第1课时 反比例函数的图象和性质(1).ppt
合集下载
人教版初中数学九年级下册 26.1.2 反比例函数的图像和性质(第1课时)课件 【经典初中数学课件】
60° 缩小 A1 60°
B
C B1
C1
∠A =∠A1,∠B =∠B1, ∠C =∠C1 AB = BC = AC , A1B1 = B1C1 = A1C1
对应角相等
AB : A1B1 = BC : B1C1 = CD : C1D1 对应边成比例
对应角有什么关系?
正六边形 AF
120° B
放大 B1 E
y= k
K>0
K<0
x
图 象
当k>0时,函数图象 当k<0时,函数图象
性 的两个分支分别在第 的两个分支分别在第
质
一、三象限,在每个 二、四象限,在每个 象限内,y随x的增大 象限内,y随x的增大
而减小.
而增大.
1.反比例函数y= -
5 x
的图象大致是(
D)
y
y
A.
o
x B.
o x
y
y
C.
o
x D.
y
6
6y
5 4
y
=
6 x
3
y=
6 x
5 4
3
2
2
1
1
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 x -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 x
-1
-1
-2
-2
-3
-3
-4
-4
-5
-5
-6
-6
你认为作反比例函数图象时应注意哪些问题?
1.列表时,选取的自变量的值,既要易于计算,又要便于描点, 尽量多取一些数值(取互为相反数的一对一对的数),多描一 些点,这样既可以方便连线,又可以使图象精确. 2.描点时要严格按照表中所列的对应值描点,绝对不能把 点的位置描错. 3.线连时一定要养成按自变量从小到大的顺序依次画线,连 线时必须用光滑的曲线连接各点,不能用折线连接. 4.图象是延伸的,注意不要画的有明确端点. 5.曲线的发展趋势只能靠近坐标轴,但不能和坐标轴相交.
B
C B1
C1
∠A =∠A1,∠B =∠B1, ∠C =∠C1 AB = BC = AC , A1B1 = B1C1 = A1C1
对应角相等
AB : A1B1 = BC : B1C1 = CD : C1D1 对应边成比例
对应角有什么关系?
正六边形 AF
120° B
放大 B1 E
y= k
K>0
K<0
x
图 象
当k>0时,函数图象 当k<0时,函数图象
性 的两个分支分别在第 的两个分支分别在第
质
一、三象限,在每个 二、四象限,在每个 象限内,y随x的增大 象限内,y随x的增大
而减小.
而增大.
1.反比例函数y= -
5 x
的图象大致是(
D)
y
y
A.
o
x B.
o x
y
y
C.
o
x D.
y
6
6y
5 4
y
=
6 x
3
y=
6 x
5 4
3
2
2
1
1
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 x -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 x
-1
-1
-2
-2
-3
-3
-4
-4
-5
-5
-6
-6
你认为作反比例函数图象时应注意哪些问题?
1.列表时,选取的自变量的值,既要易于计算,又要便于描点, 尽量多取一些数值(取互为相反数的一对一对的数),多描一 些点,这样既可以方便连线,又可以使图象精确. 2.描点时要严格按照表中所列的对应值描点,绝对不能把 点的位置描错. 3.线连时一定要养成按自变量从小到大的顺序依次画线,连 线时必须用光滑的曲线连接各点,不能用折线连接. 4.图象是延伸的,注意不要画的有明确端点. 5.曲线的发展趋势只能靠近坐标轴,但不能和坐标轴相交.
反比例函数的图象和性质 课件PPT
一次函数图象在反比例函数图象的上方,即y1>y2 ,
而当 x 1或0 时 x,一2 次函数图象在反比例函数图
象的下方,即y1<y2
4.(益阳·中考)如图,反比例函 数 y= k 的图象位于第一、三象限,
x 其中第一象限内的图象经过点A(1,2),
请在第三象限内的图象上找一个你喜
欢的点P,你选择的P点坐标为_____.
【解析】∵
y=
2k+4
的x 图象在第一、三象限,
∴∴综2k上-k3+,<4k> 0需. 0满.由足于y2k=k-3+kx4-在30解x0>得0:-时2<,ky<随3x.的增大而增大,
答案:-2<k<3
6.设函数y=(m-2)xm-4.当m取何值时,它是反比例函数? 它的图象位于哪些象限内? 在每个象限内,当x的值增大时,对应的y值是随 着增大,还是随着减小?
反比例函数的图象又是什么?它又有什么性质呢?
画函数图象的一般步骤是什么? 列表、 描点、 连线.
例题
【例】画出反比例函数 解:
y=
6 x
和
y=-
6 x
的图象.
一、列表:
x
y
=
6
x
y=
6
x
注意:①列表时自变量取值要均 匀和对称②x≠0③选整数较好计
算和描点.
x
… -4 -3 -2 -1 1 2 3 4 …
且图象在第二、四象限内,则m的值是( )
(A)2
(B)-2
(C)±2
【解析】选B.由题意得:
m2
-5=-1 ,
m+1 0
解得m=-2.
(D) - 1
2
2.(绍兴·中考)已知(x1,y1),(x2,y2),(x3,y3)是反比例
而当 x 1或0 时 x,一2 次函数图象在反比例函数图
象的下方,即y1<y2
4.(益阳·中考)如图,反比例函 数 y= k 的图象位于第一、三象限,
x 其中第一象限内的图象经过点A(1,2),
请在第三象限内的图象上找一个你喜
欢的点P,你选择的P点坐标为_____.
【解析】∵
y=
2k+4
的x 图象在第一、三象限,
∴∴综2k上-k3+,<4k> 0需. 0满.由足于y2k=k-3+kx4-在30解x0>得0:-时2<,ky<随3x.的增大而增大,
答案:-2<k<3
6.设函数y=(m-2)xm-4.当m取何值时,它是反比例函数? 它的图象位于哪些象限内? 在每个象限内,当x的值增大时,对应的y值是随 着增大,还是随着减小?
反比例函数的图象又是什么?它又有什么性质呢?
画函数图象的一般步骤是什么? 列表、 描点、 连线.
例题
【例】画出反比例函数 解:
y=
6 x
和
y=-
6 x
的图象.
一、列表:
x
y
=
6
x
y=
6
x
注意:①列表时自变量取值要均 匀和对称②x≠0③选整数较好计
算和描点.
x
… -4 -3 -2 -1 1 2 3 4 …
且图象在第二、四象限内,则m的值是( )
(A)2
(B)-2
(C)±2
【解析】选B.由题意得:
m2
-5=-1 ,
m+1 0
解得m=-2.
(D) - 1
2
2.(绍兴·中考)已知(x1,y1),(x2,y2),(x3,y3)是反比例
6.2 反比例函数的图像和性质(1)课件(共31张ppt)
问题1:
对于一次函数 y = kx + b (k、b为常数, k ≠ 0 ),我们是如何研究的?
问题2:
对于反比例函数
y
k x
(
k是常数,k
≠
0
)
,我们能否像一次函数那样进行研究呢?
杭州育才中学 黄有宇
知识回顾
作一次函数图象的一般步骤:
y 6x
一条直线
描点法 列
描
连
表
点
线
反比例函数的图象是怎样的?
求m的取值范围.
5. 已知反比例函数
y k (k 0) x
与正比例函数
y=-2x的图象的一个公共点的纵坐标为-4,
求这个反比例函数的解析式,
并求出另一个公共点的坐标.
适度拓展,用药熏消毒法进
行消毒。已知药物燃烧时,室内每立方米空气中的
含药量 y(mg)与时间x(min)成正比例,药物燃烧
(2)
杭州育才中学 黄有宇
观察反比例函数 y k ( k 0 )的图象,说出y与x之
间的变化关系:
x
k 0
k 0
y
O
( x3,y(3xC)4,yD4 )
A ( x1,y1 ) B ( x2,y2 )
x
y
( x1,y1 ) A
( x2,y2 ) B
O
x
D ( x4,y4 )
C ( x3,y3 )
当k>0时,在一、三象限; 当k<0时,在二、四象限
增
减 当k>0时,y随x的增大而增大 性 当k<0时,y随x的增大而减小
当k>0时,在每一象限内,y 随x的增大而减小
当k<0时,在每一象限内, y随x的增大而增大
对于一次函数 y = kx + b (k、b为常数, k ≠ 0 ),我们是如何研究的?
问题2:
对于反比例函数
y
k x
(
k是常数,k
≠
0
)
,我们能否像一次函数那样进行研究呢?
杭州育才中学 黄有宇
知识回顾
作一次函数图象的一般步骤:
y 6x
一条直线
描点法 列
描
连
表
点
线
反比例函数的图象是怎样的?
求m的取值范围.
5. 已知反比例函数
y k (k 0) x
与正比例函数
y=-2x的图象的一个公共点的纵坐标为-4,
求这个反比例函数的解析式,
并求出另一个公共点的坐标.
适度拓展,用药熏消毒法进
行消毒。已知药物燃烧时,室内每立方米空气中的
含药量 y(mg)与时间x(min)成正比例,药物燃烧
(2)
杭州育才中学 黄有宇
观察反比例函数 y k ( k 0 )的图象,说出y与x之
间的变化关系:
x
k 0
k 0
y
O
( x3,y(3xC)4,yD4 )
A ( x1,y1 ) B ( x2,y2 )
x
y
( x1,y1 ) A
( x2,y2 ) B
O
x
D ( x4,y4 )
C ( x3,y3 )
当k>0时,在一、三象限; 当k<0时,在二、四象限
增
减 当k>0时,y随x的增大而增大 性 当k<0时,y随x的增大而减小
当k>0时,在每一象限内,y 随x的增大而减小
当k<0时,在每一象限内, y随x的增大而增大
湘教版九年级数学《反比例函数的图象及性质》PPT课件
感悟新知
知1-练
1.若双曲线 y=kx与直线 y=2x+1 的一个交点的横坐 标为-1,则 k 的值为( B )
A.-1
B.1
C.-2
D.2
感悟新知
第一章 反比例函数
1.2反比例函数的图象及性质
第1课时 反比例函数 y = k (k>0)
x
的图象与性质
学习目标
1 课时讲解 2 课时流程
会用描点的方法画反比例函数
y= k x
(k>0)的图象
理解反比例函数 y =
k
(k>0)的性质
x
逐点 导讲练
课堂 小结
作业 提升
课时导入
复习提问
引出问题
我们已经学习了用“描点法”画一次函数的图
四象限内的两支曲线组成, 它们与x 轴、 y 轴都不 相交,在每个象限内,函数值 y 随自变量 x 的增大 而增大.
感悟新知
1.反比例函数 y=-4x(x>0)的图象位于( D ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
知1-练
感悟新知
知1-练
2.如图,函数 y=1x-(x1x>(x<0),0)的图象所在坐标系的原点是 ( A) A.点 M B.点 N C.点 P D.点 Q
知1-导
(2) 把点A,B 的坐标分别代入 y 8 ,可知点 A 的坐标
x
满足函数表达式 , 点 B 的坐标不满足函数表达式, 所以点 A 在这个函数的图象上,点B不在这个函数 的图象上.
感悟新知
知1-导
(3) 因为k>0,所以这个反比例函数的图象位于第一、 三象限,在每个象限内,函数值 y 随自变量 x 的 增大而减小.
感悟新知
反比例函数PPT(教材)
(2)反比例函数图象的两支曲线关于___原__点___ 对称(曲线上的点也关于___原__点___对称),它们与x 轴、y轴___没__有___交点,即双曲线的两个分支 __无_限__靠__近__坐标轴,但永远__达__不_到___坐标轴.
(3)当自变量取全体非零实数时,反比例函数图 象既是___中__心_对__称____图形,又是____轴__对__称____图形.
课堂讲练
新知1 反比例函数的画法 典型例题
【例1】在图26-1-1的平面直角坐标系中画出反
比例函数
的图象.
解:(1)列表:
(2)描点. (3)连线,如答图26-1-2.
举一反三
1.画出反比例函数 (1)完成下列表格:
的图象.
(2)在图26-1-2中描点,画图:
解:(1) (2)如答图26-1-3.
4.已知反比例函数
的图象经过抛物线
y=x2-4x+3的顶点,则k的值是___-_2___.
知识清单
知识点1 反比例函数图象的画法 用描点法画反比例函数的图象的一般步骤: (1)列表:自变量的取值,应以___原__点__O____ 为中心,沿该点的两边取三对(或三对以上)互为 ____相_反__数____的数,如1和-1,2和-2,3和-3等. 填y 值时,只需计算右侧的函数值,如分别计算出x=1,2,3 的函数值,那么x=-1,-2,-3的函数值应是与之 对应的______相__反__数_.
A. (2,-4) B. (-2,-4) C. (-2,4) D. (-2,-2)
举一反三 1.对于反比例函数 错误的是( D ) A. 关于原点对称 B. 关于直线y=x对称 C. 关于直线y=-x对称 D. 关于x轴对称
北师大版九年级数学上册反比例函数的图像和性质课件(共41张)
为反比例函数,则m的值是
(C)
1 2
(D) 1
返回
2.如图,A为反比例函数 y k 图象上一点,AB⊥x轴
x 于点B,若 SAOB 3 则k为( A)
(A) 6 (B) 3 (C) 3 D 无法确定
2
返回
3.函数y
k x
的图象经过(1,-1),则函
数 y kx 2 的图象是 (A )
y
-2 O x
大,则m的取值范围是( A).
A、m<-1 B、m>-1 C、m>1
D、m<1
返回
性
y随x的增大而减小
例
函
位
置 二四象限
二四象限
数 的
K<0
增 减
y随x的增大而减小 在每个象限内,
区
性
y随x的增大而增大
分
对称性
轴对称 中心对称
轴对称 中心对称
专题一
反比例函数的图像和性质
例1:已知反比例函数的图象经过点A(2,6).
(1)这个函数的图象散布在哪些象限?y随x的增大如何变化?
(2)点B(3,4)、C(
y=
4 x
与y=
2 x
在第一象限内的图象如图所示,作一条平
行于y轴的直线分别交双曲线于A、B两点,
连接OA、OB,则△AOB的面积为( A )
(A)1
(B)2
(C)3
(D)4
拓展提高
双曲线: y= 4 与y= 2
x
x
在第一象限内的图象如图所示,作一条平行于y轴的
直线分别交双曲线于A、B两点,连接OA、OB,则
2.反比例函数的图象关于原点成中心对称.
人教版反比例函数的图像和性质(1) PPT
-1
-2 -3
-4 -5
-6
-1 1 2 3 4 5 6 …
-6 6 3 2 1.5 1.2 1 …
6 -6 -3 -2 -1.5 -1.2 -1 …
y
6
5
y =-
6 x
4
3
2
1
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 x
-1
-2 -3
-4 -5
-6
以函数 y 4 x
和 y4 x
于( C )
x
A.第一、二象限 B.第一、三象限
C.第二、四象限 D.第三、四象限
数形结合
已知点A(2,y1), B(5,y2)C是(反-3比,y例3)函是数y 象上的两点.请比较y1,y2的,y大3的小大.小.
4 x
图
y
⑴代入求值
y1 A B
-3 y2 O2 5
C y3
⑵利用增减性
⑶根据图象判断
用x表示每天的烧煤量,则y关于x的函数的图
象大致是( D)
y
y
A:
x
B:
x
y
y
C:
x
D:
x
3.函数y=kx-k
与
y=k x
k≠0在同一条直角坐
标系中的 图象可能是 D :
y
y
y
y
ox (A)
ox (B)
ox (C)
ox (D)
4、若k1k2<0,则 函数y=k1x与y=
k2 x
在同
一坐标系中的图象大致为( B )
的函数图象为例来研究反比例函数的 性质
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
-2 -3
-4 -5
-6
-1 1 2 3 4 5 6 …
-6 6 3 2 1.5 1.2 1 …
6 -6 -3 -2 -1.5 -1.2 -1 …
y
6
5
y =-
6 x
4
3
2
1
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 x
-1
-2 -3
-4 -5
-6
以函数 y 4 x
和 y4 x
于( C )
x
A.第一、二象限 B.第一、三象限
C.第二、四象限 D.第三、四象限
数形结合
已知点A(2,y1), B(5,y2)C是(反-3比,y例3)函是数y 象上的两点.请比较y1,y2的,y大3的小大.小.
4 x
图
y
⑴代入求值
y1 A B
-3 y2 O2 5
C y3
⑵利用增减性
⑶根据图象判断
用x表示每天的烧煤量,则y关于x的函数的图
象大致是( D)
y
y
A:
x
B:
x
y
y
C:
x
D:
x
3.函数y=kx-k
与
y=k x
k≠0在同一条直角坐
标系中的 图象可能是 D :
y
y
y
y
ox (A)
ox (B)
ox (C)
ox (D)
4、若k1k2<0,则 函数y=k1x与y=
k2 x
在同
一坐标系中的图象大致为( B )
的函数图象为例来研究反比例函数的 性质
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
人教版九年级数学下册26.1.2第1课时反比例函数的图象和性质课件
y k(k>0)的图象上, x
若y1<y2,求a的取值范围.
解:由题意知,在图象的每一支上,y随x的增大而减小.
①当这两点在图象的同一支上时,
∵y1<y2,∴a-1>a+1, 无解; ②当这两点分别位于图象的两支上时,
∵y1<y2,∴必有y1<0<y2. ∴a-1<0,a+1>0, 解得:-1<a<1.
,4
4 5
),D(2,5)是否在这个函数的图象上?
解:设这个反比例函数的解析式为 y k ,因为点A(2,6)在其图象上,所
x
以有 6 k ,解得k=12.
2
所以反比例函数的解析式为 y 12 .
x
因为点B,C的坐标都满足该解析式,而点 D的坐标不满足,所以点B,C在
这个函数的图象上,点D不在这个函数的图象上.
结论吗?
一般地,当k>0时,对于反比例函数
y
k x
,由函数图象,并结合解析式,
我们可以发现:
(1)函数图象分别位于第一、第三象限; (2)在每一个象限内,y随x的增大而减小.
归纳: 反比例函数 y k (k>0) 的图象和性质:
x
●由两条曲线组成,且分别位于第一、三象限 它们与 x 轴、y 轴都不相交;
例1 画出反比例函数y 6 与 y 12 的图象.
x
x
提示:画函数的图象步骤一般分为:列表 →描点→连线. 需要注意的是在反比例函 数中自变量 x 不能为 0.
解:列表如下:
x … -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 …
y
6 x
… -1
-1.2
-1.5
-2
-3
-6
6
沪科版数学九年级上册21.5反比例函数 课件(共34张PPT)
随堂练习
如图,是反比例函数 图象的一支.根据图象,回答下列问题:(1)图象的另一支位于哪个象限?常数m的取值范围是什么?解:因为这个反比例函数图象的一支位于第一象限,所以另一支必位于第三象限.又因为这个函数图象位于第一、三象限,所以m-5>0,解得m>5.
(2)在这个函数图象的某一支上任取点A( )和点B( ).如果 ,那么 和 有怎样的大小关系?解:∵m-5>0, ∴在这个函数图象的任一支上,y都随x的增大而减小, ∴当 时, .
当k>0时,y随x的增大而减小;当k<0时,y随x的增大而增大
练一练
1.如果反比例函数 的图象位于第二、四象限内,那么满足条件的正整数k的值是_______.2.已知直线y=kx+b 的图象经过第一、二、四象限,则函数 的图象在第________象限.3.在反比例函数 的图象的每一条曲线上,y都随x的增大而减小,则k的取值范围是________.
24
(1)(3)
3.已知一次函数y=kx+b的图象如图所示,那么正比例函数y=kx和反比例函数 在同一平面直角坐标系中的图象大致是( )
C
4.已知反比例函数 (k为常数,k≠1)若点A(1,2)在这个函数的图象上,求k的值.若在这个函数图象的每一支上,y随x的增大而减小,求k的取值范围.若k=13,试判断点B(3,4),C(2,5),B点是否在这个函数的图象上,并说明理由.解:(1)代入A(1,2)得k-1=2,k=3; (2)k-1>0,k>1; (3) 代入B(3,4),C(2,5),B点在函数图象上,C点不在.
C
A
3.若函数 是反比例函数,则m的值是_____.4.在下列函数表达式中,x均表示自变量,那么哪些是y关于x的反比例函数?其相应的k的值是多少?① ;② ;③xy=2;④ ;⑤ y关于x的反比例函数有①②③;对应的k值分别为2.5,;2;7
如图,是反比例函数 图象的一支.根据图象,回答下列问题:(1)图象的另一支位于哪个象限?常数m的取值范围是什么?解:因为这个反比例函数图象的一支位于第一象限,所以另一支必位于第三象限.又因为这个函数图象位于第一、三象限,所以m-5>0,解得m>5.
(2)在这个函数图象的某一支上任取点A( )和点B( ).如果 ,那么 和 有怎样的大小关系?解:∵m-5>0, ∴在这个函数图象的任一支上,y都随x的增大而减小, ∴当 时, .
当k>0时,y随x的增大而减小;当k<0时,y随x的增大而增大
练一练
1.如果反比例函数 的图象位于第二、四象限内,那么满足条件的正整数k的值是_______.2.已知直线y=kx+b 的图象经过第一、二、四象限,则函数 的图象在第________象限.3.在反比例函数 的图象的每一条曲线上,y都随x的增大而减小,则k的取值范围是________.
24
(1)(3)
3.已知一次函数y=kx+b的图象如图所示,那么正比例函数y=kx和反比例函数 在同一平面直角坐标系中的图象大致是( )
C
4.已知反比例函数 (k为常数,k≠1)若点A(1,2)在这个函数的图象上,求k的值.若在这个函数图象的每一支上,y随x的增大而减小,求k的取值范围.若k=13,试判断点B(3,4),C(2,5),B点是否在这个函数的图象上,并说明理由.解:(1)代入A(1,2)得k-1=2,k=3; (2)k-1>0,k>1; (3) 代入B(3,4),C(2,5),B点在函数图象上,C点不在.
C
A
3.若函数 是反比例函数,则m的值是_____.4.在下列函数表达式中,x均表示自变量,那么哪些是y关于x的反比例函数?其相应的k的值是多少?① ;② ;③xy=2;④ ;⑤ y关于x的反比例函数有①②③;对应的k值分别为2.5,;2;7
人教版《反比例函数》公开课PPT
有两条对称轴:直线y=x和 y=-x。对称中心是:原点
4
10
x =
x
-4 x =
x
y=-x
y = -—kx 8
y = —kx
y=x
6
4
2
-15
-10
-5 -2 -4 -6 -8
5
10
15
演练厅,显你身手
1.(1)下列图象中是反比例图象的是( C ).
A
B
C D
反比例函数y=
-
5 x
的图象大致是(
③你能用函数的解析式说明②中的结论吗?
反比例函数y= - 的图象大致是(
)
③选整数较好计算和描点。
注意:①列表时自变量 (1)下列图象中是反比例图象的是( ).
y随x 的增大而_________.
取值要均匀和对称②x≠0
③选整数较好计算和描点。
x … -6 -5 -4 -3 -2 -1 1 2 3 4 5
)
结论2:一般地,当
时,反比例函数
我们学习一次函数和二次函数时,研究了函数的哪些内容?是如何进行研究的?
的图象是双曲线,双曲线的两支分别位于第二、第四象限,在每一个象限内, 随 的增大而增大.
反比例函数的图象既是轴对称图形又是中心对称图形。
你能归纳出反比例函数
的性质吗?
(1)下列图象中是反比例图象的是( ).
学习目标:
1. 掌握用“描点”法画出反比例函数的图象。 2. 观察图象归纳反比例函数的图象特征和性质。
三 减少
四
双曲线
双曲线
双曲线
一
二 增大
例1
画出反比例函数 y =
6 x
和y=
27.2 反比例函数的图象和性质 - 第1课时课件(共18张PPT)
解:(1)把点P(-6,8)的坐标代入 ,得 .解得k=-48.所以这个反比例函数的表达式为 .(2)当x=4时,y=-12.当x=2时,y=-24≠24.所以,点M(4,-12)在这个反比例函数的图像上,点N(2,24)不在这个反比例函数的图像上.
课堂巩固
1. 下列图象中是反比例函数的是( ).
C
.
(-3,-4)
拓展提升
1.如果一个正比例函数图象与反比例函数 的图象交于A( ),B( )两点,那么( )( )的值为_____.2.在平面直角坐标系中,直线y=x与双曲线 交于A,B两点.若点A,B的横坐标分别为x1,x2,则x1+x2的值为 .
第 二十七章 反比例函数
27.2 反比例函数的图像和性质第1课时
学习目标
1.会用描点法画出反比例函数的图像.2.了解双曲线的定义.
学习重难点
理解并掌握画反比例函数的图像的方法.
重点
难点
理解反比例函数性质.
回顾复习
1.反比例函数
2.一次函数、二次函数的图象
一次函数的图象是一条直线.
二次函数的图象是一条抛物线.
24
0
课堂小结
描点法画反比例函数图像的步骤:列表、描点、连线 反比例函数 (k 为常数,k ≠ 0)的图像由分别位于两个象限内的两条曲线组成,这样的曲线叫做双曲线. 反比例函数的图像关于直线y=±x对称,关于原点成中心对称.
同学们再见!
授课老师:
时间:2024年9月15日
它们的图像都由两条曲线组成;都关于y=±x对称,关于原点成中心对称;同时都与坐标轴不存在交点,且图像无限贴近坐标轴.
归纳总结
反比例函数 (k 为常数,k ≠ 0)的图像由分别位于两个象限内的两条曲线组成已知点P(-6,8)在反比例函数 的图像上.(1)求这个反比例函数的表达式.(2)判断点M(4,-12)和N(2,24)是否在这个反比例函数的图像上.
课堂巩固
1. 下列图象中是反比例函数的是( ).
C
.
(-3,-4)
拓展提升
1.如果一个正比例函数图象与反比例函数 的图象交于A( ),B( )两点,那么( )( )的值为_____.2.在平面直角坐标系中,直线y=x与双曲线 交于A,B两点.若点A,B的横坐标分别为x1,x2,则x1+x2的值为 .
第 二十七章 反比例函数
27.2 反比例函数的图像和性质第1课时
学习目标
1.会用描点法画出反比例函数的图像.2.了解双曲线的定义.
学习重难点
理解并掌握画反比例函数的图像的方法.
重点
难点
理解反比例函数性质.
回顾复习
1.反比例函数
2.一次函数、二次函数的图象
一次函数的图象是一条直线.
二次函数的图象是一条抛物线.
24
0
课堂小结
描点法画反比例函数图像的步骤:列表、描点、连线 反比例函数 (k 为常数,k ≠ 0)的图像由分别位于两个象限内的两条曲线组成,这样的曲线叫做双曲线. 反比例函数的图像关于直线y=±x对称,关于原点成中心对称.
同学们再见!
授课老师:
时间:2024年9月15日
它们的图像都由两条曲线组成;都关于y=±x对称,关于原点成中心对称;同时都与坐标轴不存在交点,且图像无限贴近坐标轴.
归纳总结
反比例函数 (k 为常数,k ≠ 0)的图像由分别位于两个象限内的两条曲线组成已知点P(-6,8)在反比例函数 的图像上.(1)求这个反比例函数的表达式.(2)判断点M(4,-12)和N(2,24)是否在这个反比例函数的图像上.
反比例函数的图象和性质(1)课件
当 $k > 0$ 时,在每个象限内,随着 $x$ 的增大, $y$ 值逐渐减小。
反比例函数的图象永远不会与坐标轴相交。
易错难点剖析指导
错误理解反比例函数的定义
学生容易将反比例函数与正比例函数混淆。正比例函数的形式是 $y = kx$,而反比例函 数的形式是 $y = frac{k}{x}$。在理解反比例函数时,要注意区分这两种函数形式。
分段连接
根据点的分布情况,可以将曲线分成 若干段进行连接。每一段都可以用一 条平滑的曲线来表示。
保持连续性
在连接各段曲线时,要确保它们之间 的连续性,避免出现断点或尖角。
调整和优化
连接完成后,可以对曲线进行调整和 优化,使其更加符合反比例函数的性 质和要求。
03
反比例函数性质分析
对称性特点
反比例函数的图象关于原点对称,即如果函数图象上有点(x, y),则点(-x, -y)也 在函数图象上。
04
反比例函数在实际问题中应用举例
面积问题求解思路及过程展示
思路
根据题目所给条件,设立反比例函数关系式,通过已知量求 解未知量。
过程
首先明确题目中的已知量和未知量,然后根据面积公式建立 反比例函数关系式,通过代入已知量求解未知量,最后进行 答案的验证和解释。
速度问题求解思路及过程展示
思路
根据题目所给条件,设立反比例函数关系式,通过已知速度和时间求解未知路 程。
工程中的应用
在工程领域中,反比例函数可以用来描述一些工程问题。例如,在电阻、电感、电容等电子元件的参数 计算中,经常涉及到反比例关系。通过利用反比例函数的性质进行计算和分析,可以简化问题的求解过 程。
THANKS
感谢观看
表达式
反比例函数的一般表达式为 $y = frac{k}{x}$,其中 $k$ 是比例系数, 且 $k neq 0$。
反比例函数的图象永远不会与坐标轴相交。
易错难点剖析指导
错误理解反比例函数的定义
学生容易将反比例函数与正比例函数混淆。正比例函数的形式是 $y = kx$,而反比例函 数的形式是 $y = frac{k}{x}$。在理解反比例函数时,要注意区分这两种函数形式。
分段连接
根据点的分布情况,可以将曲线分成 若干段进行连接。每一段都可以用一 条平滑的曲线来表示。
保持连续性
在连接各段曲线时,要确保它们之间 的连续性,避免出现断点或尖角。
调整和优化
连接完成后,可以对曲线进行调整和 优化,使其更加符合反比例函数的性 质和要求。
03
反比例函数性质分析
对称性特点
反比例函数的图象关于原点对称,即如果函数图象上有点(x, y),则点(-x, -y)也 在函数图象上。
04
反比例函数在实际问题中应用举例
面积问题求解思路及过程展示
思路
根据题目所给条件,设立反比例函数关系式,通过已知量求 解未知量。
过程
首先明确题目中的已知量和未知量,然后根据面积公式建立 反比例函数关系式,通过代入已知量求解未知量,最后进行 答案的验证和解释。
速度问题求解思路及过程展示
思路
根据题目所给条件,设立反比例函数关系式,通过已知速度和时间求解未知路 程。
工程中的应用
在工程领域中,反比例函数可以用来描述一些工程问题。例如,在电阻、电感、电容等电子元件的参数 计算中,经常涉及到反比例关系。通过利用反比例函数的性质进行计算和分析,可以简化问题的求解过 程。
THANKS
感谢观看
表达式
反比例函数的一般表达式为 $y = frac{k}{x}$,其中 $k$ 是比例系数, 且 $k neq 0$。
人教版数学九年级下册《 反比例函数的图象和性质》PPT课件
x
,
则 a___b(填>、=或<).
>
已知点(-1,y1),(2,y2),(3,y3)在反比例函数
k2
y
x
的图象上,则下列结论中正确的是( B )
A.y1>y2>y3
B.y1>y3>y2
C.y3>y1>y2
D.y2>y3>y1
(k≠0)
探究新知
考点 2 利用反比例函数的图象和性质求字母的值
已知反比例函数 y a 1 x
…
…
y
描点:以表中各组对应
值作为点的坐标,在直
角坐标系内描绘出相应
的点.
6
5
4
3
2
1
-6 -5-4-3-2-1O
-1
连线:用光滑的曲线顺
-2
-3
次连接各点,即可得函
-4
6
12
-5
y
y
数
与
的图象.
-6
x
x
y
y
12
x
6
x
1 2 3 4 5 6 x
y
观察这两个函数
思考:
图象,回答问题:
(1) 每个函数图象分别
增大.
探究新知
反比例函数的图象和性质
形状
由两支曲线组成的.因此称它的图象为双曲线;
位置
当k>0时,两支双曲线分别位于第一、三象限内;
当k<0时,两支双曲线分别位于第二、四象限内;
增减性
图象的发展趋势
对称性
当k>0时,在每一象限内, y随x的增大而减小;
当k<0时,在每一象限内, y随x的增大而增大.
,
则 a___b(填>、=或<).
>
已知点(-1,y1),(2,y2),(3,y3)在反比例函数
k2
y
x
的图象上,则下列结论中正确的是( B )
A.y1>y2>y3
B.y1>y3>y2
C.y3>y1>y2
D.y2>y3>y1
(k≠0)
探究新知
考点 2 利用反比例函数的图象和性质求字母的值
已知反比例函数 y a 1 x
…
…
y
描点:以表中各组对应
值作为点的坐标,在直
角坐标系内描绘出相应
的点.
6
5
4
3
2
1
-6 -5-4-3-2-1O
-1
连线:用光滑的曲线顺
-2
-3
次连接各点,即可得函
-4
6
12
-5
y
y
数
与
的图象.
-6
x
x
y
y
12
x
6
x
1 2 3 4 5 6 x
y
观察这两个函数
思考:
图象,回答问题:
(1) 每个函数图象分别
增大.
探究新知
反比例函数的图象和性质
形状
由两支曲线组成的.因此称它的图象为双曲线;
位置
当k>0时,两支双曲线分别位于第一、三象限内;
当k<0时,两支双曲线分别位于第二、四象限内;
增减性
图象的发展趋势
对称性
当k>0时,在每一象限内, y随x的增大而减小;
当k<0时,在每一象限内, y随x的增大而增大.
相关主题