -PB -C 的大小.如图建立空间直角坐标系,则C (0,0,0),A (1,0,0),B (0,2,0),P (1,0,1),由D 是PB 的中点,得D ⋅)21,22,21( 由,3122==AB AP EB PE 得E 是PD 的中点,从而⋅)43,42,43(E∴)21,22,21(),43,42,41(---=--=DC EA ∴⋅=>=<33||||,cos DC EA DC EA DC EA 即二面角A -PB -C 的平面角的余弦值是⋅33 解法二:如图建立空间直角坐标系,则A (0,0,0),)0,1,2(B ,C (0,1,0),P (0,0,1),).1,1,0(),0,0,2(),0,1,2(),1,0,0(-====CP CB AB AP设平面P AB 的法向量是a =(a 1,a 2,a 3),平面PBC 的法向量是b =(b 1,b 2,b 3). 由,0,0==⋅⋅AB AP a a得⎪⎩⎪⎨⎧=+=,02,0213a a a 取a 1=1,得).0,2,1(-=a 由0,0==⋅⋅CP CB b b 得⎪⎩⎪⎨⎧=+-=,0,02321b b b 取b 3=1,得b =(0,1,1).∴⋅-=>=<⋅33||||,cos b a b a b a∵二面角A -PB -C 为锐二面角, ∴二面角A -PB -C 的平面角的余弦值是⋅=-33|33| 【评述】1、求二面角的大小,可以在两个半平面内作出垂直于棱的两个向量,转化为这两个向量的夹角;应注意两个向量的始点应在二面角的棱上.2、当用法向量的方法求二面角时,有时不易判断两个平面法向量的夹角是二面角的平面角还是其补角,但我们可以借助观察图形而得到结论,这是因为二面角是锐二面角还是钝二面角一般是明显的.练习一、选择题: 1.在正方体ABCD -A 1B 1C 1D 1中,E 是BB 1的中点,则二面角E -A 1D 1-D 的平面角的正切值是( ) (A)2(B )2(C)5(D)222.正方体ABCD -A 1B 1C 1D 1中,直线AD 1与平面A 1ACC 1所成角的大小是( ) (A)30° (B)45° (C)60° (D)90°3.已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 内的射影为△ABC 的中心,则AB 1与底面ABC 所成角的正弦值等于( ) (A)31 (B )32 (C)33 (D )32 4.如图,α ⊥β ,α ∩β =l ,A ∈α ,B ∈β ,A ,B 到l 的距离分别是a 和b ,AB 与α ,β 所成的角分别是θ 和ϕ,AB 在α ,β 内的射影分别是m 和n ,若a >b ,则下列结论正确的是( )(A)θ >ϕ,m >n (B )θ >ϕ,m <n (C)θ <ϕ,m <n(D )θ <ϕ,m >n二、填空题:5.在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别为AA 1,AB ,BB 1,B 1C 1的中点,则异面直线EF 与GH 所成角的大小是______. 6.已知正四棱柱的对角线的长为6,且对角线与底面所成角的余弦值为33,则该正四棱柱的体积等于______.7.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为______.4题图 7题图 9题图 8.四棱锥P -ABCD 的底面是直角梯形,∠BAD =90°,AD ∥BC ,==BC AB AD 21,P A ⊥底面ABCD ,PD 与底面ABCD 所成的角是30°.设AE 与CD 所成的角为θ ,则cos θ =______. 三、解答题:9.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =4,点E 在CC 1上,且C 1E =3EC .(Ⅰ)证明:A 1C ⊥平面BED ;(Ⅱ)求二面角A 1-DE -B 平面角的余弦值. 10.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,4π=∠ABC ,OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点.(Ⅰ)证明:直线MN ∥平面OCD ;(Ⅱ)求异面直线AB 与MD 所成角的大小.11.如图,已知直二面角α -PQ -β ,A ∈PQ ,B ∈α ,C ∈β ,CA =CB ,∠BAP =45°,直线CA 和平面α 所成的角为30°.(Ⅰ)证明:BC ⊥PQ ;(Ⅱ)求二面角B -AC -P 平面角的余弦值.练习答案一、选择题:1.B 2.A 3.B 4.D 二、填空题:5.60° 6.2 7.548.42三、解答题:9题图 10题图 11题图 9.以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示直角坐标系D -xyz .依题设,B (2,2,0),C (0,2,0),E (0,2,1),A 1(2,0,4).),0,2,2(),1,2,0(==DB DE ).4,0,2(),4,2,2(11=--=DA C A(Ⅰ)∵,0,011==⋅⋅DE C A DB C A ∴A 1C ⊥BD ,A 1C ⊥DE . 又DB ∩DE =D ,∴A 1C ⊥平面DBE .(Ⅱ)设向量n =(x ,y ,z )是平面DA 1E 的法向量,则.,1DA DE ⊥⊥n n ∴⎩⎨⎧=+=+.042,02z x z y 令y =1,得n =(4,1,-2).⋅==4214||||),cos(111C A C A C A n n ∴二面角A 1-DE -B 平面角的余弦值为⋅4214 10.作AP ⊥CD 于点P .如图,分别以AB ,AP ,AO 所在直线为x ,y ,z 轴建立坐标系.则A (0,0,0),B (1,0,0),)0,22,22(),0,22,0(-D P ,O (0,0,2),M (0,0,1),⋅-)0,42,421(N (Ⅰ)⋅--=-=--=)2,22,22(),2,22,0(),1,42,421(OD OP MN 设平面OCD 的法向量为n =(x ,y ,z ),则,0,0==⋅⋅OD OP n n即⎪⎪⎩⎪⎪⎨⎧=-+-=-.022222,0222z y x z y 取,2=z ,得).2,4,0(=n ∵,0=⋅n MN ∴MN ∥平面OCD . (Ⅱ)设AB 与MD 所成的角为θ ,,3π,21||||cos ),1,22,22(),0,0,1(=∴==∴--==⋅θθMD AB MD AB MD AB 即直线AB 与MD 所成角的大小为⋅3π11.(Ⅰ)证明:在平面β 内过点C 作CO ⊥PQ 于点O ,连结OB .∵α ⊥β ,α ∩β =PQ ,∴CO ⊥α . 又∵CA =CB ,∴OA =OB .∵∠BAO =45°,∴∠ABO =45°,∠AOB =90°,∴BO ⊥PQ ,又CO ⊥PQ , ∴PQ ⊥平面OBC ,∴PQ ⊥BC .(Ⅱ)由(Ⅰ)知,OC ⊥OA ,OC ⊥OB ,OA ⊥OB ,故以O 为原点,分别以直线OB ,OA ,OC 为x 轴,y 轴,z 轴建立空间直角坐标系(如图).∵CO ⊥α ,∴∠CAO 是CA 和平面α 所成的角,则∠CAO =30°.不妨设AC =2,则3=AO ,CO =1.在Rt △OAB 中,∠ABO =∠BAO =45°,∴.3==AO BO∴).1,0,0(),0,3,0(),0,0,3(),0,0,0(C A B O).1,3,0(),0,3,3(-=-=AC AB设n 1=(x ,y ,z )是平面ABC 的一个法向量,由⎪⎩⎪⎨⎧==⋅⋅,0,0AC AB n n 得⎪⎩⎪⎨⎧=+-=-,03,033z y y x 取x =1,得)3,1,1(1=n . 易知n 2=(1,0,0)是平面β 的一个法向量. 设二面角B -AC -P 的平面角为θ ,∴,55||||cos 2121==⋅⋅n n n n θ即二面角B -AC -P 平面角的余弦值是⋅55。
用空间向量法求解立体几何问题典例及解析
用空间向量法求解立体几何问题典例及解析以多面体为载体,以空间向量为工具,来论证和求解空间角、距离、线线关系以及线面关系相关问题,是近年来高考数学的重点和热点,用空间向量解立体几何问题,极大地降低了求解立几的难度,很大程度上呈现出程序化思想。
更易于学生们所接受,故而执教者应高度重视空间向量的工具性。
首先,梳理一下利用空间向量解决立体几何的知识和基本求解方法 一:利用空间向量求空间角 (1)两条异面直线所成的夹角范围:两条异面直线所成的夹角的取值范围是 。
向量求法:设直线,a b 的方向向量为a,b ,其夹角为θ,则有cos ___________.θ= (2)直线与平面所成的角定义:直线与平面所成的角是指直线与它在这个平面内的射影所成的角。
范围:直线和平面所夹角的取值范围是 。
向量求法:设直线l 的方向向量为a ,平面的法向量为n ,直线与法向量所成角的余弦值为|cos |___________.θ=直线与平面所成的角为ϕ,则有sin ___________.ϕ=或在平面内任取一个向量m ,则|cos |___________.θ=.(3)二面角二面角的取值范围是 . 二面角的向量求法:方法一:在两个半平面内任取两个与棱垂直的向量,则这两个向量所成的 即为所求的二面角的大小;方法二:设1n ,2n 分别是两个面的 ,则向量1n 与2n 的夹角(或其补角)即为所求二面角的平面角的大小。
二:利用空间向量求空间距离 (1)点面距离的向量公式平面α的法向量为n ,点P 是平面α外一点,点M 为平面α内任意一点,则点P 到平面α的距离d 就是 ,即d =||||MP ⋅n n . (2)线面、面面距离的向量公式平面α∥直线l ,平面α的法向量为n ,点M ∈α、P ∈l ,平面α与直线l 间的距离d 就是MP 在向量n 方向射影的绝对值,即d = .平面α∥β,平面α的法向量为n ,点M ∈α、P ∈β,平面α与平面β的距离d 就是MP 在向量n 方向射影的绝对值,即d =||||MP ⋅n n . (3)异面直线的距离的向量公式设向量n 与两异面直线a 、b 都垂直,M ∈a 、P ∈b ,则两异面直线a 、b 间的距离d 就是MP 在向量n 方向射影的绝对值,即d =||||MP ⋅n n .三:利用空间向量解证平行、垂直关系1:①所谓直线的方向向量,就是指 的向量,一条直线的方向向量有 个。
用空间向量解立体几何问题方法归纳
用空间向量解立体几何问题方法归纳(总16页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--用空间向量解立体几何题型与方法平行垂直问题基础知识直线l 的方向向量为a =(a 1,b 1,c 1).平面α,β的法向量u =(a 3,b 3,c 3),v =(a 4,b 4,c 4) (1)线面平行:l ∥α⇔a ⊥u ⇔a ·u =0⇔a 1a 3+b 1b 3+c 1c 3=0 (2)线面垂直:l ⊥α⇔a ∥u ⇔a =k u ⇔a 1=ka 3,b 1=kb 3,c 1=kc 3 (3)面面平行:α∥β⇔u ∥v ⇔u =k v ⇔a 3=ka 4,b 3=kb 4,c 3=kc 4 (4)面面垂直:α⊥β⇔u ⊥v ⇔u ·v =0⇔a 3a 4+b 3b 4+c 3c 4=0例1、如图所示,在底面是矩形的四棱锥P -ABCD 中,PA ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,PA =AB =1,BC =2.(1)求证:EF ∥平面PAB ; (2)求证:平面PAD ⊥平面PDC .[证明] 以A 为原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系如图所示,则A (0,0,0),B (1,0,0),C (1,2,0),D (0,2,0),P (0,0,1),所以E ⎝ ⎛⎭⎪⎫12,1,12,F ⎝ ⎛⎭⎪⎫0,1,12,EF =⎝ ⎛⎭⎪⎫-12,0,0,PB =(1,0,-1),PD =(0,2,-1),AP =(0,0,1),AD =(0,2,0),DC =(1,0,0),AB =(1,0,0).(1)因为EF =-12AB ,所以EF ∥AB ,即EF ∥AB . 又AB ⊂平面PAB ,EF ⊄平面PAB ,所以EF ∥平面PAB .(2)因为AP ·DC =(0,0,1)·(1,0,0)=0,AD ·DC =(0,2,0)·(1,0,0)=0, 所以AP ⊥DC ,AD ⊥DC ,即AP ⊥DC ,AD ⊥DC .又AP ∩AD =A ,AP ⊂平面PAD ,AD ⊂平面PAD ,所以DC ⊥平面PAD .因为DC ⊂平面PDC , 所以平面P AD ⊥平面PDC .使用空间向量方法证明线面平行时,既可以证明直线的方向向量和平面内一条直线的方向向量平行,然后根据线面平行的判定定理得到线面平行,也可以证明直线的方向向量与平面的法向量垂直;证明面面垂直既可以证明线线垂直,然后使用判定定理进行判定,也可以证明两个平面的法向量垂直.例2、在直三棱柱ABC -A 1B 1C 1中,∠ABC =90°,BC =2,CC 1=4,点E 在线段BB 1上,且EB 1=1,D ,F ,G 分别为CC 1,C 1B 1,C 1A 1的中点.求证:(1)B 1D ⊥平面ABD ; (2)平面EGF ∥平面ABD .证明:(1)以B 为坐标原点,BA 、BC 、BB 1所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图所示,则B (0,0,0),D (0,2,2),B 1(0,0,4),设BA =a ,则A (a,0,0),所以BA =(a,0,0),BD =(0,2,2),1B D =(0,2,-2),1B D ·BA =0,1B D ·BD =0+4-4=0,即B 1D ⊥BA ,B 1D ⊥BD . 又BA ∩BD =B ,因此B 1D ⊥平面ABD .(2)由(1)知,E (0,0,3),G ⎝ ⎛⎭⎪⎫a 2,1,4,F (0,1,4),则EG =⎝ ⎛⎭⎪⎫a 2,1,1,EF =(0,1,1),1B D ·EG =0+2-2=0,1B D ·EF =0+2-2=0,即B 1D ⊥EG ,B 1D ⊥EF . 又EG ∩EF =E ,因此B 1D ⊥平面EGF . 结合(1)可知平面EGF ∥平面ABD . 利用空间向量求空间角基础知识(1)向量法求异面直线所成的角:若异面直线a ,b 的方向向量分别为a ,b ,异面直线所成的角为θ,则cos θ=|cos 〈a ,b 〉|=|a·b ||a ||b |.(2)向量法求线面所成的角:求出平面的法向量n ,直线的方向向量a ,设线面所成的角为θ,则sin θ=|cos 〈n ,a 〉|=|n·a ||n ||a |.(3)向量法求二面角:求出二面角α-l -β的两个半平面α与β的法向量n 1,n 2,若二面角α-l -β所成的角θ为锐角,则cos θ=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1||n 2|;若二面角α-l -β所成的角θ为钝角,则cos θ=-|cos 〈n 1,n 2〉|=-|n 1·n 2||n 1||n 2|.例1、如图,在直三棱柱A 1B 1C 1-ABC 中,AB ⊥AC ,AB =AC =2,A 1A =4,点D 是BC 的中点.(1)求异面直线A 1B 与C 1D 所成角的余弦值; (2)求平面ADC 1与平面ABA 1所成二面角的正弦值.[解] (1)以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (0,2,0),D (1,1,0),A 1(0,0,4),C 1(0,2,4),所以1A B =(2,0,-4),1C D =(1,-1,-4).因为cos 〈1A B ,1C D 〉=1A B ·1C D| 1A B ||1C D |=1820×18=31010,所以异面直线A 1B 与C 1D 所成角的余弦值为31010.(2)设平面ADC 1的法向量为n 1=(x ,y ,z ),因为AD =(1,1,0),1AC =(0,2,4),所以n 1·AD =0,n 1·1AC =0,即x +y =0且y +2z =0,取z =1,得x =2,y =-2,所以,n 1=(2,-2,1)是平面ADC 1的一个法向量.取平面ABA 1的一个法向量为n 2=(0,1,0).设平面ADC 1与平面ABA 1所成二面角的大小为θ.由|cos θ|=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1||n 2|=29×1=23,得sin θ=53.因此,平面ADC 1与平面ABA 1所成二面角的正弦值为53.例2、如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°. (1)证明:AB ⊥A 1C ;(2)若平面ABC ⊥平面AA 1B 1B ,AB =CB ,求直线A 1C 与平面BB 1C 1C 所成角的正弦值. [解] (1)证明:取AB 的中点O ,连接OC ,OA 1,A 1B . 因为CA =CB ,所以OC ⊥AB .由于AB =AA 1,∠BAA 1=60°,故△AA 1B 为等边三角形,所以OA 1⊥AB . 因为OC ∩OA 1=O ,所以AB ⊥平面OA 1C . 又A 1C ⊂平面OA 1C ,故AB ⊥A 1C .(2)由(1)知OC ⊥AB ,OA 1⊥AB .又平面ABC ⊥平面AA 1B 1B ,交线为AB , 所以OC ⊥平面AA 1B 1B ,故OA ,OA 1,OC 两两相互垂直.以O 为坐标原点,OA 的方向为x 轴的正方向,|OA |为单位长,建立如图所示的空间直角坐标系O -xyz . 由题设知A (1,0,0),A 1(0,3,0),C (0,0,3),B (-1,0,0).则BC =(1,0,3),1BB =1AA =(-1,3,0),1A C =(0,-3,3).设n =(x ,y ,z )是平面BB 1C 1C 的法向量, 则⎩⎪⎨⎪⎧n ·BC =0,n ·1BB =0.即⎩⎪⎨⎪⎧x +3z =0,-x +3y =0. 可取n =(3,1,-1).故cosn ,1A C=n ·1A C|n ||1A C |=-105.所以A 1C 与平面BB 1C 1C 所成角的正弦值为105.(1)运用空间向量坐标运算求空间角的一般步骤:①建立恰当的空间直角坐标系;②求出相关点的坐标;③写出向量坐标;④结合公式进行论证、计算;⑤转化为几何结论. (2)求空间角应注意:①两条异面直线所成的角α不一定是直线的方向向量的夹角β,即cos α=|cos β|. ②两平面的法向量的夹角不一定是所求的二面角,有可能两法向量夹角的补角为所求. 例3、如图,在四棱锥S -ABCD 中,AB ⊥AD ,AB ∥CD ,CD =3AB =3,平面SAD ⊥平面ABCD ,E 是线段AD 上一点,AE =ED =3,SE ⊥AD . (1)证明:平面SBE ⊥平面SEC ;(2)若SE =1,求直线CE 与平面SBC 所成角的正弦值.解:(1)证明:∵平面SAD ⊥平面ABCD ,平面SAD ∩平面ABCD =AD ,SE ⊂平面SAD ,SE ⊥AD ,∴SE ⊥平面ABCD . ∵BE ⊂平面ABCD ,∴SE ⊥BE . ∵AB ⊥AD ,AB ∥CD , CD =3AB =3,AE =ED =3,∴∠AEB =30°,∠CED =60°. ∴∠BEC =90°, 即BE ⊥CE . 又SE ∩CE =E ,∴BE ⊥平面SEC . ∵BE ⊂平面SBE , ∴平面SBE ⊥平面SEC .(2)由(1)知,直线ES ,EB ,EC 两两垂直.如图,以E 为原点,EB 为x 轴,EC 为y 轴,ES 为z 轴,建立空间直角坐标系.则E (0,0,0),C (0,23,0),S (0,0,1),B (2,0,0),所以CE =(0,-23,0),CB =(2,-23,0),CS =(0,-23,1).设平面SBC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·CB =0,n ·CS =0.即⎩⎪⎨⎪⎧2x -23y =0,-23y +z =0.令y =1,得x =3,z =23, 则平面SBC 的一个法向量为n =(3,1,23). 设直线CE 与平面SBC 所成角的大小为θ,则sin θ=|n ·CE |n |·|CE ||=14,故直线CE 与平面SBC 所成角的正弦值为14. 例4、如图是多面体ABC -A 1B 1C 1和它的三视图.(1)线段CC 1上是否存在一点E ,使BE ⊥平面A 1CC 1若不存在,请说明理由,若存在,请找出并证明;(2)求平面C 1A 1C 与平面A 1CA 夹角的余弦值.解:(1)由题意知AA 1,AB ,AC 两两垂直,建立如图所示的空间直角坐标系,则A (0,0,0),A 1(0,0,2),B (-2,0,0),C (0,-2,0),C 1(-1,-1,2),则1CC =(-1,1,2),11A C =(-1,-1,0),1A C =(0,-2,-2).设E (x ,y ,z ),则CE =(x ,y +2,z ),1EC =(-1-x ,-1-y,2-z ).设CE =λ1EC (λ>0), 则⎩⎪⎨⎪⎧x =-λ-λx ,y +2=-λ-λy ,z =2λ-λz ,则E ⎝⎛⎭⎪⎪⎫-λ1+λ,-2-λ1+λ,2λ1+λ, BE =⎝ ⎛⎭⎪⎪⎫2+λ1+λ,-2-λ1+λ,2λ1+λ.由⎩⎪⎨⎪⎧BE ·11A C =0, BE ·1A C =0,得⎩⎪⎨⎪⎧-2+λ1+λ+2+λ1+λ=0,-2-λ1+λ+2λ1+λ=0,解得λ=2,所以线段CC 1上存在一点E ,CE =21EC ,使BE ⊥平面A 1CC 1.(2)设平面C 1A 1C 的法向量为m =(x ,y ,z ),则由⎩⎪⎨⎪⎧ m ·11A C =0,m ·1A C =0,得⎩⎪⎨⎪⎧-x -y =0,-2y -2z =0,取x =1,则y =-1,z =1.故m =(1,-1,1),而平面A 1CA 的一个法向量为n =(1,0,0), 则cos 〈m ,n 〉=m ·n |m ||n |=13=33,故平面C 1A 1C 与平面A 1CA 夹角的余弦值为33.利用空间向量解决探索性问题例1、如图1,正△ABC 的边长为4,CD 是AB 边上的高,E ,F 分别是AC 和BC 边的中点,现将△ABC 沿CD 翻折成直二面角A -DC -B (如图2).(1)试判断直线AB 与平面DEF 的位置关系,并说明理由; (2)求二面角E -DF -C 的余弦值;(3)在线段BC 上是否存在一点P ,使AP ⊥DE 如果存在,求出BPBC 的值;如果不存在,请说明理由.[解] (1)在△ABC 中,由E ,F 分别是AC ,BC 中点,得EF ∥AB .又AB ⊄平面DEF ,EF ⊂平面DEF ,∴AB ∥平面DEF .(2)以点D 为坐标原点,以直线DB ,DC ,DA 分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则A (0,0,2),B (2,0,0),C (0,23,0),E (0,3,1),F (1,3,0),DF =(1,3,0),DE =(0,3,1),DA =(0,0,2).平面CDF 的法向量为DA =(0,0,2).设平面EDF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ DF ·n =0, DE ·n =0,即⎩⎪⎨⎪⎧x +3y =0,3y +z =0,取n =(3,-3,3), cos 〈DA ,n 〉=DA ·n | DA ||n |=217,所以二面角E -DF -C 的余弦值为217.(3)存在.设P (s ,t,0),有AP =(s ,t ,-2),则AP ·DE =3t -2=0,∴t =233, 又BP =(s -2,t,0),PC =(-s,23-t,0),∵BP ∥PC ,∴(s -2)(23-t )=-st , ∴3s +t =2 3. 把t =233代入上式得s =43,∴BP =13BC , ∴在线段BC 上存在点P ,使AP ⊥DE . 此时,BP BC =13.(1)空间向量法最适合于解决立体几何中的探索性问题,它无需进行复杂的作图、论证、推理,只需通过坐标运算进行判断.(2)解题时,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等,所以为使问题的解决更简单、有效,应善于运用这一方法.例2、.如图所示,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,AA 1=BC =2AC =2.(1)若D 为AA 1中点,求证:平面B 1CD ⊥平面B 1C 1D ;(2)在AA 1上是否存在一点D ,使得二面角B 1-CD -C 1的大小为60°?解:(1)证明:如图所示,以点C 为原点,CA ,CB ,CC 1所在直线分别为x ,y ,z 轴建立空间直角坐标系.则C (0,0,0),A (1,0,0),B 1(0,2,2),C 1(0,0,2),D (1,0,1), 即11C B =(0,2,0),1DC =(-1,0,1),CD =(1,0,1).由11C B ·CD =(0,2,0)·(1,0,1)=0+0+0=0,得11C B ⊥CD ,即C 1B 1⊥CD . 由1DC ·CD =(-1,0,1)·(1,0,1)=-1+0+1=0,得1DC ⊥CD ,即DC 1⊥CD .又DC 1∩C 1B 1=C 1,∴CD ⊥平面B 1C 1D .又CD ⊂平面B 1CD ,∴平面B 1CD ⊥平面B 1C 1D .(2)存在.当AD =22AA 1时,二面角B 1-CD -C 1的大小为60°.理由如下:设AD =a ,则D 点坐标为(1,0,a ),CD =(1,0,a ),1CB =(0,2,2), 设平面B 1CD 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧ m ·1CB =0m ·CD =0⇒⎩⎪⎨⎪⎧2y +2z =0,x +az =0,令z =-1,得m =(a,1,-1).又∵CB =(0,2,0)为平面C 1CD 的一个法向量,则cos 60°=|m ·CB ||m |·|CB |=1a 2+2=12, 解得a =2(负值舍去),故AD =2=22AA 1.∴在AA 1上存在一点D 满足题意. 空间直角坐标系建立的创新问题空间向量在处理空间问题时具有很大的优越性,能把“非运算”问题“运算”化,即通过直线的方向向量和平面的法向量解决立体几何问题.解决的关键环节之一就是建立空间直角坐标系,因而建立空间直角坐标系问题成为近几年试题新的命题点.一、经典例题领悟好例1、如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,BC =CD =2,AC =4, ∠ACB =∠ACD =π3,F 为PC 的中点,AF ⊥PB . (1)求P A 的长;(2)求二面角B -AF -D 的正弦值. (1)学审题——审条件之审视图形由条件知AC ⊥BD ――→建系DB ,AC 分别为x ,y 轴―→写出A ,B ,C ,D 坐标――――――――→P A ⊥面ABCD 设P 坐标――→PF =CF 可得F 坐标――→AF ⊥PBAF ·PB =0―→得P 坐标并求P A 长. (2)学审题由(1)―→AD,AF ,AB 的坐标―――――――――――――――――――→向量n 1,n 2分别为平面F AD 、平面F AB 的法向量n 1·AD =0且n 1·AF =0―→求得n 1·n 2―→求得夹角余弦.[解] (1)如图,连接BD 交AC 于O ,因为BC =CD ,即△BCD 为等腰三角形,又AC 平分∠BCD ,故AC ⊥BD .以O 为坐标原点,OB ,OC ,AP 的方向分别为x 轴,y轴,z 轴的正方向,建立空间直角坐标系O -xyz ,则OC =CD cos π3=1.而AC =4,得AO =AC -OC =3.又OD =CD sin π3=3,故A (0,-3,0),B (3,0,0),C (0,1,0),D (-3,0,0).因P A ⊥底面ABCD ,可设P (0,-3,z ).由F 为PC 边中点,知F ⎝ ⎛⎭⎪⎫0,-1,z 2.又AF =⎝ ⎛⎭⎪⎫0,2,z 2,PB =(3,3,-z ),AF ⊥PB ,故AF ·PB =0,即6-z 22=0,z =23(舍去-23),所以|PA |=2 3.(2)由(1)知AD =(-3,3,0),AB =(3,3,0),AF =(0,2,3).设平面F AD 的法向量为n 1=(x 1,y 1,z 1),平面F AB 的法向量为n 2=(x 2,y 2,z 2),由n 1·AD =0,n 1·AF =0,得⎩⎪⎨⎪⎧-3x 1+3y 1=0,2y 1+3z 1=0,因此可取n 1=(3,3,-2).由n 2·AB =0,n 2·AF =0,得⎩⎪⎨⎪⎧3x 2+3y 2=0,2y 2+3z 2=0,故可取n 2=(3,-3,2).从而法向量n 1,n 2的夹角的余弦值为cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=18.故二面角B -AF -D 的正弦值为378.建立空间直角坐标系的基本思想是寻找其中的线线垂直关系(本题利用AC ⊥BD ),若图中存在交于一点的三条直线两两垂直,则以该点为原点建立空间直角坐标系.在没有明显的垂直关系时,要通过其他已知条件得到垂直关系,在此基础上选择一个合理的位置建立空间直角坐标系,注意建立的空间直角坐标系是右手系,正确确定坐标轴的名称.例2、如图,在空间几何体中,平面ACD ⊥平面ABC ,AB =BC =CA =DA =DC =BE =与平面ABC 所成的角为60°,且点E 在平面ABC 内的射影落在∠ABC 的平分线上.(1)求证:DE ∥平面ABC ; (2)求二面角E -BC -A 的余弦值.解:证明:(1)易知△ABC ,△ACD 都是边长为2的等边三角形,取AC 的中点O ,连接BO ,DO ,则BO ⊥AC ,DO ⊥AC . ∵平面ACD ⊥平面ABC ,∴DO ⊥平面ABC . 作EF ⊥平面ABC ,则EF ∥DO . 根据题意,点F 落在BO 上, ∴∠EBF =60°, 易求得EF =DO =3,∴四边形DEFO 是平行四边形,DE ∥OF . ∵DE ⊄平面ABC ,OF ⊂平面ABC ,∴DE ∥平面ABC .(2)建立如图所示的空间直角坐标系O -xyz ,可求得平面ABC 的一个法向量为n 1=(0,0,1). 可得C (-1,0,0),B (0,3,0),E (0,3-1,3),则CB =(1,3,0),BE =(0,-1,3).设平面BCE 的法向量为n 2=(x ,y ,z ),则可得n 2·CB =0,n 2·BE =0, 即(x ,y ,z )·(1,3,0)=0,(x ,y ,z )·(0,-1,3)=0,可取n 2=(-3,3,1). 故cos 〈n 1,n 2〉=n 1·n 1|n 1|·|n 2|=1313. 又由图知,所求二面角的平面角是锐角,故二面角E -BC -A 的余弦值为1313.专题训练1.如图所示,在多面体ABCD -A 1B 1C 1D 1中,上、下两个底面A 1B 1C 1D 1和ABCD 互相平行,且都是正方形,DD 1⊥底面ABCD ,AB ∥A 1B 1,AB =2A 1B 1=2DD 1=2a .(1)求异面直线AB 1与DD 1所成角的余弦值; (2)已知F 是AD 的中点,求证:FB 1⊥平面BCC 1B 1.解:以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (2a,0,0),B (2a,2a,0),C (0,2a,0),D 1(0,0,a ),F (a,0,0),B 1(a ,a ,a ),C 1(0,a ,a ).(1)∵1AB =(-a ,a ,a ),1DD =(0,0,a ),∴cos 〈1AB ,1DD 〉=1AB ·1DD |1AB |·|1DD |=33,所以异面直线AB 1与DD 1所成角的余弦值为33.(2)证明:∵1BB =(-a ,-a ,a ),BC =(-2a,0,0),1FB =(0,a ,a ),∴⎩⎪⎨⎪⎧1FB ·1BB =0, 1FB ·BC =0.∴FB 1⊥BB 1,FB 1⊥BC . ∵BB 1∩BC =B ,∴FB 1⊥平面BCC 1B 1.2.如图,在三棱柱ABC -A 1B 1C 1中,AA 1C 1C 是边长为4的正方形,平面ABC ⊥平面AA 1C 1C ,AB =3,BC =5.(1)求证:AA 1⊥平面ABC ; (2)求二面角A 1-BC 1-B 1的余弦值;(3)证明:在线段BC 1上存在点D ,使得AD ⊥A 1B ,并求 BDBC 1的值.解:(1)证明:因为四边形AA 1C 1C 为正方形,所以AA 1⊥AC .因为平面ABC ⊥平面AA 1C 1C ,且AA 1垂直于这两个平面的交线AC ,所以AA 1⊥平面ABC . (2)由(1)知AA 1⊥AC ,AA 1⊥AB . 由题知AB =3,BC =5,AC =4,所以AB ⊥AC . 如图,以A 为原点建立空间直角坐标系A -xyz ,则B (0,3,0),A 1(0,0,4),B 1(0,3,4),C 1(4,0,4),1A B =(0,3,-4),11A C =(4,0,0).设平面A 1BC 1的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧ n ·1A B =0,n ·11A C =0.即⎩⎪⎨⎪⎧3y -4z =0,4x =0.令z =3,则x =0,y =4,所以n =(0,4,3).同理可得,平面B 1BC 1的一个法向量为m =(3,4,0).所以cos 〈 n ,m 〉=n ·m |n ||m |=1625. 由题知二面角A 1-BC 1-B 1为锐角,所以二面角A 1-BC 1-B 1的余弦值为1625. (3)证明:设D (x ,y ,z )是直线BC 1上一点,且BD =λ1BC . 所以(x ,y -3,z )=λ(4,-3,4).解得x =4λ,y =3-3λ,z =4λ.所以AD =(4λ,3-3λ,4λ).由AD ·1A B =0,即9-25λ=0,解得λ=925. 因为925∈[0,1],所以在线段BC 1上存在点D ,使得AD ⊥A 1B .此时,BD BC 1=λ=925.3.如图(1),四边形ABCD 中,E 是BC 的中点,DB =2,DC =1,BC =5,AB =AD = 2.将图(1)沿直线BD 折起,使得二面角A -BD -C 为60°,如图(2).(1)求证:AE ⊥平面BDC ;(2)求直线AC 与平面ABD 所成角的余弦值.解:(1)证明:取BD 的中点F ,连接EF ,AF ,则AF =1,EF =12,∠AFE =60°. 由余弦定理知AE =12+⎝ ⎛⎭⎪⎫122-2×1×12cos 60°=32.∵AE 2+EF 2=AF 2,∴AE ⊥EF .∵AB =AD ,F 为BD 中点.∴BD ⊥AF . 又BD =2,DC =1,BC =5,∴BD 2+DC 2=BC 2, 即BD ⊥CD .又E 为BC 中点,EF ∥CD ,∴BD ⊥EF .又EF ∩AF =F , ∴BD ⊥平面AEF .又BD ⊥AE ,∵BD ∩EF =F ,∴AE ⊥平面BDC . (2)以E 为原点建立如图所示的空间直角坐标系,则A ⎝ ⎛⎭⎪⎫0,0,32,C ⎝ ⎛⎭⎪⎫-1,12,0,B ⎝ ⎛⎭⎪⎫1,-12,0, D ⎝ ⎛⎭⎪⎫-1,-12,0,DB =(2,0,0),DA =⎝ ⎛⎭⎪⎫1,12,32,AC =⎝ ⎛⎭⎪⎫-1,12,-32. 设平面ABD 的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·DB =0n ·DA =0得⎩⎨⎧2x =0,x +12y +32z =0,取z =3,则y =-3,又∵n =(0,-3,3).∴cos 〈n ,AC 〉=n ·AC |n ||AC |=-64.故直线AC 与平面ABD 所成角的余弦值为104.4.如图所示,在矩形ABCD 中,AB =35,AD =6,BD 是对角线,过点A 作AE ⊥BD ,垂足为O ,交CD 于E ,以AE 为折痕将△ADE 向上折起,使点D 到点P 的位置,且PB =41.(1)求证:PO ⊥平面ABCE ; (2)求二面角E -AP -B 的余弦值.解:(1)证明:由已知得AB =35,AD =6,∴BD =9. 在矩形ABCD 中,∵AE ⊥BD , ∴Rt △AOD ∽Rt △BAD ,∴DO AD =ADBD ,∴DO =4,∴BO =5. 在△POB 中,PB =41,PO =4,BO =5,∴PO 2+BO 2=PB 2, ∴PO ⊥OB .又PO ⊥AE ,AE ∩OB =O ,∴PO ⊥平面ABCE . (2)∵BO =5,∴AO =AB 2-OB 2=2 5.以O 为原点,建立如图所示的空间直角坐标系,则P (0,0,4),A (25,0,0),B (0,5,0),PA =(25,0,-4),PB =(0,5,-4).设n 1=(x ,y ,z )为平面APB 的法向量.则⎩⎪⎨⎪⎧ n 1·PA =0,n 1·PB =0,即⎩⎪⎨⎪⎧25x -4z =0,5y -4z =0.取x =25得n 1=(25,4,5).又n 2=(0,1,0)为平面AEP 的一个法向量, ∴cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=461×1=46161, 故二面角E -AP -B 的余弦值为46161.5.如图,在四棱锥P -ABCD 中,侧面P AD ⊥底面ABCD ,侧棱P A =PD =2,P A ⊥PD ,底面ABCD 为直角梯形,其中BC ∥AD ,AB ⊥AD ,AB =BC =1,O 为AD 中点.(1)求直线PB 与平面POC 所成角的余弦值; (2)求B 点到平面PCD 的距离;(3)线段PD 上是否存在一点Q ,使得二面角Q -AC -D 的余弦值为63若存在,求出PQQD 的值;若不存在,请说明理由.解:(1)在△P AD 中,P A =PD ,O 为AD 中点,所以PO ⊥AD .又侧面P AD ⊥底面ABCD ,平面P AD ∩平面ABCD =AD ,PO ⊂平面P AD ,所以PO ⊥平面ABCD .又在直角梯形ABCD 中,连接OC ,易得OC ⊥AD ,所以以O 为坐标原点,OC ,OD ,OP 所在直线分别为x ,y ,z 轴建立空间直角坐标系,则P (0,0,1),A (0,-1,0),B (1,-1,0),C (1,0,0),D (0,1,0),∴PB =(1,-1,-1),易证OA ⊥平面POC ,∴OA =(0,-1,0)是平面POC 的法向量, cos 〈PB ,OA 〉=PB ·OA | PB ||OA |=33. ∴直线PB 与平面POC 所成角的余弦值为63.(2) PD =(0,1,-1),CP =(-1,0,1).设平面PDC 的一个法向量为u =(x ,y ,z ), 则⎩⎪⎨⎪⎧u ·CP =-x +z =0,u ·PD =y -z =0,取z =1,得u =(1,1,1).∴B 点到平面PCD 的距离为d =|BP ·u ||u |=33. (3)假设存在一点Q ,则设PQ =λPD (0<λ<1).∵PD =(0,1,-1), ∴PQ =(0,λ,-λ)=OQ -OP ,∴OQ =(0,λ,1-λ),∴Q (0,λ,1-λ). 设平面CAQ 的一个法向量为m =(x ,y ,z ),又AC =(1,1,0),AQ =(0,λ+1,1-λ), 则⎩⎪⎨⎪⎧m ·AC =x +y =0,m ·AQ =(λ+1)y +(1-λ)z =0.取z =λ+1,得m =(1-λ,λ-1,λ+1), 又平面CAD 的一个法向量为n =(0,0,1),二面角Q -AC -D 的余弦值为63,所以|cos 〈m ,n 〉|=|m ·n ||m ||n |=63,得3λ2-10λ+3=0,解得λ=13或λ=3(舍), 所以存在点Q ,且PQ QD =12.6.如图,在四棱锥S -ABCD 中,底面ABCD 是直角梯形,侧棱SA ⊥底面ABCD ,AB 垂直于AD 和BC ,SA =AB =BC =2,AD =是棱SB 的中点.(1)求证:AM ∥平面SCD ;(2)求平面SCD 与平面SAB 所成二面角的余弦值;(3)设点N 是直线CD 上的动点,MN 与平面SAB 所成的角为θ,求sin θ的最大值. 解:(1)以点A 为原点建立如图所示的空间直角坐标系,则A (0,0,0),B (0,2,0),C (2,2,0),D (1,0,0),S (0,0,2),M (0,1,1).所以AM =(0,1,1),SD =(1,0,-2),CD =(-1,-2,0). 设平面SCD 的法向量是n =(x ,y ,z ),则⎩⎪⎨⎪⎧ SD ·n =0,CD ·n =0,即⎩⎪⎨⎪⎧x -2z =0,-x -2y =0.令z =1,则x =2,y =-1, 于是n =(2,-1,1).∵AM ·n =0,∴AM ⊥n .又AM ⊄平面SCD , ∴AM ∥平面SCD .(2)易知平面SAB 的一个法向量为n 1=(1,0,0).设平面SCD 与平面SAB 所成的二面角为φ, 则|cos φ|=⎪⎪⎪⎪⎪⎪n 1·n |n 1|·|n |=⎪⎪⎪⎪⎪⎪(1,0,0)·(2,-1,1)1·6=⎪⎪⎪⎪⎪⎪21·6=63,即cos φ=63.∴平面SCD 与平面SAB 所成二面角的余弦值为63. (3)设N (x,2x -2,0)(x ∈[1,2]),则MN =(x,2x -3,-1). 又平面SAB 的一个法向量为n 1=(1,0,0), ∴sin θ=⎪⎪⎪⎪⎪⎪⎪⎪(x ,2x -3,-1)·(1,0,0)x 2+(2x -3)2+(-1)2·1=⎪⎪⎪⎪⎪⎪x5x 2-12x +10=⎪⎪⎪⎪⎪⎪⎪⎪15-12·1x +10·1x 2=110⎝ ⎛⎭⎪⎫1x 2-12⎝ ⎛⎭⎪⎫1x +5=110⎝ ⎛⎭⎪⎫1x -352+75 .当1x =35,即x =53时,(sin θ)max =357.7、如图,四边形ABEF 和四边形ABCD 均是直角梯形,∠F AB =∠DAB =90°,AF =AB =BC =2,AD =1,F A ⊥CD .(1)证明:在平面BCE 上,一定存在过点C 的直线l 与直线DF 平行; (2)求二面角F -CD -A 的余弦值.解:(1)证明:由已知得,BE ∥AF ,BC ∥AD ,BE ∩BC =B ,AD ∩AF =A , ∴平面BCE ∥平面ADF . 设平面DFC ∩平面BCE =l ,则l 过点C . ∵平面BCE ∥平面ADF ,平面DFC ∩平面BCE =l , 平面DFC ∩平面ADF =DF .∴DF ∥l ,即在平面BCE 上一定存在过点C 的直线l ,使得DF ∥l . (2)∵F A ⊥AB ,F A ⊥CD ,AB 与CD 相交,∴F A ⊥平面ABCD .故以A 为原点,AD ,AB ,AF 分别为x 轴,y 轴,z 轴建立空间直角坐标系,如图.由已知得,D (1,0,0),C (2,2,0),F (0,0,2),∴DF =(-1,0,2),DC =(1,2,0).设平面DFC 的一个法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧ n ·DF =0,n ·DC =0⇒⎩⎪⎨⎪⎧x =2z ,x =-2y ,不妨设z =1. 则n =(2,-1,1),不妨设平面ABCD 的一个法向量为m =(0,0,1). ∴cos 〈m ,n 〉=m ·n |m ||n |=16=66,由于二面角F -CD -A 为锐角,∴二面角F -CD -A 的余弦值为66.8、.如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,四边形ABCD 是菱形,AC =2,BD =23,E 是PB 上任意一点. (1)求证:AC ⊥DE ;(2)已知二面角A -PB -D 的余弦值为155,若E 为PB 的中点,求EC 与平面P AB 所成角的正弦值.解:(1)证明:∵PD ⊥平面ABCD ,AC ⊂平面ABCD ,∴PD ⊥AC , ∵四边形ABCD 是菱形,∴BD ⊥AC ,又BD ∩PD =D ,∴AC ⊥平面PBD , ∵DE ⊂平面PBD ,∴AC ⊥DE .(2)在△PDB 中,EO ∥PD ,∴EO ⊥平面ABCD ,分别以OA ,OB ,OE 所在直线为x 轴,y轴,z 轴建立空间直角坐标系,设PD =t ,则A (1,0,0),B (0,3,0),C (-1,0,0),E ⎝ ⎛⎭⎪⎫0,0,t 2,P (0,-3,t ),AB =(-1,3,0),AP =(-1,-3,t ). 由(1)知,平面PBD 的一个法向量为n 1=(1,0,0),设平面P AB 的法向量为n 2=(x ,y ,z ),则根据⎩⎪⎨⎪⎧ n 2·AB =0,n 2·AP =0得⎩⎪⎨⎪⎧-x +3y =0,-x -3y +tz =0,令y =1,得n 2=⎝ ⎛⎭⎪⎫3,1,23t . ∵二面角A -PB -D 的余弦值为155,则|cos 〈n 1,n 2〉|=155,即 34+12t 2=155,解得t =23或t =-23(舍去),∴P (0,-3,23). 设EC 与平面P AB 所成的角为θ,∵EC =(-1,0,-3),n 2=(3,1,1),则sin θ=|cos 〈EC ,n 2〉|=232×5=155,∴EC 与平面P AB 所成角的正弦值为155.9、如图1,A ,D 分别是矩形A 1BCD 1上的点,AB =2AA 1=2AD =2,DC =2DD 1,把四边形A 1ADD 1沿AD 折叠,使其与平面ABCD 垂直,如图2所示,连接A 1B ,D 1C 得几何体ABA 1-DCD 1.(1)当点E 在棱AB 上移动时,证明:D 1E ⊥A 1D ;(2)在棱AB 上是否存在点E ,使二面角D 1-EC -D 的平面角为π6若存在,求出AE 的长;若不存在,请说明理由.解:(1)证明,如图,以点D 为坐标原点,DA ,DC ,DD 1所在直线为x 轴,y 轴,z 轴建立空间直角坐标系D -xyz ,则D (0,0,0),A (1,0,0),C (0,2,0),A 1(1,0,1),D 1(0,0,1).设E (1,t,0),则1D E =(1,t ,-1),1A D =(-1,0,-1),∴1D E ·1A D =1×(-1)+t ×0+(-1)×(-1)=0, ∴D 1E ⊥A 1D .(2)假设存在符合条件的点E .设平面D 1EC 的法向量为n =(x ,y ,z ),由(1)知EC =(-1,2-t,0),则⎩⎪⎨⎪⎧ n ·EC =0,n ·1D E =0得⎩⎪⎨⎪⎧-x +(2-t )y =0,x +ty -z =0,令y =12,则x =1-12t ,z =1,∴n =⎝ ⎛⎭⎪⎫1-12t ,12,1是平面D 1EC 的一个法向量,显然平面ECD 的一个法向量为1DD =(0,0,1), 则cos 〈n ,1DD 〉=|n ·1DD ||n ||1DD |=1⎝ ⎛⎭⎪⎫1-12t 2+14+1=cos π6,解得t =2-33(0≤t ≤2).故存在点E ,当AE =2-33时,二面角D 1-EC -D 的平面角为π6.。
空间向量与立体几何典型例题
空间向量与立体几何典型例题一、选择题:1.(2021全国Ⅰ卷理)三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,那么1AB 与底面ABC 所成角的正弦值等于〔 C 〕A .13B.3C.3D .231.解:C .由题意知三棱锥1A ABC -为正四面体,设棱长为a ,那么1AB =,棱柱的高13AO ===〔即点1B 到底面ABC 的距离〕,故1AB 与底面ABC 所成角的正弦值为. 另解:设1,,AB AC AA 为空间向量的一组基底,1,,AB AC AA 的两两间的夹角为060长度均为a ,平面ABC 的法向量为111133OA AA AB AC =--,11AB AB AA =+2111126,,333OA AB a OA AB ⋅===那么1AB 与底面ABC 所成角的正弦值为.二、填空题: 1.(2021全国Ⅰ卷理)等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --M N ,分别是AC BC ,的中点,那么EM AN ,所成角的余弦值等于61.1.答案:16.设2AB =,作CO ABDE ⊥面,OH AB ⊥,那么CH AB ⊥,CHO ∠为二面角C-cos 1CH OH CH CHO ==⋅∠=与正方形ABDE 11(),22AN AC AB EM AC AE =+=-, 11()()22AN EM AB AC AC AE ⋅=+⋅-=12故EM AN ,所成角的余弦值另解:以O那么点(1,1,0),(1,1,0),(1,1,0),A B E C ----,1111(,,(,,)222222M N ---,那么3121321(,,),(,,),,32222222AN EM AN EM AN EM ==-⋅===,故EM AN ,所成角的余弦值.三、解答题: 1.〔2021安徽文〕如图,在四棱锥O ABCD -中,底面ABCD 四边长为1的 菱形,, OA ABCD ⊥底面, 2OA =,M 为OA 的中点。
向量在立体几何中的应用
向量在立体几何中的应用向量是中学数学的重要概念之一,它兼有数和形的特征,因而它是数形结合的桥梁之一,是实现数形转换的一个重要工具。
许多数学问题用向量知识来解决显得格外简练。
一、证明两直线平行或垂直根据∥?圳=λ(λ≠0)将证两线平行转化为证两向量共线(平行)。
根据⊥?圳·=0,将垂直问题转化为证两向量的数量积等于0.例1.已知正四棱柱abcd-a1b1c1d1,ab1=1,aa1=2点e为cc1的中点,点f为bd1的中点.求证:ef是bd1与cc1的公垂线。
证明:建立空间直角坐标系,则b(1,1,0),c(0,1,0),c1=(0,1,1),d1(0,0,1),e=(0,1,),f=(,,),=(,,0),=(0,0,1),=(-1,-1,1),所以·=0,·=0,即⊥,⊥.故ef是cc1与bd1的公垂线。
若用立体几何中的理论来证明这道题目则可以通过证明三角形ed1b和三角形fc1c为等腰三角形来达到目的。
证明过程中需利用已知边长,垂直等条件求出其他边长。
而用向量的性质来解则只需将各点坐标表示出来,再利用两向量的数量积是否等于0便可以得出结论。
相较而言,利用向量更为简便,计算量也相对较少。
二、证明线面平行或垂直证明线面平行,可转化为证明直线的方向向量与平面的法向量垂直;证明线面垂直,可转化为证明直线的方向向量与平面的法向量平行,从而得出结论,达到解决问题的目的。
例2.已知正方体abcd-a1b1c1d1的棱长为2,e,f,g分别是bc,cd,cc1的中心,求证:(1)ad1∥平面efg.(2)a1c⊥平面efg.证明:以d为坐标原点建立空间直角坐标系d-xyz,则d(0,0,0),a(2,0,0),a1(1,1,0),d1(0,0,2),c(0,2,0),c1(0,2,2),e(1,2,0),g(0,2,1)所以=(-2,0,2),=(2,-2,2),=(-1,-1,0),=(-1,0,1)。
空间向量在立体几何中的应用
练习:
正方体ABCD-A1B1C1D1中,P 为DD1的中
点,O1,O2,O3分别是平面A1B1C1D1、平面
BB1C1C、平面ABCD的中心
(2) 求异面直线PO3与O1O2Z成的角
D1 O1
C1
A1
B1
P
O2
D
C
A
O3
Y B
X
空间向量在
立几中应用
小结
本堂课的学习重点是用向量代数的方法解决 立体几何问题,但在学习中应把几何综合推 理与向量代数运算推理有机结合起来 向量代数推理是更加精练,严密的推理,每 一步都要根据运算法则进行 学习过程中应善于“前思后想”,提炼方法, 开拓思路
本题多次运用了封闭回路
空间向量在
立几中应用
利用向量求空间距离
空间距离是一种重要的几何量,利 用常规方法求距离,需要较强的转化能力, 而用向量法则相对简单
空间向量在
立几中应用
例3、正方体AC1棱长为1,求平面AD1C 与平面A1BC1的距离
Z
D
C
B A
D1 A1
X
C1 Y
B1
空间向量在
评述:
立几中应用
空间向量在
立几中应用
空间向量在立体几何中的应用
空间向量在
立几中应用
利用向量判断位置关系
利用向量可证明四点共面、线线平 行、线面平行、线线垂直、线面垂直等问 题,其方法是通过向量的运算来判断,这 是数形结合的典型问题
空间向量在
立几中应用
空间向量在
立几中应用
空间向量在
立几中应用
利用向量求空间角
利用向量可以进行求线线角、线面 角、面面角,关键是进行向量的计算
空间向量与立体几何经典例题
空间向量与立体几何经典例题空间向量与立体几何经典例题空间向量和立体几何是高中数学中的重要内容,它们是解决三维空间中几何问题的基础。
在此,我们将介绍一些经典的例题,帮助读者更好地理解和掌握这两个概念。
例题1:已知平面ABCD的四个顶点坐标为A(1,2,3),B(-1,1,-3),C(4,0,2)和D(2,-1,1),求平面ABCD的法向量和面积。
解答:首先,我们可以通过向量的定义求得平面ABCD的法向量。
假设向量AB为a,向量AC为b,则平面ABCD的法向量N可以表示为N = a × b,其中×表示向量的叉乘运算。
由于a = B - A = (-1,1,-6)和b = C - A = (3,-2,-1),我们可以得到N = a × b = (7,19,5)。
其次,我们可以使用向量的叉乘运算和向量的模运算求得平面ABCD 的面积。
假设向量AB为a,向量AC为b,则平面ABCD的面积可以表示为S = 1/2 * |a × b|,其中|a × b|表示向量a × b的模。
带入已知数据计算可得,S = 1/2 * |(7,19,5)| = 1/2 * √(7^2 + 19^2 + 5^2) = 1/2 * √(1255)。
因此,平面ABCD的法向量为N = (7,19,5),面积为S = 1/2 * √(1255)。
例题2:已知四面体ABCD的四个顶点坐标为A(1,2,3),B(-1,1,-3),C(4,0,2)和D(2,-1,1),求四面体ABCD的体积。
解答:首先,我们可以通过向量的定义求得四面体ABCD的体积。
假设向量AB为a,向量AC为b,向量AD为c,则四面体ABCD的体积V 可以表示为V = 1/6 * |a · (b × c)|,其中·表示向量的点乘运算,×表示向量的叉乘运算,|a · (b × c)|表示向量a · (b ×c)的模。
空间向量法解决立体几何问题全面总结
由OA1 =(-1,-1,2),OD1 =(-1,1,2)
得:
x x
y y
2z 2z
0 0
解得:xy20z
取z =1
得平面OA1D1的法向量的坐标n=(2,0,1).
(2)求平面的法向量的坐标的特殊方法:
• 第一步:写出平面内两个不平行的向量 • a = (x1,y1,z1), b = (x2,y2,z2), • 第二步:那么平面法向量为
z
C1
A1
A x
B1
C O
B y
• 解:建立如图示的直角坐标系,则
•
A(
a 2
,0,0),B(0,
3 2
a
,0)
A1(
a 2
,0,).
C(-
a 2
,0,
2a)
• 设面ABB1A1的法向量为n=(x,y,z)
•得 a 3
AB ( , 2
2
a,0), AA1 (0,0,
2a)
• •
a
一.引入两个重要的空间向量
1.直线的方向向量
把直线上任意两点的向量或与它平行的向
量都称为直线的方向向量.如图,在空间直角
坐标系中,由A(x1,y1,z1)与B(x2,y2,z2)确定的直 线AB的方向向量是
z
AB (x2 x1, y2 y1, z2 z1)
B
A
y
x
2.平面的法向量 • 如果表示向量n的有向线段所在的直线垂直
n
a
b
α
(1)求平面的法向量的坐标的一般步骤:
• 第一步(设):设出平面法向量的坐标为n=(x,y,z).
立体几何中不易建系的用空间向量证明垂直问题。
立体几何中不易建系的用空间向量证明垂直问题。
1. 引言1.1 概述立体几何是数学中的一个重要分支,研究空间中的图形和特定关系。
建系问题是立体几何中一个常见的难题,它涉及到如何确定或构建一个合适的坐标系来描述和表示空间中的元素和关系。
在解决建系问题时,传统的方法存在一定局限性和困难,例如难以应对复杂的几何结构、缺乏普适性等。
1.2 文章结构本文将通过引入空间向量理论来探讨解决立体几何中不易建系的问题。
文章分为以下几个部分:- 引言:介绍本文的背景和论文结构。
- 立体几何中的建系问题:阐述建系定义与重要性、传统方法的局限性与困难,以及空间向量在解决建系问题中的优势。
- 空间向量证明垂直问题的基本原理与方法:讨论垂直关系的定义与特征、空间向量表示垂直关系的有效途径,以及应用空间向量证明垂直性质时需要考虑的因素。
- 实例分析:通过一个具体案例来说明使用空间向量证明垂直问题的步骤和推理过程,并对结果进行分析和讨论。
- 结论与展望:总结研究成果并得出结论,同时提出未来研究方向和进一步工作的展望。
1.3 目的本文的目的是介绍空间向量在解决立体几何中不易建系的问题中所起到的作用和优势,并通过实例分析来验证其有效性。
通过本文的研究,读者将能够理解空间向量在解决建系问题中的重要性,并了解使用空间向量证明垂直问题的基本原理与方法。
最终,本文希望为立体几何领域中建系问题的解决提供一种新思路和有价值的参考。
2. 立体几何中的建系问题:2.1 建系的定义与重要性:在立体几何中,建系是指通过选取适当的点或向量作为参照,构建坐标系或基底来描述和表示空间中的几何事物或运动。
建系是解决立体几何问题和进行进一步分析的基础,它可以帮助我们确定方向、测量距离和角度,从而推导出更多关于空间图形、运动和变换的性质。
2.2 建系方法的局限性与困难:传统的建系方法主要包括平行四边形法、角平分线法、垂直线法等。
然而,这些方法在实际应用中存在一定的局限性和困难。
基向量法解决立体几何问题
AB (2)当 的值为多少时,才能使AC’⊥平面A’BD.请证明。 AA'
解:
AC' 平面A' BD AC' A' B且AC' A' D
AC' A' B 0且AC' A' D 0 (a b c) (a c) 0 (a b c) (b c) 0 2 m n m2 m n m n 2 m n 0 2 2 2 2 2 A m m n m2 m n m n n2 0 2 2 2 2 3m2 mn 2n2 0, 解得m n
A'
D'
C'
m2 mn ab ,a c bc 2 2
B'
D C
BD BA AD b a
AA' BD c (b a ) c b c a 0 所以 AA' BD.
A
B
线线线面垂直
13(2)在平行六面体AC’中,AB=AD,∠A’AD=∠A’AB=∠DAB=60º .
D'
C
A'
B'
D C
B
所以当AB / AA' 1时,AC' 平面A' BD.
线线线面垂直2
如图,60°的二面角的棱上有A、B两点,直线AC、BD分别在这个 二面角的两个半平面内,且都垂直AB,已知AB=4,AC=6,BD=
8,求CD的长.
C
A
解: CA 6 , AB 4 , BD 8 且 CA AB, BD AB , CA, BD 120
高中数学空间向量与立体几何立体几何中的向量方法利用空间向量求空间角空间距离问题数学.doc
3.2.3 利用空间向量求空间角、空间距离问题1.空间角及向量求法(1)两异面直线所成的角与两直线的方向向量所成的角相等.( )(2)直线l∥平面α,则直线l到平面α的距离就是直线l上的点到平面α的距离.( )(3)若平面α∥β,则两平面α,β的距离可转化为平面α内某条直线到平面β的距离,也可转化为平面α内某点到平面β的距离.( )答案 (1)× (2)√ (3)√2.做一做(请把正确的答案写在横线上)(1)已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角的大小为________.(2)(教材改编P 111A 组T 11)如图,在正方体ABCD -A 1B 1C 1D 1中,M 是C 1C 的中点,O 是底面ABCD 的中点,P 是A 1B 1上的任意点,则直线BM 与OP 所成的角为________.(3)已知平面α的一个法向量为n =(-2,-2,1),点A (-1,3,0)在平面α内,则点P (-2,1,4)到平面α的距离为________.答案 (1)45°或135° (2)π2 (3)103解析 (2)建立如图所示的空间直角坐标系,设正方体棱长为2 ,则O (1,1,0),P (2,x,2),B (2,2,0),M (0,2,1),则OP→=(1,x -1,2),BM →=(-2,0,1).所以OP →·BM →=0,所以直线BM 与OP 所成角为π2. 探究1 利用空间向量求线线角例1 如图1,已知两个正四棱锥P -ABCD 与Q -ABCD 的高分别为1和2,AB =4.求异面直线AQ 与PB 所成角的余弦值.[解] 由题设知,ABCD 是正方形,连接AC ,BD ,交于点O ,则AC ⊥BD .连接PQ ,则PQ 过点O .由正四棱锥的性质知PQ ⊥平面ABCD ,故以O 为坐标原点,以直线CA,DB,QP分别为x轴、y轴、z轴建立空间直角坐标系(如图2),则P(0,0,1),A(22,0,0),Q(0,0,-2),B(0,22,0),∴AQ→=(-22,0,-2),PB→=(0,22,-1).于是cos〈AQ→,PB→〉=AQ→·PB→|AQ→||PB→|=39,∴异面直线AQ与PB所成角的余弦值为3 9 .拓展提升两异面直线所成角的求法(1)平移法:即通过平移其中一条(也可两条同时平移),使它们转化为两条相交直线,然后通过解三角形获解.(2)取定基底法:在一些不适合建立坐标系的题型中,我们经常采用取定基底的方法,这是小技巧.在由公式cos〈a,b〉=a·b|a||b|求向量a、b的夹角时,关键是求出a·b及|a|与|b|,一般是把a、b用一组基底表示出来,再求有关的量.(3)用坐标法求异面直线的夹角的方法①建立恰当的空间直角坐标系;②找到两条异面直线的方向向量的坐标形式;③利用向量的夹角公式计算两直线的方向向量的夹角;④结合异面直线所成角的范围得到异面直线所成的角.【跟踪训练1】如图,在三棱锥V-ABC中,顶点C在空间直角坐标系的原点处,顶点A,B,V分别在x,y,z轴上,D是线段AB 的中点,且AC =BC =2,∠VDC =θ.当θ=π3时,求异面直线AC 与VD 所成角的余弦值.解 由于AC =BC =2,D 是AB 的中点,所以C (0,0,0),A (2,0,0),B (0,2,0),D (1,1,0).当θ=π3时,在Rt △VCD 中,CD =2,故有V (0,0,6).所以AC →=(-2,0,0),VD →=(1,1,-6).所以cos 〈AC →,VD →〉=AC →·VD→|AC →||VD →|=-22×22=-24.所以异面直线AC 与VD 所成角的余弦值为24.探究2 利用空间向量求线面角例2 正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为2a ,求AC 1与侧面ABB 1A 1所成的角.[解] 建立如下图所示的空间直角坐标系,则A (0,0,0),B (0,a,0),A 1(0,0, 2a ),C 1⎝⎛⎭⎪⎪⎫-32a ,a2, 2a , 取A 1B 1的中点M ,则M ⎝⎛⎭⎪⎫0,a2,2a ,连接AM ,MC 1,有MC 1→=⎝ ⎛⎭⎪⎪⎫-32a ,0,0, AB →=(0,a,0),AA1→=(0,0,2a ).∴MC 1→·AB →=0,MC 1→·AA 1→=0, ∴MC 1→⊥AB →,MC1→⊥AA 1→, 即MC 1⊥AB ,MC 1⊥AA 1,又AB ∩AA 1=A , ∴MC 1⊥平面ABB 1A 1 .∴∠C 1AM 是AC 1与侧面A 1ABB 1所成的角.由于AC 1→=⎝ ⎛⎭⎪⎪⎫-32a ,a 2,2a ,AM →=⎝ ⎛⎭⎪⎫0,a 2,2a ,∴AC 1→·AM →=0+a 24+2a 2=9a 24,|AC 1→|=3a 24+a 24+2a 2=3a , |AM →|=a 24+2a 2=32a , ∴cos 〈AC1→,AM →〉=9a 243a ×3a 2=32. ∴〈AC 1→,AM →〉=30°,即AC 1与侧面ABB 1A 1所成的角为30°. [解法探究] 此题有没有其他解法?解 与原解建立相同的空间直角坐标系,则AB →=(0,a,0),AA1→=(0,0,2a ),AC 1→=⎝ ⎛⎭⎪⎪⎫-32a ,a 2,2a . 设侧面ABB 1A 1的法向量n =(λ,x ,y ),∴n ·AB →=0且n ·AA1→=0.∴ax =0且2ay =0.∴x =y =0.故n =(λ,0,0).∵AC 1→=⎝ ⎛⎭⎪⎪⎫-32a ,a 2,2a , ∴cos 〈AC 1→,n 〉=n ·AC1→|n ||AC 1→|=-λ2|λ|.∴|cos 〈AC 1→,n 〉|=12. ∴AC 1与侧面ABB 1A 1所成的角为30°.[条件探究] 此题中增加条件“E ,F ,G 为AB ,AA 1,A 1C 1的中点”,求B 1F 与平面GEF 所成角的正弦值.解 建立如图所示的空间直角坐标系,则B 1(0,a ,2a ),E ⎝ ⎛⎭⎪⎫0,a 2,0,F ⎝ ⎛⎭⎪⎪⎫0,0,22a ,G ⎝⎛⎭⎪⎪⎫-34a ,a 4,2a , 于是B 1F →=⎝ ⎛⎭⎪⎪⎫0,-a ,-22a ,EF →=⎝ ⎛⎭⎪⎪⎫0,-a 2,22a , EG →=⎝ ⎛⎭⎪⎪⎫-34a ,-a 4,2a . 设平面GEF 的法向量n =(x ,y ,z ),则⎩⎨⎧n ·EF →=0,n ·EG →=0,即⎩⎪⎨⎪⎧-a 2y +22az =0,-34ax -a 4y +2az =0,所以⎩⎪⎨⎪⎧y =2z ,x =6z ,令z =1,得x =6,y =2,所以平面GEF 的一个法向量为n =(6,2,1), 所以|cos 〈B 1F →,n 〉|=|n ·B 1F →||n ||B 1F →|=⎪⎪⎪⎪⎪⎪⎪⎪-2a -22a 9×a 2+a 22=33. 所以B 1F 与平面GEF 所成角的正弦值为33.拓展提升求直线与平面的夹角的方法与步骤思路一:找直线在平面内的射影,充分利用面与面垂直的性质及解三角形知识可求得夹角(或夹角的某一三角函数值).思路二:用向量法求直线与平面的夹角可利用向量夹角公式或法向量.利用法向量求直线与平面的夹角的基本步骤:(1)建立空间直角坐标系; (2)求直线的方向向量AB →; (3)求平面的法向量n ;(4)计算:设线面角为θ,则sin θ=|n ·AB→||n ||AB→|.【跟踪训练2】 如图,四棱锥P -ABCD 中,PA ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,PA =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明:MN ∥平面PAB ;(2)求直线AN 与平面PMN 所成角的正弦值.解 (1)证明:由已知得AM =23AD =2.取BP 的中点T ,连接AT ,TN .由N 为PC 的中点知TN ∥BC ,TN =12BC =2.又AD ∥BC ,故TN 綊AM ,四边形AMNT 为平行四边形,于是MN ∥AT .因为AT ⊂平面PAB ,MN ⊄平面PAB ,所以MN ∥平面PAB .(2)取BC 的中点E ,连接AE .由AB =AC 得AE ⊥BC ,从而AE ⊥AD ,且AE =AB 2-BE 2=AB2-⎝ ⎛⎭⎪⎫BC 22= 5.以A 为坐标原点,AE →的方向为x 轴正方向,建立如图所示的空间直角坐标系Axyz .由题意知,P (0,0,4),M (0,2,0),C (5,2,0),N ⎝⎛⎭⎪⎪⎫52,1,2, PM →=(0,2,-4),PN →=⎝ ⎛⎭⎪⎪⎫52,1,-2,AN →=⎝ ⎛⎭⎪⎪⎫52,1,2. 设n =(x ,y ,z )为平面PMN 的法向量,则⎩⎨⎧n ·PM →=0,n ·PN →=0,即⎩⎪⎨⎪⎧2y -4z =0,52x +y -2z =0,可取n =(0,2,1).于是|cos 〈n ,AN →〉|=|n ·AN →||n ||AN →|=8525,则直线AN 与平面PMN所成角的正弦值为8525.探究3 利用空间向量求二面角例3 如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,∠AFD =90°,且二面角D -AF -E 与二面角C -BE -F 都是60°.(1)证明:平面ABEF⊥平面EFDC;(2)求二面角E-BC-A的余弦值.[解] (1)证明:由已知可得AF⊥DF,AF⊥FE,所以AF⊥平面EFDC.又AF⊂平面ABEF,故平面ABEF⊥平面EFDC.(2)过D作DG⊥EF,垂足为G,由(1)知DG⊥平面ABEF.以G为坐标原点,GF→的方向为x轴正方向,|GF→|为单位长,建立如图所示的空间直角坐标系Gxyz.由(1)知∠DFE为二面角D-AF-E的平面角,故∠DFE=60°,则DF=2,DG=3,可得A(1,4,0),B(-3,4,0),E(-3,0,0),D(0,0,3).由已知,AB∥EF,AB⊄平面EFDC,EF⊂平面EFDC,所以AB∥平面EFDC.又平面ABCD∩平面EFDC=CD,故AB∥CD,CD∥EF.由BE∥AF,可得BE⊥平面EFDC,所以∠CEF为二面角C-BE -F的平面角,∠CEF=60°.从而可得C(-2,0,3).连接AC,则EC→=(1,0,3),EB→=(0,4,0),AC→=(-3,-4,3),AB→=(-4,0,0).设n=(x,y,z)是平面BCE的法向量,则⎩⎨⎧n ·EC →=0,n ·EB →=0,即⎩⎪⎨⎪⎧x +3z =0,4y =0,所以可取n =(3,0,-3).设m 是平面ABCD 的法向量,则⎩⎨⎧m ·AC →=0,m ·AB →=0,同理可取m =(0,3,4).则cos 〈n ,m 〉=n ·m |n ||m |=-21919.故二面角E -BC -A 的余弦值为-21919.拓展提升二面角的向量求法(1)若AB ,CD 分别是二面角α-l -β的两个半平面内与棱l 垂直的异面直线,则二面角的大小就是向量AB →与CD →的夹角(如图①).(2)利用坐标法求二面角的步骤设n 1,n 2分别是平面α,β的法向量,则向量n 1与n 2的夹角(或其补角)就是两个平面夹角的大小,如图②.用坐标法的解题步骤如下:①建系:依据几何条件建立适当的空间直角坐标系. ②求法向量:在建立的坐标系下求两个面的法向量n 1,n 2.③计算:求n1与n2所成锐角θ,cosθ=|n1·n2| |n1||n2|.④定值:若二面角为锐角,则为θ;若二面角为钝角,则为π-θ.【跟踪训练3】若PA⊥平面ABC,AC⊥BC,PA=AC=1,BC =2,求二面角A-PB-C的余弦值.解 解法一:如下图所示,取PB 的中点D ,连接CD .∵PC =BC =2,∴CD ⊥PB .∴作AE ⊥PB 于E ,那么二面角A -PB -C 的大小就等于异面直线DC 与EA 所成的角θ的大小.∵PD =1,PE =PA 2PB =12,∴DE =PD -PE =12,又∵AE =AP ·AB PB =32,CD =1,AC =1,AC →=AE →+ED →+DC →,且AE →⊥ED →,ED →⊥DC→,∴|AC →|2=|AE →|2+|ED →|2+|DC →|2+2|AE →|·|DC →|·cos(π-θ), 即1=34+14+1-2×32×1×cos θ,解得cos θ=33.故二面角A -PB -C 的余弦值为33.解法二:由解法一可知,向量DC →与EA →的夹角的大小就是二面角A -PB -C 的大小,如图,建立空间直角坐标系Cxyz ,则A (1,0,0),B (0,2,0),C (0,0,0),P (1,0,1),D 为PB的中点,D ⎝⎛⎭⎪⎪⎫12,22,12. ∵PE EB =AP 2AB 2=13,即E 分PB →的比为13,∴E ⎝⎛⎭⎪⎪⎫34,24,34,EA →=⎝ ⎛⎭⎪⎪⎫14,-24,-34, DC →=⎝ ⎛⎭⎪⎪⎫-12,-22,-12,|EA →|=32,|DC →|=1,EA →·DC →=14×⎝ ⎛⎭⎪⎫-12+⎝ ⎛⎭⎪⎪⎫-24×⎝ ⎛⎭⎪⎪⎫-22+⎝ ⎛⎭⎪⎫-34×⎝ ⎛⎭⎪⎫-12=12.∴cos 〈EA →,DC →〉=EA →·DC →|EA →||DC →|=33. 故二面角A -PB -C 的余弦值为33.解法三:如右图所示,建立空间直角坐标系,则A (0,0,0),B (2,1,0),C (0,1,0),P (0,0,1),AP →=(0,0,1),AB →=(2,1,0),CB →=(2,0,0),CP →=(0,-1,1),设平面PAB 的法向量为m =(x ,y ,z ),则⎩⎨⎧m ·AP →=0,m ·AB →=0⇒⎩⎪⎨⎪⎧x ,y ,z ·0,0,1=0,x ,y ,z ·2,1,0=0⇒⎩⎪⎨⎪⎧y =-2x ,z =0,令x =1,则m =(1,-2,0),设平面PBC 的法向量为n =(x ′,y ′,z ′),则⎩⎨⎧n ·CB →=0,n ·CP →=0⇒⎩⎪⎨⎪⎧x ′,y ′,z ′·2,0,0=0,x ′,y ′,z ′·0,-1,1=0⇒⎩⎪⎨⎪⎧x ′=0,y ′=z ′.令y ′=-1,则n =(0,-1,-1),∴cos 〈m ,n 〉=m ·n |m ||n |=33.∴二面角A -PB -C 的余弦值为33.探究4 利用空间向量求距离例4 已知正方形ABCD 的边长为1,PD ⊥平面ABCD ,且PD =1,E ,F 分别为AB ,BC 的中点.(1)求点D 到平面PEF 的距离; (2)求直线AC 到平面PEF 的距离.[解] 解法一:(1)建立如图所示的空间直角坐标系,则D (0,0,0),P (0,0,1),A (1,0,0),C (0,1,0),E ⎝ ⎛⎭⎪⎫1,12,0,F ⎝ ⎛⎭⎪⎫12,1,0.设DH ⊥平面PEF ,垂足为H ,则DH →=xDE →+yDF →+zDP →=⎝ ⎛⎭⎪⎫x +12y ,12x +y ,z ·(x +y +z =1),PE →=⎝ ⎛⎭⎪⎫1,12,-1,PF →=⎝ ⎛⎭⎪⎫12,1,-1.∴DH →·PE →=x +12y +12⎝ ⎛⎭⎪⎫12x +y -z =54x +y -z =0.同理,DH →·PF →=x +54y -z =0,又x +y +z =1,∴可解得x =y =417,z =917.∴DH →=317(2,2,3).∴|DH →|=31717.因此,点D 到平面PEF 的距离为31717.(2)设AH ′⊥平面PEF ,垂足为H ′,则AH ′→∥DH →,设AH ′→=λ(2,2,3)=(2λ,2λ,3λ)(λ≠0),则EH ′→=EA →+AH ′→=⎝ ⎛⎭⎪⎫0,-12,0+(2λ,2λ,3λ)=⎝ ⎛⎭⎪⎫2λ,2λ-12,3λ.∴AH ′→·EH ′→=4λ2+4λ2-λ+9λ2=0,即λ=117.∴AH ′→=117(2,2,3),|AH ′→|=1717, 又AC ∥平面PEF ,∴AC 到平面PEF 的距离为1717.解法二:(1)由解法一建立的空间直角坐标系知EF →=⎝ ⎛⎭⎪⎫-12,12,0,PE →=⎝ ⎛⎭⎪⎫1,12,-1,DE →=⎝ ⎛⎭⎪⎫1,12,0,设平面PEF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧-12x +12y =0,x +12y -z =0,解得⎩⎪⎨⎪⎧y =x ,z =32x ,令x =2,则n =(2,2,3), ∴点D 到平面PEF 的距离d =|DE →·n ||n |=|2+1|4+4+9=31717.(2)∵AC ∥EF ,∴直线AC 到平面PEF 的距离也即是点A 到平面PEF 的距离.又AE →=⎝ ⎛⎭⎪⎫0,12,0,∴点A 到平面PEF 的距离为 d =|AE →·n ||n |=117=1717.拓展提升1.向量法求点到直线的距离的两种思路(1)将求点到直线的距离问题转化为求向量模的问题,即利用待定系数法求出垂足的坐标,然后求出向量的模,这是求各种距离的通法.(2)直接套用点线距公式求解,其步骤为直线的方向向量a →所求点到直线上一点的向量PP ′→及其在直线的方向向量a 上的投影→代入公式.注意平行直线间的距离与点到直线的距离之间的转化. 2.点面距、线面距、面面距的求解方法线面距、面面距实质上都是求点面距,求直线到平面、平面到平面的距离的前提是线面、面面平行.点面距的求解步骤:(1)求出该平面的一个法向量;(2)找出从该点出发的平面的任一条斜线段对应的向量; (3)求出法向量与斜线段对应向量的数量积的绝对值,再除以法向量的模,即可求出点到平面的距离.【跟踪训练4】 正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F ,G 分别是C 1C ,D 1A 1,AB 的中点,求点A 到平面EFG 的距离.解 如图,建立空间直角坐标系,则A (2,0,0),E (0,2,1),F (1,0,2),G (2,1,0),∴EF →=(1,-2,1),EG →=(2,-1,-1),GA →=(0,-1,0). 设n =(x ,y ,z )是平面EFG 的法向量,则⎩⎨⎧n ·EF →=0,n ·EG →=0,∴⎩⎪⎨⎪⎧x -2y +z =0,2x -y -z =0,∴x =y =z ,可取n =(1,1,1), ∴d =|GA →·n ||n |=13=33,即点A 到平面EFG 的距离为33.探究5 与空间有关的探索性问题例5 如图,矩形ABCD 和梯形BEFC 所成的平面互相垂直,BE ∥CF ,∠BCF =∠CEF =90°,AD =3,EF =2.(1)求证:AE ∥平面DCF ;(2)当AB 的长为何值时,二面角A -EF -C 的大小为60°?[解] 如图,以点C 为坐标原点,以CB ,CF 和CD 所在直线分别作为x 轴、y 轴和z 轴,建立空间直角坐标系Cxyz .设AB =a ,BE =b ,CF =c ,则C (0,0,0),A (3,0,a ),B (3,0,0),E (3,b,0),F (0,c,0).(1)证明:AE →=(0,b ,-a ),CB →=(3,0,0),BE →=(0,b,0),∴CB →·AE →=0,CB →·BE →=0, 从而CB ⊥AE ,CB ⊥BE . 又AE ∩BE =E , ∴CB ⊥平面ABE . ∵CB ⊥平面DCF ,∴平面ABE ∥平面DCF .又AE ⊂平面ABE , 故AE ∥平面DCF .(2)∵EF →=(-3,c -b,0),CE →=(3,b,0), 且EF →·CE →=0,|EF→|=2, ∴⎩⎪⎨⎪⎧-3+b c -b =0,3+c -b2=2,解得b =3,c =4.∴E (3,3,0),F (0,4,0).设n =(1,y ,z )与平面AEF 垂直, 则n ·AE →=0,n ·EF →=0,即⎩⎪⎨⎪⎧1,y ,z ·0,3,-a =0,1,y ,z ·-3,1,0=0,解得n =⎝⎛⎭⎪⎪⎫1,3,33a.又∵BA ⊥平面BEFC ,BA →=(0,0,a ),∴|cos 〈n ,BA →〉|=|n ·BA →||n ||BA →|=334a 2+27=12, 解得a =92或a =-92(舍去).∴当AB =92时,二面角A -EF -C 的大小为60°.拓展提升利用向量解决存在性问题的方法策略求解存在性问题的基本策略是:首先,假定题中的数学对象存在;其次,构建空间直角坐标系;再次,利用空间向量法把存在性问题转化为求参数是否有解问题;最后,解方程,下结论.利用上述思维策略,可使此类存在性难题变为常规问题.【跟踪训练5】 在长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=12AB ,点E 是棱AB 上一点,且AEEB=λ. (1)证明:D 1E ⊥A 1D ;(2)是否存在λ,使得二面角D 1-EC -D 的平面角为π4?并说明理由.解 (1)证明:以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴建立空间直角坐标系,如图所示.不妨设AD =AA 1=1,AB =2,则D (0,0,0),A (1,0,0),B (1,2,0),C (0,2,0),A 1(1,0,1),B 1(1,2,1),C 1(0,2,1),D 1(0,0,1).因为AEEB =λ,所以E ⎝⎛⎭⎪⎫1,2λ1+λ,0, 于是D 1E →=⎝ ⎛⎭⎪⎫1,2λ1+λ,-1,A 1D →=(-1,0,-1),所以D 1E →·A 1D →=⎝ ⎛⎭⎪⎫1,2λ1+λ,-1·(-1,0,-1)=-1+0+1=0,故D 1E ⊥A 1D .(2)因为DD 1⊥平面ABCD ,所以平面DEC 的一个法向量为n =(0,0,1),设平面D 1EC 的法向量为n 1=(x ,y ,z ),又CE →=⎝ ⎛⎭⎪⎫1,2λ1+λ-2,0,CD 1→=(0,-2,1), 则⎩⎨⎧n 1·CE →=0,n 1·CD 1→=0,即⎩⎪⎨⎪⎧n 1·⎝ ⎛⎭⎪⎫1,2λ1+λ-2,0=0,n 1·0,-2,1=0,整理得⎩⎪⎨⎪⎧x -y ·21+λ=0,-2y +z =0,取y =1,则n 1=⎝ ⎛⎭⎪⎫21+λ,1,2. 因为二面角D 1-EC -D 的平面角为π4,所以22=|n ·n 1||n ||n 1|,即22=21+4+⎝⎛⎭⎪⎫21+λ2,解得λ=233-1. 故存在λ=233-1,使得二面角D 1-EC -D 的平面角为π4.1.用空间向量解决立体几何问题的“三步曲”(1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线,把立体几何问题转化为向量问题.(2)通过向量运算,研究点、直线、平面之间的位置关系以及相应的距离和夹角等问题.(3)把向量的运算结果“翻译”成相应的几何意义. 2.利用法向量求直线AB 与平面α所成的角θ的步骤 (1)求平面α的法向量n .(2)利用公式sin θ=|cos 〈AB →,n 〉|=|AB →·n ||AB →||n |,注意直线和平面所成角的取值范围为⎣⎢⎡⎦⎥⎤0,π2.3.利用法向量求二面角的余弦值的步骤 (1)求两平面的法向量.(2)求两法向量的夹角的余弦值.(3)由图判断所求的二面角是锐角、直角,还是钝角,从而下结论.在用法向量求二面角的大小时应注意:平面的法向量有两个相反的方向,取的方向不同求出来的角度当然就不同,所以最后还应该根据这个二面角的实际形态确定其大小.4.点面距的求解步骤(1)求出该平面的一个法向量.(2)找出从该点出发的平面的任一条斜线段对应的向量. (3)求出法向量与斜线段对应向量的数量积的绝对值,再除以法向量的模,即可求出点到平面的距离.1.若两异面直线l 1与l 2的方向向量分别为a =(0,4,-3),b =(1,2,0),则直线l 1与l 2的夹角的余弦值为( )A.32B.8525C.4315D.33答案 B解析 设l 1,l 2的夹角为θ,则cos θ=|cos 〈a ,b 〉|=0×1+4×2+-3×05×5=8525.2.直角△ABC 的两条直角边BC =3,AC =4,PC ⊥平面ABC ,PC =95,则点P 到斜边AB 的距离是( )A .5B .3C .3 2 D.125答案 B解析 以C 为坐标原点,CA ,CB ,CP 所在直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系.则A (4,0,0),B (0,3,0),P ⎝ ⎛⎭⎪⎫0,0,95,所以AB →=(-4,3,0),AP →=⎝⎛⎭⎪⎫-4,0,95, 所以AP →在AB →上的投影长为|AP →·AB →||AB →|=165,所以点P 到AB 的距离为d =|AP →|2-⎝ ⎛⎭⎪⎫1652=16+8125-25625=3.故选B.3.把正方形ABCD 沿对角线AC 折起成直二面角,点E ,F 分别是AD ,BC 的中点,O 是正方形中心,则折起后,∠EOF 的大小为( )A .(0°,90°)B .90°C .120°D .(60°,120°)答案 C解析 OE →=12(OA →+OD →),OF →=12(OB →+OC →),∴OE →·OF →=14(OA →·OB →+OA →·OC →+OD →·OB →+OD →·OC →)=-14|OA →|2.又|OE →|=|OF →|=22|OA →|,∴cos 〈OE →,OF →〉=-14|OA →|212|OA →|2=-12.∴∠EOF =120°.故选C. 4.平面α的法向量n 1=(1,0,-1),平面β的法向量n 2=(0,-1,1),则平面α与β所成二面角的大小为________.答案π3或2π3解析 设二面角的大小为θ,则cos 〈n 1,n 2〉=1×0+0×-1+-1×12·2=-12,所以cos θ=12或-12,∴θ=π3或2π3.5.如图,在长方体AC 1中,AB =BC =2,AA 1=2,点E ,F 分别是平面A 1B 1C 1D 1、平面BCC 1B 1的中心.以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建立空间直角坐标系.试用向量方法解决下列问题:(1)求异面直线AF 和BE 所成的角;(2)求直线AF 和平面BEC 所成角的正弦值.解 (1)由题意得A (2,0,0),F ⎝ ⎛⎭⎪⎪⎫1,2,22,B (2,2,0),E (1,1,2),C (0,2,0).∴AF →=⎝⎛⎭⎪⎪⎫-1,2,22,BE →=(-1,-1,2), ∴AF →·BE →=1-2+1=0.∴直线AF 和BE 所成的角为90°.(2)设平面BEC 的法向量为n =(x ,y ,z ),又BC→=(-2,0,0),BE →=(-1,-1,2),则n ·BC →=-2x =0,n ·BE →=-x -y +2z =0,∴x =0,取z =1,则y =2,∴平面BEC 的一个法向量为n =(0,2,1).∴cos 〈AF →,n 〉=AF →·n|AF →||n |=522222×3=53333.设直线AF 和平面BEC 所成的角为θ,则sin θ=53333,即直线AF 和平面BEC 所成角的正弦值为53333.。
用向量解决立体几何中的动点问题
题 中 的 技 巧 .
题 型 一 :动 点的 轨迹 问题
例 1 如 图 1, 在 正 方 体
D
C
A曰CD—A B1ClD 中 ,点 P在 倾9面 BCC。B 及其边界上运 动 ,并且 总 A
保 持4Pj_BD ,则 动 点 P的 轨 迹
A(1,0,0),由题设 点P的坐标为 ( ,1,。),则有
—
—
—
—
}
——
— Байду номын сангаас
BDl=(一1,一1,1),A—P=( 一1,1,0),APj_BD】= BDl·AP=z— =
0,故 ,即点 P在 线 段 日 c,故 选 A.
点 评 :通 过 建 立 坐 标 系 .利 用 空 间 向量 将 垂 直 关 系转 化 为 向
=
,一
南 FJ-平面 彻 。,有赢·
型1 2 + = 0.
可 得 =0,点 的 坐 标 为 (0,0,0). 故 当EF上平 I ̄BMD,时 ,肘在 直 线删 上 的D点 处 .
M (0,0,t)(0≤£≤ 1).所 以MB=
—
(1,1,一t),EF=(一1,1,0).
假 设 存 在点 使 得 直线 MB
量 的数 量 积 为O.从 而得 出动 点的 轨迹 方 程 .从 而确 定轨 迹 的类 型.
题 型 二 :位 置 关 系 判 断
C.j棱 锥 A—BEF的体 积 为 定值
D.异 面 直 线 E,B晰 成 的 角 为 定值 解析 :以点D作为坐标原点 ,以棱DA,DC,DD 所在 的直线为
例2 正方体4 BCD-A lBlClDl
立体几何典型问题的向量解法
立体几何中几类典型问题的向量解法空间向量的引入为求立体几何的空间角和距离问题、证线面平行与垂直以及解决立体几何的探索性试题提供了简便、快速的解法。
它的实用性是其它方法无法比拟的,因此应加强运用向量方法解决几何问题的意识,提高使用向量的熟练程度和自觉性,注意培养向量的代数运算推理能力,掌握向量的基本知识和技能,充分利用向量知识解决图形中的角和距离、平行与垂直问题。
一、利用向量知识求点到点,点到线,点到面,线到线,线到面,面到面的距离(1)求点到平面的距离除了根据定义和等积变换外还可运用平面的法向量求得,方法是:求出平面的一个法向量的坐标,再求出已知点P 与平面内任一点M 构成的向量MP u u u r的坐标,那么P 到平面的距离cos ,n MP d MP n MP n •=•<>=r u u u r u u u r r u u u rr(2)求两点,P Q 之间距离,可转化求向量PQ uuu r的模。
(3)求点P 到直线AB 的距离,可在AB 上取一点Q ,令,AQ QB PQ AB λ=⊥u u u r u u u r u u u r u u u r或PQ u u u r 的最小值求得参数λ,以确定Q 的位置,则PQ u u u r为点P 到直线AB 的距离。
还可以在AB 上任取一点Q 先求<AB ,cos ,再转化为><,sin ,则PQ u u u r><,sin 为点P 到直线AB 的距离。
(4)求两条异面直线12,l l 之间距离,可设与公垂线段AB 平行的向量n r,,C D 分别是12,l l 上的任意两点,则12,l l 之间距离CD nAB n•=u u u r r r例1:设(2,3,1),(4,1,2),(6,3,7),(5,4,8)A B C D --,求点D 到平面ABC 的距离例2:如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直。
空间向量在立体几何中的应用
nn··CC→→PB==00,⇒( (xx′′, ,yy′′, ,zz′′) )··( (0,2,-01,,01))==00,⇒-2yx′′+=z′=0,0.
令 y′=-1,则 z′=-1,故 n=(0,-1,-1),
∴cos〈m,n〉=m|m·||nn| =
3 3.
∴二面角
A-PB
-C
的余弦值为
3 3.
则 A(0,0,0),M(0,a2, 2a),
C1(- 23a,a2, 2a),B(0,a,0),
故A→MA→=C1(=0,(-a2,23a2,a)a2,, 2a), B→C1=(- 23a,-a2, 2a).
设平面 AMC1 的法向量为 n=(x,y,z).
则A→C1·n=0,∴- 23ax+a2y+ 2az=0,
正方向建立空间直角坐标系,则 B(1,0,0),D(-1,1,0),
A1(0,2, 3),A(0,0, 3),B1(1,2,0).2 分
设平面 A1AD 的法向量为 n=(x,y,z),A→D=(-1,1,- 3),A→A1
=(0,2,0).
因为 n⊥A→D,n⊥A→A1, 得nn··AA→→AD1==00,,得2-y=x+0,y- 3z=0,
【示例】 如图,在四棱锥 O-ABCD 中,底面 π
ABCD 是边长为 1的菱形,∠ABC= 4 , OA⊥底面 ABCD,OA=2,M 为 OA 的 中点,N 为 BC 的中点. (1)证明:直线MN∥平面OCD; (2)求异面直线AB与MD所成角的大小. [思路分析]建系→求相关点坐标→求相关向量坐标→向量 运算→结论. 解 作AP⊥CD于点P,分别以AB,AP,AO所在的直线 为x,y,z轴建立空间直角坐标系A-xyz,如图所示,
027:选修2-1 3.2.3 利用法向量解决立体几何中的线面角问题和求点到平面的距离问题
选修2-1 第三章 空间向量与立体几何§3.2.3 利用法向量解决立体几何中的线面角,求点到平面的距离问题班级 姓名一、目标导引1.会利用法向量解决立体几何中的线面角; 2.会求点到平面的距离问题. 二、教学过程题型一 利用法向量解决立体几何中的线面角 【知识准备】如图,已知PA 为平面α的一条斜线,n 为平面α的一个法向量,过P 作平面α的垂线PO ,连结OA 则PAO ∠为斜线PA 和平面α所成的角,记为θ,则有 ,OP AP θ+<>= ,由此,在Rt AOP ∆中,sin |sin(,)|2OP AP πθ=-<>= = .【注意】直线与平面所成的角的范围是θ∈例1 如图所示,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°. (1)证明:AB ⊥A 1C ;(2)若平面ABC ⊥平面AA 1B 1B ,AB =CB ,求直线A 1C 与平面BB 1C 1C 所成角的正弦值.11【变式1】在正三棱柱ABC -A 1B 1C 1中,已知AB =1,D 在棱BB 1上,且BD =1,求AD 与平面AA 1C 1C 所成角的正弦值.C1题型二 利用法向量求点到平面的距离问题【知识准备】设P 是平面α外一点,P A 是α的一条斜线,交平面α于点A , n 是平面α的法向量,那么向量PA 在n 方向上的正射影长OP 就是点A 到平面α的距离h ,在Rt AOP ∆中,OP = = .例2 已知正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F ,G 分别是C 1C ,D 1A 1,AB 的中点,求点A 到平面EFG 的距离.A1【课时作业027】班级 姓名 作业等级A 级 学业水平达标1.在正方体ABCD -A 1B 1C 1D 1中,求直线BC 1与平面A 1BD 所成的角的正弦值.【答案:63】12.正三角形ABC 与正三角形BCD 所在的平面互相垂直,求直线CD 与平面ABD 所成角的正弦值.【答案:155】3.如图所示,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是BC ,A 1D 1的中点.(1)求直线A 1C 与DE 所成角的余弦值;【答案:1515】(2)求直线AD 与平面B 1EDF 所成角的余弦值;【答案:33】(3)求平面B 1EDF 与平面ABCD 所成锐二面角的余弦值.【答案:66】B 级 应试能力达标4.如图,在四棱柱ABCD -A 1B 1C 1D 1中,侧棱AA 1⊥底面ABCD ,AB ∥DC ,AA 1=1,AB =3k ,AD =4k ,BC =5k ,DC =6k (k >0).(1)求证:CD ⊥平面ADD 1A 1; (2)若直线AA 1与平面AB 1C 所成角的正弦值为67,求k 的值.(答案k=1)5.如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,AB ∥CD ,AD =CD =1,∠BAD =120°,∠ACB =90°.(1)求证:BC ⊥平面P AC ;(2)若二面角D -PC -A 的余弦值为55,求点A 到平面PBC 的距离.(答案32)1选修2-1 第三章 空间向量与立体几何§3.2.3 利用法向量解决立体几何中的线面角,求点到平面的距离问题一、目标导引1.利用法向量解决立体几何中的线面角;2.求点到平面的距离问题二、教学过程题型一 利用法向量解决立体几何中的线面角 【知识准备】如图,已知PA 为平面α的一条斜线,n 为平面α的一个法向量,过P 作平面α的垂线PO ,连结OA 则PAO ∠为斜线PA 和平面α所成的角,记为θ,则有 ,OP AP θ+<>= ,由此,在Rt AOP ∆中,sin |sin(,)|2OP AP πθ=-<>= =【注意】直线与平面所成的角的范围是θ∈例1 如图所示,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°. ①证明:AB ⊥A 1C ;②若平面ABC ⊥平面AA 1B 1B ,AB =CB ,求直线A 1C 与平面BB 1C 1C 所成角的正弦值. ①证明 取AB 的中点O ,连接OC ,OA 1,A 1B . ∵CA =CB ,∴OC ⊥AB . 由于AB =AA 1,∠BAA 1=60°, 故△AA 1B 为等边三角形,∴OA 1⊥AB .∵OC ∩OA 1=O , ∴AB ⊥平面OA 1C .又A 1C ⊂平面OA 1C ,故AB ⊥A 1C .②解 由①知OC ⊥AB ,OA 1⊥AB .又平面ABC ⊥平面AA 1B 1B ,交线为AB ,OC ⊂平面ABC , 所以OC ⊥平面AA 1B 1B ,故OA ,OA 1,OC 两两垂直.以O 为坐标原点,OA ,OA 1,OC 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系Oxyz .设AB =2,则A (1,0,0),A 1(0,3,0), C (0,0,3),B (-1,0,0),则BC →=(1,0,3),BB 1→=AA 1→=(-1,3,0), A 1C -→=(0,-3,3). 设n =(x ,y ,z )是平面BB 1C 1C 的法向量,则⎩⎪⎨⎪⎧n ·BC →=0,n ·BB 1→=0,即⎩⎨⎧x +3z =0,-x +3y =0,可取n =(3,1,-1).故cos 〈n ,A 1C -→〉=n ·A 1C -→|n ||A 1C -→|=-105,∴A 1C 与平面BB 1C 1C 所成角的正弦值为105.【变式1】在正三棱柱ABC -A 1B 1C 1中,已知AB =1,D 在棱BB 1上,且BD =1,求AD 与平面AA 1C 1C 所成角的正弦值解析 取AC 的中点E ,连接BE ,则BE ⊥AC ,以B 为坐标原点,BE ,BB 1所在直线分别为x 轴,z 轴,建立如图所示的空间直角坐标系Bxyz ,则A ⎝⎛⎭⎫32,12,0,D (0,0,1),B (0,0,0),E ⎝⎛⎭⎫32,0,0,则AD →=⎝⎛⎭⎫-32,-12,1,BE →=⎝⎛⎭⎫32,0,0. ∵平面ABC ⊥平面AA 1C 1C ,平面ABC ∩平面AA 1C 1C =AC ,BE ⊥AC ,BE ⊂平面ABC , ∴BE ⊥平面AA 1C 1C ,∴BE →=⎝⎛⎭⎫32,0,0为平面AA 1C 1C 的一个法向量.设AD 与平面AA 1C 1C 所成角为α,∵cos 〈AD →,BE →〉=-64,∴sin α=|cos 〈AD →,BE →〉|=64.题型二 利用法向量求点到平面的距离问题【知识准备】设P 是平面α外一点,P A 是α的一条斜线,交平面α于点A ,n 是平面α的法向量,那么向量PA 在n 方向上的正射影长OP 就是点A 到平面α的距离h ,在Rt AOP ∆中,OP = =例2 已知正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F ,G 分别是C 1C ,D 1A 1,AB 的中点,求点A 到平面EFG 的距离.解 以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系Dxyz , 则A (2,0,0),E (0,2,1),F (1,0,2),G (2,1,0).所以AG →=(0,1,0),GE →=(-2,1,1),GF →=(-1,-1,2).设n =(x ,y ,z )是平面EFG 的法向量,点A 到平面EFG 的距离为d , 则⎩⎪⎨⎪⎧n ·GE →=0,n ·GF →=0,所以⎩⎪⎨⎪⎧ -2x +y +z =0,-x -y +2z =0,所以⎩⎪⎨⎪⎧x =z ,y =z .令z =1,此时n =(1,1,1),所以d =|AG →·n ||n |=13=33,即点A 到平面EFG 的距离为33.A 级 学业水平达标1.在正方体ABCD -A 1B 1C 1D 1中,求直线BC 1与平面A 1BD 所成的角的正弦值. 【答案:63】解析 以D 为坐标原点,DA →,DC →,DD 1→所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系Dxyz .设正方体的棱长为1,则D (0,0,0),A 1(1,0,1),B (1,1,0),C 1(0,1,1),A (1,0,0),∴BC 1→=(-1,0,1),AC 1→=(-1,1,1),A 1B -→=(0,1,-1), A 1D -→=(-1,0,-1).∴AC 1→·A 1B -→=1-1=0,AC 1→·A 1D -→=1-1=0.∴AC 1⊥A 1B ,AC 1⊥A 1D .又A 1B ∩A 1D =A 1,且A 1B ,A 1D ⊂平面A 1BD ,∴AC 1⊥平面A 1BD . ∴AC 1→是平面A 1BD 的一个法向量.∴cos 〈BC 1→,AC 1→〉=BC 1→·AC 1→|BC 1→||AC 1→|=1+12×3=63.2.正三角形ABC 与正三角形BCD 所在的平面互相垂直,求直线CD 与平面ABD 所成角的正弦值.解析:取BC 的中点O ,连接AO ,DO ,建立如图所示的空间直角坐标系O -xyz .设BC =1,A ⎝⎛⎭⎫0,0,32,B ⎝⎛⎭⎫0,-12,0,C ⎝⎛⎭⎫0,12,0,D ⎝⎛⎭⎫32,0,0,所以BA ―→=⎝⎛⎭⎫0,12,32, BD ―→=⎝⎛⎭⎫32,12,0,CD ―→=⎝⎛⎭⎫32,-12,0. 设平面ABD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·BA ―→=0,n ·BD ―→=0,所以⎩⎨⎧12y +32z =0,32x +12y =0,取x =1,则y=-3,z =1,所以n =(1,-3,1),所以cos 〈n ,CD ―→=32+325×1=155,因此直线CD 与平面ABD 所成角的正弦值为155.3.如图所示,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是BC ,A 1D 1的中点.(1)求直线A 1C 与DE 所成角的余弦值;【答案:1515】(2)求直线AD 与平面B 1EDF 所成角的余弦值;【答案:33】(3)求平面B 1EDF 与平面ABCD 所成锐二面角的余弦值.【答案:66】解 以A 为坐标原点,分别以AB ,AD ,AA 1所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系Axyz . 则A 1(0,0,a ),C (a ,a,0),D (0,a,0),E ⎝⎛⎭⎫a ,a2,0, (1) A 1C -→=(a ,a ,-a ),DE →=⎝⎛⎭⎫a ,-a 2,0,∴cos 〈A 1C -→,DE →〉=A 1C -→·DE →|A 1C -→||DE →|=1515,故A 1C 与DE 所成角的余弦值为1515.(2)连接DB 1,∵∠ADE =∠ADF ,∴AD 在平面B 1EDF 内的射影在∠EDF 的平分线上.又B 1EDF 为菱形,∴DB 1为∠EDF 的平分线,故直线AD 与平面B 1EDF 所成的角为∠ADB 1.由DA →=(0,-a,0),DB 1→=(a ,-a ,a ),∴cos 〈DA →,DB 1→〉=DA →·DB 1→|DA →||DB 1→|=33,又直线与平面所成角的范围是⎣⎡⎦⎤0,π2, (3)由已知得ED →=⎝⎛⎭⎫-a ,a 2,0, EB 1→=⎝⎛⎭⎫0,-a 2,a ,平面ABCD 的一个法向量为m =AA 1→=(0,0,a ).设平面B 1EDF的一个法向量为n =(1,y ,z ),由⎩⎪⎨⎪⎧n ·ED →=0,n ·EB 1→=0,得⎩⎪⎨⎪⎧y =2,z =1,∴n =(1,2,1),∴cos 〈n ,m 〉=m ·n |m ||n |=66,∴平面B 1EDF与平面ABCD 所成锐二面角的余弦值为66. B 级 应试能力达标4.如图,在四棱柱ABCD -A 1B 1C 1D 1中,侧棱AA 1⊥底面ABCD ,AB ∥DC ,AA 1=1,AB =3k ,AD =4k ,BC =5k ,DC=6k (k >0).(1)求证:CD ⊥平面ADD 1A 1; (2)若直线AA 1与平面AB 1C 所成角的正弦值为67,求k 的值.[解] (1)证明:取CD 的中点E ,连接BE .∵AB ∥DE ,AB =DE =3k , ∴四边形ABED 为平行四边形,∴BE ∥AD 且BE =AD =4k . 在△BCE 中,∵BE =4k ,CE =3k ,BC =5k , ∴BE 2+CE 2=BC 2,∴∠BEC =90°,即BE ⊥CD .又BE ∥AD ,∴CD ⊥AD . ∵AA 1⊥平面ABCD ,CD ⊂平面ABCD ,∴AA 1⊥CD .又AA 1∩AD =A ,∴CD ⊥平面ADD 1A 1.(2)以D 为坐标原点,DA ―→,DC ―→,DD 1―→的方向分别为x 轴、y 轴、z 轴的正方向建立如图所示的空间直角坐标系,则A (4k,0,0),C (0,6k,0),B 1(4k,3k,1),A 1(4k,0,1),∴AC ―→=(-4k,6k,0),AB 1―→=(0,3k,1),AA 1―→=(0,0,1).设平面AB 1C 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧AC ―→·n =0,AB 1―→·n =0,即⎩⎪⎨⎪⎧-4kx +6ky =0,3ky +z =0.取y =2,可得平面AB 1C 的一个法向量为n =(3,2,-6k ).设AA 1与平面AB 1C 所成的角为θ,则sin θ=|cos 〈AA 1―→,n 〉|=|AA 1―→·n ||AA 1―→|·|n |=|-6k |36k 2+13=67,解得k =1.故k 的值为1. 5.如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,AB ∥CD ,AD =CD =1,∠BAD =120°,∠ACB =90°.(1)求证:BC ⊥平面P AC ;(2)若二面角D -PC -A 的余弦值为55,求点A 到平面PBC 的距离.解:(1)证明:∵P A ⊥底面ABCD ,BC ⊂平面ABCD ,∴P A ⊥BC ,∵∠ACB =90°,∴BC ⊥AC ,又P A ∩AC =A , ∴BC ⊥平面P AC .(2)设AP =h ,取CD 的中点E ,则AE ⊥CD ,∴AE ⊥AB .又P A ⊥底面ABCD ,∴P A ⊥AE ,P A ⊥AB ,故建立如图所示的空间直角坐标系,则A (0,0,0),P (0,0,h ),C ⎝⎛⎭⎫32,12,0,D ⎝⎛⎭⎫32,-12,0,B (0,2,0),PC ―→=⎝⎛⎭⎫32,12,-h ,DC ―→=(0,1,0),设平面PDC 的法向量n 1=(x 1,y 1,z 1),则⎩⎪⎨⎪⎧ n 1·PC ―→=0,n 1·DC ―→=0,即⎩⎪⎨⎪⎧32x 1+12y 1-hz 1=0,y 1=0,取x 1=h ,∴n 1=⎝⎛⎭⎫h ,0,32.由(1)知平面P AC 的一个法向量为BC ―→=⎝⎛⎭⎫32,-32,0,∴|cos 〈n 1,BC ―→〉|=32h h 2+34×3=55,解得h =3, 同理可求得平面PBC 的一个法向量n 2=(3,3,2),所以,点A 到平面PBC 的距离为 d =|AP ―→·n 2||n 2|=234=32.。
如何利用空间向量处理立体几何中的角与距离问题课题结题报告
篇一:利用空间向量求立体几何中的角和距离利用空间向量求立体几何中的角和距离四川省宜宾市第一中学校易存新高中数学新教材第二册下(b)中引入空间向量,大大降低了立体几何解题难度,而法向量的引入,对于解决空间的角与距离提供了很大的帮助。
而高考中常以立几知识为载体,以空间向量为工具,常考查空间线、面位置关系的论证和空间距离、空间角的有关计算。
下面举例说明空间向量在求角和距离中的运用。
一.求角1.求异面直线所成的角? (0????2)设异面直线m,n的方向向量分别为m,n,则异面直线m,n所成的角?等于向量m,n所???m?n???成的角或其补角,所以有:cos??cos?m,n??m?n例1.(2006年福建卷)如图,四面体abcd中,o、e分别是bd、bc的中点,ca?cb?cd?bd?2,ab?ad?(i)求证:ao?平面bcd;(ii)求异面直线ab与cd所成角的大小;解:(i)略证。
(ii)∵ao?平面bcd,oc?bd ∴以o为原点,如图建立空间直角坐标系,则b(1,0,0),d(? 1,0,0),1????????0),ba?(?1,0,1),cd?(?1,0).c0),a(0,0,1),e(22????????????????ba.cd?cos?ba,cd?? ?4bacd?异面直线ab与cd所成角的大小为arccos42.求直线与平面所成的角? (0????2)设?为直线l与平面?所成的角,ω为直线l的方向向量v与平面?的法向量n之间的夹角,则有???2??(图1)或???2??(图2)vωn图1 图2即直线l与平面?所成的角?可看成是向量v与平面?的法向量n所成的锐角的余角,所以有sin??cos????cos?v,n???特别地 ??0时,???2,l??;???2时,??0,l??或l//?例2.(2005年浙江卷).如图,在三棱锥p-abc中,ab⊥bc,ab=bc=kpa,点o、d分别是ac、pc的中点,op⊥底面abc.(ⅱ)当k=12时,求直线pa与平面pbc所成角的大小;解:∵op⊥平面abc,oa=oc,ab=bc,∴oa⊥ob,oa⊥op,ob⊥op。
用空间向量解决立体几何中的垂直问题
第2课时用空间向量解决立体几何中的垂直问题学习目标 1.能用向量法判断一些简单线线、线面、面面垂直关系.2.掌握用向量方法证明有关空间线面垂直关系的方法步骤.知识点一向量法判断线线垂直设直线l的方向向量为a=(a1,a2,a3),直线m的方向向量为b=(b1,b2,b3),则l⊥m⇔a·b =0⇔a1b1+a2b2+a3b3=0.知识点二向量法判断线面垂直设直线l的方向向量a=(a1,b1,c1),平面α的法向量μ=(a2,b2,c2),则l⊥α⇔a∥μ⇔a=kμ(k∈R).知识点三向量法判断面面垂直思考平面α,β的法向量分别为μ1=(x1,y1,z1),μ2=(x2,y2,z2),用向量坐标法表示两平面α,β垂直的关系式是什么?答案x1x2+y1y2+z1z2=0.梳理若平面α的法向量为μ=(a1,b1,c1),平面β的法向量为v=(a2,b2,c2),则α⊥β⇔μ⊥v⇔μ·v=0⇔a1a2+b1b2+c1c2=0.(1)平面α的法向量是唯一的,即一个平面不可能存在两个不同的法向量.(×)(2)两直线的方向向量垂直,则两条直线垂直.(√)(3)直线的方向向量与平面的法向量的方向相同或相反时,直线与平面垂直.(√)(4)两个平面的法向量平行,则这两个平面平行;两个平面的法向量垂直,则这两个平面垂直.(√)类型一线线垂直问题例1已知正三棱柱ABC-A1B1C1的各棱长都为1,M是底面上BC边的中点,N 是侧棱CC 1上的点,且CN =14CC 1.求证:AB 1⊥MN .考点 向量法求解直线与直线的位置关系 题点 方向向量与线线垂直证明 设AB 中点为O ,作OO 1∥AA 1.以O 为坐标原点,OB 所在直线为x 轴,OC 所在直线为y 轴,OO 1所在直线为z 轴建立如图所示的空间直角坐标系Oxyz . 由已知得A ⎝⎛⎭⎫-12,0,0, B ⎝⎛⎭⎫12,0,0,C ⎝⎛⎭⎫0,32,0, N ⎝⎛⎭⎫0,32,14,B 1⎝⎛⎭⎫12,0,1, ∵M 为BC 中点, ∴M ⎝⎛⎭⎫14,34,0.∴MN -→=⎝⎛⎭⎫-14,34,14,AB 1-→=(1,0,1),∴MN -→·AB 1-→=-14+0+14=0.∴MN -→⊥AB 1-→,∴AB 1⊥MN .反思与感悟 证明两直线垂直的基本步骤:建立空间直角坐标系→写出点的坐标→求直线的方向向量→证明向量垂直→得到两直线垂直.跟踪训练1 如图,在直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AB =5,AA 1=4,求证:AC ⊥BC 1.考点 向量法求解直线与直线的位置关系 题点 方向向量与线线垂直证明 ∵直三棱柱ABC -A 1B 1C 1底面三边长AC =3,BC =4,AB =5,∴AC ,BC ,C 1C 两两垂直.如图,以C 为坐标原点,CA ,CB ,CC 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系Cxyz .则C (0,0,0),A (3,0,0),C 1(0,0,4),B (0,4,0), ∵AC →=(-3,0,0),BC 1-→=(0,-4,4), ∴AC →·BC 1-→=0.∴AC ⊥BC 1.类型二 证明线面垂直例2 如图所示,正三棱柱ABC -A 1B 1C 1的所有棱长都为2,D 为CC 1的中点. 求证:AB 1⊥平面A 1BD .考点 向量法求解直线与平面的位置关系 题点 向量法解决线面垂直证明 如图所示,取BC 的中点O ,连接AO .因为△ABC 为正三角形,所以AO ⊥BC .因为在正三棱柱ABC -A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1,且平面ABC ∩平面BCC 1B 1=BC ,AO ⊂平面ABC ,所以AO ⊥平面BCC 1B 1.取B 1C 1的中点O 1,以O 为坐标原点,OB ,OO 1,OA 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系Oxyz ,则B (1,0,0),D (-1,1,0),A 1(0,2,3),A (0,0,3), B 1(1,2,0).所以AB 1-→=(1,2,-3),BA 1-→=(-1,2,3), BD -→=(-2,1,0).因为AB 1-→·BA 1-→=1×(-1)+2×2+(-3)×3=0. AB 1-→·BD -→=1×(-2)+2×1+(-3)×0=0.所以AB 1-→⊥BA 1-→,AB 1-→⊥BD -→,即AB 1⊥BA 1,AB 1⊥BD . 又因为BA 1∩BD =B ,所以AB 1⊥平面A 1BD . 反思与感悟 用坐标法证明线面垂直的方法及步骤 方法一:(1)建立空间直角坐标系. (2)将直线的方向向量用坐标表示.(3)找出平面内两条相交直线,并用坐标表示它们的方向向量. (4)分别计算两组向量的数量积,得到数量积为0. 方法二:(1)建立空间直角坐标系. (2)将直线的方向向量用坐标表示. (3)求出平面的法向量.(4)判断直线的方向向量与平面的法向量平行.跟踪训练2 如图,在长方体ABCD -A 1B 1C 1D 1中,AB =AD =1,AA 1=2,点P 为DD 1的中点.求证:直线PB 1⊥平面P AC .考点 向量法求解直线与平面的位置关系 题点 向量法解决线面垂直证明 如图,以D 为坐标原点,DC ,DA ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系Dxyz , C (1,0,0),A (0,1,0),P (0,0,1),B 1(1,1,2), PC →=(1,0,-1),P A →=(0,1,-1), PB 1-→=(1,1,1),B 1C -→=(0,-1,-2), B 1A -→=(-1,0,-2).PB 1-→·PC →=(1,1,1)·(1,0,-1)=0,所以PB 1-→⊥PC →,即PB 1⊥PC . 又PB 1-→·P A →=(1,1,1)·(0,1,-1)=0, 所以PB 1-→⊥P A →,即PB 1⊥P A .又P A ∩PC =P ,所以PB 1⊥平面P AC . 类型三 证明面面垂直问题例3 三棱锥被平行于底面ABC 的平面所截得的几何体如图所示,截面为A 1B 1C 1,∠BAC =90°,A 1A ⊥平面ABC ,A 1A =3,AB =AC =2A 1C 1=2,D 为BC 的中点.证明:平面A 1AD ⊥平面BCC 1B 1. 考点 向量法求解平面与平面的位置关系 题点 向量法解决面面垂直证明 方法一 如图,以A 为坐标原点,AB ,AC ,AA 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系Axyz ,则A (0,0,0),B (2,0,0),C (0,2,0),A 1(0,0,3),C 1(0,1,3). ∵D 为BC 的中点,∴D 点坐标为(1,1,0), ∴AD →=(1,1,0),AA 1-→=(0,0,3),BC →=(-2,2,0), ∴AD →·BC →=1×(-2)+1×2+0×0=0, AA 1-→·BC →=0×(-2)+0×2+3×0=0, ∴AD →⊥BC →,AA 1-→⊥BC →, ∴BC ⊥AD ,BC ⊥AA 1.又A 1A ∩AD =A ,∴BC ⊥平面A 1AD .又BC ⊂平面BCC 1B 1,∴平面A 1AD ⊥平面BCC 1B 1. 方法二 同方法一建系后,得AA 1-→=(0,0,3), AD →=(1,1,0),BC →=(-2,2,0),CC 1-→=(0,-1,3). 设平面A 1AD 的法向量为n 1=(x 1,y 1,z 1), 平面BCC 1B 1的法向量为n 2=(x 2,y 2,z 2).由⎩⎪⎨⎪⎧n 1·AA 1-→=0,n 1·AD →=0,得⎩⎪⎨⎪⎧3z 1=0,x 1+y 1=0,令y 1=-1,则x 1=1,z 1=0, ∴n 1=(1,-1,0).由⎩⎪⎨⎪⎧n 2·BC →=0,n 2·CC 1-→=0,得⎩⎪⎨⎪⎧-2x 2+2y 2=0,-y 2+3z 2=0,令y 2=1,则x 2=1,z 2=33, ∴n 2=⎝⎛⎭⎫1,1,33. ∵n 1·n 2=1-1+0=0,∴n 1⊥n 2, ∴平面A 1AD ⊥平面BCC 1B 1.反思与感悟 证明面面垂直的两种方法(1)常规法:利用面面垂直的判定定理转化为线面垂直、线线垂直去证明. (2)向量法:证明两个平面的法向量互相垂直.跟踪训练3 在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,CD 的中点. (1)求证:平面AED ⊥平面A 1FD 1;(2)在直线AE 上求一点M ,使得A 1M ⊥平面AED . 考点 向量法求解平面与平面的位置关系 题点 向量法解决面面垂直(1)证明 以D 为坐标原点,分别以DA ,DC ,DD 1所在直线为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系Dxyz .设正方体的棱长为2,则D (0,0,0),A (2,0,0),E (2,2,1),F (0,1,0),A 1(2,0,2),D 1(0,0,2),∴DA →=D 1A 1-→=(2,0,0),DE →=(2,2,1),D 1F -→=(0,1,-2). 设平面AED 的一个法向量为n 1=(x 1,y 1,z 1).由⎩⎪⎨⎪⎧n 1·DA →=(x 1,y 1,z 1)·(2,0,0)=0,n 1·DE →=(x 1,y 1,z 1)·(2,2,1)=0,得⎩⎪⎨⎪⎧2x 1=0,2x 1+2y 1+z 1=0. 令y 1=1,得n 1=(0,1,-2).同理,平面A 1FD 1的一个法向量为n 2=(0,2,1). ∵n 1·n 2=(0,1,-2)·(0,2,1)=0,∴n 1⊥n 2, ∴平面AED ⊥平面A 1FD 1. (2)解 由于点M 在直线AE 上, 因此可设AM -→=λAE →=λ(0,2,1)=(0,2λ,λ), 则M (2,2λ,λ),∴A 1M -→=(0,2λ,λ-2). 要使A 1M ⊥平面AED ,只需A 1M -→∥n 1, 即2λ1=λ-2-2,解得λ=25. 故当AM =25AE 时,A 1M ⊥平面AED .1.下列命题中,正确命题的个数为( )①若n 1,n 2分别是平面α,β的法向量,则n 1∥n 2⇔α∥β; ②若n 1,n 2分别是平面α,β的法向量,则α⊥β ⇔ n 1·n 2=0;③若n 是平面α的法向量,a 是直线l 的方向向量,若l 与平面α平行,则n ·a =0; ④若两个平面的法向量不垂直,则这两个平面不垂直. A .1 B .2 C .3 D .4考点 向量法求解平面与平面的位置关系 题点 向量法解决面面垂直 答案 C解析 ①中平面α,β可能平行,也可能重合,结合平面法向量的概念,可知②③④正确.2.已知两直线的方向向量为a,b,则下列选项中能使两直线垂直的为()A.a=(1,0,0),b=(-3,0,0)B.a=(0,1,0),b=(1,0,1)C.a=(0,1,-1),b=(0,-1,1)D.a=(1,0,0),b=(-1,0,0)考点向量法求解直线与直线的位置关系题点向量法解决线线垂直答案 B解析因为a=(0,1,0),b=(1,0,1),所以a·b=0×1+1×0+0×1=0,所以a⊥b,故选B. 3.若直线l的方向向量为a=(1,0,2),平面α的法向量为μ=(-2,0,-4),则()A.l∥αB.l⊥αC.l⊂αD.l与α斜交考点向量法求解直线与平面的位置关系题点向量法解决线面垂直答案 B解析∵a∥μ,∴l⊥α.4.平面α的一个法向量为m=(1,2,0),平面β的一个法向量为n=(2,-1,0),则平面α与平面β的位置关系是()A.平行B.相交但不垂直C.垂直D.不能确定考点向量法求解平面与平面的位置关系题点向量法解决面面垂直答案 C解析∵(1,2,0)·(2,-1,0)=0,∴两法向量垂直,从而两平面垂直.5.在三棱锥S-ABC中,∠SAB=∠SAC=∠ACB=90°,AC=2,BC=13,SB=29,则异面直线SC与BC是否垂直________.(填“是”或“否”)考点向量法求解直线与直线的位置关系题点向量法解决线线垂直答案是解析如图,以A为坐标原点,AB,AS所在直线分别为y轴,z轴建立空间直角坐标系Axyz , 则由AC =2,BC =13, SB =29,得B (0,17,0),S (0,0,23),C ⎝ ⎛⎭⎪⎫21317,417,0, SC →=⎝⎛⎭⎪⎫21317,417,-23, CB →=⎝⎛⎭⎪⎫-21317,1317,0. 因为SC →·CB →=0,所以SC ⊥BC .空间垂直关系的解决策略一、选择题1.设直线l 1,l 2的方向向量分别为a =(-2,2,1),b =(3,-2,m ),若l 1⊥l 2,则m 等于( ) A .-2 B .2 C .6 D .10考点 向量法求解直线与直线的位置关系 题点 方向向量与线线垂直 答案 D解析 因为a ⊥b ,故a ·b =0,即-2×3+2×(-2)+m =0,解得m =10.2.若平面α,β的法向量分别为a =(-1,2,4),b =(x ,-1,-2),并且α⊥β,则x 的值为( ) A .10 B .-10 C.12 D .-12考点 向量法求解平面与平面的位置关系 题点 向量法解决面面垂直 答案 B解析 因为α⊥β,所以它们的法向量也互相垂直, 所以a ·b =(-1,2,4)·(x ,-1,-2)=0, 解得x =-10.3.已知点A (0,1,0),B (-1,0,-1),C (2,1,1),P (x,0,z ),若P A ⊥平面ABC ,则点P 的坐标为( ) A .(1,0,-2) B .(1,0,2) C .(-1,0,2)D .(2,0,-1)考点 向量法求解直线与平面的位置关系 题点 向量法解决线面垂直 答案 C解析 由题意知AB →=(-1,-1,-1),AC →=(2,0,1),AP →=(x ,-1,z ),又P A ⊥平面ABC ,所以有AB →·AP →=(-1,-1,-1)·(x ,-1,z )=0,得-x +1-z =0. ① AC →·AP →=(2,0,1)·(x ,-1,z )=0,得2x +z =0,② 联立①②得x =-1,z =2,故点P 的坐标为(-1,0,2).4.在正方体ABCD-A 1B 1C 1D 1中,若E 为A 1C 1的中点,则直线CE 垂直于( )A .ACB .BDC .A 1D D .A 1A考点 向量法求解直线与直线的位置关系题点 方向向量与线线垂直答案 B解析 以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系Dxyz .设正方体的棱长为1.则C (0,1,0),B (1,1,0),A (1,0,0),D (0,0,0),C 1(0,1,1),A 1(1,0,1),E ⎝⎛⎭⎫12,12,1,∴CE →=⎝⎛⎭⎫12,-12,1,AC →=(-1,1,0), BD →=(-1,-1,0),A 1D -→=(-1,0,-1),A 1A -→=(0,0,-1),∵CE →·BD →=(-1)×12+(-1)×⎝⎛⎭⎫-12+0×1=0,∴CE ⊥BD . 5.已知平面α内有一个点A (2,-1,2),α的一个法向量为n =(3,1,2),则下列点P 中,在平面α内的是( )A. (1,-1,1)B.⎝⎛⎭⎫1,3,32C.⎝⎛⎭⎫1,-3,32D.⎝⎛⎭⎫-1,3,-32 考点 直线的方向向量与平面的法向量题点 法向量求解线面垂直答案 B解析 要判断点P 是否在平面α内,只需判断向量P A →与平面α的法向量n 是否垂直,即P A →·n是否为0,因此,要对各个选项进行检验.对于选项A ,P A →=(1,0,1),则P A →·n =(1,0,1)·(3,1,2)=5≠0,故排除A ;对于选项B ,P A →=⎝⎛⎭⎫1,-4,12,则P A →·n =⎝⎛⎭⎫1,-4,12·(3,1,2)=0,故B 正确;同理可排除C ,D.故选B.6.在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别在A 1D ,AC 上,且A 1E =23A 1D ,AF =13AC , 则( )A .EF 至多与A 1D ,AC 中的一个垂直B .EF ⊥A 1D ,EF ⊥ACC .EF 与BD 1相交D .EF 与BD 1异面考点 直线的方向向量与平面的法向量题点 求直线的方向向量答案 B解析 以D 为坐标原点,分别以DA ,DC ,DD 1所在直线为x 轴,y 轴,z轴,建立空间直角坐标系Dxyz ,设正方体的棱长为1,则A 1(1,0,1),D (0,0,0),A (1,0,0),C (0,1,0),E ⎝⎛⎭⎫13,0,13,F ⎝⎛⎭⎫23,13,0,B (1,1,0),D 1(0,0,1),∴A 1D -→=(-1,0,-1),AC →=(-1,1,0),EF →=⎝⎛⎭⎫13,13,-13,BD 1-→=(-1,-1,1),∴EF →=-13BD 1-→,A 1D -→·EF →=0,AC →·EF →=0,从而EF ∥BD 1,EF ⊥A 1D ,EF ⊥AC ,故选B.7.两平面α,β的法向量分别为μ=(3,-1,z ),v =(-2,-y ,1),若α⊥β,则y +z 的值是( )A .-3B .6C .-6D .-12考点 向量法求解平面与平面的位置关系题点 向量法求解面面垂直答案 B解析 ∵α⊥β,∴μ·v =0,即-6+y +z =0,即y +z =6.二、填空题8.如图所示,在三棱锥A -BCD 中,DA ,DB ,DC 两两垂直,且DB =DC ,E 为BC 的中点,则AE →·BC →=_______.考点 向量法求解直线与直线的位置关系题点 方向向量与线线垂直答案 0解析 因为BE =EC ,故AE →=DE →-DA →=12(DB →+DC →)-DA →,在三棱锥A -BCD 中, DA ,DB ,DC 两两垂直,且DB =DC ,故AE →·BC →=⎣⎡⎦⎤12(DB →+DC →)-DA →·(DC →-DB →)=12(DC →2-DB →2)=0. 9.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量. 其中正确的是________.(填序号)考点 向量法求解直线与直线的位置关系题点 向量法解决线线垂直答案 ①②③解析 AP →·AB →=(-1,2,-1)·(2,-1,-4)=-1×2+2×(-1)+(-1)×(-4)=0,∴AP ⊥AB ,即①正确.AP →·AD →=(-1,2,-1)·(4,2,0)=-1×4+2×2+(-1)×0=0.∴AP ⊥AD ,即②正确.又∵AB ∩AD =A ,∴AP ⊥平面ABCD ,即AP →是平面ABCD 的一个法向量,③正确.10.在△ABC 中,A (1,-2,-1),B (0,-3,1),C (2,-2,1).若向量n 与平面ABC 垂直,且|n |=21,则n 的坐标为________________.考点 向量法求解线面垂直问题题点 向量法求解线面垂直答案 (-2,4,1)或(2,-4,-1)解析 据题意,得AB →=(-1,-1,2),AC →=(1,0,2).设n =(x ,y ,z ),∵n 与平面ABC 垂直,∴⎩⎪⎨⎪⎧ n ·AB →=0,n ·AC →=0,即⎩⎪⎨⎪⎧ -x -y +2z =0,x +2z =0,可得⎩⎪⎨⎪⎧y =4z ,y =-2x . ∵|n |=21,∴x 2+y 2+z 2=21,解得y =4或y =-4.当y =4时,x =-2,z =1;当y =-4时,x =2,z =-1.三、解答题11.如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AB =4,BC =3,AD=5,∠DAB =∠ABC =90°,E 是CD 的中点.证明:CD ⊥平面P AE .考点 向量法求解直线与平面的位置关系题点 向量法解决线面垂直证明 如图,以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系Axyz .设P A =h ,则A (0,0,0),B (4,0,0),C (4,3,0),D (0,5,0),E (2,4,0),P (0,0,h ).所以CD →=(-4,2,0),AE →=(2,4,0),AP →=(0,0,h ).因为CD →·AE →=-8+8+0=0,CD →·AP →=0,所以CD ⊥AE ,CD ⊥AP ,而AP ,AE 是平面P AE 内的两条相交直线,所以CD⊥平面P AE.12.如图,在四棱锥P-ABCD中,底面ABCD是矩形,P A⊥底面ABCD,P A=AB=1,AD=3,点F是PB的中点,点E在边BC上移动.求证:无论点E在BC边的何处,都有PE⊥AF.考点向量法求解直线与直线的位置关系题点方向向量与线线垂直证明 以A 为坐标原点,AD ,AB ,AP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示空间直角坐标系Axyz ,则P (0,0,1),B (0,1,0),F ⎝⎛⎭⎫0,12,12,D ()3,0,0, 设BE =x (0≤x ≤3),则E (x,1,0),PE →·AF →=(x,1,-1)·⎝⎛⎭⎫0,12,12=0, 所以x ∈[0, 3 ]时都有PE ⊥AF ,即无论点E 在BC 边的何处,都有PE ⊥AF .13.如图,在底面为平行四边形的四棱锥P -ABCD 中,AB ⊥AC ,P A ⊥平面ABCD ,且P A =AB ,点E 是PD 的中点.求证:(1)AC ⊥PB ;(2)PB ∥平面AEC .考点 向量法求解直线与直线的位置关系题点 方向向量与线线垂直证明 (1)如图,以A 为坐标原点,AC ,AB ,AP 所在直线分别为x 轴,y轴,z 轴,建立空间直角坐标系Axyz ,设AC =a ,P A =b .则有A (0,0,0),B (0,b,0),C (a,0,0),P (0,0,b ),∴AC →=(a,0,0),PB →=(0,b ,-b ).从而AC →·PB →=0,∴AC ⊥PB .(2)由已知得D (a ,-b,0),E ⎝⎛⎭⎫a 2,-b 2,b 2,∴AE →=⎝⎛⎭⎫a 2,-b 2,b 2. 设平面AEC 的一个法向量为n ,则n ⊥AC →且n ⊥AE →,可得n =(0,1,1).∵n ·PB →=0,∴n ⊥PB .又PB ⊄平面AEC ,∴PB ∥平面AEC . 四、探究与拓展14.如图,P A ⊥平面ABCD ,四边形ABCD 为正方形,E 是CD 的中点,F 是AD 上一点,当BF ⊥PE 时,AF ∶FD 的比值为( )A .1∶2B .1∶1C .3∶1D .2∶1 答案 B解析 以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴, 建立如图所示的空间直角坐标系Axyz ,设正方形边长为1,P A =a ,则B (1,0,0),E ⎝⎛⎭⎫12,1,0,P (0,0,a ).设点F 的坐标为(0,y,0),则BF →=(-1,y,0),PE →=⎝⎛⎭⎫12,1,-a .因为BF ⊥PE ,所以BF →·PE →=0,解得y =12,即点F 的坐标为⎝⎛⎭⎫0,12,0,所以F 为AD 的中点,所以AF ∶FD =1∶1.15.如图,已知ABCD -A 1B 1C 1D 1是棱长为3的正方体,点E 在AA 1上,点F 在CC 1上,且AE =FC 1=1.(1)求证:E ,B ,F ,D 1四点共面;(2)若点G 在BC 上,BG =23,点M 在BB 1上,GM ⊥BF ,垂足为H ,求证:ME ⊥平面BCC 1B 1.考点 向量法求解直线与平面的位置关系题点 向量法解决线面垂直证明 (1)以B 为坐标原点,BA ,BC ,BB 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系Bxyz ,则BE →=(3,0,1),BF →=(0,3,2),BD 1→=(3,3,3),∴BD 1→=BE →+BF →,故BD 1→,BE →,BF →共面.又它们有公共点B ,∴E ,B ,F ,D 1四点共面.(2)设M (0,0,z ),则GM -→=⎝⎛⎭⎫0,-23,z ,而BF →=(0,3,2), 由题设得GM -→·BF →=-23·3+z ·2=0,得z =1. ∵M (0,0,1),E (3,0,1),∴ME -→=(3,0,0),又BB 1→=(0,0,3),BC →=(0,3,0)∴ME -→·BB 1→=0,ME -→·BC →=0,从而ME ⊥BB 1,ME ⊥BC .又BB 1∩BC =B ,故ME ⊥平面BCC 1B 1.。
知识讲解 空间向量在立体几何中的应用三——距离的计算
空间向量在立体几何中的应用三——距离的计算编稿:张林娟 审稿:孙永钊【学习目标】1. 了解空间各种距离的概念,掌握求空间距离的一般方法;2. 能熟练地将直线与平面之间的距离、两平行平面之间的距离转化为点到平面的距离. 【要点梳理】要点一:两点之间的距离 1. 定义连接两点的线段的长度叫作两点之间的距离.如图,已知空间中有任意两点M N ,,那么这两点间的距离d MN =. 2. 向量求法设()()111222M x y z N x y z ,,,,,,则()()()222121212d MN x x y y z z ==++ .要点二:点到直线的距离 1. 定义从直线外一点向直线引垂线,点到垂足之间线段的长度就是该点到直线的距离.如图,设l 是过点P 平行于向量s 的直线,A 是直线l 外一定点. 过点A 作做垂直于l 的直线,垂足为A ',则AA'即为点A 到直线l 的距离. 要点诠释:因为直线和直线外一点确定一个平面,所以空间点到直线的距离问题就是空间中某一个平面内的点到直线的距离距离. 2. 向量求法22d=PA PA s要点诠释:(1)本公式利用勾股定理推得:点A 到直线l 的距离22AA'=PA PA' ,其中PA'是PA 在s 上的射影,即为0PA s . (2)0cos PA PA =PA APA'=⨯∠ss s ,0s 为s 的单位向量,其计算公式为0=s s s. 3.计算步骤① 在直线l 上取一点P ,计算点P 与已知点A 对应的向量PA ; ② 确定直线l 的方向向量s ,并求其单位向量0=ss s; ③ 计算PA 在向量s 上的投影0PA s ; ④ 计算点A 到直线l 的距离220d=PA PA s .要点诠释:在直线上选取点时,应遵循“便于计算”的原则,可视情况灵活选择. 4. 算法框图要点三:点到平面的距离1.定义自点向平面引垂线,点到垂足间的距离的长度叫作点到平面的距离.如图,设π是垂直于向量n 的平面,AP 是平面π的一条斜线,作AA'π⊥,垂足为A',则AA'即为点A 到平面π的距离.2.向量求法0d=AA'=PA n其中0n 为平面π的单位法向量,其计算公式为0=n n n. 3.计算步骤① 取平面π内一点P ,计算点P 与已知点A 对应的向量PA ; ② 求出平面π的一个法向量n ,并计算其单位向量0=n n n; ③ 计算0PA n ,④ 计算点A 到平面π的距离0d=AP n .4. 算法框图 要点诠释:(1)P 是平面内任意一点,可根据计算的需要灵活选择. (2)点面距还有一种重要的求法为等积转化法. 要点四:两条异面直线的距离 1. 定义两条异面直线的公垂线夹在这两条异面直线间的线段的长度叫作两条异面直线的距离. 如图,已知12l l ,是两条异面直线,直线1AB l ⊥,且2AB l ⊥,垂足分别是B ,A ,则AB 即为异面直线12l l ,的距离. 2. 向量求法设n 是的12l l ,公垂线段AB 的方向向量,又C ,D 分别是12l l ,上的任意一点,则12l l ,之间的距离为0d AB CD ==n其中0n 为n 的单位向量,其计算公式为0=n n n . 要点诠释:12l l ,之间的距离也可以写成CD d=n n.3. 计算步骤① 确定直线12l l ,的公垂线段的方向向量n ,并计算与其共线同向的单位向量0=n n n;② 取1l 上一点C ,2l 上一点D ,计算CD ; ③ 由公式0d CD =n 计算异面直线12l l ,的距离.要点五:与平面平行的直线到平面的距离 1. 定义如果一条直线和一个平面平行,那么从这条直线任意一点向平面引垂线,这点到垂足间线段的长度就是这条直线与这个平面间的距离.如图,已知直线l ∥平面π,点A l ∈,作AA'π⊥垂足为A',则AA'就是直线直线l 与平面π间的距离. 2. 向量求法设n 是平面π的法向量,P 是平面π内异于A'的点,则点A 到平面π的距离为0d=AA'=PA n其中0n 为与向量n 共线同向的单位向量,即为平面π的单位法向量,其计算公式为0=n n n. 要点诠释:线面距的主旨在线上任取一点,转化为点面距. 3.计算步骤① 取直线上任一点A ,平面π内一点P ,计算点P 与点A 对应的向量PA ; ② 求出平面π的一个法向量n ,并计算与其共线同向的单位向量0=n n n; ③ 由公式0d=AP n 可得点A 到平面π的距离.要点六:两平行平面间的距离 1. 定义夹在两平行平面之间的公垂线段的长度就是这两个平行平面间的距离. 如图,已知直线l 与平面α,β,α∥β,l α⊥,l β⊥,垂足分别为A ,A',则AA'就是平行平面α,β间的距离. 2. 向量求法设n 是平面α(或β)的法向量,点A ,P αβ∈∈,则0d=AA'=PA n其中0n 为与向量n 共线同向的单位向量,其计算公式为0=n n n. 要点诠释:面面距的主旨在转化为点面距. 3. 计算步骤① 取平面α内任一点A ,平面β内一点P ,计算点P 与点A 对应的向量PA ; ② 求出平面α(或β)的一个法向量n ,并计算与其共线同向的单位向量0=n n n;③ 由公式0d=AP n 可得平行平面α,β间的距离. 【典型例题】类型一:两点之间的距离例1. 如图,在单位正方体1111ABCD A B C D -中,M N ,分别是1A D ,1BD 的中点,求MN 的长.【思路点拨】建系,写出点1A ,1D ,B ,D ,由中点公式写出点M N ,的坐标,即可求出MN .【答案】12【解析】如图,以D 为原点建立空间直线坐标系,则()1101A ,,,()1001D ,,,()110B ,,,由中点公式可得,11022M ⎛⎫ ⎪⎝⎭,,,111222N ⎛⎫⎪⎝⎭,,,所以,2221111110222222MN ==⎛⎫⎛⎫⎛⎫++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ .【总结升华】灵活掌握两点间的距离公式.【变式1】若正方体1111ABCD A B C D -的棱长为1,点P 是1AD 的中点,点Q 是BD 上一点,且14DQ DB =,则P Q 、两点间的距离PQ 是_________. 【答案】6 如图建立空间直角坐标系,由题意可得,11022P ⎛⎫ ⎪⎝⎭,,,11044Q ⎛⎫⎪⎝⎭,,,则6PQ =. 【变式2】如图,在长方体1111ABCD A B C D -中,1534AB BC AA ===,,,M N ,分别是1A B ,BD 的点,且 113AM AB =,13BN BD =,求MN 的长.【答案】52 【解析】以A 为原点建立空间直角坐标系,则()()()1500030504B D B ,,,,,,,,, 设()()M x y z N x'y'z',,,,,, 由113AM AB =,13BN BD =,得5410,0,,,1,0333M N ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭, 所以,()222510452010333MN =⎛⎫⎛⎫++= ⎪ ⎪⎝⎭⎝⎭.类型二:点到直线的距离例2. 如图,在长方体1111ABCD A B C D -中,已知1345AB=BC=AA =,,,求点1A 到下列直线的距离:(1)直线AC ; (2)直线BD .【思路点拨】(1)1AA 即为所求;(2)建系,利用向量坐标计算,确定直线BD 的一个方向向量,代入公式求解.【解析】(1)在长方体1111ABCD A B C D -中,显然1AA ⊥AC , 所以1AA =5即为所求点1A 到直线AC 的距离. (2)如图,以D 为原点建立空间直角坐标系,则有B (4,3,0),1A (4,0,5).DB =(4,3,0),1DA =(4,0,5),1DA DB DB=165,则点1A 到直线BD 的距离为21125676941-252DA DB d=DA ==DB. 【总结升华】本题(1)利用基本定义直接求解距离,(2)利用向量方法求解,通过训练熟练掌握向量公式法求解.【变式】如图,P 为矩形ABCD 所在平面外一点,PA ⊥平面ABCD . 若341AB AD PA ===,,,则点P 到BD 的距离为________.【答案】135类型三:点到平面的距离高清栏目401043空间角与空间距离例4例3.如图,已知ABCD 是矩形,AB a AD b ==,,PA ⊥平面ABCD ,2PA c =,Q 是PA 的中点,求: (1)Q 到BD 的距离;(2)P 到平面BQD 的距离.【思路点拨】【答案】(1;(2【解析】如图,以A 为原点建立空间直角坐标系,则B (a ,0,0),D (0,b ,0),Q (0,0,c),P (0,0,2c ). (1)()()-,0-,0BD a b BQ a c ==,,,, 则Q 到BD 的距离为:22BQ BD BQ =a BD ⎛⎫⎪= ⎪⎭ . (2)设平面BQD 的法向量为n ,则 0,0.BD ax by BQ ax cz ⎧=+=⎪⎨=+=⎪⎩n n 令1x =,则a a y=z=b c,.所以平面BQD 的一个法向量为1a a =b c ⎛⎫⎪⎝⎭n ,,,由于()02PB=a c ,,, 所以点P 到平面BQD 的距离为PB a d==n n方法二:设点A 到平面BQD 的距离为h , 由——A BQD Q ABD V V =,得 1133BQD ABD S h S AQ ∆∆=, 所以2ABD BQD S AQ h =S a ∆∆=【总结升华】求点面距离时,常用间接求法,主要有两种:一是利用空间向量,二是利用等积法转化.【变式1】如图,已知三棱柱111—A B C ABC 的底面是边长为2的正三角形,侧棱1A A 与AB 、AC 均成45︒角,且11A E B B ⊥于E ,11A F CC ⊥于F ,求点A 到平面11B BCC 的距离.【答案】1过1A 作1A N EF ⊥,则N 为EF 中点,且1A N ⊥平面11BCC B .即1A N 为点1A 到平面11BCC B 的距离,也就是点A 到平面11B BCC 的距离. 在Rt △1A EF 中, 211A E A F =EF =2,∴A 1E=22a ∴△1A EF 为等腰直角三角形,∠190EA F ∠=︒ ∴1A N =1.【变式2】如图,若平面PAD ⊥面ABCD ,ABCD 为正方形,90PAD ∠=︒,且2PA=AD =,E F 、分别是PA PD 、的中点,点Q 在线段CD 上,当CQ =_______时,A 到平面EFQ 的距离为45. 【答案】23类型四:两条异面直线的距离例4. 如图,在四棱锥O ABCD -中,底面ABCD 为四边长为1的菱形,4ABC π∠=,OA ⊥底面ABCD ,2OA =,M 为OA 的中点,求异面直线AB 与MD 的距离. 【思路点拨】在直线CE 和1AB 上分别取点,C A ,得到向量CA ;再确定CE 和1AB 的公垂线的方向向量n ,由公式||||CA n d n =求得距离. 【答案】 【解析】【总结升华】求异面直线之间距离,最直观的做法是借助图形性质,直接找出该公垂线,然后求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A BCDE Fx yz P用向量知识解决立体几何中典型问题空间向量的引入为求立体几何的空间角和距离问题、证线面平行与垂直以及解决立体几何的探索性试题提供了简便、快速的解法。
它的实用性是其它方法无法比拟的,因此应加强运用向量方法解决几何问题的意识,提高使用向量的熟练程度和自觉性,注意培养向量的代数运算推理能力,掌握向量的基本知识和技能,充分利用向量知识解决图形中的角和距离、平行与垂直问题,下面就谈一谈向量知识在立体几何中运用。
大家自学时注意方法的理解,黑体字内容就是一些关键的讲解。
什么是法向量?平面垂直的向量称为法向量。
法向量是解决与面有关问题时必须要用到的。
一、利用向量知识求线线角,线面角,二面角的大小。
线面角:方法点评:设n r是平面α的法向量,PM 是平面α的一条斜线,则PM 与平面α所成的角为PM 与法向量成角的余角。
即PM nPM n θ••u u u u r r u u u u r r =arcsin ,如图:所以解决问题关键就在于求出法向量n r,下例将介绍法向量求法。
例1:如图,四棱锥P ABCD -中,底面ABCD 为矩形,PD ⊥底面ABCD ,AD=PD ,E ,F 分别CD 、PB 的中点.(Ⅰ)求证:EF ⊥平面PAB ;(Ⅱ)设2BC ,求AC 与平面AEF 所成角的大小. (Ⅰ)证明:建立空间直角坐标系(如图),设AD=PD=1,AB=2a (0a >),则E(a,0,0), C(2a,0,0),A(0,1,0),B(2a,1,0),P(0,0,1),11(,,)22F a .得11(0,,)22EF =u u u v ,(2,1,1)PB a =-u u u v ,(2,0,0)AB a =u u u v . 由11(0,,)(2,0,0)022EF AB a ⋅=⋅=u u u v u u u v ,得EF AB ⊥u u u v u u u v ,即EF AB ⊥,同理EF PB ⊥,又AB PB B =I , 所以,EF ⊥平面PAB.(注:此小问所用即向量法证明线面垂直)C1A1BA(Ⅱ)解:由AB =,得2a =2a =. 得,0,0)2E ,11,)222F ,C . 有1,0)AC =-u u u v ,1,0)2AE =-u u u v ,11(0,,)22EF =u u u v . 设平面AEF 的法向量为(,,)n x y z =r,(如何来求这个法向量呢?注意到,既然要垂直平面,则要垂直平面内两相交直线,所以可以在平面内任意选择两条出来,然后分别和n r做数量积,利用数量积为0建立两个等式,)由00n EF nAE ⎧⋅=⎪⎨⋅=⎪⎩r u u u v r u u u v 11(,,)(0,,)022(,,)(1,0)02x y z x y z ⎧⋅=⎪⎪⇒⎨⎪⋅-=⎪⎩1102202y z x y ⎧+=⎪⎪⇒⎪-=⎪⎩, (两个条件肯定是求不出三个变量的,是因为平面的法向量不唯一,长度可以任意,但肯定都是和平面垂直的,所以我们只需要把其中一个数随意令成一个非0数,就可以得到一个法向量,)令1z=,可得1y x =-⎧⎪⎨=⎪⎩ 于是(1,1)n =-r .则cos ,6AC n AC n AC n⋅<>===⋅u u u vu u u v u u u v. 所以,AC 与平面AEF 所成角的大小为arcsin6. (注意为什么在这里加上了个绝对值,是因为我们在令z 时,有人令1,有人令-1,这样得到的法向量方向是相反的,求出来的cos ,AC n <>u u u v就有可能为负,但是线面角是锐角,所以只需要取正数。
)二面角:方法:设12,n n u r u u r是二面角l αβ--的面,αβ的法向量,则121212,cos n n n n arc n n •<>=•u r u u ru r u u r u r u u r 就是二面角的平面角或补角的大小。
例2:如图,在直四棱柱1111ABCD A B C D -中,已知122DC DD AD AB ===,AD DC ⊥,//AB DC .(I)设E 是DC 的中点,求证:11//D E A BD 平面; (II)求二面角11A BD C --的余弦值.解:(I)连结BE ,则四边形DABE 为正方形,11BE AD A D ∴==,且11////BE A A D , 11A D EB ∴四边形为平行四边形, 11//D E A B ∴.1111D E A BD A B A BD ⊄⊂Q 平面,平面, 11//.D E A BD ∴平面(另:向量法证明线面平行:易得1(0,1,2)D E =-u u u u r,可求得面1A BD 的一个法向量为(2,2,1)n =--r ,由10D E n ⋅=u u u u r r,又11D E A BD ⊄面,所以11//D E A BD 平面)(II) 以D 为原点,1,,DA DC DD 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,不妨设1DA =,则11(0,0,0),(1,0,0),(1,1,0),(0,2,2),(1,0,2).D A B C A1(1,0,2),(1,1,0).DA DB ∴==u u u u r u u u r设(,,)n x y z =r为平面1A BD 的一个法向量,由1,n DA n DB ⊥⊥r u u u u r r u u u r 得200x z x y +=⎧⎨+=⎩, 取1z =,则(2,2,1)n =--r.设111(,,)m x y z =u r为平面1C BD 的一个法向量,由,m DC m DB ⊥⊥u r u u u r u r u u u r 得11112200y z x y +=⎧⎨+=⎩,取11z =,则(1,1,1)m =-u r.3cos ,.93m n m n m n⋅<>===-⋅u r ru r r u r r 由图知该二面角11A BD C --为锐角,所以所求的二面角11A BD C --的余弦值为3.3(这里求出来法向量成角是钝角,是因为我们在令数字时造成的方向相反,所以求二面角时需要从原图中观察二面角的钝锐,在下正确的结论)二、利用向量知识求点到面,线到面,面到面的距离(后两者均可转化为点面距离)方法:如右图求出平面的一个法向量的坐标,再求出已知点P 与平面内任一点M 构成的向量MP u u u r的坐标,那么P 到平面的距离cos ,n MP d MP n MP n•=•<>=r u u u r u u u r r u u u rr (注:不是很推荐用向量法计算点面距离,考试中的点面距离大都可以使用等体积法简单求得)例3:如图,四面体ABCD 中,O 、E 分别BD 、BC 的中点,CA =CB =CD =BD =2,2AB AD ==(Ⅰ)求证:AO ⊥平面BCD ;(Ⅱ)求异面直线AB 与CD 所成角的大小;(.42arccos) (Ⅲ)求点E 到平面的距离.(721) (I)证明:连结OC.∵BO=DO,AB=AD, ∴AO ⊥BD.在△AOC 中,由已知可得AO=1,CO=3.而AC=2,∴AO 2+CO 2=AC 2,∴∠AOC=90°,即AO ⊥OC. ∴AO ⊥平面BCD .(Ⅱ)解:以O 为原点,如图建立空间直角坐标系,则B (1,0,0),D (-1,0,0), C (0,3,0),A (0,0,1),E (21,23,0),).0,3,1(),1,0,1(--=-=CD BA ∴,42,cos =•=CD BA CD BA CD BA ∴异面直线AB 与CD 所成角的大小为.42arccos (Ⅲ)解:设平面ACD 的法向量为n r=(x,y,z ),则(,,)(1,0,1)0,(,,)(0,3,1)0,n AD x y z n AC x y z ⎧•=•--=⎪⎨•=•-=⎪⎩r u u u rr u u ur ∴⎩⎨⎧=-=+.03,0z y z x 令y=1,得n r =(-3,1,3)是平面ACD 的一个法向量.又13(,,0),22EC =-u u u r ∴点E 到平面ACD 的距离h=.72173|||·|==n n EC 三、利用向量知识解决立体几何中的探索性问题。
例4:如图,已知四棱锥P-ABCD 的底面ABCD 为等腰梯形,AB ∥DC,AC ⊥BD,AC 与BD 相交于点O ,且顶点P 在底面上的射影恰为O 点,又BO=2,PO=2,PB ⊥PD. 设点M 在棱PC 上,问M 点在什么位置时,PC ⊥平面BMD.PO ⊥Q 平面ABCD PO BD ∴⊥又PB PD ⊥,2,2BO PO ==,由平面几何知识得:1,2OD OC BO AO ====以O 为原点,,,OA OB OP 分别为,,x y z 轴建立如图所示的空间直角坐标系,(该题建立的坐标系告诉我们,找到z 轴后有可能x ,y 轴并不是象正方体那样一个顶点出去的三条线那么好看,有可能需要在底面图形中自己去构造出x ,y 轴)则各点坐标为(0,0,0)O ,(2,0,0)A ,(0,2,0)B ,(1,0,0)C -,(0,1,0)D -,(0,0,2)P(注意C 点坐标和D 点坐标,既然建立起了原点,x ,y 轴,那么在负半轴上点坐标同样要是负的)设M 分PC uuu r所成的比为λ,由定比分点坐标公式可得2(,0,)11M λλλ-++,则2(,2,)11BM λλλ-=-++u u u u r(这里揭示出了在线上设点的方法) PC ⊥Q 平面BMD ,∴PC BM ⊥u u u r u u u u r ,(1,0,(,2,)011λλλ-∴-⋅-=++ 得2λ=,则2PM MC =u u u u r u u u u r,故M 为靠近C 点的三等分点。
则M 点是靠近C 点的三等分点。
(高考中探究性问题往往寻求的都是一满足条件的动点,并且满足的条件一般是垂直,故用此法确实很清晰、简洁)提醒:向量法特别要注意运算问题,在求点坐标、计算法向量、数量积、模的时候一定要小心。
以下无正文仅供个人用于学习、研究;不得用于商业用途。
толькодля людей, которые используются для обучения, исследований и не должны использоваться в коммерческих целях.For personal use only in study and research; not for commercial use.Nur für den persönlichen für Studien, Forschung, zu kommerziellen Zwecken v erwendet werden.Pour l 'étude et la recherche uniquement à des fins personnelles; pas à des fins commerciales.。