九年级数学上册名校课堂练习单元测试
九年级数学《名校课堂》同步测试题(1)
九年级数学《一元二次方程的解法》同步练习(3)姓名:得分:2.2.1配方法第1课时根据平方根的意义解一元二次方程知识点1一元二次方程的根的定义1.关于x的一元二次方程x2+x+a-1=0的一个根是0,则实数a的值为( ) A.-1 B.0 C.1 D.-1或12.若a是方程2x2-x-3=0的一个解,则2a2-a的值为( )A.3 B.-3 C.9 D.-93.下列是方程3x2+x-2=0的解的是( )A.x=-1 B.x=1 C.x=-2 D.x=24.已知m是方程x2-x-1=0的一个根,求代数式5m2-5m+2 004的值.知识点2根据平方根的意义解一元二次方程5.根据平方根的意义解方程(x-2 015)2=1,得方程的根为( )A.2 018 B.2 014或2 016C.2 017或1 D.2 016或06.(江岸区校级模拟)如果x=-3是一元二次方程ax2=c的一个根,那么该方程的另一个根是( ) A.3 B.-3C.0 D.17.若x+1与x-1互为倒数,则实数x为( )A.0 B. 2C.±1 D.± 28.下面解方程的过程中,正确的是( )A.x2=2,解:x= 2 B.2y2=16,解:2y=±4,∴y1=2,y2=-2C.2(x-1)2=8,解:(x-1)2=4,x-1=±4,x-1=±2,∴x1=3,x2=-1D.x2=-2,解:x1=-2,x2=--29.解下列方程:(1)14x2=9;(2)(x-3)2-9=0.中档题10.若关于x的方程x2=m的解是有理数,则实数m不能取下列四个数中的( ) A.1 B.4 C.14 D.1211.(枣庄中考)x1,x2是一元二次方程3(x-1)2=15的两个解,且x1<x2,下列说法正确的是( ) A.x1小于-1,x2大于3 B.x1小于-2,x2大于3C.x1,x2在-1和3之间D.x1,x2都小于312.若分式x2-9x-3的值为零,则x的值为( )A.3 B.-3 C.±3 D.913.刘谦的魔术表演风靡全国,小王也学起了刘谦,利用电脑设计了一个程序:当输入实数对(x,y)时,会得到一个新的实数x2+y-1,例如输入(2,5)时,就会得到实数22+5-1=8.若输入实数对(m,2)时,得到实数3,则m=________.14.已知方程x2+(m-1)x+m-10=0的一个根是3,求m的值及方程的另一个根.15.解下列方程:(1)36-3x2=0;(2)(2x+3)2-25=0;(3)(x-3)2=(2x+1)2.第2课时用配方法解二次项系数为1的一元二次方程基础题知识点1二次三项式的配方1.下列各式是完全平方式的是( )A.x2+x+1 B.x2+2x-1 C.x2+2x+1 D.x2-2x-12.将二次三项式x2+6x+7进行配方,正确的结果是( )A.(x+3)2+2 B.(x-3)2+2 C.(x+3)2-2 D.(x-3)2-23.填空:(1)x2-2x+________=(x-________)2;(2)x2+6x+________=(x+________)2;(3)x2-5x+________=(x-________)2;(4)x2-3mx+________=(x-________)2. 4.完成下列配方过程:(1)x2+2x+4=x2+2x+________-________+4=(x+________)2+________;(2)x2-6x-3=x2-6x+________-________-3=(x-________)2-________;知识点2用配方法解二次项系数为1的一元二次方程5.(呼伦贝尔中考)用配方法解方程x2-2x-5=0时,原方程应变形为( )A.(x+1)2=6 B.(x-1)2=6 C.(x+2)2=9 D.(x-2)2=96.一元二次方程x(x-4)=-4的根是( )A.-2 B.2 C.2或-2 D.-1或27.(吉林中考)若将方程x2+6x=7化为(x+m)2=16,则m=________.8.解下列方程:(1)x2+4x+2=0;(2)x2+6x-7=0;(3)x2-6x-6=0;中档题9.若方程x2+kx+64=0的左边是完全平方式,则k的值是( )A.±8 B.16 C.-16 D.±1610.下列配方有错误的是( )A.x2-2x-70=0化为(x-1)2=71 B.x2+6x+8=0化为(x+3)2=1C.x2-3x-70=0化为(x-32)2=7112D.x2-2x-99=0化为(x-1)2=10011.(宁夏中考)一元二次方程x2-2x-1=0的解是( )A.x1=x2=1 B.x1=1+2,x2=-1- 2C.x1=1+2,x2=1- 2 D.x1=-1+2,x2=-1- 212.已知一元二次方程x2+mx+3=0配方后为(x+n)2=22,那么一元二次方程x2-mx-3=0配方后为( )A.(x+5)2=28 B.(x+5)2=19或(x-5)2=19C.(x-5)2=19 D.(x+5)2=28或(x-5)2=2813.三角形两边的长是3和4,第三边长是方程x2-12x+35=0的根,则该三角形的周长为________.14.用配方法解下列方程:(1)x2-2x-5=0;(2)x2-4x+2=0;(3)x2-22x-3=0;15.用配方法证明:不论x为何值,代数式x2+4x+5的值恒大于零.(3)x2+3x+4=x2+3x+________-________+4 =(x+________)2+________;(4)x2-5x-3=x2-5x+________-________-3 =(x-________)2-________.第3课时 用配方法解二次项系数不为1的一元二次方程知识点 用配方法解二次项系数不为1的一元二次方程1.用配方法解方程2x 2-4x =3时,先把二次项系数化为1,然后方程的两边都应加上( )A .1B .2C .3D .52.将方程3x 2-12x -1=0进行配方,配方正确的是( )A .3(x -2)2=5B .(3x -2)2=13C .(x -2)2=5D .(x -2)2=1333.用配方法解方程2x 2-3=-6x ,正确的解法是( )A .(x +32)2=154,x =-32±152B .(x -32)2=154,x =32±152C .(x +32)2=-154,原方程无解D .(x +32)2=74,x =-32±724.用配方法解下列方程:(1)2x 2-8x +1=0; (2)2x 2-7x +6=0; (3)3x 2+8x -3=0;(4)2x 2+1=3x ; (5)3x 2-2x -4=0; (6)6x +9=2x 2.中档题5.用配方法解下列方程时,配方有错误的是( )A .2m 2+m -1=0化为(m +14)2=916B .2x 2+1=3x 化为(x -34)2=116C .2t 2-3t -2=0化为(t -32)2=2516D .3y 2-4y +1=0化为(y -23)2=196.方程(2x -5)(x +2)=3x -4的根为( )A .3B .-1C .-1或3D .以上均不对7.把方程2x 2+4x -1=0配方后得(x +m)2=k ,则m =________,k =________. 8.已知y 1=5x 2+7x +1,y 2=x 2-9x -15,则当x =________时,y 1=y 2. 9.用配方法解下列方程:(1)2t 2-6t +3=0; (2)23x 2+13x -2=0; (3)2y 2-4y =4;10.若一个三角形的两边长分别为2和3,第三边长是方程2x 2-3x -5=0的一个根,求这个三角形的周长.拔高题11.用配方法说明:不论x 取何值,代数式3x 2+3x 的值,总比代数式x 2+7x -4的值大,并求出当x 为何值时,两代数式的差最小.小专题(三)配方法的应用一、配方法解方程1.解方程:(1)x2-4x-2=0;(2)3x2-6x-1=0.二、利用配方法求未知项2.若代数式9x2+kxy+y2表示一个完全平方式,则k的值为( )A.6 B.±6 C.±12 D.123.若代数式x2-5x+k是完全平方式,则k=________.三、配方法求最值4.求多项式x2+3x-1的最小值.5.求多项式-2x2+4x+3的最大值.四、配方法求代数式的值6.已知x=3+2,y=3-2,求x2-5xy+y2的值.7.已知x+x1=3,求x4+1x4的值.五、配方法比较大小8.求证:不论x为何值,多项式2x2-4x-1的值总比x2-6x-6的值大.六、配方法与非负数9.已知m2+n2+4m-2n+5=0,求3m2+5n2-4的值.10.已知2z-y+|y-4|+4x2+4x+1=0,求x-y+z的值.。
【单元测试】北师大版九年级数学上册全章单元测试题(含答案)
北师大版九年级数学上册全章单元测试题目录【单元测试】北师大版九年级数学上册第1章特殊的平行四边行单元达标检测卷含答案【单元测试】北师大版九年级数学上册第2章一元二次方程单元测试【单元测试】北师大版九年级数学上册第3章概率的进一步认识单元测试【单元测试】北师大版九年级数学上册第4章图形的相似单元测试【单元测试】北师大版九年级数学上册第5章投影与视图单元测试【单元测试】北师大版九年级数学上册第6章反比例函数单元测试第一章达标检测卷(120分,90分钟) 总一、选择题(每题3分,共30分)1.如图,已知菱形ABCD 的边长为3,∠ABC=60°,则对角线AC 的长是( )A .12B .9C .6D .3(第1题)(第4题) (第6题)2.下列命题为真命题的是( ) A .四个角相等的四边形是矩形 B .对角线垂直的四边形是菱形C .对角线相等的四边形是矩形D .四边相等的四边形是正方形 3.若顺次连接四边形ABCD 四边的中点,得到的图形是一个矩形,则四边形ABCD 一定是( )A .矩形B .菱形C .对角线相等的四边形D .对角线互相垂直的四边形4.如图,EF 过矩形ABCD 对角线的交点O ,且分别交AB ,CD 于点E ,F ,那么阴影部分的面积是矩形ABCD 面积的( )A.15B.14C.13D.3105.已知四边形ABCD 是平行四边形,下列结论中错误的有( )①当AB=BC 时,它是菱形;②当AC ⊥BD 时,它是菱形;③当∠ABC=90°时,它是矩形;④当AC=BD 时,它是正方形.A .1个B .2个C .3个D .4个6.如图,已知正方形ABCD 的对角线长为22,将正方形ABCD 沿直线EF 折叠,则图中阴影部分的周长为( )A .8 2B .4 2C .8D .6 7.如图,每个小正方形的边长为1,A ,B ,C 是正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°8.如图,在菱形ABCD 中,点M ,N 分别在AB ,CD 上,且AM=CN ,MN 与AC 交于点O ,连接OB.若∠DAC=28°,则∠OBC 的度数为( )A .28°B .52°C .62°D .72°(第7题) (第8题)(第9题) (第10题)9.如图,在矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C与点A重合,则下列结论错误的是( ) A.AF=AE B.△ABE≌△AGF C.EF=2 5 D.AF=EF10.如图,在正方形ABCD中,点P是AB上一动点(点P不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AME;②PM+PN=BD;③PE2+PF2=PO2.其中正确的有( )A.0个 B.1个 C.2个 D.3个二、填空题(每题3分,共24分)11.如图是一个平行四边形的活动框架,对角线是两根橡皮筋.若改变框架的形状,则∠α也随之变化,两条对角线长度也在发生改变.当∠α的度数为________时,两条对角线长度相等.12.如图,四边形ABC D是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影部分和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为________.(第11题) (第12题) (第13题) 13.如图是根据四边形的不稳定性制作的边长为15 cm的可活动衣架,若墙上钉子间的距离AB=BC=15 cm,则∠1=________.14.已知E是正方形ABCD的对角线AC上一点,AE=AD,过点E作AC的垂线,交边CD于点F,那么∠FAD=________.15.如图,矩形OBCD的顶点C的坐标为(1,3),则对角线BD的长等于________.(第15题) (第16题)(第17题) (第18题)16.如图,已知正方形ABCD的边长为1,连接AC,BD,CE平分∠ACD交BD于点E,则DE=________.17.如图,在矩形ABCD中,M,N分别是AD,BC的中点,E,F分别是线段BM,CM的中点.若AB=8,AD=12,则四边形ENFM的周长为________.18.如图,在边长为1的菱形 ABCD中,∠DAB=60°.连接对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连接AE,再以AE为边作第三个菱形AEGH,使∠HAE=60°,…,按此规律所作的第n个菱形的边长是________.三、解答题(19,20题每题9分,21题 10分,22,23题每题12分,24题14分,共66分)19.如图,在四边形ABCD中,AD∥BC,AC的垂直平分线交AD,BC于点E,F.求证:四边形AECF是菱形.(第19题)20.如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若AB=3,BC=4,求四边形OCED的面积.(第20题)21.如图,在正方形ABCD中,E为CD边上一点,F为BC延长线上一点,且CE=CF.(1)求证:△BCE≌△DCF;(2)若∠FDC=30°,求∠BEF的度数.(第21题)22.如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.(1)求证:△DCE≌△BFE;(2)若CD=2,∠ADB=30°,求BE的长.(第22题)23.如图,在菱形ABCD中,AB=4,∠BAD=120°,以点A为顶点的一个60°的角∠EAF绕点A旋转,∠EAF 的两边分别交BC,CD于点E,F,且E,F不与B,C,D重合,连接EF.(1)求证:BE=CF.(2)在∠EAF绕点A旋转的过程中,四边形 AECF的面积是否发生变化?如果不变,求出其定值;如果变化,请说明理由.(第23题)24.如图,在△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交△ABC的外角∠ACD的平分线于点F.(1)探究线段OE与OF的数量关系并说明理由.(2)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?请说明理由.(3)当点O在边AC上运动时,四边形BCFE________是菱形(填“可能”或“不可能”).请说明理由.(第24题)答案一、1.D 2.A3.D 点拨:首先根据三角形中位线定理知:所得四边形的对边都平行且相等,那么其必为平行四边形,若所得四边形是矩形,那么邻边互相垂直,故原四边形的对角线必互相垂直,由此得解.4.B5.A 点拨:①当AB=BC 时,它是菱形,正确;②当AC ⊥BD 时,它是菱形,正确;③当∠ABC=90°时,它是矩形,正确;④当AC=BD 时,它是矩形,因此④是错误的.6.C 7.C 8.C9.D 点拨:如图,由折叠得∠1=∠2.∵AD ∥BC ,∴∠3=∠1.∴∠2=∠3.∴AE=AF.故选项A 正确.由折叠得CD=AG ,∠D=∠G=90°.∵AB=CD ,∴AB=AG.∵AE=AF ,∠B=90°,∴Rt △ABE ≌Rt △AGF(HL).故选项B 正确.设DF=x ,则GF=x ,AF=8-x.又AG=AB=4,∴在Rt △AGF 中,根据勾股定理得(8-x)2=42+x 2.解得x=3.∴AF=8-x=5.则AE=AF=5,∴BE=AE 2-AB 2=52-42=3.过点F 作FM ⊥BC 于点M ,则EM=5-3=2.在Rt △EFM 中,根据勾股定理得EF=EM 2+FM 2=22+42=20=25,则选项C 正确.∵AF=5,EF=25,∴AF ≠EF.故选项D 错误.(第9题)10.D 点拨:∵四边形ABCD 是正方形,∴∠PAE=∠MAE=45°.∵PM ⊥AC ,∴∠PEA=∠MEA.又∵AE=AE ,∴根据“ASA ”可得△APE ≌△AME.故①正确.由①得PE=ME ,∴PM=2PE.同理PN=2PF.又易知PF=BF ,四边形PEOF 是矩形,∴PN=2BF ,PM=2FO.∴PM +PN=2FO +2BF=2BO=BD.故②正确.在Rt △PFO 中,∵FO 2+PF 2=PO 2,而PE=FO ,∴PE 2+PF 2=PO 2.故③正确.二、11.90° 点拨:对角线相等的平行四边形是矩形.12.12 点拨:∵菱形的两条对角线的长分别为6和8,∴菱形的面积=12³6³8=24.∵O 是菱形两条对角线的交点,∴阴影部分的面积=12³24=12.13.120°(第14题)14.22.5° 点拨:如图,由四边形ABCD 是正方形,可知∠CAD=12∠BAD=45°. 由FE ⊥AC ,可知∠AEF=90°.在Rt △AEF 与Rt △ADF 中, AE=AD ,AF=AF ,∴Rt △AEF ≌Rt △ADF(HL).∴∠FAD=∠FAE=12∠CAD=12³45°=22.5°. 15.10 16.2-117.20 点拨:点N 是BC 的中点,点E ,F 分别是BM ,CM 的中点,由三角形的中位线定理可证EN ∥MC ,NF∥ME ,EN=12MC ,FN=12MB.又易知MB=MC ,所以四边形ENFM 是菱形.由点M 是AD 的中点,AD=12得AM=6.在Rt △ABM 中,由勾股定理得BM=10.因为点E 是BM 的中点,所以EM=5.所以四边形ENFM 的周长为20.18.(3)n -1三、19.证明:∵EF 垂直平分AC ,∴∠AOE=∠COF=90°,OA=OC.∵AD ∥BC ,∴∠OAE=∠OCF.∴△AOE ≌△COF(ASA).∴AE=CF.又∵AE ∥CF ,∴四边形AECF 是平行四边形.∵EF ⊥AC ,∴四边形AECF 是菱形.20.(1)证明:∵DE ∥AC ,CE ∥BD ,∴四边形OCED 为平行四边形.∵四边形ABCD 为矩形,∴OD=OC.∴四边形OCED 为菱形.(2)解:∵四边形ABCD 为矩形,∴BO=DO=12BD. ∴S △OCD =S △OCB =12S △ABC =12³12³3³4=3.∴S 菱形OCED =2S △OCD =6. 21.(1)证明:在△BCE 与△DCF 中,⎩⎪⎨⎪⎧BC =DC ,∠BCE =∠DCF ,CE =CF ,∴△BCE ≌△DCF.(2)解:∵△BCE ≌△DCF ,∴∠EBC=∠FDC=30°.∵∠BCD=90°,∴∠BEC=60°.∵EC=FC ,∠ECF=90°,∴∠CEF=45°.∴∠BEF=105°.22.(1)证明:∵在矩形ABCD 中,AD ∥BC ,∠A=∠C=90°,∴∠ADB =∠DBC.根据折叠的性质得∠ADB=∠BDF ,∠F=∠A=90°,∴∠DBC=∠BDF ,∠C=∠F.∴BE=DE.在△DCE 和△BFE 中,⎩⎪⎨⎪⎧∠DEC =∠BEF ,∠C =∠F ,DE =BE ,∴△DCE ≌△BFE.(2)解:在Rt △BCD 中,∵CD=2,∠ADB=∠DBC=30°,∴BD=4.∴BC=2 3.在Rt △ECD 中,易得∠EDC=30°.∴DE=2EC.∴(2EC)2-EC 2=CD 2.∵CD=2,∴CE=233.∴BE=BC -EC=433.(第23题)23.(1)证明:如图,连接AC.∵四边形ABCD 为菱形,∠BAD=120°,∴∠ABE=∠ACF=60°,∠1+∠2=60°.∵∠3+∠2=∠EAF=60°,∴∠1=∠3.∵∠ABC=60°,AB=BC ,∴△ABC 为等边三角形.∴AC=AB.∴△ABE ≌△ACF.∴BE=CF.(2)解:四边形AECF 的面积不变.由(1)知△ABE ≌△ACF ,则S △ABE =S △ACF ,故S 四边形AECF =S △AEC +S △ACF =S △AEC +S △ABE =S △ABC .如图,过A 作AM ⊥BC 于点M ,则BM=MC=2,∴AM=AB 2-BM 2=42-22=2 3.∴S △ABC =12BC ²AM=12³4³23=4 3.故S 四边形AECF =4 3. 24.解:(1)OE=OF.理由如下:∵CE 是∠ACB 的平分线,∴∠ACE=∠BCE.又∵MN ∥BC ,∴∠NEC=∠BCE.∴∠NEC=∠ACE.∴OE=OC.∵CF 是∠ACD 的平分线,∴∠OCF=∠FCD.又∵MN ∥BC ,∴∠OFC=∠FCD.∴∠OFC=∠OCF.∴OF=OC.∴OE=OF.(2)当点O 运动到AC 的中点,且△ABC 满足∠ACB 为直角时,四边形AECF 是正方形. 理由如下:∵当点O 运动到AC 的中点时,AO=CO ,又∵EO=FO ,∴四边形AECF 是平行四边形.∵FO=CO ,∴AO=CO=EO=FO.∴AO +CO=EO +FO ,即AC=EF.∴四边形AECF 是矩形.已知MN ∥BC ,当∠ACB=90°时,∠AOE=90°,∴AC ⊥EF.∴四边形AECF 是正方形.(3)不可能理由如下:连接BF ,∵CE 平分∠ACB ,CF 平分∠ACD ,∴∠ECF=12∠ACB +12∠ACD=12(∠ACB +∠ACD)=90°.若四边形BCFE 是菱形,则BF ⊥EC.但在一个三角形中,不可能存在两个角为90°,故四边形BCFE 不可能为菱形.第二章一元二次方程单元测试一、单选题(共10题;共30分)1、关于x的一元二次方程(m-1)x2+x+m2-1=0有一根为0,则m的值为( )A、1或-1B、1C、-1D、2、方程x2+6x-5=0的左边配成完全平方后所得方程为 ( )A、(x+3)2 =14B、(x-3)2 =14C、(x+6)2=D、以上答案都不对3、一元二次方程2x2-3x=4的一次项系数是A、2B、-3C、4D、-44、用公式法解方程6x-8=5x2时,a、b、c的值分别是()A、5、6、-8B、5、-6、-8C、5、-6、8 D . 6、5、-85、九(1)班同学毕业的时候,每人都必须与其他任何一位同学合照一张双人照,全班共照相片780张,则九(1)班的人数是()A、39B、40C、50D、606、济宁市某经济开发区,今年一月份工业产值达10亿元,第一季度总产值为75亿元,二、三月平均每月增长率是多少,若设平均每月的增长率为x,根据题意,可列方程为()A、10(1+x)2=75B、10+10(1+x)+10(1+x)2=75C、10(1+x)+10(1+x)2=75D、10+10(1+x)2=757、2016年1月13日长城河报道,河北香河县中报“全国绿化模范县”通过审核,截止到2015年,香河县林地面积达到24.39万亩,森林覆盖率达到35.5%,若某县从2013到2015年经过两年的时间,使森林覆盖率增长21%,则该县这两年平均每年的森林覆盖的增长率为()A、9%B、10%C、11%D、12%8、根据下列表格中关于x的代数式ax2+bx+c的值与x的对应值,判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解的范围是()A、5.14<x<5.15B、5.13<x<5.14C、5.12<x<5.13D、5.10<x<5.129、设x1, x2是方程x2+5x﹣3=0的两个根,则x12+x22的值是()A、19B、25C、31D、3010、下列关于x的方程中,是一元二次方程的是()A、y2+x=1B、x(x﹣1)=x2﹣2C、x2﹣1=0D、x2+ =1二、填空题(共8题;共25分)11、一元二次方程的求根公式是________.12、设a、b是方程的两个不等的根,则a2+2a+b的值为________.13、某小区2013年绿化面积为2000平方米,计划2015年绿化面积要达到2880平方米.如果每年绿化面积的增长率相同,那么这个增长率是________.14、关于x的方程:(a﹣1)+x+a2﹣1=0,求当a=________时,方程是一元二次方程,当a=________时,方程是一元一次方程.15、已知若x1, x2是方程x2+3x+2=0的两根,则x1+x2=________16、某药品经过两次降价,每瓶零售价由168元降为128元,已知两次降价的百分率相同,每次降价的百分率为x,根据题意列方程得________.17、如果(m﹣1)x2+2x﹣3=0是一元二次方程,则m的取值范围为________.18、若代数式x2﹣8x+12的值是21,则x的值是________三、解答题(共5题;共35分)19、小林准备进行如下操作实验:把一根长为40cm的铁丝剪成两段,并把每一段各围成一个正方形.(1)要使这两个正方形的面积之和等于52cm2,小林该怎么剪?(2)小峰对小林说:“这两个正方形的面积之和不可能等于44cm2.”他的说法对吗?请说明理由.20、解下列方程:用配方法解方程:2x2+5x+3=0;21、若α、β是方程x2﹣2x﹣3=0的两个实数根,求的值.22、某花店将进货价为20元/盒的百合花,在市场参考价28~38元的范围内定价36元/盒销售,这样平均每天可售出40盒,经过市场调查发现,在进货价不变的情况下,若每盒下调1元,则平均每天可多销售10盒,要使每天的利润达到750元,应将每盒百合花在售价上下调多少元?23、已知关于x的一元二次方程x2﹣3x+m﹣3=0,若此方程的两根的倒数和为1,求m的值.四、综合题(共1题;共10分)24、用适当的方法解一元二次方程(1)x2+3x+1=0;(2)(x﹣1)(x+2)=2(x+2)第三章概率的进一步认识单元测试一、单选题(共10题;共30分)1、小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A、 B、 C、 D、2、一个不透明的口袋里装有除颜色外都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有200次摸到白球,因此小亮估计口袋中的红球大约为()A、60个B、50个C、40个D、30个3、一个不透明的袋中有若干个红球,为了估计袋中红球的个数,小华在袋中放入10个除颜色外其它完全相同的白球,每次摇匀后随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球实验后发现,摸到白球的频率是,则袋中红球约为()个.A、4B、25C、14D、354、做重复试验:抛掷同一枚啤酒瓶盖1000次.经过统计得“凸面向上”的次数约为420次,则可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为()A、0.22B、0.42C、0.50D、0.585、用频率估计概率,可以发现,抛掷硬币,“正面朝上”的概率为0.5,是指()A、连续掷2次,结果一定是“正面朝上”和“反面朝上”各1次B、连续抛掷100次,结果一定是“正面朝上”和“反面朝上”各50次C、抛掷2n次硬币,恰好有n次“正面朝上”D、抛掷n次,当n越来越大时,正面朝上的频率会越来越稳定于0.56、一个不透明的袋子里有若干个小球,它们除了颜色外,其它都相同,甲同学从袋子里随机摸出一个球,记下颜色后放回袋子里,摇匀后再次随机摸出一个球,记下颜色,…,甲同学反复大量实验后,根据白球出现的频率绘制了如图所示的统计图,则下列说法正确的是()A、袋子一定有三个白球B、袋子中白球占小球总数的十分之三C、再摸三次球,一定有一次是白球D、再摸1000次,摸出白球的次数会接近330次7、一个盒子有1个红球,1个白球,这两个球除颜色外其余都相同,从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,则两次都摸出红球的概率为()A、1B、C、D、8、经过某十字路口的汽车,可能直行,也可能左转或者右转,若这三种可能性大小相同,则经过这个十字路口的两辆汽车一辆直行,一辆右转的概率是()A、 B、 C、 D、9、一个盒子装有除颜色外其它均相同的2个红球和1个白球,现从中任取2个球,则取到的是一个红球,一个白球的概率为()A、 B、 C、 D、10、(2014•海南)一个不透明的袋子中有3个分别标有3,1,﹣2的球,这些球除了所标的数字不同外其他都相同,若从袋子中随机摸出两个球,则这两个球上的两个数字之和为负数的概率是()A、 B、 C、 D、二、填空题(共8题;共27分)11、在一个不透明的布袋中,装有红、黑、白三种只有颜色不同的小球,其中红色小球4个,黑、白色小球的数目相同.小明从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后随机摸出一球,记下颜色;…如此大量摸球实验后,小明发现其中摸出的红球的频率稳定于20%,由此可以估计布袋中的黑色小球有 ________个.12、一个口袋中装有2个完全相同的小球,它们分别标有数字1,2,从口袋中随机摸出一个小球记下数字后放回,摇匀后再随机摸出一个小球,则两次摸出小球的数字和为偶数的概率是________ .13、某口袋中有红色、黄色、蓝色玻璃共60个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%、25%和40%,估计口袋中黄色玻璃球有________ 个.14、一个口袋中有6个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,……,不断重复上述过程.小明共摸了100次 ,其中60次摸到白球.根据上述数据,小明可估计口袋中的白球大约有________ 个.15、“2015扬州鉴真国际半程马拉松”的赛事共有三项:A、“半程马拉松”、B、“10公里”、C、“迷你马拉松”.小明参加了该项赛事的志愿者服务工作,组委会随机将志愿者分配到三个项目组.(1)小明被分配到“迷你马拉松”项目组的概率为________.(2)为估算本次赛事参加“迷你马拉松”的人数,小明对部分参赛选手作如下调查:请估算本次赛事参加“迷你马拉松”人数的概率为________.(精确到0.1)16、一个透明的布袋里装有3个球,其中2个红球,1个白球,它们除颜色外其余都相同,摸出1个球,记下颜色后放回,并搅匀,再摸出1个球,则两次摸出的球恰好颜色不同的概率是________17、一个不透明的袋子中装有黑球两个,白球三个,这些小球除颜色外无其他区别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是黑球的概率为________.18、某校在甲、乙两名同学中选拔一人参加襄阳广播电台举办“国学风,少年颂”襄阳首届少年儿童经典诵读大赛.在相同的测试条件下,两人3次测试成绩(单位:分)如下:甲:79,86,82;乙:88,79,90.从甲、乙两人3次的成绩中各随机抽取一次成绩进行分析,求抽到的两个人的成绩都大于80分的概率是________.三、解答题(共6题;共43分)19、在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别.摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有白球多少个?20、在一个口袋中有5个小球,其中有两个是白球,其余为红球,这些球的形状、大小、质地等完全相同,在看不到小球的条件下,从袋中随机地取出一个小球.求取出的小球是红球的概率;把这5个小球中的两个都标号为1,其余分布标号为2、3、4,随机地取出一个小球后不放回,再随机地取出一个小球.利用树状图或列表的方法,求第二次取出小球标号大于第一次取出小球标号的概率.21、数学课堂上,为了学习构成任意三角形三边需要满足的条件.甲组准备3根木条,长度分别是3cm、8cm、13cm;乙组准备3根木条,长度分别是4cm、6cm、12cm.老师先从甲组再从乙组分别随机抽出一根木条,放在一起组成一组.(1)用画树状图法(或列表法)分析,并列出各组可能.(画树状图或列表以及列出可能时不用写单位)(2)现在老师也有一根木条,长度为5cm,与(1)中各组木条组成三角形的概率是多少?22、某市某幼儿园六一期间举行亲子游戏,主持人请三位家长分别带自己的孩子参加游戏,主持人准备把家长和孩子重新组合完成游戏,A、B、C分别表示三位家长,他们的孩子分别对应的是a、b、c.(1)若主持人分别从三位家长和三位孩子中各选一人参加游戏,恰好是A、a的概率是多少(直接写出答案)(2)若主持人先从三位家长中任选两人为一组,再从孩子中任选两人为一组,四人共同参加游戏,恰好是两对家庭成员的概率是多少.(画出树状图或列表)23、在一个不透明的盒子里装有三个分别写有数字6,﹣2,7的小球,它们的形状、大小、质地完全相同,先从盒子里随机抽取一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字,请你用画树状图或列表的方法求两次取出小球上的数字和大于10的概率.24、在一个不透明的袋子中装有3个除颜色外完全相同的小球,其中白球1个,黄球1个,红球1个,摸出一个球记下颜色后放回,再摸出一个球,请用列表法或画树状图法求两次都摸到红球的概率.第四章图形的相似单元测试一、单选题(共10题;共30分)1、如图,在△ABC中.∠ACB=90°,CD⊥AB于点D,则图中相似三角形共有()A、1对B、2对C、3对D、4对2、如果线段a、b、c、d满足ad=bc,则下列各式中不成立的是()A、 B、 C、 D、3、如图,身高为1.6米的某同学想测量学校旗杆的高度,当他站在C处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AC=2.0米,BC=8.0米,则旗杆的高度是()A、6.4米B、7.0米C、8.0米D、9.0米4、一个多边形的边长分别为2,3,4,5,6,另一个多边形和这个多边形相似,且最短边长为6,则最长边长为()A、18B、12C、24D、305、线段4cm、16cm的比例中项为().A、20cmB、64cmC、±8cmD、8cm6、如果两个相似三角形的相似比是1:7,则它们的面积比等于()A、1:B、1:7C、1:3.5D、1:497、比例尺为1:1000的图纸上某区域面积400cm2,则实际面积为()A、4³B、4³C、1.6³D、2³8、如图,在△ABC中,AB=4,AC=3,DE∥BC交AB于点D,交AC于点E,若AD=3,则AE的长为()A、 B、 C、 D、9、(2015•黄陂区校级模拟)如图△ABC与△DEF是位似图形,位似比是1:2,已知DE=4,则AB的长是()A、2B、4C、8D、110、如图,∠APD=90°,AP=PB=BC=CD,则下列结论成立的是()A、△PAB∽△PCAB、△PAB∽△PDAC、△ABC∽△DBAD、△ABC∽△DCA二、填空题(共8题;共24分)11、把一个正多边形放大到原来的2.5倍,则原图与新图的相似比为________12、如图,已知AD、BC相交于点O,AB∥CD∥EF,如果CE=2,EB=4,FD=1.5,那么AD=________ .13、若,则的值等于________14、如图,在△ABC中,点D,E,F分别在AB,AC,BC上,DE∥BC,EF∥AB.若AB=8,BD=3,BF=4,则FC的长为________.15、如图,已知AB∥CD∥EF,AD:AF=3:5,BE=12,那么CE的长等于________16、如图,直线a∥b∥c,度量线段AB≈1.89,BC≈3.80,DE≈2.02,则线段EF的长约为________.17、如图,在△ABC中,EF∥BC,= ,EF=3,则BC的值为________.18、在比例尺为1:2000的地图上,测得A、B两地间的图上距离为4.5厘米,则其实际距离为________米.三、解答题(共5题;共36分)19、如图,点C、D在线段AB上,△PCD是等边三角形,且△ACP∽△PDB,求∠APB的度数.20、已知a、b、c是△ABC的三边长,且==≠0,求:(1)的值.(2)若△ABC的周长为90,求各边的长.21、如图,在四边形ABCD中,AD∥BC,∠A=∠BDC.(1)求证:△ABD∽△DCB;(2)若AB=12,AD=8,CD=15,求DB的长.22、如图,AD=2,AC=4,BC=6,∠B=36°,∠D=117°,△ABC∽△DAC.(1)求∠ACB的度数;(2)求CD的长.23、已知a:b:c=3:2:5,求的值.四、综合题(共1题;共10分)24、如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为D、E,AD与BE相交于点F.(1)求证:△ACD∽△BFD;(2)若∠ABD=45°,AC=3时,求BF的长.第五章投影与视图单元测试一、单选题(共10题;共30分)1、给出下列结论正确的有()①物体在阳光照射下,影子的方向是相同的②物体在任何光线照射下影子的方向都是相同的③物体在路灯照射下,影子的方向与路灯的位置有关④物体在光线照射下,影子的长短仅与物体的长短有关.A、1个B、2个C、3个D、4个2、“皮影戏”作为我国一种民间艺术,对它的叙述错误的是()A、它是用兽皮或纸板做成的人物剪影,来表演故事的戏曲B、表演时,要用灯光把剪影照在银幕上C、灯光下,做不同的手势可以形成不同的手影D、表演时,也可用阳光把剪影照在银幕上3、如图所示,晚上小亮在路灯下散步,在从A处走向B处的过程中,他在地上的影子()A、逐渐变短B、先变短后再变长C、逐渐变长D、先变长后再变短4、如果阳光斜射在地面上,一张矩形纸片在地面上的影子不可能是()A、矩形B、线段C、平行四边形D、一个点5、由几个相同的小正方形搭成的一个几何体如图所示,这个几何体的主视图是()A、 B、 C、 D、6、下面四个图是同一天四个不同时刻树的影子,其时间由早到晚的顺序为()A、1234B、4312C、3421D、42317、下列为某两个物体的投影,其中是在太阳光下形成投影的是()A、 B、 C、 D、8、如图,是五个相同的小正方体搭成的几何体,其主视图是()A、 B、 C、 D、9、如图是由四个小正方体叠成的一个立体图形,那么它的俯视图是()A、 B、 C、 D、10、图中的两个圆柱体底面半径相同而高度不同,关于这两个圆柱体的视图说法正确的是()A、主视图相同B、俯视图相同二、填空题(共8题;共33分)11、(2013秋•邢台期末)小亮的身高为1.8米,他在路灯下的影子长为2米;小亮距路灯杆底部为3米,则路灯灯泡距离地面的高度为________ 米.12、直角坐标平面内,一点光源位于A(0,5)处,线段CD⊥x轴,D为垂足,C(3,1),则CD在x轴上的影长为________ ,点C的影子的坐标为________ .13、如图是两棵小树在同一时刻的影子,请问它们的影子是在________ 光线下形成的(填“灯光”或“太阳”).14、太阳光线下形成的投影是________ 投影.(平行或中心)15、如图所示,平地上一棵树高为5米,两次观察地面上的影子,第一次是当阳光与地面成45°时,第二次是阳光与地面成30°时,第二次观察到的影子比第一次长________ 米.16、请你写出一种几何体,使得它的主视图、左视图和俯视图都一样,它是________17、如图,小明从路灯下A处,向前走了5米到达D处,行走过程中,他的影子将会(只填序号)________ ①越来越长,②越来越短,③长度不变.在D处发现自己在地面上的影子长DE是2米,如果小明的身高为1.7米,那么路灯离地面的高度AB是________ 米.18、离物体越近,视角越________ ,离物体越远,视角越________ .三、解答题(共6题;共37分)19、同一时刻,两根木棒的影子如图,请画出图中另一根木棒的影子.20、如图,身高1.6米的小明从距路灯的底部(点O)20米的点A沿AO方向行走14米到点C处,小明在A处,头顶B在路灯投影下形成的影子在M处.(1)已知灯杆垂直于路面,试标出路灯P的位置和小明在C处,头顶D在路灯投影下形成的影子N的位置.(2)若路灯(点P)距地面8米,小明从A到C时,身影的长度是变长了还是变短了?变长或变短了多少米?21、如图,是一个由长方体和圆柱组合而成的几何体.已知长方体的底面是正方形,其边长与圆柱底面圆的直径相等,圆柱的高与长方体的高也相等.(1)画出这个几何体的主视图、左视图、俯视图;(2)若圆柱底面圆的直径记为a,高记为b.现将该几何体露在外面的部分喷上油漆,求需要喷漆部分的面积.22、如图是七个棱长为1的立方块组成的一个几何体,画出其三视图并计算其表面积.。
北师大版九年级数学上名校课堂专题训练(一)(含答案)
专题训练(一) 矩形中的折叠问题(本专题部分习题有难度,请根据实际情况选做)1.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,则重叠部分△AFC的面积为()A.12 B.10 C.8 D.62.如图,已知矩形纸片ABCD,点E是AB的中点,点G是BC上的一点,∠BEG=60°.现沿直线GE将纸片折叠,使点B落在纸片上的点H处,连接AH,则图中与∠BEG相等的角的个数为()A.5个B.4个C.3个D.2个3.如图,将矩形ABCD沿直线EF对折,点D恰好与BC边上的点H重合,∠GFP=62°,那么∠EHF的度数等于________.4.把一张矩形纸片(矩形ABCD)按如图方式折叠,使顶点B和点D重合,折痕为EF.若AB =3 cm,BC=5 cm,则重叠部分△DEF的面积是________cm2.5.如图,折叠矩形一边AD,点D落在BC边的点F处,BC=10 cm,AB=8 cm,求:(1)FC的长;(2)EF的长.6.如图,四边形ABCD为平行四边形纸片.把纸片ABCD折叠,使点B恰好落在CD边上,折痕为AF,且AB=10 cm,AD=8 cm,DE=6 cm.(1)求证:四边形ABCD是矩形;(2)求BF的长;(3)求折痕AF长.7.将矩形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将矩形OABC沿AD折叠压平,使点B落在坐标平面内,设点B 的对应点为点E.(1)当m=3时,求点B的坐标和点E的坐标;(自己重新画图)(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.8.如图,矩形ABCD中,AB=8,AD=10.(1)求矩形ABCD的周长;(2)E是CD上的点,将△ADE沿折痕AE折叠,使点D落在BC边上点F处.①求DE的长;②点P是线段CB延长线上的点,连接PA,若△PAF是等腰三角形,求PB的长.(3)M是AD上的动点,在DC上存在点N,使△MDN沿折痕MN折叠,点D落在BC边上点T处,求线段CT长度的最大值与最小值之和.参考答案1.B2.A3.56°4.5.15.(1)由题意可得AF=AD=10 cm,在Rt△ABF中,AB=8 cm,AF=10 cm,∴BF=6 cm.∴FC=BC-BF=10-6=4(cm).(2)由题意可得EF=DE,可设EF的长为x,则在Rt△EFC中,(8-x)2+42=x2,解得x=5,即EF的长为5 cm.6.(1)证明:∵把纸片ABCD折叠,使点B恰好落在CD边上,∴AE=AB=10,AE2=102=100.又∵AD2+DE2=82+62=100,∴AD2+DE2=AE2.∴△ADE是直角三角形,且∠D=90°.又∵四边形ABCD为平行四边形,∴四边形ABCD是矩形.(2)设BF=x,则EF=BF=x,EC=CD-DE=10-6=4(cm),FC=BC-BF=8-x,在Rt△EFC中,EC2+FC2=EF2,即42+(8-x)2=x2.解得x=5.故BF=5 cm.(3)在Rt△ABF中,由勾股定理得AB2+BF2=AF2,∵AB=10 cm,BF=5 cm,∴AF=102+52=55(cm).7.(1)如图,点B的坐标为(3,4).∵AB=BD=3,∴△ABD是等腰直角三角形.∴∠BAD=45°.∴∠DAE=∠BAD=45°.∴E在y轴上.AE=AB=BD=3,∴四边形ABDE是正方形,OE=1.∴点E的坐标为(0,1).(2)点E能恰好落在x轴上.理由如下:∵四边形OABC为矩形,∴BC=OA=4,∠AOC=∠DCO=90°.由折叠的性质可得:DE=BD=OA-CD=4-1=3,AE=AB=OC=m. 假设点E恰好落在x轴上,在Rt△CDE中,由勾股定理可得EC=DE2-CD2=32-12=2 2.则有OE=OC-CE=m-2 2.在Rt△AOE中,OA2+OE2=AE2.即42+(m-22)2=m2.解得m=3 2.8.(1)周长为2×(10+8)=36.(2)①∵四边形ABCD是矩形,由折叠对称性得AF=AD=10,FE=DE.在Rt△ABF中,由勾股定理得BF=6,∴FC =4.在Rt △ECF 中,42+(8-DE)2=EF 2,解得DE =5.②分三种情形讨论:若AP =AF ,∵AB ⊥PF ,∴PB =BF =6;若PF =AF ,则PB +6=10.解得PB =4;若AP =PF ,在Rt △APB 中,AP 2=PB 2+AB 2,设PB =x ,则(x +6)2-x 2=82.解得x =73. ∴PB =73. 综合得PB =6或4或73. (3)当点N 与C 重合时,CT 取最大值是8,当点M 与A 重合时,CT 取最小值为4,所以线段CT 长度的最大值与最小值之和为12.。
2016年秋期人教版九年级数学上册名校课堂练习22.3.1二次函数与图形面积.doc
第1课时 二次函数与图形面积基础题知识点 二次函数与平面面积1.(六盘水中考)如图,假设篱笆(虚线部分)的长度为16 m ,则所围成矩形ABCD 的最大面积是( )A .60 m 2B .63 m 2C .64 m 2D .66 m 22.(咸宁中考)用一根长为40 cm 的绳子围成一个面积为a cm 2的长方形,那么a 的值不可能为( )A .20B .40C .100D .1203.用长8 m 的铝合金条制成使窗户的透光面积最大的矩形窗框(如图),那么这个窗户的最大透光面积是( )A.6425 m 2B.43m 2 C.83m 2 D .4 m 24.(玉林、防城港中考)如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止,设小三角形移动的距离为x ,两个三角形重叠面积为y ,则y 关于x 的函数图象是( )5.如图,利用一面墙(墙的长度不超过45 m),用80 m长的篱笆围一个矩形场地.当AD=________时,矩形场地的面积最大,最大值为________.6.如图,在△ABC中,∠B=90°,AB=8 cm,BC=6 cm,点P从点A开始沿AB向B 点以2 cm/s的速度移动,点Q从点B开始沿BC向C点以1 cm/s的速度移动,如果P,Q 分别从A,B同时出发,当△PBQ的面积为最大时,运动时间t为________s.7.将一根长为20 cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是________ cm2.8.已知直角三角形两条直角边的和等于20,两条直角边各为多少时,这个直角三角形的面积最大?最大值是多少?9.(滨州中考)某高中学校为高一新生设计的学生单人桌的抽屉部分是长方体形,抽屉底面周长为180 cm,高为20 cm.请通过计算说明,当底面的宽x为何值时,抽屉的体积y最大?最大为多少?(材质及其厚度等暂忽略不计)中档题10.(潍坊中考)如图,有一块边长为6 cm 的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是( ) A. 3 cm 2 B.323 cm 2 C.92 3 cm 2 D.2723 cm 211.(荆州中考)如图,正方形ABCD 的边长为3 cm ,动点P 从B 点出发以3 cm/s 的速度沿着边BC -CD -DA 运动,到达A 点停止运动;另一动点Q 同时从B 点出发以1 cm/s 的速度沿着边BA 向A 点运动,到达A 点停止运动.设P 点运动时间为x(s),△BPQ 的面积为y(cm 2),则y 关于x 的函数图象是( )12.手工课上,小明准备做一个形状是菱形的风筝,这个菱形的两条对角线长度之和恰好为60 cm ,菱形的面积S(单位:cm 2)随其中一条对角线的长x(单位:cm)的变化而变化.(1)请直接写出S与x之间的函数关系式(不要求写出自变量x的取值范围);(2)当x是多少时,菱形风筝面积S最大?最大面积是多少?13.(淮安中考)用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x米,面积为y平方米.(1)求y关于x的函数关系式;(2)当x为何值时,围成的养鸡场面积为60平方米?(3)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.综合题14.(朝阳中考)如图,正方形ABCD 的边长为2 cm ,△PMN 是一块直角三角板(∠N =30°),PM >2 cm ,PM 与BC 均在直线l 上,开始时M 点与B 点重合,将三角板向右平行移动,直至M 点与C 点重合为止.设BM =x cm ,三角板与正方形重叠部分的面积为y cm 2.下列结论:①当0≤x≤233时,y 与x 之间的函数关系式为y =32x 2; ②当233<x ≤2时,y 与x 之间的函数关系式为y =2x -233; ③当MN 经过AB 的中点时,y =123 cm 2; ④存在x 的值,使y =12S 正方形ABCD (S 正方形ABCD 表示正方形ABCD 的面积). 其中正确的是________(写出所有正确结论的序号).参考答案基础题1.C2.D3.C4.B5.20 m 800 m 26.27.2528.设直角三角形的一直角边长为x ,则另一直角边长为(20-x),其面积为y ,则y =12x(20-x)=-12x 2+10x =-12(x -10)2+50.当x =10时,面积y 值取最大,y 最大=50. 9.根据题意,得y =20x(1802-x).整理得y =-20x 2+1 800x =-20(x 2-90x +2 025)+40 500=-20(x -45)2+40 500.∵-20<0,∴当x =45时,函数有最大值,y 最大值=40 500.即当底面的宽为45 cm 时,抽屉的体积最大,最大为40 500 cm 3.中档题10.C 11.C12.(1)S =-12x 2+30x. (2)∵S =-12x 2+30x =-12(x -30)2+450,且a =-12<0,∴当x =30时,S 有最大值,最大值为450.即当x 为30 cm 时,菱形风筝的面积最大,最大面积是450 cm 2.13.(1)y =x(16-x)=-x 2+16x(0<x<16).(2)当y =60时,-x 2+16x =60,解得x 1=10,x 2=6.∴当x =10或6时,围成的养鸡场的面积为60平方米.(3)当y =70时,-x 2+16x =70,整理得x 2-16x +70=0.∵Δ=256-280=-24<0,∴此方程无实数根.∴不能围成面积为70平方米的养鸡场.综合题14.①②④。
9上数学名校课堂答案
9上数学名校课堂答案9上数学名校课堂答案一、选择题1、分式方程的解为【】A.x=1B.x=2C.x=3D.x=4【答案】C。
【考点】解分式方程。
【分析】由去分母得:3x﹣3=2x,移项得:3x﹣2x=3,合并同类项得:x=3。
检验:把x=3代入最简公分母2x(x﹣1)=12≠0,故x=3是原方程的解。
∴原方程的解为:x=3。
故选C。
2.一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x,根据题意,下面列出的方程正确的是【】A.100(1+x)=121B.100(1-x)=121C.100(1+x)2=121D.100(1-x)2=121【答案】C。
【考点】由实际问题抽象出一元二次方程(增长率问题)。
【分析】由于每次提价的百分率都是x,第一次提价后的价格为100(1+x),第一次提价后的价格为100(1+x)(1+x)=100(1+x)2。
据此列出方程:100(1+x)2=121。
故选C。
3.下列说法中,错误的是【】A.不等式x<2的正整数解中有一个B.﹣2是不等式2x﹣1<0的一个解C.不等式﹣3x>9的解集是x>﹣3D.不等式x<10的整数解有无数个【答案】C。
【考点】不等式的解集。
【分析】解不等式求得B,C选项的不等式的解集,即可判定C错误,由不等式解的定义,判定B正确,然后由不等式整数解的知识,即可判定A与D正确。
故选C。
4.已知一元二次方程:x2﹣3x﹣1=0的两个根分别是x1、x2,则x12x2+x1x22的值为【】A.﹣3B.3C.﹣6D.6【答案】A。
【考点】一元二次方程根与系数的.关系,求代数式的值。
【分析】由一元二次方程:x2﹣3x﹣1=0的两个根分别是x1、x2,根据一元二次方程根与系数的关系得,x1+x2=3,x1x2=―1,∴x12x2+x1x22=x1x2(x1+x2)=(-1)3=-3。
故选A。
5.分式方程的解为【】A.3B.﹣3C.无解D.3或﹣3【答案】C。
人教版九年级数学上册单元测试题全套(含答案)
人教版九年级数学上册单元测试题全套(含答案)第21章 一元二次方程 测试题 (时间: 90分钟,满分:120分) (班级:_____ 姓名:_____ 得分:_____)一、选择题(每小题3分,共30分)1. 一元二次方程2x 2-3x -4=0的二次项系数是 ( ) A. 2 B. -3 C. 4 D. -42.把方程(x 55+(2x -1)2=0化为一元二次方程的一般形式是 ( )A .5x 2-4x -4=0B .x 2-5=0C .5x 2-2x +1=0D .5x 2-4x +6=03.方程x 2-2x-3=0经过配方法化为(x +a)2=b 的形式,正确的是 ( )A .()412=-xB .()412=+xC .()1612=-x D .()1612=+x4.方程()()121+=-+x x x 的解是 ( ) A .2B .3C .-1,2D .-1,35.下列方程中,没有实数根的方程是 ( ) A .212270x x -+=B .22320x x -+=C .223410x x +-=D .2230x x k --=(k 为任意实数)6.一个矩形的长比宽多2 cm ,其面积为2cm 8,则矩形的周长为 ( ) A .12 cm B .16 cm C .20 cm D .24 cm7.某药品经过两次降价,每瓶零售价由168元降为128元.已知两次降价的百分率相同,每次降价的百分率为x ,根据题意列方程得 ( ) A.168(1+x )2=128 B.168(1﹣x )2=128 C.168(1﹣2x )=128 D.168(1﹣x 2)=1288.一个两位数等于它的个位数的平方,且个位数比十位数大3,则这个两位数为 ( ) A .25B .36C .25或36D .-25或-369.从一块正方形的木板上锯掉2 m 宽的长方形木条,剩下的面积是48㎡,则原来这块木板的面积是 ( ) A .100㎡B .64㎡C .121㎡D .144㎡10.三角形两边的长分别是8和6,第三边的长是一元二次方程216600x x -+=的一个实数根,则该三角形的面积是 ( )A .24B .24或C .48D . 二、填空题(每小题4分,共32分)11.当k 时,方程2223kx x x -=-是关于x 的一元二次方程.12.若0a b c ++=且0a ≠,则关于x 的一元二次方程20ax bx c ++=必有一定根,它是 . 13.一元二次方程x(x-6)=0的两个实数根中较大的为 .14.某市某企业为节约用水,自建污水净化站.7月份净化污水3000吨,9月份增加到3630吨,则这两个月净化的污水量平均每月增长的百分率为 .15.若关于x 的一元二次方程2(3)0x k x k +++=的一个根是-2,则另一个根是______. 16.某校办工厂生产的某种产品,今年产量为200件,计划通过改革技术,使今后两年的产量都比前一年增长一个相同的百分数,使得三年的总产量达到1400件.若设这个百分数为x ,则可列方程____________________.17.方程x 2+px +q =0,甲同学因为看错了常数项,解得的根是6,-1;乙同学看错了一次项,解得的根是-2,-3,则原方程为 .18.如图,矩形ABCD 的周长是20 cm ,以AB ,AD 为边向外作正方形ABEF 和正方形ADGH ,若正方形ABEF 和ADGH 的面积之和为68 cm 2,那么矩形ABCD 的面积是_______cm 2.三、解答题(共58分)19.(每小题5分,共20分)选择适当的方法解下列方程: (1)28)32(72=-x ;(2);0982=-+x x (3)x x 52122=+;(4)()x x x -=-12)1(2.20.(8分)当m 为何值时,关于x 的一元二次方程02142=-+-m x x 有两个相等的实数根?此时这两个实数根是多少?21.(8分)已知a ,b 是方程0122=-+x x 的两个根,求代数式))(11(22b a ab ba --的值.DC22.(10分)如图,△ABC 中,∠B=90°,点P 从点A 开始沿AB 边向B 以1cm/s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2cm/s 的速度移动.如果点P ,Q 分别从点A ,B 同时出发,经几秒钟,使△PBQ 的面积等于8cm 2?23.(12分)商场某种商品平均每天可销售30件,每件盈利50元. 为了尽快减少库存,商场决定采取适当的降价措施. 经调查发现,每件商品每降价1元,商场平均每天可多售出 2件.设每件商品降价x 元. 据此规律,请回答:(1)商场日销售量增加 件,每件商品盈利 元(用含x 的代数式表示);(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元? 参考答案一、1.A 2.A 3.A 4.D 5.B 6.A 7.B 8.C 9.B 10.B 二、11.3k ≠- 12.1 13.6 14.10% 15.116.2200200(1)200(1)1400x x ++++= 17.x 2-5x +6=0 18.16三、19.(1)1x =25,2x =21;(2)1x =1,2x =-9; (3)1x =235+,2x =235-;(4)1x =1,2x =31.20. 解:由题意,得∆=(-4)2-4(m -21)=0,即16-4m +2=0,解得m =29.当m =29时,方程有两个相等的实数根x 1=x 2=2.21. 解:由题意,得.1,2-=-=+ab b a 所以原式=()()()ab b a a b a b ab aba b 422-+=-=-∙-=().8422=+- 22.解:解:设x 秒时,点P 在AB 上,点Q 在BC 上,且使△PBD 的面积为8 cm 2,由题意,得82)6(21=⋅-x x . 解得x 1=2, x 2=4.经检验均是原方程的解,且符合题意. 所以经过2秒或4秒时△PBQ 的面积为8 cm 2.解:(1)2x 50-x(2)由题意,得(50-x )(30+2x )=2100. 化简,得x2-35x+300=0. 解得x1=15,x2=20.因为该商场为了尽快减少库存,所以降的越多,越吸引顾客,故选x=20. 答:每件商品降价20元,商场日盈利可达2100元.第22章 二次函数 测试题 时间:100分钟 满分:120分钟一、选择题(每小题3分,共24分)1.抛物线y=2(x ﹣3)2+1的顶点坐标是( ) A .(3,1) B .(3,﹣1)C .(﹣3,1)D .(﹣3,﹣1)2.关于抛物线y=x 2﹣2x+1,下列说法错误的是( ) A .开口向上 B .与x 轴有两个重合的交点 C .对称轴是直线x=1 D .当x >1时,y 随x 的增大而减小 3.二次函数y=ax 2+bx+c ,自变量x 与函数y 的对应值如表:A .抛物线的开口向下B .当x >﹣3时,y 随x 的增大而增大C .二次函数的最小值是﹣2D .抛物线的对称轴是x=﹣ 4.抛物线y=2x 2,y=﹣2x 2,共有的性质是( )A .开口向下B .对称轴是y 轴C .都有最高点D .y 随x 的增大而增大5.已知点(x 1,y 1),(x 2,y 2)均在抛物线y=x 2﹣1上,下列说法中正确的是( ) A .若y 1=y 2,则x 1=x 2 B .若x 1=﹣x 2,则y 1=﹣y 2 C .若0<x 1<x 2,则y 1>y 2 D .若x 1<x 2<0,则y 1>y 26.在同一平面直角坐标系中,函数y=ax 2+bx 与y=bx+a 的图象可能是( )A .B .C .D .7.如图是二次函数y=ax 2+bx+c (a ≠0)图象的一部分,对称轴是直线x=﹣2.关于下列结论:①ab <0;②b 2﹣4ac >0;③9a﹣3b+c <0;④b﹣4a=0;⑤方程ax 2+bx=0的两个根为x 1=0, x 2=﹣4,其中正确的结论有( )A .①③④B .②④⑤C .①②⑤D .②③⑤8.如图所示,P 是菱形ABCD 的对角线AC 上一动点,过P 垂直于AC 的直线交菱形ABCD 的边于M 、N 两点,设AC=2,BD=1,AP=x ,则△AMN 的面积为y ,则y 关于x 的函数图象的大致形状是( ) A .B .C .D .二、填空题(每小题3分,共21分)9.已知A (0,3),B (2,3)是抛物线y=﹣x 2+bx+c 上两点,该抛物线的顶点坐标是 . 10.如果将抛物线y=x 2+2x ﹣1向上平移,使它经过点A (0,3),那么所得新抛物线的表达式是 . 11.已知点A (4,y 1),B (,y 2),C (﹣2,y 3)都在二次函数y=(x ﹣2)2﹣1的图象上,则y 1、y 2、y 3的大小关系是 .12.二次函数y=x 2﹣2x ﹣3的图象如图所示,若线段AB 在x 轴上,且AB 为2个单位长度,以AB为边作等边△ABC ,使点C 落在该函数y 轴右侧的图象上,则点C 的坐标为 .13.如图,在平面直角坐标系中,菱形OABC 的顶点A 在x 轴正半轴上,顶点C 的坐标为(4,3),D 是抛物线y=﹣x 2+6x 上一点,且在x 轴上方,则△BCD 面积的最大值为 .第7题 第8题14.如图,抛物线y=﹣x 2+2x+3与y 轴交于点C ,点D (0,1),点P 是抛物线上的动点.若△PCD 是以CD 为底的等腰三角形,则点P 的坐标为 .15.如图,一段抛物线:y=﹣x (x ﹣2)(0≤x ≤2)记为C 1,它与x 轴交于两点O ,A 1;将C 1绕A 1旋转180°得到C 2,交x 轴于A 2;将C 2绕A 2旋转180°得到C 3,交x 轴于A 3;…如此进行下去,直至得到C 6,若点P (11,m )在第6段抛物线C 6上,则m= .三、解答题(本大题8个小题,共75分)16.(8分)如图,已知抛物线y=x 2+bx+c 经过A (﹣1,0)、B (3,0)两点. (1)求抛物线的解析式和顶点坐标; (2)当0<x <3时,求y 的取值范围;(3)点P 为抛物线上一点,若S △PAB =10,求出此时点P 的坐标.17.(9分)如图,已知抛物线y=ax 2+bx+c 与x 轴的一个交点为A (3,0),与y 轴的交点为B (0,3),其顶点为C ,对称轴为x=1. (1)求抛物线的解析式;(2)已知点M 为y 轴上的一个动点,当△ABM 为等腰三角形时,求点M 的坐标.第14题 第15题18.(9分)如图,抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B.(1)求抛物线的解析式;(2)已知点D(m,m+1)在第一象限的抛物线上,求点D关于直线BC对称的点的坐标.19.(9分)如图,二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.(1)请直接写出D点的坐标.(2)求二次函数的解析式.(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.20.(9分)如图,在平面直角坐标系中,正方形OABC的边长为4,顶点A、C分别在x轴、y轴的正半轴,抛物线y=﹣x2+bx+c经过B、C两点,点D为抛物线的顶点,连接AC、BD、CD.(1)求此抛物线的解析式.(2)求此抛物线顶点D的坐标和四边形ABCD的面积.21.(10分)如图,在某场足球比赛中,球员甲从球门底部中心点O的正前方10m处起脚射门,足球沿抛物线飞向球门中心线;当足球飞离地面高度为3m时达到最高点,此时足球飞行的水平距离为6m.已知球门的横梁高OA为2.44m.(1)在如图所示的平面直角坐标系中,问此飞行足球能否进球门?(不计其它情况)(2)守门员乙站在距离球门2m处,他跳起时手的最大摸高为2.52m,他能阻止球员甲的此次射门吗?如果不能,他至少后退多远才能阻止球员甲的射门?22.(10分)某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元,为按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y与x满足下列关系式:y=.(1)李明第几天生产的粽子数量为420只?(2)如图,设第x天每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大,最大利润是多少元?(利润=出厂价﹣成本)(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m天的利润至少多48元,则第(m+1)天每只粽子至少应提价几元?23.(11分)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M 的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.24.(10分)如图,抛物线经过A(﹣1,0),B(5,0),C(0,)三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.25.(10分)如图,已知抛物线y=﹣x2﹣x+2与x轴交于A、B两点,与y轴交于点C(1)求点A,B,C的坐标;(2)点E是此抛物线上的点,点F是其对称轴上的点,求以A,B,E,F为顶点的平行四边形的面积;(3)此抛物线的对称轴上是否存在点M,使得△ACM是等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.答案一、选择题(每小题3分,共18分)1-8: A D D B D C B C二、填空题(每小题3分,共27分)9.(1,4) 10. y=x2+2x+3 11. y3>y1>y2 12.(1+,3)或(2,﹣3)13.15 14.(1+,2)或(1﹣,2) 15.﹣1三.解答题16.解:(1)把A(﹣1,0)、B(3,0)分别代入y=x2+bx+c中,得:,解得:,∴抛物线的解析式为y=x2﹣2x﹣3.∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点坐标为(1,﹣4).(2)由图可得当0<x<3时,﹣4≤y<0.(3)∵A(﹣1,0)、B(3,0),∴AB=4.设P(x,y),则S△PAB=AB•|y|=2|y|=10,∴|y|=5,∴y=±5.①当y=5时,x2﹣2x﹣3=5,解得:x1=﹣2,x2=4,此时P点坐标为(﹣2,5)或(4,5);②当y=﹣5时,x2﹣2x﹣3=﹣5,方程无解;综上所述,P点坐标为(﹣2,5)或(4,5).17.解:(1)由题意得:,解该方程组得:a=﹣1,b=2,c=3,∴抛物线的解析式为y=﹣x2+2x+3.(2)由题意得:OA=3,OB=3;由勾股定理得:AB2=32+32,∴AB=3.当△ABM为等腰三角形时,①若AB为底,∵OA=OB,∴此时点O即为所求的点M,故点M的坐标为M(0,0);②若AB为腰,以点B为圆心,以长为半径画弧,交y轴于两点,此时两点坐标为M(0,3﹣3)或M(0,3+3),以点A为圆心,以长为半径画弧,交y轴于点(0,﹣3);综上所述,当△ABM为等腰三角形时,点M的坐标分别为(0,0)、(0,3﹣3)、(0,3+3)、(0,﹣3).18.解:(1)∵抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,∴,解之得:a=﹣1,b=3,∴y=﹣x2+3x+4;(2)∵点D(m,m+1)在第一象限的抛物线上,∴把D的坐标代入(1)中的解析式得 m+1=﹣m2+3m+4,∴m=3或m=﹣1,∴m=3,∴D(3,4),∵y=﹣x2+3x+4=0,x=﹣1或x=4,∴B(4,0)∴OB=OC,∴△OBC是等腰直角三角形,∴∠CBA=45°设点D关于直线BC的对称点为点E∵C(0,4)∴CD∥AB,且CD=3∴∠ECB=∠DCB=45°∴E点在y轴上,且CE=CD=3∴OE=1 ∴E(0,1)即点D关于直线BC对称的点的坐标为(0,1);19.解:(1)∵二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,∴对称轴是x==﹣1.又点C(0,3),点C、D是二次函数图象上的一对对称点,∴D(﹣2,3);(2)设二次函数的解析式为y=ax2+bx+c(a≠0,a、b、c常数),根据题意得,解得,所以二次函数的解析式为y=﹣x2﹣2x+3;(3)一次函数值大于二次函数值的x的取值范围是x<﹣2或x>1.20.解:(1)由已知得:C(0,4),B(4,4),把B与C坐标代入y=﹣x2+bx+c得:,解得:b=2,c=4,则解析式为y=﹣x2+2x+4;(2)∵y=﹣x2+2x+4=﹣(x﹣2)2+6,∴抛物线顶点坐标为(2,6),则S四边形ABDC=S△ABC+S△BCD=×4×4+×4×2=8+4=12.21.解:(1)抛物线的顶点坐标是(4,3),设抛物线的解析式是:y=a(x﹣4)2+3,把(10,0)代入得36a+3=0,解得a=﹣,则抛物线是y=﹣(x﹣4)2+3,当x=0时,y=﹣×16+3=3﹣=<2.44米,故能射中球门;(2)当x=2时,y=﹣(2﹣4)2+3=>2.52,∴守门员乙不能阻止球员甲的此次射门,当y=2.52时,y=﹣(x﹣4)2+3=2.52,解得:x1=1.6,x2=6.4(舍去),∴2﹣1.6=0.4(m),答:他至少后退0.4m,才能阻止球员甲的射门.22.解:(1)设李明第n天生产的粽子数量为420只,由题意可知:30n+120=420,解得n=10.答:第10天生产的粽子数量为420只.(2)由图象得,当0≤x≤9时,p=4.1;当9≤x≤15时,设P=kx+b,把点(9,4.1),(15,4.7)代入得,,解得,∴p=0.1x+3.2,①0≤x≤5时,w=(6﹣4.1)×54x=102.6x,当x=5时,w最大=513(元);②5<x≤9时,w=(6﹣4.1)×(30x+120)=57x+228,∵x是整数,∴当x=9时,w最大=741(元);③9<x≤15时,w=(6﹣0.1x﹣3.2)×(30x+120)=﹣3x2+72x+336,∵a=﹣3<0,∴当x=﹣=12时,w最大=768(元);综上,当x=12时,w有最大值,最大值为768.(3)由(2)可知m=12,m+1=13,设第13天提价a元,由题意得,w13=(6+a﹣p)(30x+120)=510(a+1.5),∴510(a+1.5)﹣768≥48,解得a≥0.1.答:第13天每只粽子至少应提价0.1元.23.解:(1)依题意得:,解之得:,∴抛物线解析式为y=﹣x2﹣2x+3∵对称轴为x=﹣1,且抛物线经过A(1,0),∴把B(﹣3,0)、C(0,3)分别代入直线y=mx+n,得,解之得:,∴直线y=mx+n的解析式为y=x+3;(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.把x=﹣1代入直线y=x+3得,y=2,∴M(﹣1,2),即当点M到点A的距离与到点C的距离之和最小时M的坐标为(﹣1,2);(3)设P(﹣1,t),又∵B(﹣3,0),C(0,3),∴BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,①若点B为直角顶点,则BC2+PB2=PC2即:18+4+t2=t2﹣6t+10解之得:t=﹣2;②若点C为直角顶点,则BC2+PC2=PB2即:18+t2﹣6t+10=4+t2解之得:t=4,③若点P为直角顶点,则PB2+PC2=BC2即:4+t2+t2﹣6t+10=18解之得:t1=,t2=;综上所述P的坐标为(﹣1,﹣2)或(﹣1,4)或(﹣1,)或(﹣1,).24.解:(1)设抛物线的解析式为y=ax2+bx+c(a≠0),∵A(﹣1,0),B(5,0),C(0,)三点在抛物线上,∴,解得.∴抛物线的解析式为:y=x2﹣2x﹣;(2)∵抛物线的解析式为:y=x2﹣2x﹣,∴其对称轴为直线x=﹣=﹣=2,连接BC,如图1所示,∵B(5,0),C(0,﹣),∴设直线BC的解析式为y=kx+b(k≠0),∴,解得,∴直线BC的解析式为y=x﹣,当x=2时,y=1﹣=﹣,∴P(2,﹣);(3)存在.如图2所示,①当点N在x轴下方时,∵抛物线的对称轴为直线x=2,C(0,﹣),∴N1(4,﹣);②当点N在x轴上方时,如图,过点N2作N2D⊥x轴于点D,在△AN2D与△M2CO中,∴△AN2D≌△M2CO(ASA),∴N2D=OC=,即N2点的纵坐标为.∴x2﹣2x﹣=,解得x=2+或x=2﹣,∴N2(2+,),N3(2﹣,).综上所述,符合条件的点N的坐标为(4,﹣),(2+,)或(2﹣,).25.解:(1)令y=0得﹣x2﹣x+2=0,∴x2+2x﹣8=0,x=﹣4或2,∴点A坐标(2,0),点B坐标(﹣4,0),令x=0,得y=2,∴点C坐标(0,2).(2)由图象①AB为平行四边形的边时,∵AB=EF=6,对称轴x=﹣1,∴点E的横坐标为﹣7或5,∴点E坐标(﹣7,﹣)或(5,﹣),此时点F(﹣1,﹣),∴以A,B,E,F为顶点的平行四边形的面积=6×=.②当点E在抛物线顶点时,点E(﹣1,),设对称轴与x轴交点为M,令EM与FM相等,则四边形AEBF是菱形,此时以A,B,E,F为顶点的平行四边形的面积=×6×=.(3)如图所示,①当C为等腰三角形的顶角的顶点时,CM1=CA,CM2=CA,作M1N⊥OC于N,在RT △CM 1N 中,CN==,∴点M 1坐标(﹣1,2+),点M 2坐标(﹣1,2﹣).②当M 3为等腰三角形的顶角的顶点时,∵直线AC 解析式为y=﹣x+2, 线段AC 的垂直平分线为y=x , ∴点M 3坐标为(﹣1,﹣1). ③当点A 为等腰三角形的顶角的顶点的三角形不存在. 综上所述点M 坐标为(﹣1,﹣1)或(﹣1,2+)或(﹣1,2﹣).第23章 旋转一、选择题(每小题3分,共30分)1.下面的图形中,既是轴对称图形又是中心对称图形的是( )2.将左图所示的图案按顺时针方向旋转o90后可以得到的图案是( )3.如图,如果正方形ABCD 旋转后能与正方形CDEF 重合,那么图形所在的平面内可作旋转中心的点共有 ( )A.1 个 B.2 个 C.3 个 D.4个4.如图,将△ABC 绕着点C 按顺时针方向旋转o20,B 点落在B '位置,A 点落在A '位置,若AC ⊥B A '',则∠BAC 的度数是( )A.o50 B.o60 C.o70 D.o805.如图,△OAB 绕点O 逆时针旋转o80到△OCD 的位置,已知∠AOB =o45,则∠AOD 等于( ) A.o55 B.o45 C.o40 D.o356.如图,阴影部分组成的图案既是关于x 轴成轴对称的图形,又是关于坐标原点O 成中心对称的图形.若点A 的坐标是 (1, 3),则点M 和点N 的坐标分别为( ) A.)3,1(),3,1(---N M B.)3,1(),3,1(---N M C.)3,1(),3,1(--N MD.)3,1(),3,1(---N M7.直线3+=x y 上有一点P (3,2m ),则P 点关于原点的对称点P '为 ( ) A.P '(3,6) B.P '(-3,6) C.P '(-3,-6) D.P '(3,-6)8. 如图是一个中心对称图形,A 为对称中心,若∠C =o90, ∠B =o30,AC =1,则B B '的长为( )A.4 B.33 C.332 D.3349.如图,菱形ABCD 的对角线的长分别为2和5,P 是对角线AC 上一点,且PE ∥BC 交AB 于E ,PF ∥CD 交AD 于F ,则阴影部分的面积是( )A.4 B.3.5 C.3 D.2.510.如图,图案由三个叶片组成,绕点O 旋转o120后可以和自身重合,若每个叶片的面积为24cm ,∠AOB 为o120,则图中阴影部分的面积之和为. ( ) A.23cm B.24cm C.25cm D.26cm二、填空题(每小题4分,共32分)11.点P (2,3)绕着原点逆时针方向旋转o90与点P '重合,则P '的坐标为 . 12.已知a <0,则点P (2a -, a -+1)关于原点的对称点1P 在 象限.13.如图,将矩形ABCD 绕点A 顺时针旋转o90后,得到矩形D C B A ''',如果CD =2DA =2,那么C C '=_________.14.如图,△COD 是△AOB 绕点O 顺时针方向旋转o40后所得的图形,点C 恰好在AB 上,∠AOD =90°,则∠D 的度数是 度.15.如图,四边形ABCD 中,∠BAD =∠C =o90,AB =AD ,AE ⊥BC 于E ,若线段AE =5,则ABCD S 四边形= .16.将两块直角三角尺的直角顶点重合为如图的位置, 若∠AOD =o110,则∠BOC = 度.17.如图,小亮从A 点出发,沿直线前进10米后向左转o30,再沿直线前进10米,又向左转o30,……照这样走下去,他第一次回到出发地A 点时,一共走了 米.18.将直角边长为5cm 的等腰直角△ABC 绕点A 逆时针旋转o15后得到△C B A '',则图中阴影部分的面积是 2cm .三、解答题(共58分)19.(10分)如图,把△ABC 向右平移5个方格,再绕点B 顺时针方向旋转90°.(1)画出平移和旋转后的图形,并标明对应字母;(2)能否把两次变换合成一种变换,如果能,说出变换过程(可适当在图形中标记);如果不能,说明理由.20. (12分)画出△ABC 关于原点O 对称的△111C B A ,并求出点1A ,1B ,1C 的坐标.C BA21.(12分)如图所示,△ABP 是由△ACE 绕A 点旋转得到的,若∠BAP =o40,∠B =o30,∠PAC =o20,求旋转角及∠CAE 、∠E 、∠BAE 的度数.22.(12分)如图,P 是正三角形ABC 内的一点,且PA =6,PB =8,PC =10.若将△PAC 绕点A 逆时针旋转后,得到△AB P '. ⑴求点P 与点P '之间的距离; ⑵∠APB 的度数.23.(12分)如图1,在△ABC 和△EDC 中,AC =CE =CB =CD ,∠AC B =∠ECD =90,AB 与CE 交于F ,ED 与AB 、BC 分别交于M 、H .(1)求证: CF =CH ;(2)如图2,△ABC 不动,将△EDC 绕点C 旋转到∠BCE =45时,试判断四边形ACDM 是什么四边形?并证明你的结论.参考答案一、15.25 16.70 17.120 18.6325 三、19.解:(1)如图(2)能,将△ABC 绕CB 、B C ''''延长线的交点顺时针旋转90度.20.解:△ABC 关于原点O 对称的△111C B A 如图, 点的坐标分别是)2,3(1-A ,)1,2(1B ,)3,2(1--C .21.解: 旋转角∠BAC =∠PAC +∠BAP =o20+o40=o60, ∵∠BAP =o40. ∴∠CAE =40°,∵∠B =o30. ∴∠C =o30 . ∴∠E=110°. ∴∠BAE=100°.22.解 :(1)连接P P ',由题意可知P B '=PC =10,P A '=AP =6, ∠PAC =∠AB P ',而∠PAC +∠BAP =60°, ∴∠P PA '=60°. ∴△P AP '为等边三角形, ∴P P '=P A '=AP =6;C"B"A''C'B'A'CBA(2)利用勾股定理的逆定理可知:∵222P B BP P P '=+',∴△P BP '为直角三角形.∵∠P BP '=90°∴∠APB =90°+60°=150°.23.(1)证明:在△ACB 和△ECD 中∵∠ACB=∠ECD= 90,∴∠1+∠ECB=∠2+∠ECB, ∴∠1=∠2. 又∵AC=CE=CB=CD, ∴∠A=∠D= 45, ∴△ACB ≌△ECD,∴CF=CH (2) 答: 四边形ACDM 是菱形证明: ∵∠ACB=∠ECD= 90, ∠BCE=45 ∴∠1=45, ∠2=45 又∵∠E=∠B= 45, ∴∠1=∠E, ∠2=∠B ∴AC ∥MD, CD ∥AM , ∴ACDM 是平行四边形 又∵AC=CD, ∴ACDM 是菱形第24章 圆一、选择题(每小题4分,共24分)在每小题给出的四个选项中, 只有一项是符合题目要求的. 1. 已知⊙O 的半径是6cm,点O 到同一平面内直线l 的距离为5cm ,则直线l 与⊙O 的位置关系是( ) A .相交 B .相切 C .相离 D .无法判断2.如图,点A 、B 、C 在⊙O 上,∠ABC =50°,则∠AOC 的度数为( ) A .120° B .100° C .50° D .25°3.如图在△ABC 中,∠B =90°, ∠A =30°,AC =4cm ,将△ABC 绕顶点C 顺时针方向旋转至△A B C ''的位置,且A 、C 、B ′三点在同一条直线上,则点A 所经过的最短路线的长为( )A. B. 8cm C.163cm π D. 83cm π4.如图,ABCD 的顶点A 、B 、D 在⊙O 上,顶点C 在⊙O 的直径BE 上,∠ADC =54°,连接AE ,则∠AEB 的度数为( )A.126°B. 54°C. 30°D. 36°5.如图,已知⊙O 的半径为1,AB 与⊙O 相切于点A ,OB 与⊙O 交于点C ,CD ⊥OA ,垂足为D ,则sin ∠AOB 的值等于( )A .CDB .OAC .OD D .AB6.用半径为3cm ,圆心角是120°的扇形围成一个圆锥的侧面,则该圆锥的底面半径为( ) A. 2πcm B. 1cm C. πcm D. 1.5cm7. 如图,CD 是⊙O 的直径,弦AB ⊥CD 于点G ,直线EF 与⊙O 相切于点D ,则下列结论中不一定正确的是( )A. AG=BGB.AB//EFC.AD//BCD.∠ABC=∠ADC8. 若正方形的边长为6,则其外接圆半径与内切圆半径的大小分别为( ) A .6,.,3 C .6,3 D.,二、填空题(每小题4分,共24分)请把答案填写在题中横线上.9.一条弦把圆分成2:3两部分,那么这条弦所对的圆周角的度数为_________.(第7题图)(第5题图)B′A′CBA(第3题图)AO BC(第2题图)(第4题图)ABCDO(第13题图) (第14题图)10.已知圆锥母线长为5cm ,底面直径为4cm ,则侧面展开图的圆心角度数是_________.11.Rt △ABC 中,∠C =90°,AC =3cm ,BC =4cm ,以C 为圆心,r 为半径作圆,若圆C 与直线AB 相切,则r 的值为_________.12.钟表的轴心到分针针尖的长为5cm ,那么经过40分钟,分针针尖转过的弧长是_________________cm.13.如图,AB 是⊙O 的直径,C 、D 是圆上的两点(不与A 、B 重合),已知BC =2,tan ∠ADC =1,则AB =__________.14. 如图,以AD 为直径的半圆O 经过Rt △ABC 斜边AB 的两个端点,交直角边AC 于点E . B ,E 是半圆弧的三等分点,弧BE 的长为32,则图中阴影部分的面积为 . 三、 解答题(本题共5小题,共44分)15.(7分)如图所示,某窗户由矩形和弓形组成.已知弓形的跨度AB =3m ,弓形的高EF =1m.现计划安装玻璃,请帮工程师求出⌒A B 所在圆O 的半径.16. (7分)如图△ABC 中,∠B = 60°,⊙O 是 △ABC 的外接圆,过点A 作⊙O 的切线,交CO 的延长线于点P ,OP 交⊙O 于点D .(1)求证:AP =AC (2) 若AC =3,求PC 的长.17.(10分)如图,已知四边形ABCD内接于圆O,连接BD,∠BAD=105°,∠DBC=75°.(1)求证:BD=CD;(2)若圆O的半径为3,求BC的长.18.(10分)如图,AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,与AC的延长线交于点D,作AE⊥AC交DE于点E.(1)求证:∠BAD=∠E;(2)若⊙O的半径为5,AC=8,求BE的长.19.(10分)如图,BC是⊙O的直径,A是⊙O上一点,过点C作⊙O的切线,交BA的延长线于点D,取CD的中点E,AE的延长线与BC的延长线交于点P.(1)求证:AP是⊙O的切线;(2)若OC=CP,AB=6,求CD的长.(第19题图)参考答案一、选择题:1.A.2.B.3.D4.D5.A6.B7.C8.B二、填空题:9.72°或108° 10. 144° 11.2.4 12.13.14. 32233π-. 三、解答题:15. 解:设⊙O 的半径为r ,则OF =r -1. 由垂径定理,得BF =12AB =1.5,OF ⊥AB , 由OF 2 +BF 2= OB 2,得(r -1)2+1.52 = r 2, 解得r =138.答:⌒A B 所在圆O 的半径为138.16.(1)连接OA, ∵60B ∠=︒,AP 为切线,∴ OA ⊥ AP, ∠AOC=120°, 又∵OA=OC, ∴∠ ACP=30°∠ P= 30°, ∴ AP=AC (2)先求OC=3,再证明△ OAC∽△ APC ,PC AC =APOC ,得PC=33. 17. (1)证明:∵四边形ABCD 内接于圆O ,∴∠DCB +∠BAD =180°, ∵∠BAD =105°,∴∠DCB =180°-105°=75°. ∵∠DBC =75°,∴∠DCB =∠DBC =75°.∴BD =CD . (2)解:∵∠DCB =∠DBC =75°,∴∠BDC =30°. 由圆周角定理,得,的度数为:60°,故BC =180n R π=603180π⨯=π. 答:BC 的长为π.18.证明:(1)∵⊙O 与DE 相切于点B ,AB 为⊙O 直径, ∴∠ABE =90°. ∴∠BAE +∠E =90°.又∵∠DAE =90°, ∴∠BAD +∠BAE =90°. ∴∠BAD =∠E . (2)解;连接BC .'∵AB 为⊙O 直径, ∴∠ACB =90°. ∵AC =8,AB =2×5=10,∴BC 22AB AC -又∵∠BCA =∠ABE =90°,∠BAD =∠E , ∴△ABC ∽△EAB . ∴AC EB =BC AB . ∴8EB =610 ∴BE =403.203π19.(1)证明:连接AO ,AC .∵BC 是⊙O 的直径,∴∠BAC =90°∴∠CAD =90° ∵点E 是CD 的中点,∴CE= CE= AE 在等腰△EAC 中,∠ECA = ∠EAC ∵OA =OC ∴∠OAC = ∠OCA ∵CD 是⊙O 的切线,∴CD ⊥OC ∴∠ECA + ∠OAC = 90° ∴∠EAC + ∠OAC = 90° ∴OA ⊥AP ,∴AP 是⊙O 的切线 (2)解:由(1)知OA ⊥AP在Rt △OAP 中,∵∠OAP = 90°, OC = CP = OA 即OP = 2OA , ∴,∴,∴ ∴又∵在Rt △DAC 中,∠CAD = 90°, ∠ACD = 90°-∠ACO = 30° ∴第25章 概率初步一、选择题(共10小题,每小题3分,满分30分) 1.下列说法中正确的是( )A .“任意画出一个等边三角形,它是轴对称图形”是随机事件B .“任意画出一个平行四边形,它是中心对称图形”是必然事件C .“概率为0.0001的事件”是不可能事件D .任意掷一枚质地均匀的硬币10次,正面向上的一定是5次2.从分别写有数字:﹣4,﹣3,﹣2,﹣1,0,1,2,3,4的九张一样的卡片中,任意抽取一张卡片,则所抽卡片上数字的绝对值<2的概率是( ) A . B .C .D .3.下列说法中,正确的是( ) A .不可能事件发生的概率为01sin 2OA P OP ∠==30P ∠=60AOP ∠=23tan 60ABAC ==234cos cos30AC CD ACD ===∠B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次4.若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数,如796就是一个“中高数”.若十位上数字为7,则从3、4、5、6、8、9中任选两数,与7组成“中高数”的概率是()A.B.C.D.5.有一个正方体,6个面上分别标有1~6这6个整数,投掷这个正方体一次,则出现向上一面的数字为偶数的概率是()A.B.C.D.6.三张外观相同的卡片分别标有数字1、2、3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是()A.B.C.D.7.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是()A.B.C.D.8.甲,乙,丙三人进行乒乓球比赛,规则是:两人比赛,另一人当裁判,输者将在下一局中担任裁判,每一局比赛没有平局.已知甲,乙各比赛了4局,丙当了3次裁判.问第2局的输者是()A.甲B.乙C.丙D.不能确定9.某校举行春季运动会,需要在初一年级选取一名志愿者.初一(1)班、初一(2)班、初一(3)班各有2名同学报名参加.现从这6名同学中随机选取一名志愿者,则被选中的这名同学恰好是初一(3)班同学的概率是()A.B.C.D.10.做重复实验:抛掷同一枚啤酒瓶盖1000次.经过统计得“凸面向上”的频率约为0.44,则可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为()A.0.22 B.0.44 C.0.50 D.0.56二、填空题11.不透明袋子中装有9个球,其中有2个红球、3个绿球和4个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.12.一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为.13.如图,A是正方体小木块(质地均匀)的一顶点,将木块随机投掷在水平桌面上,则A与桌面接触的概率是.14.有五张分别印有圆、等腰三角形、矩形、菱形、正方形图案的卡片(卡片中除图案不同外,其余均相同),现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到有中心对称图案的卡片的概率是.15.小芳掷一枚质地均匀的硬币10次,有7次正面向上,当她掷第11次时,正面向上的概率为.16.小球在如图所示的地板上自由滚动,并随机停留在某块正方形的地砖上,则它停在白色地砖上的概率是.17.如图,在两个同心圆中,三条直径把大圆分成六等份,若在这个圆面上均匀地撒一把豆子,则豆子落在阴影部分的概率是.18.有9张卡片,分别写有1~9这九个数字,将它们背面朝上洗匀后,任意抽取一张,记卡片上的数字为a,则使关于x的不等式组有解的概率为.三、解答题(共46分)19.下列问题哪些是必然事件?哪些是不可能事件?哪些是随机事件?(1)太阳从西边落山;(2)某人的体温是100℃;(3)a2+b2=﹣1(其中a,b都是实数);(4)水往低处流;(5)三个人性别各不相同;(6)一元二次方程x2+2x+3=0无实数解;(7)经过有信号灯的十字路口,遇见红灯.20.如图,在方格纸中,△ABC的三个顶点及D,E,F,G,H五个点分别位于小正方形的顶点上.(1)现以D,E,F,G,H中的三个点为顶点画三角形,在所画的三角形中与△ABC不全等但面积相等的三角形是(只需要填一个三角形)(2)先从D,E两个点中任意取一个点,再从F,G,H三个点中任意取两个不同的点,以所取得这三个点为顶点画三角形,求所画三角形与△ABC面积相等的概率(用画树状图或列表格求解).21.某人的钱包内有10元、20元和50元的纸币各1张,从中随机取出2张纸币.(1)求取出纸币的总额是30元的概率;(2)求取出纸币的总额可购买一件51元的商品的概率.22.有形状、大小和质地都相同的四张卡片,正面分别写有A、B、C、D和一个等式,将这四张卡片背面向上洗匀,从中随机抽取一张(不放回),接着再随机抽取一张.(1)用画树状图或列表的方法表示抽取两张卡片可能出现的所有情况(结果用A、B、C、D表示);(2)小明和小强按下面规则做游戏:抽取的两张卡片上若等式都不成立,则小明胜,若至少有一个等式成立,则小强胜.你认为这个游戏公平吗?若公平,请说明理由;若不公平,则这个规则对谁有利,为什么?。
北师大版九年级数学上名校课堂单元测试(三)(含答案)
单元测试(三) 概率的进一步认识(时间:45分钟 满分:100分)一、选择题(每小题3分,共30分)1.将一枚质地均匀的硬币抛掷两次,则两次都是正面向上的概率为( ) A.12B.13C.23D.142.(新疆中考)在一个口袋中有4个完全相同的小球,把它们分别标号为①,②,③,④.随机地摸出一个小球,记录后放回,再随机摸出一个小球,则两次摸出的小球的标号相同的概率是( ) A.116B.316C.14D.5163.(玉林中考)一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( ) A.12B.14C.16D.1124.(南通中考)在一个不透明的盒子中装有a 个除颜色外完全相同的球,这a 个球中只有3个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子,通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a 的值大约为( ) A .12 B .15C .18D .215.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色.那么可配成紫色的概率是( ) A.14B.34C.13D.126.(台湾中考)有一箱子装有3张分别标示为4,5,6的号码牌,已知小武以每次取一张且取后不放回的方式,先后取出2张牌,组成一个两位数,取出第1张牌的号码为十位数,第2张牌的号码为个位数,若先后取出2张牌组成两位数的每一种结果发生的机会都相同,则组成的两位数为6的倍数的概率为( ) A.16B.14C.13D.127.(临沂中考)从1,2,3,4中任取两个不同的数,其乘积大于4的概率是( ) A.16B.13C.12D.238.如图,直线a ∥b ,直线c 与直线a 、b 都相交,从所标识的∠1、∠2、∠3、∠4、∠5这五个角中任意选取两个角,则所选取的两个角互为补角的概率是( ) A.35B.25C.15D.239.某口袋中有20个球,其中白球x 个,绿球2x 个,其余为黑球.甲从袋中任意摸出一个球,若为绿球则甲获胜,甲摸出的球放回袋中,乙从袋中摸出一个球,若为黑球则乙获胜.则当x =________时,游戏对甲、乙双方公平( ) A .3 B .4C .5D .610.(大庆中考)如图,一个质地均匀的正四面体的四个面上依次标有数字-2,0,1,2,连续抛掷两次,朝下一面的数字分别是a ,b ,将其作为M 点的横、纵坐标,则点M(a ,b)落在以A(-2,0),B(2,0),C(0,2)为顶点的三角形内(包含边界)的概率是( )A.38B.716C.12D.916二、填空题(每小题4分,共20分)11.学校要从小明、小红与小华三人中随机选取两人作为升旗手,则小明和小红同时入选的概率是____.12.(扬州中考)色盲是伴X 染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如下表:根据上表,估计在男性中,男性患色盲的概率为________(结果精确到0.01).13.(襄阳中考)从长度分别为2,4,6,7的四条线段中随机取三条,能构成三角形的概率是________.14.(凉山中考)“服务社会,提升自我”凉山州某学校积极开展志愿者服务活动,来自九年级的5名同学(三男两女)成立了“交通秩序维护”小分队.若从该小分队任选两名同学进行交通秩序维护,则恰是一男一女的概率是________.15.如图,小明和小丁做游戏,分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分,当所转到的数字之积为偶数时,小丁得1分,这个游戏公平吗?________. 三、解答题(共50分)16.(8分)一枚棋子放在边长为1个单位长度的正六边形ABCDEF的顶点A处,通过摸球来确定该棋子的走法,其规则是:在一只不透明的袋子中,装有3个标号分别为1、2、3的相同小球,搅匀后从中任意摸出1个,记下标号后放回袋中并搅匀,再从中任意摸出1个,摸出的两个小球标号之和是几,棋子就沿边按顺时针方向走几个单位长度.棋子走到哪一点的可能性最大?求出棋子走到该点的概率.(用列表或画树状图的方法求解)17.(10分)(陕西中考)某中学要在全校学生中举办“中国梦·我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局.若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子:六个面上分别刻有1、2、3、4、5、6个小圆点的小正方体)18.(10分)一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有3、4、5、x,甲、乙两人每次同时从袋中各随机摸出1个小球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复试验,试验数据如表:解答下列问题:(1)如果试验继续进行下去,根据上表数据,出现“和为8”的频率将稳定在它的概率附近,估计出现“和为8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x 的值可以取7吗?请用列表法或画树状图说明理由;如果x 的值不可以取7,请写出一个符合要求的x 值.19.(10分)(曲靖中考)为决定谁获得仅有的一张电影票,甲和乙设计了如下游戏:在三张完全相同的卡片上,分别写上字母A ,B ,B ,背面朝上,每次活动洗均匀. 甲说:我随机抽取一张,若抽到字母B ,电影票归我;乙说:我随机抽取一张后放回,再随机抽取一张,若两次抽取的字母相同电影票归我. (1)求甲获得电影票的概率;(2)求乙获得电影票的概率;(3)此游戏对谁有利?20.(12分)“五一”假期,黔西南州某公司组织部分员工分别到甲、乙、丙、丁四地考察,公司按定额购买了前往各地的车票,如图所示是用来制作完整的车票种类和相应数量的条形统计图,根据统计图回答下列问题:(1)若去丁地的车票占全部车票的10%,请求出去丁地的车票数量,并补全统计图(如图所示);(2)若公司采用随机抽取的方式发车票,小胡先从所有的车票中随机抽取一张(所有车票的形状、大小、质地完全相同、均匀),则员工小胡抽到去甲地的车票的概率是多少?(3)若有一张车票,小王和小李都想去,决定采取摸球的方式确定,具体规则:“每人从不透明袋子中摸出分别标有1、2、3、4的四个球中摸出一球(球除数字不同外完全相同),并放回让另一人摸,若小王摸得的数字比小李的小,车票给小王,否则给小李.”试用列表法或画树状图的方法分析这个规则对双方是否公平?参考答案1.D 2.C 3.C 4.B 5.D 6.A 7.C 8.A 9.B 10.B 11.13 12.0.07 13.12 14.3515.公平 16.用列表法表示为由表格可知,两数和为4出现的次数最多,棋子走到E 点的可能性最大,P(走到E 点)=39=13. 17.(1)P =36=12.(2)游戏公平.理由如下:由上表可知,共有36种等可能的结果,其中小亮、小丽获胜各有9种结果.∴P(小亮胜)=936=14,P(小丽胜)=936=14.∴该游戏是公平的. 18.(1)0.33 (2)不可以取7.∵当x =7时,列表如下(也可以画树状图):∴两个小球上数字之和为9的概率是212=16≠13,当x =5时,两个小球上数字之和为9的概率是13.(答案不唯一,也可以是4、6).19.(1)P(甲获得电影票)=23.(2)可能出现的结果如下(列表法):共有9种等可能结果,其中两次抽取字母相同的结果有5种.∴P(乙获得电影票)=59.(3)∵23>59,∴此游戏对甲更有利. 20.(1)根据题意得:(20+40+30)÷(1-10%)=100(张),则去丁地车票数为100-(20+40+30)=10(张),补全图形,如图所示.(2)总票数为100张,去甲地票数为20张,则员工小胡抽到去甲地的车票的概率为20100=15.(3)列表如下:所有等可能的情况数有16种,其中小王掷得数字比小李掷得的数字小的有6种:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).∴P(小王掷得的数字比小李小)=616=38,P(小王掷得的数字不小于小李)=1-38=58.∴这个规则不公平.。
九年级数学《名校课堂》同步测试题(2)
九年级数学《一元二次方程的解法》同步练习(4)姓名: 得分:2.2.2 公式法基础题知识点 用公式法解一元二次方程1.如果一元二次方程ax 2+bx +c =0(a ≠0)能用公式法求解,那么必须满足的条件是( )A .b 2-4ac ≥0B .b 2-4ac ≤0C .b 2-4ac >0D .b 2-4ac <02.用公式法解-x 2+3x =1时,先求出a 、b 、c 的值,则a 、b 、c 依次为( )A .-1,3,-1B .1,-3,-1C .-1,-3,-1D .-1,3,1 3.用公式法解方程(x +2)2=6(x +2)-4时,b 2-4ac 的值为( ) A .52 B .32 C .20 D .-12 4.用公式法解方程3x 2+4=12x ,下列代入公式正确的是( )A .x =12±122-3×42B .x =-12±122×3×42×3C .x =12±122+3×42D .x =-(-12)±(-12)2-4×3×42×35.方程x 2-x -1=0的一个根是( )A .1- 5B.1-52C .-1+ 5D.-1+526.若代数式4x 2-12x +5的值是-4,则x 的值为( )A.32B .-32 C.32或-32D .不能确定7.用公式法解下列方程:(1)x 2-3x -1=0; (2)3x 2-4x -2=0; (3)x 2+25=-10x ;中档题9.方程(x +1)(x -3)=5的解是( )A .x 1=1,x 2=-3B .x 1=4,x 2=-2C .x 1=-1,x 2=3D .x 1=-4,x 2=2 10.(荆州中考)已知α是一元二次方程x 2-x -1=0较大的根,则下面对α的估计正确的是( )A .0<α<1B .1<α<1.5C .1.5<α<2D .2<α<3 11.方程2x 2-6x +3=0较小的根为p ,方程2x 2-2x -1=0较大的根为q ,则p +q 等于( ) A .3 B .2 C .1 D .2 312.已知关于x 的方程x 2+3mx +m 2=0的一个根是x =1,那么m =________. 13.对于任意不相等的两个数a ,b ,定义一种运算※如下:a ※b =a 2-2ab ,若x ※1=1,则x =________. 14.用公式法解下列方程:(1)x 2+3x +1=0; (2)(x -1)(1+2x)=2; (3)x 2-2x +1=-32x.2.2.3 因式分解法第1课时 因式分解法解一元二次方程基础题知识点1 用因式分解法解一元二次方程1.(河南中考)方程(x -2)(x +3)=0的解是( )A .x =2B .x =-3C .x 1=-2,x 2=3D .x 1=2,x 2=-32.小华在解一元二次方程x 2-x =0时,只得出一个根x =1,则被漏掉的一个根是( ) A .x =4 B .x =3 C .x =2 D .x =03.(武侯区一模)方程(x -1)(x +2)=2(x +2)的根是( )A .x 1=1,x 2=-2B .x 1=3,x 2=-2C .x 1=0,x 2=-2D .x 1=x 2=14.用因式分解法解方程,下列方法中正确的是( )A .(2x -2)(3x -4)=0化为2x -2=0或3x -4=0B .(x +3)(x -1)=1化为x +3=0或x -1=1C .(x -2)(x -3)=2×3化为x -2=2或x -3=3D .x(x +2)=0化为x +2=05.利用因式分解法解方程:(1)2x2-3x=0;(2)4x2-12x+9=0;(3)x2+x=0;知识点2能化成(x-d)(x-h)=0的形式的一元二次方程x2+bx+c=0的解法6.经计算整式x+1与x-4的积为x2-3x-4,则一元二次方程x2-3x-4=0的根是( ) A.x1=-1,x2=-4 B.x1=-1,x2=4 C.x1=1,x2=4 D.x1=1,x2=-4 7.(云南中考)一元二次方程x2-x-2=0的解是( )A.x1=1,x2=2 B.x1=1,x2=-2 C.x1=-1,x2=-2 D.x1=-1,x2=2 8.已知关于x的方程x2+px+q=0的两根为x1=-4,x2=3,则二次三项式x2+px+q可分解为( ) A.(x+3)(x+4) B.(x-3)(x+4) C.(x+3)(x-4) D.(x-3)(x-4)9.(岳阳中考)方程x2-3x+2=0的根是________.10.用因式分解法解方程:(1)x2-2x-8=0;(2)x2-7x+10=0. (4)4x2-121=0.中档题11.方程3x(x+1)=3x+3的解为( )A.x=1 B.x=-1 C.x1=0,x2=-1 D.x1=1,x2=-112.若a,b为方程x2-4(x+1)=1的两根,且a>b,则ab=( )A.-5 B.-4 C.1 D.313.(宁津县模拟)现定义运算“★”,对于任意实数a、b,都有a★b=a2-3a+b,如:4★5=42-3×4+5,若x★2=6,则实数x的值是( )A.-4或-1 B.4或-1 C.4或-2 D.-4或2 14.若用因式分解法解一元二次方程4(x+2)2-9(2x-1)2=0,首先将左端的式子用________公式分解为________________________________,从而求得方程的根为x1=________,x2=________.15.(新余模拟)分式x2-2x-3x+1值为0,则x=______.16.一小球竖直向上从地面弹出,它在空中的高度h(m)与时间t(s)近似地满足关系式:h=15t-5t2,则小球落回地面时t=________s.17.用因式分解法解下列方程:(1)5(2x-1)=(1-2x)(x+3);(2)3x(2x+1)=4x+2;(3)x2-10x+9=0.第2课时选择合适的方法解一元二次方程基础题知识点选择合适的方法解一元二次方程1.方程x2-4=0的解是( )A.x=2 B.x=-2 C.x=±2 D.x=±42.解一元二次方程2x2+5x+1=0最合适的方法是( )A.直接开平方法B.因式分解法C.配方法D.公式法3.把方程x2-8x+3=0,将其化成(x+m)2=n的形式,则m,n的值是( )A.4,13 B.-4,19 C.-4,13 D.4,194.下列方程中,适合用因式分解法来解的方程是( )A.(2x-3)2-9(x+1)2=0 B.x2-2=x(2-x) C.x2-4x-4=0 D.4x2-1=4x 5.关于x的方程x(x+6)=16的解为( )A.x1=2,x2=2 B.x1=8,x2=-4 C.x1=-8,x2=2 D.x1=8,x2=-2 6.解下列方程x2-4x=1,2x2-50=0,3(4x-1)2=1-4x,3x2-5x-6=0,较简便的方法依次是( ) A.因式分解法、公式法、配方法、公式法B.配方法、平方根的意义求解、因式分解法、公式法C.平方根的意义求解、配方法、公式法、因式分解法D.公式法、平方根的意义求解、因式分解法、配方法7.一元二次方程x2-4x+2=0的根是________________________.8.用如下3种方法解方程x 2-x -6=0,完成如下解题过程.(1)配方法.解:配方,得________________________. 即(x -12)2=________.开平方,得________________. ∴x 1=________,x 2=________.(2)公式法. 解:a =________,b =________,c =________. b 2-4ac =________________=________.∴x =-b±b 2-4ac 2a =________________=________.∴x 1=________,x 2=________.9.选用合适方法解下列方程:(1)9x 2-25=0; (2)5x 2-2x =0; (3)(x +1)2-6=0;(4)(x -3)2+2x(x -3)=0; (5)x 2+2x -3=0.中档题10.方程x 2+(3-2)x -6=0的根是( )A .x 1=-1,x 2=6B .x 1=-2,x 2= 3C .x 1=2,x 2=- 3D .x 1=1,x 2=- 611.(大庆模拟)对于方程(x -1)(x -2)=x -2,下面给出的说法不正确的是( )A .与方程x 2+4=4x 的解相同B .两边都除以x -2,得x -1=1,可以解得x =2C .方程有两个相等的实数根D .移项、分解因式,得(x -2)2=0,解得x 1=x 2=2 12.完成下面的解题过程:(1)用平方根的意义解方程:2(x -3)2-6=解:原方程化成____________. 开平方,得____________. ∴x 1=________,x 2=________. (2)用配方法解方程:3x 2-x -4=0; 解:二次项系数化为1,得_____________配方,得________________________. 即(x -16)2=________.开平方,得________________. ∴x 1=________,x 2=________.13.用适当的方法解下列方程:(1)2x 2-3x -2=0. (2)x(x -2)+x -2=0;(3)x 2-8x -3=0; (4)(x +1)(x -1)+2(x +3)=8;小专题(四)一元二次方程的解法1.根据平方根的意义解下列方程:(1)(2x+3)2-49=0;(2)64(1+2x)2=100;(3)(3x-2)2=9(2x+1)2.2.用配方法解下列方程:(1)2x2-x-1=0;(2)5x2-8x+2=0;(3)6x2-x-12=0.3.用公式法解下列方程:(1)3x2-6x+1=0;(2)3x(x-3)=2(x-1)(x+1).4.用因式分解法解下列方程:(1)3(x-5)2=x(x-5);(2)x2-x=2(2+x);(3)(x-2)2=(2x+3)2. 5.选用合适的方法解下列方程:(1)(x-1)2-9=0;(2)y2-4y-5=0;(3)-3x+12x2=-2;(4)(x+1)2=3(x+1);(5)2(x-3)2=8;(6)2x2-5x-3=0;6.选用合适的方法解下列方程:(1)(y-2)2+(2y+1)2=25;(2)4x2-6x-3=0;(3)4x2-x-1=3x-2;(4)(x-2)(x-3)=2;。
人教版九年级数学上册单元测试题全套(含答案)
人教版九年级数学上册单元测试题全套(含答案)第21章 一元二次方程 测试题 (时间: 90分钟,满分:120分) (班级:_____ 姓名:_____ 得分:_____)一、选择题(每小题3分,共30分)1. 一元二次方程2x 2-3x -4=0的二次项系数是 ( ) A. 2 B. -3 C. 4 D. -42.把方程(x 55+(2x -1)2=0化为一元二次方程的一般形式是 ( )A .5x 2-4x -4=0B .x 2-5=0C .5x 2-2x +1=0D .5x 2-4x +6=03.方程x 2-2x-3=0经过配方法化为(x +a)2=b 的形式,正确的是 ( )A .()412=-xB .()412=+xC .()1612=-x D .()1612=+x4.方程()()121+=-+x x x 的解是 ( ) A .2B .3C .-1,2D .-1,35.下列方程中,没有实数根的方程是 ( ) A .212270x x -+=B .22320x x -+=C .223410x x +-=D .2230x x k --=(k 为任意实数)6.一个矩形的长比宽多2 cm ,其面积为2cm 8,则矩形的周长为 ( ) A .12 cm B .16 cm C .20 cm D .24 cm7.某药品经过两次降价,每瓶零售价由168元降为128元.已知两次降价的百分率相同,每次降价的百分率为x ,根据题意列方程得 ( ) A.168(1+x )2=128 B.168(1﹣x )2=128 C.168(1﹣2x )=128 D.168(1﹣x 2)=1288.一个两位数等于它的个位数的平方,且个位数比十位数大3,则这个两位数为 ( ) A .25B .36C .25或36D .-25或-369.从一块正方形的木板上锯掉2 m 宽的长方形木条,剩下的面积是48㎡,则原来这块木板的面积是 ( ) A .100㎡B .64㎡C .121㎡D .144㎡10.三角形两边的长分别是8和6,第三边的长是一元二次方程216600x x -+=的一个实数根,则该三角形的面积是 ( ) A .24 B .24或85 C .48 D .85 二、填空题(每小题4分,共32分)11.当k 时,方程2223kx x x -=-是关于x 的一元二次方程.12.若0a b c ++=且0a ≠,则关于x 的一元二次方程20ax bx c ++=必有一定根,它是 . 13.一元二次方程x(x-6)=0的两个实数根中较大的为 .14.某市某企业为节约用水,自建污水净化站.7月份净化污水3000吨,9月份增加到3630吨,则这两个月净化的污水量平均每月增长的百分率为 .15.若关于x 的一元二次方程2(3)0x k x k +++=的一个根是-2,则另一个根是______. 16.某校办工厂生产的某种产品,今年产量为200件,计划通过改革技术,使今后两年的产量都比前一年增长一个相同的百分数,使得三年的总产量达到1400件.若设这个百分数为x ,则可列方程____________________.17.方程x 2+px +q =0,甲同学因为看错了常数项,解得的根是6,-1;乙同学看错了一次项,解得的根是-2,-3,则原方程为 .18.如图,矩形ABCD 的周长是20 cm ,以AB ,AD 为边向外作正方形ABEF 和正方形ADGH ,若正方形ABEF 和ADGH 的面积之和为68 cm 2,那么矩形ABCD 的面积是_______cm 2.三、解答题(共58分)19.(每小题5分,共20分)选择适当的方法解下列方程: (1)28)32(72=-x ;(2);0982=-+x x (3)x x 52122=+;(4)()x x x -=-12)1(2.20.(8分)当m 为何值时,关于x 的一元二次方程02142=-+-m x x 有两个相等的实数根?此时这两个实数根是多少?21.(8分)已知a ,b 是方程0122=-+x x 的两个根,求代数式))(11(22b a ab ba --的值.22.(10分)如图,△ABC 中,∠B=90°,点P 从点A 开始沿AB 边向B 以1cm/s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2cm/s 的速度移动.如果点P ,Q 分别从点A ,B 同时出发,经几秒钟,使△PBQ 的面积等于8cm 2?23.(12分)商场某种商品平均每天可销售30件,每件盈利50元. 为了尽快减少库存,商场决定采取适当的降价措施. 经调查发现,每件商品每降价1元,商场平均每天可多售出 2件.设每件商品降价x 元. 据此规律,请回答:(1)商场日销售量增加 件,每件商品盈利 元(用含x 的代数式表示);(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元? 参考答案一、1.A 2.A 3.A 4.D 5.B 6.A 7.B 8.C 9.B 10.B 二、11.3k ≠- 12.1 13.6 14.10% 15.116.2200200(1)200(1)1400x x ++++= 17.x 2-5x +6=0 18.16三、19.(1)1x =25,2x =21;(2)1x =1,2x =-9; (3)1x =235+,2x =235-;(4)1x =1,2x =31.20. 解:由题意,得∆=(-4)2-4(m -21)=0,即16-4m +2=0,解得m =29.当m =29时,方程有两个相等的实数根x 1=x 2=2.21. 解:由题意,得.1,2-=-=+ab b a 所以原式=()()()ab b a a b a b ab aba b 422-+=-=-∙-=().8422=+- 22.解:解:设x 秒时,点P 在AB 上,点Q 在BC 上,且使△PBD 的面积为8 cm 2,由题意,得82)6(21=⋅-x x . 解得x 1=2, x 2=4.经检验均是原方程的解,且符合题意. 所以经过2秒或4秒时△PBQ 的面积为8 cm 2.解:(1)2x 50-x(2)由题意,得(50-x )(30+2x )=2100. 化简,得x2-35x+300=0. 解得x1=15,x2=20.因为该商场为了尽快减少库存,所以降的越多,越吸引顾客,故选x=20. 答:每件商品降价20元,商场日盈利可达2100元.第22章 二次函数 测试题 时间:100分钟 满分:120分钟一、选择题(每小题3分,共24分)1.抛物线y=2(x ﹣3)2+1的顶点坐标是( ) A .(3,1) B .(3,﹣1)C .(﹣3,1)D .(﹣3,﹣1)2.关于抛物线y=x 2﹣2x+1,下列说法错误的是( ) A .开口向上 B .与x 轴有两个重合的交点 C .对称轴是直线x=1 D .当x >1时,y 随x 的增大而减小 3.二次函数y=ax 2+bx+c ,自变量x 与函数y 的对应值如表:A .抛物线的开口向下B .当x >﹣3时,y 随x 的增大而增大C .二次函数的最小值是﹣2D .抛物线的对称轴是x=﹣ 4.抛物线y=2x 2,y=﹣2x 2,共有的性质是( )A .开口向下B .对称轴是y 轴C .都有最高点D .y 随x 的增大而增大5.已知点(x 1,y 1),(x 2,y 2)均在抛物线y=x 2﹣1上,下列说法中正确的是( ) A .若y 1=y 2,则x 1=x 2 B .若x 1=﹣x 2,则y 1=﹣y 2 C .若0<x 1<x 2,则y 1>y 2 D .若x 1<x 2<0,则y 1>y 26.在同一平面直角坐标系中,函数y=ax 2+bx 与y=bx+a 的图象可能是( )A .B .C .D .7.如图是二次函数y=ax 2+bx+c (a ≠0)图象的一部分,对称轴是直线x=﹣2.关于下列结论:①ab <0;②b 2﹣4ac >0;③9a﹣3b+c <0;④b﹣4a=0;⑤方程ax 2+bx=0的两个根为x 1=0, x 2=﹣4,其中正确的结论有( )A .①③④B .②④⑤C .①②⑤D .②③⑤8.如图所示,P 是菱形ABCD 的对角线AC 上一动点,过P 垂直于AC 的直线交菱形ABCD 的边于M 、N 两点,设AC=2,BD=1,AP=x ,则△AMN 的面积为y ,则y 关于x 的函数图象的大致形状是( ) A .B .C .D .二、填空题(每小题3分,共21分)9.已知A (0,3),B (2,3)是抛物线y=﹣x 2+bx+c 上两点,该抛物线的顶点坐标是 . 10.如果将抛物线y=x 2+2x ﹣1向上平移,使它经过点A (0,3),那么所得新抛物线的表达式是 . 11.已知点A (4,y 1),B (,y 2),C (﹣2,y 3)都在二次函数y=(x ﹣2)2﹣1的图象上,则y 1、y 2、y 3的大小关系是 .12.二次函数y=x 2﹣2x ﹣3的图象如图所示,若线段AB 在x 轴上,且AB 为2个单位长度,以AB 为边作等边△ABC ,使点C 落在该函数y 轴右侧的图象上,则点C 的坐标为 .13.如图,在平面直角坐标系中,菱形OABC 的顶点A 在x 轴正半轴上,顶点C 的坐标为(4,3),D 是抛物线y=﹣x 2+6x 上一点,且在x 轴上方,则△BCD 面积的最大值为 .第7题 第8题14.如图,抛物线y=﹣x 2+2x+3与y 轴交于点C ,点D (0,1),点P 是抛物线上的动点.若△PCD 是以CD 为底的等腰三角形,则点P 的坐标为 .15.如图,一段抛物线:y=﹣x (x ﹣2)(0≤x ≤2)记为C 1,它与x 轴交于两点O ,A 1;将C 1绕A 1旋转180°得到C 2,交x 轴于A 2;将C 2绕A 2旋转180°得到C 3,交x 轴于A 3;…如此进行下去,直至得到C 6,若点P (11,m )在第6段抛物线C 6上,则m= .三、解答题(本大题8个小题,共75分)16.(8分)如图,已知抛物线y=x 2+bx+c 经过A (﹣1,0)、B (3,0)两点. (1)求抛物线的解析式和顶点坐标; (2)当0<x <3时,求y 的取值范围;(3)点P 为抛物线上一点,若S △PAB =10,求出此时点P 的坐标.17.(9分)如图,已知抛物线y=ax 2+bx+c 与x 轴的一个交点为A (3,0),与y 轴的交点为B (0,3),其顶点为C ,对称轴为x=1. (1)求抛物线的解析式;(2)已知点M 为y 轴上的一个动点,当△ABM 为等腰三角形时,求点M 的坐标.第14题 第15题18.(9分)如图,抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B.(1)求抛物线的解析式;(2)已知点D(m,m+1)在第一象限的抛物线上,求点D关于直线BC对称的点的坐标.19.(9分)如图,二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.(1)请直接写出D点的坐标.(2)求二次函数的解析式.(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.20.(9分)如图,在平面直角坐标系中,正方形OABC的边长为4,顶点A、C分别在x轴、y轴的正半轴,抛物线y=﹣x2+bx+c经过B、C两点,点D为抛物线的顶点,连接AC、BD、CD.(1)求此抛物线的解析式.(2)求此抛物线顶点D的坐标和四边形ABCD的面积.21.(10分)如图,在某场足球比赛中,球员甲从球门底部中心点O的正前方10m处起脚射门,足球沿抛物线飞向球门中心线;当足球飞离地面高度为3m时达到最高点,此时足球飞行的水平距离为6m.已知球门的横梁高OA为2.44m.(1)在如图所示的平面直角坐标系中,问此飞行足球能否进球门?(不计其它情况)(2)守门员乙站在距离球门2m处,他跳起时手的最大摸高为2.52m,他能阻止球员甲的此次射门吗?如果不能,他至少后退多远才能阻止球员甲的射门?22.(10分)某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元,为按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y 与x满足下列关系式:y=.(1)李明第几天生产的粽子数量为420只?(2)如图,设第x天每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大,最大利润是多少元?(利润=出厂价﹣成本)(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m天的利润至少多48元,则第(m+1)天每只粽子至少应提价几元?23.(11分)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.24.(10分)如图,抛物线经过A(﹣1,0),B(5,0),C(0,)三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.25.(10分)如图,已知抛物线y=﹣x2﹣x+2与x轴交于A、B两点,与y轴交于点C(1)求点A,B,C的坐标;(2)点E是此抛物线上的点,点F是其对称轴上的点,求以A,B,E,F为顶点的平行四边形的面积;(3)此抛物线的对称轴上是否存在点M,使得△ACM是等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.答案一、选择题(每小题3分,共18分)1-8: A D D B D C B C二、填空题(每小题3分,共27分)9.(1,4) 10. y=x2+2x+3 11. y3>y1>y2 12.(1+,3)或(2,﹣3)13.15 14.(1+,2)或(1﹣,2) 15.﹣1三.解答题16.解:(1)把A(﹣1,0)、B(3,0)分别代入y=x2+bx+c中,得:,解得:,∴抛物线的解析式为y=x2﹣2x﹣3.∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点坐标为(1,﹣4).(2)由图可得当0<x<3时,﹣4≤y<0.(3)∵A(﹣1,0)、B(3,0),∴AB=4.设P(x,y),则S△PAB=AB•|y|=2|y|=10,∴|y|=5,∴y=±5.①当y=5时,x2﹣2x﹣3=5,解得:x1=﹣2,x2=4,此时P点坐标为(﹣2,5)或(4,5);②当y=﹣5时,x2﹣2x﹣3=﹣5,方程无解;综上所述,P点坐标为(﹣2,5)或(4,5).17.解:(1)由题意得:,解该方程组得:a=﹣1,b=2,c=3,∴抛物线的解析式为y=﹣x2+2x+3.(2)由题意得:OA=3,OB=3;由勾股定理得:AB2=32+32,∴AB=3.当△ABM为等腰三角形时,①若AB为底,∵OA=OB,∴此时点O即为所求的点M,故点M的坐标为M(0,0);②若AB为腰,以点B为圆心,以长为半径画弧,交y轴于两点,此时两点坐标为M(0,3﹣3)或M(0,3+3),以点A为圆心,以长为半径画弧,交y轴于点(0,﹣3);综上所述,当△ABM为等腰三角形时,点M的坐标分别为(0,0)、(0,3﹣3)、(0,3+3)、(0,﹣3).18.解:(1)∵抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,∴,解之得:a=﹣1,b=3,∴y=﹣x2+3x+4;(2)∵点D(m,m+1)在第一象限的抛物线上,∴把D的坐标代入(1)中的解析式得 m+1=﹣m2+3m+4,∴m=3或m=﹣1,∴m=3,∴D(3,4),∵y=﹣x2+3x+4=0,x=﹣1或x=4,∴B(4,0)∴OB=OC,∴△OBC是等腰直角三角形,∴∠CBA=45°设点D关于直线BC的对称点为点E∵C(0,4)∴CD∥AB,且CD=3∴∠ECB=∠DCB=45°∴E点在y轴上,且CE=CD=3∴OE=1 ∴E(0,1)即点D关于直线BC对称的点的坐标为(0,1);19.解:(1)∵二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,∴对称轴是x==﹣1.又点C(0,3),点C、D是二次函数图象上的一对对称点,∴D(﹣2,3);(2)设二次函数的解析式为y=ax2+bx+c(a≠0,a、b、c常数),根据题意得,解得,所以二次函数的解析式为y=﹣x2﹣2x+3;(3)一次函数值大于二次函数值的x的取值范围是x<﹣2或x>1.20.解:(1)由已知得:C(0,4),B(4,4),把B与C坐标代入y=﹣x2+bx+c得:,解得:b=2,c=4,则解析式为y=﹣x2+2x+4;(2)∵y=﹣x2+2x+4=﹣(x﹣2)2+6,∴抛物线顶点坐标为(2,6),则S四边形ABDC=S△ABC+S△BCD=×4×4+×4×2=8+4=12.21.解:(1)抛物线的顶点坐标是(4,3),设抛物线的解析式是:y=a(x﹣4)2+3,把(10,0)代入得36a+3=0,解得a=﹣,则抛物线是y=﹣(x﹣4)2+3,当x=0时,y=﹣×16+3=3﹣=<2.44米,故能射中球门;(2)当x=2时,y=﹣(2﹣4)2+3=>2.52,∴守门员乙不能阻止球员甲的此次射门,当y=2.52时,y=﹣(x﹣4)2+3=2.52,解得:x1=1.6,x2=6.4(舍去),∴2﹣1.6=0.4(m),答:他至少后退0.4m,才能阻止球员甲的射门.22.解:(1)设李明第n天生产的粽子数量为420只,由题意可知:30n+120=420,解得n=10.答:第10天生产的粽子数量为420只.(2)由图象得,当0≤x≤9时,p=4.1;当9≤x≤15时,设P=kx+b,把点(9,4.1),(15,4.7)代入得,,解得,∴p=0.1x+3.2,①0≤x≤5时,w=(6﹣4.1)×54x=102.6x,当x=5时,w最大=513(元);②5<x≤9时,w=(6﹣4.1)×(30x+120)=57x+228,∵x是整数,∴当x=9时,w最大=741(元);③9<x≤15时,w=(6﹣0.1x﹣3.2)×(30x+120)=﹣3x2+72x+336,∵a=﹣3<0,∴当x=﹣=12时,w最大=768(元);综上,当x=12时,w有最大值,最大值为768.(3)由(2)可知m=12,m+1=13,设第13天提价a元,由题意得,w13=(6+a﹣p)(30x+120)=510(a+1.5),∴510(a+1.5)﹣768≥48,解得a≥0.1.答:第13天每只粽子至少应提价0.1元.23.解:(1)依题意得:,解之得:,∴抛物线解析式为y=﹣x2﹣2x+3∵对称轴为x=﹣1,且抛物线经过A(1,0),∴把B(﹣3,0)、C(0,3)分别代入直线y=mx+n,得,解之得:,∴直线y=mx+n的解析式为y=x+3;(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.把x=﹣1代入直线y=x+3得,y=2,∴M(﹣1,2),即当点M到点A的距离与到点C的距离之和最小时M的坐标为(﹣1,2);(3)设P(﹣1,t),又∵B(﹣3,0),C(0,3),∴BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,①若点B为直角顶点,则BC2+PB2=PC2即:18+4+t2=t2﹣6t+10解之得:t=﹣2;②若点C为直角顶点,则BC2+PC2=PB2即:18+t2﹣6t+10=4+t2解之得:t=4,③若点P为直角顶点,则PB2+PC2=BC2即:4+t2+t2﹣6t+10=18解之得:t1=,t2=;综上所述P的坐标为(﹣1,﹣2)或(﹣1,4)或(﹣1,)或(﹣1,).24.解:(1)设抛物线的解析式为y=ax2+bx+c(a≠0),∵A(﹣1,0),B(5,0),C(0,)三点在抛物线上,∴,解得.∴抛物线的解析式为:y=x2﹣2x﹣;(2)∵抛物线的解析式为:y=x2﹣2x﹣,∴其对称轴为直线x=﹣=﹣=2,连接BC,如图1所示,∵B(5,0),C(0,﹣),∴设直线BC的解析式为y=kx+b(k≠0),∴,解得,∴直线BC的解析式为y=x﹣,当x=2时,y=1﹣=﹣,∴P(2,﹣);(3)存在.如图2所示,①当点N在x轴下方时,∵抛物线的对称轴为直线x=2,C(0,﹣),∴N1(4,﹣);②当点N在x轴上方时,如图,过点N2作N2D⊥x轴于点D,在△AN2D与△M2CO中,∴△AN2D≌△M2CO(ASA),∴N2D=OC=,即N2点的纵坐标为.∴x2﹣2x﹣=,解得x=2+或x=2﹣,∴N2(2+,),N3(2﹣,).综上所述,符合条件的点N的坐标为(4,﹣),(2+,)或(2﹣,).25.解:(1)令y=0得﹣x2﹣x+2=0,∴x2+2x﹣8=0,x=﹣4或2,∴点A坐标(2,0),点B坐标(﹣4,0),令x=0,得y=2,∴点C坐标(0,2).(2)由图象①AB为平行四边形的边时,∵AB=EF=6,对称轴x=﹣1,∴点E的横坐标为﹣7或5,∴点E坐标(﹣7,﹣)或(5,﹣),此时点F(﹣1,﹣),∴以A,B,E,F为顶点的平行四边形的面积=6×=.②当点E在抛物线顶点时,点E(﹣1,),设对称轴与x轴交点为M,令EM与FM相等,则四边形AEBF是菱形,此时以A,B,E,F为顶点的平行四边形的面积=×6×=.(3)如图所示,①当C为等腰三角形的顶角的顶点时,CM1=CA,CM2=CA,作M1N⊥OC于N,在RT △CM 1N 中,CN==,∴点M 1坐标(﹣1,2+),点M 2坐标(﹣1,2﹣).②当M 3为等腰三角形的顶角的顶点时,∵直线AC 解析式为y=﹣x+2, 线段AC 的垂直平分线为y=x , ∴点M 3坐标为(﹣1,﹣1). ③当点A 为等腰三角形的顶角的顶点的三角形不存在. 综上所述点M 坐标为(﹣1,﹣1)或(﹣1,2+)或(﹣1,2﹣).第23章 旋转一、选择题(每小题3分,共30分)1.下面的图形中,既是轴对称图形又是中心对称图形的是( )2.将左图所示的图案按顺时针方向旋转o90后可以得到的图案是( )3.如图,如果正方形ABCD 旋转后能与正方形CDEF 重合,那么图形所在的平面内可作旋转中心的点共有 ( )A.1 个 B.2 个 C.3 个 D.4个4.如图,将△ABC 绕着点C 按顺时针方向旋转o20,B 点落在B '位置,A 点落在A '位置,若AC ⊥B A '',则∠BAC 的度数是( )A.o50 B.o60 C.o70 D.o805.如图,△OAB 绕点O 逆时针旋转o80到△OCD 的位置,已知∠AOB =o45,则∠AOD 等于( )A.o55 B.o45 C.o40 D.o356.如图,阴影部分组成的图案既是关于x 轴成轴对称的图形,又是关于坐标原点O 成中心对称的图形.若点A 的坐标是 (1, 3),则点M 和点N 的坐标分别为( ) A.)3,1(),3,1(---N M B.)3,1(),3,1(---N M C.)3,1(),3,1(--N MD.)3,1(),3,1(---N M7.直线3+=x y 上有一点P (3,2m ),则P 点关于原点的对称点P '为 ( ) A.P '(3,6) B.P '(-3,6) C.P '(-3,-6) D.P '(3,-6)8. 如图是一个中心对称图形,A 为对称中心,若∠C =o90, ∠B =o30,AC =1,则B B '的长为( )A.4 B.33 C.332 D.3349.如图,菱形ABCD 的对角线的长分别为2和5,P 是对角线AC 上一点,且PE ∥BC 交AB 于E ,PF ∥CD 交AD 于F ,则阴影部分的面积是( )A.4 B.3.5 C.3 D.2.510.如图,图案由三个叶片组成,绕点O 旋转o120后可以和自身重合,若每个叶片的面积为24cm ,∠AOB 为o120,则图中阴影部分的面积之和为. ( ) A.23cm B.24cm C.25cm D.26cm二、填空题(每小题4分,共32分)11.点P (2,3)绕着原点逆时针方向旋转o90与点P '重合,则P '的坐标为 . 12.已知a <0,则点P (2a -, a -+1)关于原点的对称点1P 在 象限.13.如图,将矩形ABCD 绕点A 顺时针旋转o90后,得到矩形D C B A ''',如果CD =2DA =2,那么C C '=_________.14.如图,△COD 是△AOB 绕点O 顺时针方向旋转o40后所得的图形,点C 恰好在AB 上,∠AOD =90°,则∠D 的度数是 度.15.如图,四边形ABCD 中,∠BAD =∠C =o90,AB =AD ,AE ⊥BC 于E ,若线段AE =5,则ABCD S 四边形= .16.将两块直角三角尺的直角顶点重合为如图的位置, 若∠AOD =o110,则∠BOC = 度.17.如图,小亮从A 点出发,沿直线前进10米后向左转o30,再沿直线前进10米,又向左转o30,……照这样走下去,他第一次回到出发地A 点时,一共走了 米.18.将直角边长为5cm 的等腰直角△ABC 绕点A 逆时针旋转o15后得到△C B A '',则图中阴影部分的面积是 2cm .三、解答题(共58分)19.(10分)如图,把△ABC 向右平移5个方格,再绕点B 顺时针方向旋转90°.(1)画出平移和旋转后的图形,并标明对应字母;(2)能否把两次变换合成一种变换,如果能,说出变换过程(可适当在图形中标记);如果不能,说明理由.20. (12分)画出△ABC 关于原点O 对称的△111C B A ,并求出点1A ,1B ,1C 的坐标.C BA21.(12分)如图所示,△ABP 是由△ACE 绕A 点旋转得到的,若∠BAP =o40,∠B =o30,∠PAC =o20,求旋转角及∠CAE 、∠E 、∠BAE 的度数.22.(12分)如图,P 是正三角形ABC 内的一点,且PA =6,PB =8,PC =10.若将△PAC 绕点A 逆时针旋转后,得到△AB P '. ⑴求点P 与点P '之间的距离; ⑵∠APB 的度数.23.(12分)如图1,在△ABC 和△EDC 中,AC =CE =CB =CD ,∠A C B =∠ECD =90,AB 与CE 交于F ,ED 与AB 、BC 分别交于M 、H .(1)求证: CF =CH ;(2)如图2,△ABC 不动,将△EDC 绕点C 旋转到∠BCE =45时,试判断四边形ACDM 是什么四边形?并证明你的结论.参考答案一、15.25 16.70 17.120 18.6325 三、19.解:(1)如图(2)能,将△ABC 绕CB 、B C ''''延长线的交点顺时针旋转90度.20.解:△ABC 关于原点O 对称的△111C B A 如图, 点的坐标分别是)2,3(1-A ,)1,2(1B ,)3,2(1--C .21.解: 旋转角∠BAC =∠PAC +∠BAP =o20+o40=o60, ∵∠BAP =o40. ∴∠CAE =40°,∵∠B =o30. ∴∠C =o30 . ∴∠E=110°. ∴∠BAE=100°.22.解 :(1)连接P P ',由题意可知P B '=PC =10,P A '=AP =6, ∠PAC =∠AB P ',而∠PAC +∠BAP =60°, ∴∠P PA '=60°. ∴△P AP '为等边三角形, ∴P P '=P A '=AP =6;(2)利用勾股定理的逆定理可知:C"B"A''C'B'A'CBA∵222P B BP P P '=+',∴△P BP '为直角三角形.∵∠P BP '=90°∴∠APB =90°+60°=150°.23.(1)证明:在△ACB 和△ECD 中∵∠ACB=∠ECD= 90,∴∠1+∠ECB=∠2+∠ECB, ∴∠1=∠2.又∵AC=CE=CB=CD, ∴∠A=∠D= 45,∴△ACB ≌△ECD,∴CF=CH(2) 答: 四边形ACDM 是菱形证明: ∵∠ACB=∠ECD= 90, ∠BCE= 45∴∠1= 45, ∠2= 45又∵∠E=∠B= 45,∴∠1=∠E, ∠2=∠B∴AC ∥MD, CD ∥AM ,∴ACDM 是平行四边形又∵AC=CD, ∴ACDM 是菱形第24章 圆一、选择题(每小题4分,共24分)在每小题给出的四个选项中, 只有一项是符合题目要求的.1. 已知⊙O 的半径是6cm,点O 到同一平面内直线l 的距离为5cm ,则直线l 与⊙O 的位置关系是( )A .相交B .相切C .相离D .无法判断2.如图,点A 、B 、C 在⊙O 上,∠ABC =50°,则∠AOC 的度数为( )A .120°B .100°C .50°D .25°3.如图在△ABC 中,∠B =90°, ∠A =30°,AC =4cm ,将△ABC 绕顶点C 顺时针方向旋转至△A B C ''的位置,且A 、C 、B ′三点在同一条直线上,则点A 所经过的最短路线的长为( ) A.3cm B. 8cm C. 163cm π D. 83cm π4.如图,ABCD 的顶点A 、B 、D 在⊙O 上,顶点C 在⊙O 的直径BE 上,∠ADC =54°,连接AE ,则∠AEB 的度数为( )A.126°B. 54°C. 30°D. 36°5.如图,已知⊙O 的半径为1,AB 与⊙O 相切于点A ,OB 与⊙O 交于点C ,CD ⊥OA ,垂足为D ,则sin ∠AOB 的值等于( )A .CDB .OAC .OD D .AB6.用半径为3cm ,圆心角是120°的扇形围成一个圆锥的侧面,则该圆锥的底面半径为( )A. 2πcmB. 1cmC. πcmD. 1.5cm7. 如图,CD 是⊙O 的直径,弦AB ⊥CD 于点G ,直线EF 与⊙O 相切于点D ,则下列结论中不一定正确的是( )A. AG=BGB.AB//EFC.AD//BCD.∠ABC=∠ADC8. 若正方形的边长为6,则其外接圆半径与内切圆半径的大小分别为( )A .6,32B .32 3C .6,3D .62,32二、填空题(每小题4分,共24分)请把答案填写在题中横线上.9.一条弦把圆分成2:3两部分,那么这条弦所对的圆周角的度数为_________.(第7题图) (第5题图)B′A′C B A (第3题图) A OB C (第2题图)(第4题图)A B C D O (第13题图) (第14题图)10.已知圆锥母线长为5cm ,底面直径为4cm ,则侧面展开图的圆心角度数是_________.11.Rt △ABC 中,∠C =90°,AC =3cm ,BC =4cm ,以C 为圆心,r 为半径作圆,若圆C 与直线AB 相切,则r 的值为_________.12.钟表的轴心到分针针尖的长为5cm ,那么经过40分钟,分针针尖转过的弧长是_________________cm.13.如图,AB 是⊙O 的直径,C 、D 是圆上的两点(不与A 、B 重合),已知BC =2,tan ∠ADC =1,则AB =__________.14. 如图,以AD 为直径的半圆O 经过Rt △ABC 斜边AB 的两个端点,交直角边AC 于点E . B ,E 是半圆弧的三等分点,弧BE 的长为32 ,则图中阴影部分的面积为 . 三、 解答题(本题共5小题,共44分)15.(7分)如图所示,某窗户由矩形和弓形组成.已知弓形的跨度AB =3m ,弓形的高EF =1m.现计划安装玻璃,请帮工程师求出⌒A B 所在圆O 的半径.16. (7分)如图△ABC 中,∠B = 60°,⊙O 是 △ABC 的外接圆,过点A 作⊙O 的切线,交CO 的延长线于点P ,OP 交⊙O 于点D .(1)求证:AP =AC (2) 若AC =3,求PC 的长.(第16题图)17.(10分)如图,已知四边形ABCD内接于圆O,连接BD,∠BAD=105°,∠DBC=75°.(1)求证:BD=CD;(2)若圆O的半径为3,求BC的长.18.(10分)如图,AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,与AC的延长线交于点D,作AE⊥AC交DE于点E.(1)求证:∠BAD=∠E;(2)若⊙O的半径为5,AC=8,求BE的长.19.(10分)如图,BC是⊙O的直径,A是⊙O上一点,过点C作⊙O的切线,交BA的延长线于点D,取CD的中点E,AE的延长线与BC的延长线交于点P.(1)求证:AP是⊙O的切线;(2)若OC=CP,AB=6,求CD的长.(第19题图)参考答案一、选择题:1.A.2.B.3.D4.D5.A6.B7.C8.B二、填空题:9.72°或108° 10. 144° 11.2.4 12.13.2214. 32233π-. 三、解答题:15. 解:设⊙O 的半径为r ,则OF =r -1. 由垂径定理,得BF =12AB =1.5,OF ⊥AB ,由OF 2 +BF 2= OB 2,得(r -1)2+1.52 = r 2,解得r =138.答:⌒A B 所在圆O 的半径为138.16.(1)连接OA, ∵60B ∠=︒,AP 为切线,∴ OA ⊥ AP, ∠AOC=120°,又∵OA=OC, ∴∠ ACP=30°∠ P= 30°, ∴ AP=AC(2)先求OC=3,再证明△ OAC∽△ APC , PC AC =APOC ,得PC=33. 17. (1)证明:∵四边形ABCD 内接于圆O ,∴∠DCB +∠BAD =180°,∵∠BAD =105°,∴∠DCB =180°-105°=75°.∵∠DBC =75°,∴∠DCB =∠DBC =75°.∴BD =CD .(2)解:∵∠DCB =∠DBC =75°,∴∠BDC =30°.由圆周角定理,得,的度数为:60°,故BC =180n R π=603180π⨯=π. 答:BC 的长为π.18.证明:(1)∵⊙O 与DE 相切于点B ,AB 为⊙O 直径,∴∠ABE =90°.∴∠BAE +∠E =90°.又∵∠DAE =90°, ∴∠BAD +∠BAE =90°.∴∠BAD =∠E .(2)解;连接BC .'∵AB 为⊙O 直径, ∴∠ACB =90°.∵AC =8,AB =2×5=10,∴BC 22AB AC -=6.又∵∠BCA =∠ABE =90°,∠BAD =∠E ,∴△ABC ∽△EAB .∴AC EB =BC AB . ∴8EB =610 ∴BE =403.203π19.(1)证明:连接AO ,AC .∵BC 是⊙O 的直径,∴∠BAC =90°∴∠CAD =90°∵点E 是CD 的中点,∴CE= CE= AE在等腰△EAC 中,∠ECA = ∠EAC∵OA =OC ∴∠OAC = ∠OCA∵CD 是⊙O 的切线,∴CD ⊥OC∴∠ECA + ∠OAC = 90°∴∠EAC + ∠OAC = 90°∴OA ⊥AP ,∴AP 是⊙O 的切线(2)解:由(1)知OA ⊥AP在Rt △OAP 中,∵∠OAP = 90°, OC = CP = OA 即OP = 2OA ,∴,∴,∴ ∴ 又∵在Rt △DAC 中,∠CAD = 90°, ∠ACD = 90°-∠ACO = 30°∴第25章 概率初步一、选择题(共10小题,每小题3分,满分30分)1.下列说法中正确的是( )A .“任意画出一个等边三角形,它是轴对称图形”是随机事件B .“任意画出一个平行四边形,它是中心对称图形”是必然事件C .“概率为0.0001的事件”是不可能事件D .任意掷一枚质地均匀的硬币10次,正面向上的一定是5次2.从分别写有数字:﹣4,﹣3,﹣2,﹣1,0,1,2,3,4的九张一样的卡片中,任意抽取一张卡片,则所抽卡片上数字的绝对值<2的概率是( )A .B .C .D . 3.下列说法中,正确的是( )A .不可能事件发生的概率为0B .随机事件发生的概率为1sin 2OA P OP ∠==30P ∠=60AOP ∠=23tan 60AB AC ==234cos AC CD ACD ===∠C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次4.若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数,如796就是一个“中高数”.若十位上数字为7,则从3、4、5、6、8、9中任选两数,与7组成“中高数”的概率是()A.B.C.D.5.有一个正方体,6个面上分别标有1~6这6个整数,投掷这个正方体一次,则出现向上一面的数字为偶数的概率是()A.B.C.D.6.三张外观相同的卡片分别标有数字1、2、3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是()A.B.C.D.7.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是()A.B.C.D.8.甲,乙,丙三人进行乒乓球比赛,规则是:两人比赛,另一人当裁判,输者将在下一局中担任裁判,每一局比赛没有平局.已知甲,乙各比赛了4局,丙当了3次裁判.问第2局的输者是()A.甲B.乙C.丙D.不能确定9.某校举行春季运动会,需要在初一年级选取一名志愿者.初一(1)班、初一(2)班、初一(3)班各有2名同学报名参加.现从这6名同学中随机选取一名志愿者,则被选中的这名同学恰好是初一(3)班同学的概率是()A.B.C.D.10.做重复实验:抛掷同一枚啤酒瓶盖1000次.经过统计得“凸面向上”的频率约为0.44,则可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为()A.0.22 B.0.44 C.0.50 D.0.56二、填空题11.不透明袋子中装有9个球,其中有2个红球、3个绿球和4个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.12.一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为.13.如图,A是正方体小木块(质地均匀)的一顶点,将木块随机投掷在水平桌面上,则A与桌面接触的概率是.14.有五张分别印有圆、等腰三角形、矩形、菱形、正方形图案的卡片(卡片中除图案不同外,其余均相同),现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到有中心对称图案的卡片的概率是.15.小芳掷一枚质地均匀的硬币10次,有7次正面向上,当她掷第11次时,正面向上的概率为.16.小球在如图所示的地板上自由滚动,并随机停留在某块正方形的地砖上,则它停在白色地砖上的概率是.17.如图,在两个同心圆中,三条直径把大圆分成六等份,若在这个圆面上均匀地撒一把豆子,则豆子落在阴影部分的概率是.18.有9张卡片,分别写有1~9这九个数字,将它们背面朝上洗匀后,任意抽取一张,记卡片上的数字为a,则使关于x的不等式组有解的概率为.三、解答题(共46分)19.下列问题哪些是必然事件?哪些是不可能事件?哪些是随机事件?(1)太阳从西边落山;(2)某人的体温是100℃;(3)a2+b2=﹣1(其中a,b都是实数);(4)水往低处流;(5)三个人性别各不相同;(6)一元二次方程x2+2x+3=0无实数解;(7)经过有信号灯的十字路口,遇见红灯.20.如图,在方格纸中,△ABC的三个顶点及D,E,F,G,H五个点分别位于小正方形的顶点上.(1)现以D,E,F,G,H中的三个点为顶点画三角形,在所画的三角形中与△ABC不全等但面积相等的三角形是(只需要填一个三角形)(2)先从D,E两个点中任意取一个点,再从F,G,H三个点中任意取两个不同的点,以所取得这三个点为顶点画三角形,求所画三角形与△ABC面积相等的概率(用画树状图或列表格求解).21.某人的钱包内有10元、20元和50元的纸币各1张,从中随机取出2张纸币.(1)求取出纸币的总额是30元的概率;(2)求取出纸币的总额可购买一件51元的商品的概率.22.有形状、大小和质地都相同的四张卡片,正面分别写有A、B、C、D和一个等式,将这四张卡片背面向上洗匀,从中随机抽取一张(不放回),接着再随机抽取一张.(1)用画树状图或列表的方法表示抽取两张卡片可能出现的所有情况(结果用A、B、C、D表示);(2)小明和小强按下面规则做游戏:抽取的两张卡片上若等式都不成立,则小明胜,若至少有一个等式成立,则小强胜.你认为这个游戏公平吗?若公平,请说明理由;若不公平,则这个规则对谁有利,为什么?。
期人教版九年级数学上册名校课堂练习21.3.2用一元二次方程解决增长率问题
第2课时用一元二次方程解决增长率问题基础题知识点1平均变化率问题1.(鄂州中考)近几年,我国经济高速发展,但退休人员待遇持续偏低.为了促进社会公平,国家决定大幅增加退休人员退休金.企业退休职工李师傅2011年的月退休金为1 500元,2013年达到2 160元.设李师傅的月退休金从2011年到2013年年平均增长率为x,可列方程为()A.2 016(1-x)2=1 500B.1 500(1+x)2=2 160C.1 500(1-x)2=2 160D.1 500+1 500(1+x)+1 500(1+x)2=2 1602.(巴中中考)某种品牌运动服经过两次降价,每件零售价由560元降为315元.已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.560(1+x)2=315 B.560(1-x)2=315C.560(1-2x)2=315 D.560(1-x2)=3153.(宜宾中考)某企业五月份的利润是25万元,预计七月份的利润将达到36万元.设平均月增长率为x,根据题意所列方程是____________________.4.(天水中考)某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为________.5.(广东中考)某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元.求3月份到5月份营业额的月平均增长率.知识点2市场经济问题6.(泰安中考)某种花卉每盆的盈利与每盆的株数有一定的关系.每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元.要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,则可以列出的方程是()A.(3+x)(4-0.5x)=15B.(x+3)(4+0.5x)=15C.(x+4)(3-0.5x)=15D.(x+1)(4-0.5x)=157.(达州中考)新世纪百货大楼“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”儿童节,商场决定采取适当的降价措施.经调査,如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1 200元,则每件童装应降价多少元?设每件童装应降价x元,可列方程为______________________.8.某商店从厂家以21元的价格购进一批商品,该商店可以自行定价,若每件商品售价为a 元,则可卖(350-10a)件,但物价局限定每件加价不能超过进价的20%.商店计划要赚400元,需要卖出多少件商品?每件商品的售价为多少元?中档题9.(黔西南中考)某机械厂七月份生产零件50万个,第三季度生产零件196万个,如果每月的增长率x相同,则()A.50(1+x2)=196B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196D.50+50(1+x)+50(1+2x)=19610.(兰州中考)股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x ,则x 满足的方程是( )A .(1+x)2=1110B .(1+x)2=109C .1+2x =1110D .1+2x =10911.据报道,某省农作物秸秆的资源巨大,但合理利用量十分有限,2014年的利用率只有30%,大部分秸秆被直接焚烧了,假定该省每年产出的农作物秸秆总量不变,且合理利用量的增长率相同,要使2016年的利用率提高到60%,求每年的增长率.(取2≈1.41)12.(内蒙古中考)菜农李伟种植的某蔬菜,计划以每千克5元的价格对外批发销售.由于部分菜农盲目扩大种植,造成该蔬菜滞销,李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的价格对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一,打九折销售;方案二,不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠?请说明理由.13.(淮安中考)水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤.通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤.为保证每天至少售出260斤,张阿姨决定降价销售.(1)若将这种水果每斤的售价降低x元,则每天的销售量是________________斤(用含x 的代数式表示);(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降至多少元?综合题14.(安徽模拟)据调查,某市2013年商品房均价为7 250元/m2,2014年同比增长了8.5%,在国家的宏观调控下,预计2016年商品房均价要下调到7 200元/m2.问2015、2016两年平均每年降价的百分率是多少?若设2015、2016两年平均每年降价的百分率为x%,则所列方程为:________________________________________.参考答案基础题1.B2.B3.25(1+x)2=364.20%5.设3月份到5月份营业额的月平均增长率为x ,根据题意,得400×(1+10%)(1+x)2=633.6.解得x 1=0.2=20%,x 2=-2.2(不合题意,舍去).答:3月份到5月份营业额的月平均增长率为20%.6.A7.(40-x)(20+2x)=1 2008.由题意,得(a -21)(350-10a)=400,解得a 1=25,a 2=31.∵物价局限定每件加价不能超过进价的20%,∴商品的售价不超过25.2元.∴a =31不合题意,舍去.答:每件商品的售价为25元,需要卖出100件.中档题9.C 10.B11.设该省每年产出的农作物秸秆总量为1,合理利用量的增长率是x ,由题意,得1×30%·(1+x)2=1×60%.解得x 1≈0.41,x 2≈-2.41(不合题意,舍去).答:该省每年秸秆合理利用量的增长率约是41%.12.(1)设平均每次下调的百分率为x ,由题意,得5(1-x)2=3.2,解得x 1=0.2=20%,x 2=1.8(舍去).答:平均每次下调的百分率为20%.(2)小华选择方案一购买更优惠,理由如下:方案一所需费用为:3.2×0.9×5 000=14 400(元);方案二所需费用为:3.2×5 000-200×5=15 000(元),∵14 400<15 000,∴小华选择方案一购买更优惠.答:小华选择方案一更优惠.13.(1)(100+200x) (2)设这种水果每斤的售价降价x 元,则(2-x)(100+200x)=300,即2x 2-3x +1=0,解得x 1=1,x 2=12.当x =1时,每天的销量为300斤;当x =12时,每天的销量为200斤.因为为保证每天至少售出260斤,所以x 2=12不合题意,舍去.此时每斤的售价为4-1=3(元).答:销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降至3元. 综合题14.7 250(1+8.5%)·(1-x%)2=7 200。
北师大版九年级数学上名校课堂单元测试(二)(含答案)
单元测试(二) 一元二次方程(时间:45分钟满分:100分)一、选择题(每小题3分,共30分)1.下列方程中,关于x的一元二次方程是( )A.3(x+1)2=2(x+1) B.1x2+1x-2=0C.ax2+bx+c=0 D.x2+2x=x2-12.用配方法解方程x2-2x-5=0时,原方程应变形为( )A.(x+1)2=6 B.(x-1)2=6C.(x+2)2=9 D.(x-2)2=93.根据下面表格中的对应值:判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x的范围是( ) A.3<x<3.23 B.3.23<x<3.24C.3.24<x<3.25 D.3.25<x<3.264.解方程(x+1)(x+3)=5较为合适的方法是( )A.直接开平方法B.配方法C.公式法或配方法D.分解因式法5.(湘西中考)下列方程中,没有实数根的是( )A.x2-4x+4=0 B.x2-2x+5=0C.x2-2x=0 D.x2-2x-3=06.下列说法不正确的是( )A.方程x2=x有一根为0B.方程x2-1=0的两根互为相反数C.方程(x-1)2-1=0的两根互为相反数D.方程x2-x+2=0无实数根7.(烟台中考)关于x的方程x2-ax+2a=0的两根的平方和是5,则a的值是( )A.-1或5 B.1 C.5 D.-18.对二次三项式x2-10x+36,小聪同学认为:无论x取什么实数,它的值都不可能等于11;小颖同学认为:可以取两个不同的值,使它的值等于11.你认为( )A.小聪对,小颖错B.小聪错,小颖对C.他们两人都对D.他们两人都错9.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7 644平方米,则道路的宽应为多少米?设道路的宽为x 米,则可列方程为( )A.100×80-100x-80x=7 644B.(100-x)(80-x)+x2=7 644C.(100-x)(80-x)=7 644D.100x+80x=35610.(泸州中考)若关于x的一元二次方程x2-2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是( )二、填空题(每小题4分,共20分)11.(柳州中考)若x=1是一元二次方程x2+2x+m=0的一个根,则m的值为______.12.若(m+n)(m+n+5)=6,则m+n的值是______.13.一件工艺品进价100元,标价135元售出,每天可售出100件,根据销售统计,一件工艺品每降低1元出售,则每天可多售出4件,要使顾客尽量得到优惠,且每天获得的利润为3 596,每件工艺品需降价______元.14.已知直角三角形的两条直角边的长恰好是方程2x2-8x+7=0的两个根,则这个直角三角形的斜边长是______.15.已知关于x的方程x2-(a+b)x+ab-1=0,x1、x2是此方程的两个实数根,现给出三个结论:①x1≠x2;②x1x2<ab;③x21+x22<a2+b2.则正确结论的序号是______.(填上你认为正确的所有序号)三、解答题(共50分)16.(12分)解方程:(1)x2-4x-1=0; (2)x2+3x-2=0;(3)2x2+3x+3=0; (4)(2x-1)2=x(3x+2)-7.17.(8分)小林准备进行如下操作实验:把一根长为40 cm的铁丝剪成两段,并把每一段各围成一个正方形.(1)要使这两个正方形的面积之和等于58 cm2,小林该怎么剪?(2)小峰对小林说:“这两个正方形的面积之和不可能等于48 cm2.”他的说法对吗?请说明理由.18.(8分)(南充中考)已知关于x的一元二次方程(x-1)(x-4)=p2,p为实数.(1)求证:方程有两个不相等的实数根;(2)p为何值时,方程有整数解.(直接写出三个,不需说明理由)19.(10分)观察下列一元二次方程,并回答问题:第1个方程:x2+x=0;第2个方程:x2-1=0;第3个方程:x2-x-2=0;第4个方程:x2-2x-3=0;…(1)第2 016个方程是____________________;(2)直接写出第n个方程,并求出第n个方程的解;(3)说出这列一元二次方程的解的一个共同特点.20.(12分)(株洲中考)已知关于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a,b,c 分别为△ABC三边的长.(1)如果x=-1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC 是等边三角形,试求这个一元二次方程的根.参考答案1.A 2.B 3.C 4.C 5.B 6.C 7.D 8.D 9.C 10.B 11.-3 12.-6或1 13.6 14.3 15.①②16.(1)x 1=5+2,x 2=-5+2. (2)x 1=-3+172,x 2=-3-172.(3)∵a =2,b =3,c =3,∴b 2-4ac =32-4×2×3=9-24=-15<0,∴原方程无实数根. (4)原方程可化为4x 2-4x +1=3x 2+2x -7,∴x 2-6x +8=0.∴(x -3)2=1.∴x -3=±1.∴x 1=2,x 2=4.17.(1)设其中一个正方形的边长为x cm ,则另一个正方形的边长为(10-x)cm.由题意,得x 2+(10-x)2=58.解得x 1=3,x 2=7.4×3=12,4×7=28.答:小林把绳子剪成12 cm 和28 cm 的两段.(2)假设能围成.由(1)得x 2+(10-x)2=48.化简得x 2-10x +26=0.∵b 2-4ac =(-10)2-4×1×26=-4<0,∴此方程没有实数根.∴小峰的说法是对的.18.(1)证明:化简方程,得x 2-5x +(4-p 2)=0.Δ=(-5)2-4(4-p 2)=9+4p 2,∵p 为实数,p 2≥0,∴9+4p 2>0,即Δ>0.∴方程有两个不相等的实数根.(2)当p 为0,2,-2时,方程有整数解.19.(1)x 2-2 014x -2 015=0 (2)第n 个方程是x 2-(n -2)x -(n -1)=0,解得x 1=-1,x 2=n -1.(3)这列一元二次方程的解的一个共同特点:有一根是-1.20.(1)△ABC 是等腰三角形.理由:∵x =-1是方程的根,∴(a +c)×(-1)2-2b +(a -c)=0.∴a +c -2b +a -c =0.∴a -b =0.∴a =b.∴△ABC 是等腰三角形.(2)∵方程有两个相等的实数根,∴(2b)2-4(a +c)(a -c)=0.∴4b 2-4a 2+4c 2=0.∴a 2=b 2+c 2.∴△ABC 是直角三角形.(3)∵△ABC 是等边三角形,∴(a +c)x 2+2bx +(a -c)=0可整理为2ax 2+2ax =0.∴x 2+x =0.解得x 1=0,x 2=-1.。
(精)新人教版九年级数学上册全单元测试卷(含答案)
新人教版九年级数学上个单元测试卷(含答案)第二十一章过关自测卷 (100分,45分钟)一、选择题(每题3分,共21分)1.下列方程是关于x 的一元二次方程的是( ) A.ax 2+bx +c =0 B.211x x=2 C.x 2+2x =y 2-1 D.3(x +1)2=2(x +1)2.若一元二次方程ax 2+bx +c =0有一根为0,则下列结论正确的是( ) A.a =0 B.b =0 C.c =0 D.c ≠03.一元二次方程x 2-2x -1=0的根的情况为( ) A.有两个相等的实数根 B.有两个不相等的实数根 C.只有一个实数根 D.没有实数根4.方程x 2+6x =5的左边配成完全平方式后所得方程为( ) A.(x +3)2=14 B.(x -3)2=14C.(x +6)2=12D.以上答案都不对 5.已知x =2是关于x 的方程32x 2-2a =0的一个根,则2a -1的值是( ) A.3 B.4 C.5 D.66.某县为发展教育事业,加强了对教育经费的投入,2012年投入3亿元,预计2014年投入5亿元.设教育经费的年平均增长率为x ,根据题意,下面所列方程正确的是( ) A .3(1+x )2=5 B .3x 2=5C. 3(1+x %)2=5D. 3(1+x ) +3(1+x )2=57.使代数式x 2-6x -3的值最小的x 的取值是( ) A.0 B.-3 C.3 D.-9 二、填空题(每题3分,共18分)8.已知x =1是一元二次方程x 2+mx +n =0的一个根,则m 2+2mn +n 2的值为________. 9.如果方程ax 2+2x +1=0有两个不等实数根,则实数a 的取值范围是____________.10.已知α、β是一元二次方程x 2-4x -3=0的两实数根,则代数式(α-3)(β-3)=________.11.在一幅长50 cm ,宽30 cm 的风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图1所示,如果要使整个挂图的面积是1 800 cm 2,设金色纸边的宽为x cm ,那么x 满足的方程为________________.112.已知x 是一元二次方程x 2+3x -1=0的实数根,那么代数式2352362x x x x x -⎛⎫÷+- ⎪--⎝⎭的值为________. 13.三角形的每条边的长都是方程x 2-6x +8=0的根,则三角形的周长是_______________.三、解答题(14、19题每题12分,15题8分,16题9分,其余每题10分,共61分)14.我们已经学习了一元二次方程的四种解法:因式分解法,开平方法,配方法和公式法.请从以下一元二次方程中任选一个..,并选择你认为适当的方法解这个方程. ①x 2-3x +1=0;②(x -1)2=3;③x 2-3x =0;④x 2-2x =4.15.已知关于x (1)求k(2)求方程x 216.关于x的一元二次方程x2-3x-k=0有两个不相等的实数根.(1)求k的取值范围;(2)请选择一个k的负整数值,并求出方程的根..每间的年((设当单价从38元/千克下调到x 元/千克时,销售量为y 千克.(1)根据上述表格中提供的数据,通过在直角坐标系中描点、连线等方法,猜测并求出y 与x 的函数解析式;(2)如果这种土特产的成本价是20元/千克,为使某一天的利润为780元,那么这一天的销售价应为多少元/千克?(利润=销售总金额-成本)19.如图2,A 、B 、C 、D 为矩形的四个顶点,AB =16 cm ,AD =6 cm ,动点P 、Q 分别从点A 、C 同时出发,点P 以3 cm/s 的速度向点B 移动,一直到达B 为止,点Q 以2 cm/s 的速度向点D 移动. (1)P 、Q 两点从出发开始到几秒时四边形PBCQ 的面积为33 cm 2?图2(2)P 、Q 两点从出发开始到几秒时,点P 和点Q 的距离是10 cm ?第二十二章过关自测卷(100分,45分钟)一、选择题(每题4分,共32分)1.抛物线y=ax2+bx-3过点(2,4),则代数式8a+4b+1的值为()A.-2B.2C.15D.-152.图1是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2 m,水面宽4 m.如图2建立平面直角坐标系,则抛物线的关系式是())C.1D.05.〈舟山〉若一次函数y =ax +b (a ≠0)的图象与x 轴的交点坐标为(-2,0),则抛物线y =ax 2+bx 的对称轴为( ) A.直线x =1 B.直线x =-2 C.直线x =-1 D.直线x =-46.设一元二次方程(x -1)(x -2)=m (m >0)的两实根分别为α,β,且α<β,则α,β满足( ) A.1<α<β<2 B.1<α<2<βC.α<1<β<2D.α<1且β>27.〈内江〉若抛物线y =x 2-2x +c 与y 轴的交点为(0,-3),则下列说法不正确的是( ) A.抛物线开口向上B.抛物线的对称轴是直线x =1C.当x =1时,y 的最大值为-4D.抛物线与x 轴的交点为(-1,0),(3,0)8.〈南宁〉已知二次函数y =ax 2+bx +c (a ≠0)的图象如图3所示,下列说法错误的是( ) A.图象关于直线x =1对称B.函数y =ax 2+bx +c (a ≠0)的最小值是-4C.-1和3是方程ax 2+bx +c =0(a ≠0)的两个根D.当x <1时,y 随x 的增大而增大9.10.11.12.2+6,则小球距13.14.ax 2+bx +3x=015.A(-6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=12x2交于点Q,则图中阴影部分的面积为__________.图6三、解答题(每题12分,共36分)17.〈牡丹江〉如图7,已知二次函数y=x2+bx+c的图象过点A(1,0),C(0,-3). (1)求此二次函数的解析式;(218.(1)k(2)若此抛物线与x轴交于A(x1,0)、B(x2,0)两点(点A在点B左侧),且x1+x2=3,求k的值.19.〈广州〉已知抛物线y1=ax2+bx+c过点A(1,0),顶点为B,且抛物线不经过第三象限. (1)使用a、c表示b;(2)判断点B所在象限,并说明理由;(3)若直线y2第二十三章过关自测卷(100分,45分钟)一、选择题(每题3分,共24分)1.已知下列命题:①关于一点对称的两个图形一定不全等;②关于一点对称的两个图形一定是全等图形;③两个全等的图形一定关于一点对称.其中真命题的个数是()A.0 B.1 C.2 D.32.〈江苏泰州〉下列标志图(图1)中,既是轴对称图形,又是中心对称图形的是()图13.如图2,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为()图2A.10°B.15°C.20°D.25°4.如图3①,将正方形纸片两次对折,并剪出一个菱形小洞后铺平,得到的图形是图3②中的()图35.如图4所示的图案中,绕自身的某一点旋转180°后还能与自身重合的图形的个数是()图4A.1B.2C.3D.46.已知a<0,则点P(-a2,-a+1)关于原点的对称点P′在()A.第一象限B.第二象限C.第三象限D.第四象限7.将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图5①.在图5②中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图5①所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是()图5A.6 B.5 C.3 D.28.如图6,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,将△ABC绕点C按顺时针方向旋转n度后,得到△EDC,此时,点D在AB边上,斜边DE交AC边于点F,则n的大小和图中阴影部分的面积分别为()D.60A. 30,2B.60,2C.60,29.如图7,E10.如图8,△90°,得到△A′B′A′的坐标是图811.如图9,△ABC的3个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将△ABC绕点B顺时针旋转到△A′BC′的位置,且点A′、C′仍落在格点上,则线段AB扫过的图形的面积是_______平方单位(结果保留π).图9 图1012.直线y=x+3上有一点P(3,n),则点P关于原点的对称点P′为_______.13.如图10,△ABC是直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,若AP=3,则PP′的长是14.如图11三、解答题(15.如图12(1(2)在图中画出再次旋转后的三角形④.16.如图13所示,(1)观察图①~④中阴影部分构成的图案,请写出这四个图案都具有的两个共同特征:图13(2)借助图⑤的网格,请设计一个新的图案,使该图案同时具有你在解答(1)中所给出的两个共同特征.(注意:①新图案与图①~④的图案不能重合;②只答第(2)问而没有答第(1)问的解答不得分)17.如图14(1)四边形(2)若矩形18.如图15,在平面直角坐标系中,O为坐标原点,每个小方格的边长为1个单位长度.正方形ABCD顶点都在格点上,其中,点A的坐标为(1,1).(1)若将正方形ABCD绕点A顺时针方向旋转90°,点B到达点B1,点C到达点C1,点D到达点D1,求点B1、C1、D1的坐标;图15(2)若线段AC1的长度与点D1的横坐标的差恰好是一元二次方程x2+ax+1=0的一个根,求a的值.拼在一起,构α.(3)小长方形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△CBD′能否全等?若能,直接写出旋转角α的值;若不能,说明理由.)图3 图44.如图3,边长为a的六角螺帽在桌面上滚动(没有滑动)一周,则它的中心O点所经过的路径长为()A.6a B.5a C.2aπD aπEB的中点,则下列结论不成立的是()5.〈山东泰安〉如图4,已知AB是⊙O的直径,AD切⊙O于点A,点C是⌒A.OC//AE B.EC=BCC.∠DAE=∠ABE D.AC⊥OE6.〈2013,晋江市质检〉如图5,动点M,N分别在直线AB与CD上,且AB//CD,∠BMN与∠MND的平分线相交于点P,若以MN为直径作⊙O,则点P与⊙O的位置关系是()图5)°,则∠BCD图7 图810.〈重庆〉如图8,一个圆心角为90°的扇形,半径OA=2,那么图中阴影部分的面积为________(结果保留π).11.〈贵州遵义〉如图9,在Rt△ABC中,∠ACB=90°,AC=BC=1,E为BC边上的一点,以A为圆心,AE为半径的圆弧交AB于点D,交AC的延长于点F,若图中两个阴影部分的面积相等,则AF的长为________(结果保留根号).图9 图1012.如图10,△ABC为等边三角形,AB=6,动点O在△ABC的边上从点A出发沿着A→C→B→A的路线匀速运动一周,速度为每秒1个单位长度,以O ABC的边第二次相切时是出发后第________秒.13.如图11,正六边形ABCDEF中,AB=2,P是ED的中点,连接AP,则AP的长为________.图1114.如图12,AB则P A的长是三、解答题(15. 如图1316. 如图14(1)求证:(2)若⊙O的半径为2,求⌒BD的长.17.如图15,从一个直径为4的圆形铁片中剪下一个圆心角为90°的扇形ABC.(1)求这个扇形的面积;(218. 如图16内,过点P(1)点P(2)在⊙O上是否存在一点Q,使得以Q,O,A,P为顶点的四边形是平行四边形?若存在,请求出Q点的坐标;若不存在,请说明理由.第二十五章过关自测卷(100分,45分钟)一、选择题(每题3分,共24分)1.〈大连〉一个不透明的袋子中有3个红球和2个黄球,这些球除颜色外完全相同.从袋子中随机摸出一个球,它是黄球的概率为()A.13B.25C.12D.352.〈牡丹江〉小明制作了十张卡片,上面分别标有1~10这十个数.从这十张卡片中随机抽取一张恰好能被4整除的概率是()A.110B.25C.15D.3103.〈贵阳〉一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有6个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在30%,那且每张牌被抽出的机会相等,则他抽出红色牌或黄色牌的机(概)率为()A.15B.25C.13D.12图15.小江玩投掷飞镖的游戏,他设计了一个如图2所示的靶子,点E、F分别是矩形ABCD的两边AD、BC上的点,EF∥AB,点M、N是EF上任意两点,则投掷一次,飞镖落在阴影部分的概率是()A. 13B.23C.12D.34A1(1,0),A2A .0个B .1个C .2个D .3个8.小强、小亮、小文三位同学玩投硬币游戏.三人同时各投出一枚均匀硬币,若出现三个正面向上或三个反面向上,则小强赢;若出现两个正面向上一个反面向上,则小亮赢;若出现一个正面向上两个反面向上,则小文赢.下面说法正确的是( )A .小强赢的概率最小B .小文赢的概率最小C .小亮赢的概率最小D .三人赢的概率相等二、填空题(每题3分,共18分)9.〈长沙〉在一个不透明的盒子中装有n 个小球,它们只有颜色上的区别,其中有2个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到红球的频率稳定于0.2,那么可以推算出n 大约是_______.10.一只昆虫在如图5所示的树枝上爬行,假定昆虫在每个岔路口都会随机地选择一条路径,则它停留在 A 叶面的概率是_______.图5 图611.如图6,电路图上有编号为①②③④⑤⑥共6个开关和一个小灯泡,闭合开关①或同时闭合开关②③或同时闭合开关④⑤⑥都可使这个小灯泡发光,问任意闭合电路上其中的两个开关,小灯泡发光的概率为_______.12.13.1、2、3、12数作为点P 14.三、解答题(15.地摸出一个小球,求下列事件的概率:(1)两次摸出的小球的标号相同;(2)两次摸出的小球标号的和等于4.17.〈扬州〉端午节期间,扬州某商场为了吸引顾客,开展有奖促销活动,设立了一个可以自由转动的转盘,转盘被分成4个面积相等的扇形,四个扇形区域里分别标有“10元”、“20元”、“30元”、“40元”的字样(如图8).规定:(1(218.(1(2)请问这个游戏规则对甲、乙双方公平吗?试说明理由.19.有三张正面分别写有数-2 ,-1,1的卡片,它们的背面完全相同,将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数作为x的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数作为y的值,两次结果记为(x,y).(1)用画树状图法或列表法表示(x,y)所有可能出现的结果;(2)求使代数式2223x xy yx y x y-+--有意义的(x,y)出现的概率;(3 20.(1图10(2)求15个城市的平均上班堵车时间(计算结果保留一位小数);(3)规定:城市的堵车率=-上班堵车时间上班花费时间上班堵车时间×100%,比如,北京的堵车率=145214-×100%≈36.8%;沈阳的堵车率=123412-×100%≈54.5%,某人欲从北京,沈阳,上海,温州四个城市中任意选取两个作为出发目的地,求选取的两个城市的堵车率都超过30%的概率.期末选优拔尖测试 (120分,90分钟)一、选择题(每题3分,共24分)1.如图1所示的图形中,既是轴对称图形又是中心对称图形的是( )图12.下列成语所描述的事件是必然事件的是()A.水中捞月B.拔苗助长C.守株待兔D.瓮中捉鳖3.如图2,AB是⊙O的直径,∠ACD=15°,则∠BAD的度数为()A.75°B.72°D.65°图2 图34.有一块长为30 m,宽为20 m的矩形菜地,准备修筑同样宽的三条直路(如图3),把菜地分成六块作为试验田,种植不同品种的蔬菜,并且种植蔬菜面积为矩形菜地面积的34,设道路的宽度为x m,下列方程:①30x+20x×2=30×20×14;②30x+20x×2-2x2=30×20×14;③(30-2x)(20-x)=30×20×34,其中正确的是()A.①②B.①③.设运动)0的个数二、填空题(每题3分,共21分)9.(陕西)在平面直角坐标系中,将抛物线y=x2-x-6向上(下)或向左(右)平移m个单位,使平移后的抛物线恰好经过原点,则m的最小值为_______.10.已知点P(a,-3)关于原点的对称点为P1(-2,b),则a+b的值是_______.11.已知2x2-4x+c=0的一个根,则方程的另一个根是_______.12.如图7所示,某工厂的大门是抛物线形水泥建筑物,大门的地面宽度为8 m,两侧距地面3 m高处各有一壁灯,两壁灯间的水平距离为6 m,则厂门的高度约为_______.(精确到0.1 m)图713.一圆锥的侧面展开后是扇形,该扇形的圆心角为120°,半径为6 cm,则此圆锥的表面积为_______cm2.14.已知⊙O1和⊙O2的半径分别是一元二次方程x2-5x+6=0的两根,且O1O2=1,则⊙O1和⊙O2的位置关系是_______.15.如图8,Rt△ABC的边BC位于直线l上,AC∠ACB=90°,∠A= 30°;若Rt△ABC由现在的位置向右无滑动地翻转,当点A第3次落在直线l上时,点A所经过的路线的长为_______ (结果用含π的式子表示).BC的长(1)k为何值时,△ABC是以BC为斜边的直角三角形?(2)k为何值时,△ABC是等腰三角形?并求△ABC的周长.19.现有形状、大小和颜色完全一样的三张卡片,上面分别标有数字“1”“2”“3”,第一次从这三张卡片中随机抽取一张,记下数字后放回;第二次再从这三张卡片中随机抽取一张并记下数字.请用列表或画树状图的方法表示出上述试验所有可能的结果,并求第二次抽取的数字大于第一次抽取的数字的概率.20.已知正方形(1)如图9(DF与BF图9(2DG21.如图10,.(1)求证:PB是⊙O的切线;图10(2)若⊙O的半径为2,求弦AB及P A,PB的长.22.“五一”期间,小明和同学一起到游乐场游玩.如图11为某游乐场大型摩天轮的示意图,其半径是20m,它匀速旋转一周需要24分钟,最底部点B离地面1m.小明乘坐的车厢经过点B时开始计时.(1)计时4分钟后小明离地面的高度是多少?(223.距离全长为工单价y1长度x(注:工程款=(1)(2)考虑到设备和技术等因素,甲公司必须邀请乙公司联合施工,共同完成该工程.因设备共享,两公司联合施工时市政府可节省工程款140万元(从工程款中扣除).①如果设甲公司施工a米(0<a<300),那么乙公司施工______米,其施工单价y2=_______万元/米,试求市政府共支付工程款P(万元)与a(米)之间的函数关系式;②如果市政府支付的工程款为2 900万元,那么应将多长的施工距离安排给乙公司施工?24.如图12,y关于x的二次函数y=x+m)(x-3m)图象的顶点为M,图象交x轴于A、B两点,交y轴正半轴于点D.以AB为直径作圆,圆心为点C,定点E的坐标为(-3,0),连接ED.(m>0)(1)写出A、B、D三点的坐标;(2)当m(3)当m第二十一章参考答案及点拨一、1.D 2.C 3.B 4.A 5.C 6.A 7.C二、8.1 9.a <1且a ≠0 10.-6 11.x 2+40x -75=0 12.1313.6或10或12三、14. 解:①x 1,2x 1,2=1x 1=0,x 2=3;④x 1,2=1点拨:①可选择公式法,②选择直接开平方法,③选择因式分解法,④选择配方法;任选一题即可. 15. 解:(1)k =-1. (2)方程的另一个解为x =-1. 16. 解:(1)∵方程有两个不相等的实数根, ∴(-3)2-4(-k )>0.即4k >-9,解得,k >-94.(2)若k 是负整数,则k 只能为-1或-2.如果k =-1,原方程为x 2-3x +1=0.解得x 1=32+,x 2=32. 点拨:(2)题答案不唯一. 17. 解:(1)∵30 000÷5 000=6,∴能租出24间. (2)设每间商铺的年租金增加x 万元,则 (30-0.5x )×(10+x )-(30-0.5x )×1-0.5x×0.5=275, 整理得2 x 218. 解:y =kx +b (k ≠0).35k +b =56.(2解得x 1=33,19. 解:(1cm,CQ =2x cm,所以PB =16因为(PB +CQ )所以(16-3所以P 、Q答图1(2)设P 、Q 两点从出发开始到y 秒时,点P 和点Q 间的距离是10 cm.如答图1,过点Q 作QE ⊥AB 于E ,得EB =QC =2y cm ,EQ =BC =6 cm ,所以PE =PB -BE =PB -QC =16-3y -2y =16-5y (cm), 在直角三角形PEQ 中,PE 2+EQ 2=PQ 2,得 (16-5y )2+62=102, 即25y 2-160y +192=0,解得y 1=85,y 2=245,经检验均符合题意. 所以P 、Q 两点从出发开始到85秒或245秒时,点P 和点Q 间的距离是10 cm.第二十二章参考答案及点拨一、1. C 2. C 3. B4. B 点拨:本题考查了二次函数的最值,抛物线与x 轴的交点,仔细分析表格数据,熟练掌握二次函数的性质是解题的关键.5. C6. D 点拨:令m =0,则函数y =(x -1)(x -2)的图象与x 轴的交点分别为(1,0),(2,0),画出函数图象(如答图1),利用数形结合即可求出α,β的取值范围.∵m >0,∴α<1,β>2.故选D.c =2,∴该1y =ax 2+bx 204b a- =15. 12.5 点拨:设一段铁丝的长度为x cm,则另一段长度为(20-x) cm,S=116x2+116(20-x)(20-x)=18(x-10)2+12.5,∴当x=10 时,S最小为12.5 cm2.16. 272点拨:(1)平移后抛物线的表达式与原来的抛物线的表达式中的a相同,可以通过待定系数法求抛物线的表达式;(2)不规则图形的面积要通过割补、拼接转化为规则图形的面积,这是解本题的关键.三、17. 解:(1)∵二次函数y=x2+bx+c的图象过点A(1,0),C(0,-3),∴10,3,b cc++=⎧⎨=-⎩解得2,3.bc=⎧⎨=-⎩∴二次函数的解析式为y=x2+2x-3;(2)∵当y=0时,x2+2x-3=0,解得:x1=-3,x2=1,∴A(1,0),B(-3,0),∴AB=4,设P(m,n),∵△ABP的面积为10,∴12AB·|n|=10,解得:n=±5,当n=5时,m2+2m-3=5,解得:m=-4或2,∴P点坐标为(-4,5)或(2,5);当n=-5时,m2+2m-3=-5,方程无解,故P点坐标为(-4,5)或(2,5).18. 解:(1)∵抛物线y=x2-(k+2)x+14k2+1与x轴有两个交点,若令y=0,即x2-(k+2)x+14k2+1=0,则有∆=-(k+2)2-4×1×(14k2+1)>0, k2+4k+4-k2-4>0,4k>0,∴k>0,即k>0时,此抛物线与x轴有两个交点.(2∴x1,2∴x1∵x119.(2当a=0,解得(3,b=-8,此时-把B又a∴y1=2x2-8x+6,B(2,-2).画出上述二次函数的图象(如答图2),观察图象知,当x≥1时,y1的最小值为顶点纵坐标-2,且无最大值.∴当x≥1时,y1的取值范围是y1≥-2.答图2点拨:二次函数的问题通常都是求解析式、求对称轴、求顶点坐标、求最值以及与其他知识的综合等,本题基本上综合了上述各种问题,解题的方法就是牢牢抓住二次函数的对称轴的求法,顶点坐标的求法,以及最值的求法.第二十三章参考答案及点拨一、1.B 2.B3.B 点拨:由旋转性质得△BCE≌△DCF,所以∠DFC=∠BEC= 60°,CE=CF,又∠ECF=90°,所以∠EFC=45°,所以∠EFD= ∠DFC-∠EFC=60°-45°=15°.4. C5. D 点拨:四个图形都是中心对称图形,所以绕自身的某一点旋转180°后都与自身重合.6. D7. B 点拨:先向右翻滚,然后再逆时针旋转叫做一次变换,那么连续3次变换是一个循环.本题先要找出3次变AB扫,∴∠P AP′角顶点坐标为(12,0),图⑥⑦的直角顶点坐标为(24,0),所以,图⑨⑩的直角顶点坐标为(36,0).三、15. 解:(1)旋转中心点P位置如答图2所示,点P的坐标为(0,1);(2)旋转后的三角形④如答图2所示.答图216.解:(1)①都是轴对称图形;②面积都等于四个小正方形的面积之和.(2)答案不唯一,只要设计的图案同时具有所给出的两个共同特征,均正确,例如:同时具备特征①②的部分图案如答图3所示:答图317.解:(1)四边形BDEG是菱形.理由:因为矩形ABCD和矩形AEFG关于点A中心对称,所以BE和DG互相平分,四边形BDEG 是平行四边形;又因为∠DAB=90°,所以四边形BDEG是菱形.(2)因为矩形ABCD面积为2,所以△DAB的面积为1,所以菱形BDEG的面积为4.3,∴在△GCD′和△E′CD中,CD CDGCD DCE CG CE'=⎧⎪∠'=∠'⎨⎪='⎩,,,∴△GCD′≌△E′CD,∴GD′=E′D;(3) 解:能.旋转角α为135°或315°.第二十四章参考答案及点拨一、1. C 点拨:∵AB是⊙O的切线,B为切点,∴OB⊥AB,即∠OBA=90°,∵∠BAO=40°,∴∠O=50°,∵OB=OC,∴∠OCB=12(180°-∠O)=65°.故选C.2. C 点拨:如答图1所示,过圆心O作OD⊥AB于点D,连接OA.答图1∵OD⊥AB,∴AD=12AB=设OA=r cm在Rt△AOD解得r=5.故选C.3. B =6π,解得:l=6.故选B4. C 60180aπ×6=2aπ.故选C5. D∴OC⊥BE ∴AE⊥BEB.∵⌒EC=⌒BC C.∵AD为圆∴∠DAE+∠∴∠DAE=∠D.AC6. C 点拨:∴∠BMN+∠∵∠BMN∴∠PMN =21∠BMN ,∠PNM =21∠MND , ∴∠PMN +∠PNM =90°.∴∠MPN =180°-(∠PMN +∠PNM )=180°-90°=90°. ∴以MN 为直径作⊙O 时,OP =21MN =⊙O 的半径, ∴点P 在⊙O 上.故选C .7. C 点拨:如答图2,连接IC .答图2∵CD 为AB 边上的高,∴∠ADC =90°, ∴∠BAC +∠ACD =90°.∵I 为△ACD 的内切圆圆心,∴AI ,CI 分别是∠BAC 和∠ACD 的平分线, ∴∠IAC +∠ICA =21(∠BAC +∠ACD )=21×90°=45°, ∴∠AIC=135°.又∵AB =AC ,∠BAI =∠CAI ,AI =AI ,=S △ABC ,即C =60°,O ′D =3,∴O ′C =2,∴O ′A =6-2=4.∴以O 为圆心、3为半径的圆在运动过程中与△ABC 的边第二次相切时是出发后第4秒.答图3 答图4 13. 13 点拨: 连接AE ,如答图4,由题意易得AE =23,EP =1, ∠AEP =90°.∴在Rt △AEP 中,AP = 22132+)(=13. 14.7a 点拨:连接OC ,OP ,如答图5所示.∵C 为半圆的三等分点,Rt △ABP 中,21AB =5cm ,答图6∵BC =AB ,∠CAB =30°, ∴∠ACB =∠CAB =30°, 又∵OC =OB ,∴∠CBO =∠ACB =30°,∴∠AOB =∠CBO +∠ACB =60°.在△ABO 中,∠CAB =30°,∠AOB =60°, 可得∠ABO =90°,即AB ⊥OB , ∴AB 是⊙O 的切线.(2)解:∵OB =2,∠BOD =60°, ∴⌒BD的长度l =32180260=•ππ. 点拨:此题考查了切线的判定,等腰三角形的性质,三角形的外角性质以及弧长公式的运用.切线的判定方法有两种:有切点连半径,证明垂直;无切点作垂线,证明垂线段等于半径. 17. 解:(1)如答图7所示,连接BC . 由∠BAC =90°得BC 为⊙O 的直径, ∴BC =4.∴d=2.又∵DE=4-22<d=2,即围成圆锥的底面圆的直径大于DE,∴不能围成圆锥.点拨:(1)由勾股定理求出扇形的半径,再根据扇形面积公式求值.(2)题需要求出③中最大圆的直径以及圆锥底面圆的直径(圆锥底面圆的周长即为弧BC的长),然后进行比较即可.18. 解:(1)线段AB长度的最小值为4.理由如下:连接OP,如答图8所示.答图8∵AB切⊙O于P,∴OP⊥AB.取AB的中点C,则AB=2OC;当OC=OP时,OC最短,答图10∵OQ∥P A,∠APO=90°,∴∠POQ=90°,又∵OP=OQ,∴∠PQO=45°,∵PQ∥OA,∴PQ⊥y轴.设PQ⊥y轴于点H,在Rt△OHQ中,根据OQ=2,∠HQO=45°,得Q点坐标为(-2,2).∴符合条件的点Q的坐标为(-2,2)或(2,-2).方法规律:解答本题运用了分类讨论思想.(1)如答图8,设AB的中点为C,连接OP,由于AB是⊙O的切线,故△OPC是直角三角形,所以当OC与OP重合时,OC最短,即AB最短.(2)分两种情况:如答图9,当四边形APOQ;如答图10,可求得∠QOP=∠2,2).一、1. B2. C 点拨:3. D 点拨:4. B 3张,黄色纸牌35. C 两部分,概率∵四边形四边形DCFE∴飞镖落在阴影部分的概率是21.故选C. 6. D 点拨:∵以A 1、A 2、B 1、B 2其中的任意两点与点O 为顶点作三角形,共可以作4个三角形.所作三角形是等腰三角形只有: △OA 1B 1,△OA 2B 2,∴所作三角形是等腰三角形的概率是42=21.故选D. 7. A 点拨:①由于一枚质地均匀的硬币只有正反两面,因此正面朝上的概率是21;②把一个质地均匀的圆形转盘平均分成偶数份,并依次标上奇数和偶数,则标奇数和偶数的部分各占一半,指针落在奇数区域的次数与总次数的比值为21; ③由于圆锥是均匀的,因此落在圆形纸板上的米粒的个数也是均匀地分布的,与纸板面积成正比,可验证其中一半纸板上的米粒数与纸板上总米粒数的比值为21. ∴三个试验均科学,故选A.8. A 点拨:设有A 、B 、C 三枚硬币, 共有以下8种情况:(用1表示正,0表示反)1,1,1;0,0,0;1,1,0;1,0,0;1,0,1;0,1,1;0,1,0;0,0,1.于是P (小强赢)=28=14,P (小亮赢)=38, P (小文赢)=38,∴小强赢的概率最小.故选A.二、9. 10 点拨:由题意,得n2=0.2.解得n =10.故估计n 大约是10.故答案为10.10. 61在A 11. 52∴一共有12. 王红 .如答图1所示.答图1∴共9种情况,和为7的情况有3种,王红获胜的概率为93=31.和为8的情况有2种,刘芳获胜的概率为92.∴王红获胜的可能性较大.故答案为王红.13.5314. 32点拨:画树状图如答图2所示.∵共有6种等可能的结果,甲、乙二人相邻的有4种情况,∴甲、乙二人相邻的概率是64=32.故答案为32.答图2三、15. 解:设口袋内有x 个黑球,则有白球(120-x )个,从袋中任意摸出一球,记下其颜色,再把它放回去混合均匀,不断重复上述过程,若共摸了a 次,其中黑球b 个,则有a b =120x ,解得x =a b 120,即口袋内有ab 120个黑球,有(120-ab120. 16. 解:(1概率P =164(2共有1617. 解:(1答图5则该顾客最少可得20元购物券,最多可得80元购物券. 故答案为:20;80;(2)树状图如答图5所示,∵共有16种等可能的结果,该顾客所获购物券金额不低于50元的有10种情况, ∴该顾客所获购物券金额不低于50元的概率为1610=85. 点拨:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏地列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合于两步或两步以上完成的事件.注意概率等于所求情况数与总情况数之比.18. 解:(1)列表如下:(2∴P 即P 19. (2,(1,-2),(3.∵在使代数式2223y x xyx -- +y x y -有意义的4个结果中,使代数式的值为整数的(x,y )有(1,-2),(-2,1)2个结果,∴使代数式2223yx xyx -- +y x y -的值为整数的(x,y )出现的概率是92. 考点:列表法或画树状图法,概率,代数式有意义的条件,代数式的化简求值.点拨:(1)根据题意列出表格或画树状图,即可表示出(x,y )所有可能出现的结果.(2)根据(1)中的表格或树状图找出使代数式2223y x xy x -- +y x y -有意义的结果数,再除以所有结果数即可. (3)先化简,再在使代数式2223y x xyx -- +y x y -有意义的4个结果中找出使代数式的值为整数的(x,y )的结果数,再除以所有结果数即可.20. 解:(1)上班花费时间在30分钟到40分钟之间的城市有4个,40分钟到50分钟之间的城市有3个,补充频数分布直方图,如答图6所示.,(北京,上30%的情况有3=2163=. 分钟到50分15. (4+3)π三、16. 解:设抛物线的解析式为y =a (x -2)2+k .把A (1,0),B (0,-3)的坐标代入,得⎪⎩⎪⎨⎧+-=-+-=.)20(3,)21(022k a k a解得⎩⎨⎧=-=.1,1k a∴y =-(x -2)2+1= -x 2+4x -3.17. 解:移项,得x 2-4x =-2,配方,得x 2-4x +4= -2+4,即(x -2)2=2,所以x -2=±2,x 1=2+2,x 2=2-2.18. 解:(1)∵x 2-(2k +1)x +k (k +1)=0, ∴(x -k )·[x -(k +1)]=0, ∴x 1=k ,x 2=k +1.由勾股定理,得k 2+(k +1)2=52,解得k 1=3,k 2=-4(舍去). ∴当k =3时,△ABC 是以BC 为斜边的直角三角形. (2)当△ABC 是等腰三角形时,有三种情况:①AB =AC ,而在一元二次方程中,由于b 2-4ac =[-(2k +1)]2-4k (k +1)=1,即AB ≠AC .因此此种情况不存在; ②AB =BC 或AC =BC .此时x =5是已知方程的一个根,所以52-5(2k +1)+k (k +1)=0,解得k 1=4,k 2=5. 当k 1=4时,方程的两个根为x 1=k =4,x 2=k +1=5,此时等腰三角形的三边长为4,5,5,可以构成三角形, ∴此时等腰三角形的周长为4+5+5=14;b ,计算可得ABE (SAS ),°.∵P A 切。
最新北师大版九年级数学上册单元测试题全套与答案(K12教育文档)
最新北师大版九年级数学上册单元测试题全套与答案(word版可编辑修改)最新北师大版九年级数学上册单元测试题全套与答案(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(最新北师大版九年级数学上册单元测试题全套与答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为最新北师大版九年级数学上册单元测试题全套与答案(word版可编辑修改)的全部内容。
最新北师大版九年级数学上册单元测试题全套与答案(word版可编辑修改)最新北师大版九年级数学上册单元测试题全套及答案( 最新北师大版,2017年秋配套试题)第一章检测题(时间:120 分钟满分: 120 分)一、选择题( 每小题 3 分,共30 分)1.菱形的对称轴的条数为()A.1 B.2 C.3D.42.下列说法中,正确的是( )A.相等的角一定是对顶角 B .四个角都相等的四边形一定是正方形C.平行四边形的对角线互相平分 D .矩形的对角线一定垂直3.平面直角坐标系中,四边形ABCD的顶点坐标分别是A(-3,0) ,B(0 ,2),C(3,0),D(0,-2),则四边形ABCD是()A.矩形 B .菱形 C .正方形 D .平行四边形4.下列命题是假命题的是( )A.四个角相等的四边形是矩形 B .对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形 D .对角线垂直的平行四边形是菱形5.如图,矩形纸片ABCD中,AB=6 cm,BC=8 cm,现将其沿AE对折,使得点 B 落在边 AD上的点B1处,折痕与边BC交于点E,则 CE的长为()A.6 cm B .4 cm C .2 cm D .1 cm6.如图,四边形ABCD是菱形, AC=8,DB=6,DH⊥AB于 H,则 DH等于( A )A 。
北师大九年级上册数学全册单元测试
北师大九年级上册数学全册单元测试(总31页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除九年级数学单元测试卷(证明二)一.选择题(本题共5小题,每题3分,共15分)在每小题给出的四个选项中,只有一个是正确的,请将所选项的字母写在题目后面的括号里.1.在△ABC 中,AB=AC ,AB 的中垂线与AC 所在直线相交所得的锐角为50°,则∠B 的度数为( )A .20°B .70°C .70°或20°D .无法确定2.如图,在△ABC 中,∠C=90°,AC=14,BD 平分∠ABC ,交AC 于D ,AD ∶DC=5∶2,则点D 到AB 的距离为( )A .10 B .4 C .7 D .6 3.如图,△ABC 中,AB=AC=BD ,AD=DC ,则∠BAC 的度数为( ) A .120° B .108° C .100° D .135° 4.如图,△ABC 中,∠B ,∠C 的角平分线相交于点O ,过O 作DE ∥BC ,若BD+CE=5,则DE 等于( )A .7 B .6 C .5 D .45.已知在Rt △ABC 中,∠C=90°,∠A=30°,AB=a ,则ABAC等于( )A .21B .2C .23D .332二.填空题(本题共5小题,每小题4分,共20分)请把下列各题的正确答案填写在横线上.6.等腰三角形的周长为13,其中一边长为3,则其他两边长为 ________________ 7.等腰三角形一腰上的高与腰长之比为1∶2,则等腰三角形的顶角为 8.如图,BD 是∠ABC 的平分线,DE ⊥AB 于E ,236cm S ABC =∆,AB=18cm ,BC=12cm ,则DE= cm .9.如图,把一张矩形纸片ABCD 沿BD 对折,使点C 落在E 处,BE 与AD 相交于点O ,若BC=8,EO=3,则CD=CBD 第2题第3题第4题AAB C第11题10.如图,△ABC 中,BC=5,AB 的垂直平分线交BC 于D ,AC 的垂直平分线交BC 于E ,则△ADE 的周长是 .三.解答题(本大题共5小题,每小题6分,共30分)11.(2008中考·广东)如图,在ΔABC 中,8,10===BC AC AB .用尺规作图作BC 边上的中线AD (保留作图痕迹,不要求写作法、证明),并求AD 的长.12.如图,在△ABC 中,AC=BC ,∠C=90°,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E 。
九年级上册数学名校课堂练习单元测试
九年级上册数学名校课堂练习单元测试一、填空题。
(共23分)1、4∶( )= 24÷( )=( )%2、如果a× =b× =c× =d× (a、b、c、d都大于0),那么a、b、c、d中,( )最大,( )最小。
3、六(1)班女生人数是男生的45 ,男生人数是女生人数的( )%,女生比男生人数少( )%。
4、一项工程,甲每月完成它的512 ,2个月完成这项工程的( ),还剩下这项工程的( )。
5、一种大豆的出油率是10%,300千克大豆可出油( )千克,要榨300千克豆油需大豆( )千克。
6、( )乘6的倒数等于1;20吨比( )吨少;( )平方米比15平方米多13 平方米。
7、冰化成水后,体积减少了112 ,水结成冰后,体积增加( )。
8、一种电扇300元,先后两次降价,第一次按八折售出,第二次降价10%。
这种电扇最后售价( )元。
9、一根绳子长8米,对折再对折,每段绳长是( ),每段绳长是这根绳子的( )。
10、一个长方体棱长总和是120厘米,长、宽、高的比是5:3:2。
这个长方体的体积是( )立方厘米。
11、化简比,并求比值。
4:18 ;20分钟:2小时;3吨:600千克化简比是:( ) ( ) ( )比值是:( ) ( ) ( )二、判断。
(共5分)1、两个长方体体积相等,表面积就一定相等。
( )2、男生人数比女生多,女生人数则比男生少。
( )3、一千克糖用去25 千克后,还剩下它的60%。
( )4、一件商品先涨价10%,再降价10%,现价与原价相同 ( )三、选择题。
(共5分)1、一个长方体有4个面的面积相等,其余两个面一定是( )。
A、长方形B、正方形C、无法确定2、甲数的17 等于乙数的18 ,甲数、乙数不为0,那么甲数( )乙数。
A、大于B、小于C、等于D、无法确定3、一年前王老师把3000元钱存入了银行,定期2年。
年利息按2.25%计算,到期可得本金和税后利息一共( )元。
期人教版九年级数学上册名校课堂练习单元测试(三)旋转
单元测试(三) 旋转(时间:45分钟 满分:100分)一、选择题(每小题3分,共30分) 1.下列运动属于旋转的是( )A .滚动过程中的篮球B .一个图形沿某直线对折过程C .气球升空的运动D .钟表钟摆的摆动 2.下列图形中,是中心对称图形的为( )3.如图,△ODC 是由△OAB 绕点O 顺时针旋转31°后得到的图形,若点D 恰好落在AB 上,且∠AOC 的度数为100°,则∠DOB 的度数是( )A .34°B .36°C .38°D .40°4.如图,已知△OAB 是正三角形,OC ⊥OB ,OC =OB ,将△OAB 绕点O 按逆时针方向旋转,使得OA 与OC 重合,得到△OCD ,则旋转的角度是( )A .150°B .120°C .90°D .60°5.点P(ac 2,ba)在第二象限,点Q(a ,b)关于原点对称的点在( )A .第一象限B .第二象限C .第三象限D .第四象限6.如图,已知△EFG 与△E′F′G′均为等边三角形,且E(3,2),E ′(-3,-2),通过对图形观察,下列说法正确的是( )A.△EFG与△E′F′G′关于y轴对称B.△EFG与△E′F′G′关于x轴对称C.△EFG与△E′F′G′关于原点O对称D.以F,E′,F′,E为顶点的四边形是轴对称图形7.如图所示,已知△ABC与△CDA关于点O对称,过O任作直线EF分别交AD,BC于点E,F,下面的结论:①点E和点F,点B和点D都是关于中心O的对称点;②直线BD必经过点O;③四边形ABCD是中心对称图形;④四边形DEOC与四边形BFOA的面积必相等;⑤△AOE与△COF成中心对称,其中正确的个数为()A.2个B.3个C.4个D.5个8.如图,在△ABO中,AB⊥OB,OB=3,AB=1,把△ABO绕点O旋转150°后得到△A1B1O,则点A1的坐标为()A.(-1,-3) B.(-1,-3)或(-2,0)C.(-3,-1)或(0,-2) D.(-3,-1)9.如图,在方格纸上△DEF是由△ABC绕定点P顺时针旋转得到的.如果用(2,1)表示方格纸上A点的位置,(1,2)表示B点的位置,那么点P的位置为()A.(5,2) B.(2,5) C.(2,1) D.(1,2)10.如图,正方形ABCD的边长为6,点E,F分别在AB,AD上,若CE=35,且∠ECF =45°,则CF的长为()A .210B .3 5 C.5310 D.1035二、填空题(每小题4分,共24分)11.若将等腰直角三角形AOB 按如图所示放置,OB =2,则点A 关于原点对称的点的坐标为________.12.如图,△ABC 中,∠C =30°.将△ABC 绕点A 顺时针旋转60°得△ADE ,AE 与BC 交于F ,则∠AFB =________.13.在方格纸上建立如图所示的平面直角坐标系,将△ABO 绕点O 按顺时针方向旋转90°,得△A ′B ′O ,则点A 的对应点A′的坐标为________.14.如图是2013年第12届沈阳全运会的吉祥物——斑海豹“宁宁”,则图1到图2经历了________变换,图2到图3经历了________变换.15.如图1,教室里有一只倒地的装垃圾的灰斗,BC 与地面的夹角为50°,∠C =25°,小贤同学将它扶起平放在地上(如图2),则灰斗柄AB 绕点C 转动的角度为________.16.在平面直角坐标系中,已知点P0的坐标为(1,0),将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1,再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3的坐标是________.三、解答题(共46分)17.(8分)在格纸上按以下要求作图,不用写作法:(1)作出“小旗子”向右平移6格后的图案;(2)作出“小旗子”绕O点按逆时针方向旋转90°后的图案.18.(8分)直角坐标系第二象限内的点P(x2+2x,3)与另一点Q(x+2,y)关于原点对称,试求x+2y的值.19.(8分)实践与操作:如图1是以正方形两顶点为圆心,边长为半径,画两段相等的圆弧而成的轴对称图形,图2是以图1为基本图案经过图形变换拼成的一个中心对称图形.(1)请你仿照图1,用两段相等的圆弧(小于或等于半圆),在图3中重新设计一个不同的轴对称图形.(2)以你在图3中所画的图形为基本图案,经过图形变换在图4中拼成一个中心对称图形.20.(10分)如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.(1)求证:△BDE≌△BCE;(2)试判断四边形ABED的形状,并说明理由.21.(12分)在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针旋转60°得到线段BD.图1图2(1)如图1,直接写出∠ABD的大小(用含α的式子表示);(2)如图2,∠BCE =150°,∠ABE =60°,判断△ABE 的形状并加以证明;(3)在(2)的条件下,连接DE ,若∠DEC =45°,求α的值.参考答案1.D2.B3.C4.A5.A6.C7.D8.B9.A 10.A 11.(-1,-1) 12.90° 13.(2,3) 14.轴对称 旋转 15.105° 16.(-1,3) 17.(1)(2)图略.18.根据题意,得(x 2+2x)+(x +2)=0,y =-3.∴x 1=-1,x 2=-2.∵点P 在第二象限,∴x 2+2x<0.∴x =-1.∴x +2y =-7. 19.(1)图略.(2)图略.20.(1)证明:∵△BAD 是由△BEC 在平面内绕点B 旋转60°而得,∴DB =CB ,∠ABD =∠EBC ,∠ABE =60°,∵AB ⊥EC ,∴∠ABC =90°.∴∠DBE =∠CBE =30°.在△BDE 和△BCE 中,⎩⎪⎨⎪⎧DB =CB ,∠DBE =∠CBE ,BE =BE ,∴△BDE ≌△BCE(SAS).(2)四边形ABED 为菱形.理由如下:由(1)得△BDE ≌△BCE ,∵△BAD 是由△BEC 旋转而得,∴△BAD ≌△BEC.∴BA =BE ,AD =EC =ED.又∵BE =CE ,∴四边形ABED 为菱形.21.(1)30°-12α.(2)△ABE 为等边三角形.证明:连接AD 、CD 、ED.∵线段BC 绕点B 逆时针旋转60°得到线段BD ,∴BC =BD ,∠DBC =60°.∵∠ABE =60°,∴∠ABD =60°-∠DBE =∠EBC =30°-12α.又∵BD =CD ,∠DBC =60°,∴△BCD 为等边三角形,∴BD =CD.又∵AB =AC ,AD =AD ,∴△ABD ≌△ACD(SSS).∴∠BAD =∠CAD =12∠BAC=12α.∵∠BCE =150°,∴∠BEC =180°-(30°-12α)-150°=12α.∴∠BAD =∠BEC.在△ABD 与△EBC 中,⎩⎪⎨⎪⎧∠BEC =∠BAD ,∠EBC =∠ABD ,BC =BD ,∴△ABD ≌△EBC(AAS).∴AB =BE.又∵∠ABE=60°,∴△ABE 为等边三角形.(3)∵∠BCD =60°,∠BCE =150°,∴∠DCE =150°-60°=90°.∵∠DEC =45°,∴△DCE 为等腰直角三角形.∴CD =CE =BC.∵∠BCE =150°,∴∠EBC =(180°-150°)2=15°.又∵∠EBC =30°-12α=15°,∴α=30°.。
北师大版九上数学第四章 图形的相似 2016秋《名校课堂》单元测试(含答案)
单元测试(四) 图形的相似(BJ )(满分:150分,考试用时120分钟)一、选择题(本大题共15个小题,每小题3分,共45分) 1、如果mn =ab ,那么下列比例式中错误的是( )A 、a m =n bB 、a n =m bC 、m a =n bD 、m a =b n2.若△ABC ∽△DEF ,且AB ∶DE =2∶3,则AB 与DE 边上的高h 1与h 2之比为( ) A .2∶3 B .3∶2 C .4∶9 D .9∶4 3.若△ABC ∽△A ′B ′C ′,∠A =40°,∠B =110°,则∠C ′=( )A .40°B .110°C .70°D .30°4.如图,l 1∥l 2∥l 3,直线a 、b 与l 1、l 2、l 3分别交于点A 、B 、C 和点D 、E 、F 、若AB BC =23,DE =4,则EF 的长是( )A 、83B 、203 C .6 D .105.下列说法不正确的是( )A .两角对应相等的三角形是相似三角形B .两边对应成比例的三角形是相似三角形C .三边对应成比例的三角形是相似三角形D .两个等边三角形一定是相似三角形6.已知一个三角形的两个内角分别是40°,60°,另一个三角形的两个内角分别是40°,80°,则这两个三角形( ) A .一定不相似 B .不一定相似 C .一定相似 D .不能确定7.已知△ABC 的三边长分别为6 cm ,7、5 cm ,9 cm ,△DEF 的一边长为4 cm ,若想得到这两个三角形相似,则△DEF 的另两边长是下列的( )A .2 cm ,3 cmB .4 cm ,5 cmC .5 cm ,6 cmD .6 cm ,7 cm8.在中华经典美文阅读中,刘明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20 cm ,则它的宽约为( )A .12、36 cmB .13、6 cmC .32、36 cmD .7、64 cm9.如图,A ,B 两地被池塘隔开,小明通过下列方法测出了A ,B 间的距离:先在AB 外选一点C ,然后测出AC ,BC 的中点M ,N ,并测量出MN 的长为12 m ,由此他就知道了A ,B 间的距离.有关他这次探究活动的描述错误的是( )A .AB =24 m B .MN ∥ABC .△CMN ∽△CABD .CM ∶MA =1∶2 10.如图,有两个形状相同的星星图案,则x 的值为( )A .6B .8C .10D .12(第10题) (第11题) (第12题)11.如图,在□ABCD 中,E 为AD 的中点,△DEF 的面积为1,则△BCF 的面积为( ) A .1 B .2 C .3 D .412.小明在打网球时,为使球恰好能过网(网高0、8米),且落在对方区域离网5米的位置上,已知她的击球高度是2、4米,则她应站在离网( )A .7、5米处B .8米处C .10米处D .15米处13.已知△ABC 在直角坐标系中的位置如图所示,以O 为位似中心,把△ABC 放大2倍得到△A ′B ′C ′,那么A ′的坐标为( )A .(-8,-4)B .(-8,4)C .(8,-4)D .(-8,4)或(8,-4)14.如图所示,四边形ABCD 是正方形,E 是CD 的中点,P 是BC 边上的一点,下列条件:①∠APB =∠EPC ;②∠APE =∠APB ;③P 是BC 的中点;④BP ∶BC =2∶3、其中能推出△ABP ∽△ECP 的有( ) A .4个 B .3个 C .2个 D .1个(第14题) (第15题) (第17题)15.如图,D 是△ABC 一边BC 上一点,连接AD ,使△ABC ∽△DBA 的条件是( ) A .AC ∶BC =AD ∶BD B .AC ∶BC =AB ∶AD C .AB 2=CD ·BC D .AB 2=BD ·BC二、填空题(本大题共5小题,每小题5分,共25分) 16.若x ∶y =1∶2,则x -yx +y=________、17.如图,∵∠A =∠D ,∠B =∠E ,∴△ABC ∽△________、18.如图,△ABC 与△A ′B ′C ′是位似图形,且顶点都在格点上,则位似中心的坐标是________.(第18题) (第19题) (第20题)19.如图,在△ABC 中,AB =AC ,∠BAC =40°,点D 是AC 上的动点,当∠BDC =________时,△ABC ∽△BD C 、 20.如图,在边长为3的菱形ABCD 中,点E 在边CD 上,点F 为BE 延长线与AD 延长线的交点.若DE =1,则 DF 的长为________.三、解答题(本大题共7个小题,各题分值见题号后,共80分)21.(8分)如图,已知:在△ABC 与△DEF 中,∠A =44°,∠B =73°,∠D =44°,∠F =63°、求证:△ABC ∽△DEF 、22.(8分)如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ACB 和△DCE 的顶点都在格点上,ED 的延长线交AB 于点F 、求证:△ACB ∽△DCE ;23.(10分)如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别为A (-1,2),B (-3,4),C (-2,6). (1)画出△ABC 绕点A 顺时针旋转90°后得到的△A 1B 1C 1;(2)以原点O 为位似中心,画出将△A 1B 1C 1三条边放大为原来的2倍后的△A 2B 2C 2、24.(12分)如图,△ABC 中,CD 是边AB 上的高,且AD CD =CD BD 、(1)求证:△ACD ∽△CBD ; (2)求∠ACB 的大小.25.(12分)如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF 来测量操场旗杆AB 的高度,他们通过调整测量位置,使斜边DF 与底面保持平行并使边DE 与旗杆顶点A 在同一直线上,已知DE =0、5米,EF =0、25米,目测点D 到地面的距离DG =1、5米,到旗杆的水平距离DC =20米,求旗杆的高度.26、(14分)如图,等腰△ABC中,AB=AC,∠BAC=36°,BC=1,点D在边AC上且BD平分∠ABC,设CD=x、(1)求证:△ABC∽△BCD;(2)求x的值.27.(16分)如图,四边形ABCD中,AC⊥BD交BD于点E,点F,M分别是AB,BC的中点,BN平分∠ABE交AM于点N,AB=AC=B D、连接MF,NF、(1)判断△BMN的形状,并证明你的结论;(2)判断△MFN与△BDC之间的关系,并说明理由.参考答案1. C 2、A 3、D 4、C 5、B 6、C 7、C 8、A 9、D 10、B 11、D 12、C 13、D 14、C 15、D16、-13 17、DEF 18、(9,0) 19、70° 20、32 21、证明:在△DEF 中,∠E =180°-∠D -∠F =180°-44°-63°=73°、∵∠A =∠D =44°,∠B =∠E =73°,∴△ABC ∽△DEF 、 22、证明:∵AC DC =32,BC CE =64=32,∴AC DC =BCCE、又∵∠ACB =∠DCE =90°,∴△ACB ∽△DCE 、 23、(1)(2)图略. 24、(1)证明:∵CD 是边AB 上的高,∴∠ADC =∠CDB =90°、∵AD CD =CDBD,∴△ACD ∽△CB D 、(2)∵△ACD ∽△CBD ,∴∠A =∠BC D 、在△ACD 中,∠ADC =90°,∴∠A +∠ACD =90°、∴∠BCD +∠ACD =90°,即∠ACB =90°、 25、根据题意,得∠DEF =∠DCA =90°,∠EDF =∠ADC ,∴△DEF ∽△DC A 、∴EF AC =DE DC 、已知DE =0、5米,EF =0、25米,DC =20米.∴0.25AC =0.520、解得AC =10米.∵四边形BCDG 是矩形,∴BC =DG ,而DG =1、5米,则BC =1、5米.因此AB =AC +BC =10+1、5=11、5(米).答:旗杆的高度是11、5米. 26、(1)证明:∵等腰△ABC 中,AB =AC ,∠BAC =36°,∴∠ABC =∠C =72°、∵BD 平分∠ABC ,∴∠ABD =∠CBD =36°、∵∠CBD =∠A =36°,∠C =∠C ,∴△ABC ∽△BC D 、(2)∵∠A =∠ABD =36°,∴AD =B D 、∵∠CBD =36°,∠C =72°,∴∠BDC =72°、∴BD =B C 、∴AD =BD =BC =1、设CD =x ,则有AB =AC =x +1、∵△ABC ∽△BCD ,∴AB BC =BC CD ,即x +11=1x ,整理得:x 2+x -1=0、解得x 1=-1+52,x 2=-1-52(负值,舍去),则x =5-12、经检验,x =5-12为方程的解.∴x =5-12、 27、(1)△BMN 是等腰直角三角形.证明如下:∵AB =AC ,点M 是BC 的中点,∴AM ⊥BC ,AM 平分∠BA C 、∵BN 平分∠ABE ,AC ⊥BD ,∴∠AEB =90°、∴∠EAB +∠EBA =90°、∴∠MNB =∠NAB +∠ABN =12(∠BAE +∠ABE )=45°、∴△BMN 是等腰直角三角形.(2)△MFN ∽△BD C 、理由:∵点F ,M 分别是AB ,BC 的中点,∴FM ∥AC ,FM =12A C 、∵AC =BD ,∴FM =12BD ,即FM BD =12、∵△BMN是等腰直角三角形,∴NM =BM =12BC ,即NM BC =12、∴FM BD =NMBC 、∵AM ⊥BC ,∴∠NMF +∠FMB =90°、∵FM ∥AC ,∴∠ACB =∠FM B 、∵∠CEB =90°,∴∠ACB +∠CBD =90°、∴∠CBD +∠FMB =90°、∴∠NMF =∠CB D 、∴△MFN ∽△BD C 、http://www 、czsx 、com 、cn。
沪教版数学九年级(上学期)一课一练及单元测试卷和参考答案
精心整理沪教版数学九年级上学期一课一练、单元测试卷和参考答案目录第二十四章相似三角形24.5 相似三角形的性质第三课时(1)52 24.6 实数与向量相乘第一课时(1)57 24.7向量的线性运算第一课时(1)62九年级(上)数学第二十四章相似三角形单元测试卷一67第二十五章锐角三角比25.1 锐角三角比的意义(1)7225.2 求锐角的三角比的值(1)7525.3 解直角三角形(1)7925.4 解直角三角形的应用(1)8424.1放缩与相似形(1)一、选择题1下列各组图形中一定是相似三角形的是()A. 两个等腰三角形B. 两个直角三角形C. 一个角为30 的等腰三角形D. 两个等边三角形2下列各组图形中一定是相似多边形的是()A. 两个平行四边形B. 两个正方形距离之比是两片树叶6. 下列各组图形中,一定是相似多边形的是()A. 两个直角三角形B. 两个平行四边形C. 两个矩形D. 两个等边三角形7下列图形中,相似的有()①放大镜下的图片与原来图片;②幻灯的底片与投影在屏幕上的图像边。
10. 当两个相似的三角形是全等形时,它们对应的边长的比值等于。
11. 图形的或称为图形的放缩运动。
12. 我们把两个形状 的图形称为相似的图形,或者说是 13. 两个多边形是相似形,就是说它们同为 的多边形,而且形状 。
实质上,相似多边形的定义要注意两个条件缺一不可:(1)对应边点'C 分别是对应顶点,42A ︒∠=,85B ︒∠=,AB=2, ''A B =5,BC=3,''C A =6求'C ∠的度数与边AC, ''B C 的长18 如图所示的相似四边形中,求未知边x ,y 的长度和角α的大小 19 在同一张地图上用尺测量得甲地距学校的距离是4厘米,乙地到学校的距离是5厘米,而实际上,乙地与学校的实际距离是10千米,求甲地与学校的实际距离20. 在下列方格中,画出△ABC 的一个相似形。
人教版数学九年级上册单元测试卷15套含答案
第21章一元二次方程测试卷(1)一、精心选一选,相信自己的判断!(每小题3分,共30分)1.(3分)方程2x2﹣3=0的一次项系数是()A.﹣3ﻩ B.2ﻩ C.0D.32.(3分)方程x2=2x的解是()A.x=0B.x=2C.x1=0,x2=2D.x1=0,x2=3.(3分)方程x2﹣4=0的根是()A.x=2B.x=﹣2 C.x1=2,x2=﹣2ﻩD.x=44.(3分)若一元二次方程2x(kx﹣4)﹣x2+6=0无实数根,则k的最小整数值是( )A.﹣1ﻩB.0ﻩC.1D.25.(3分)用配方法解一元二次方程x2﹣4x﹣5=0的过程中,配方正确的是()A.(x+2)2=1B.(x﹣2)2=1C.(x+2)2=9ﻩD.(x﹣2)2=96.(3分)在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,做成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x满足的方程是( )A.x2+130x﹣1400=0ﻩB.x2+65x﹣350=0C.x2﹣130x﹣1400=0ﻩD.x2﹣65x﹣350=07.(3分)已知直角三角形的三边长为三个连续整数,那么,这个三角形的面积是()A.6ﻩB.8ﻩC.10D.128.(3分)方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为( )A.12ﻩB.12或15ﻩ C.15ﻩ D.不能确定9.(3分)若关于一元二次方程x2+2x+k+2=0的两个根相等,则k的取值是( )A.1B.1或﹣1C.﹣1D.210.(3分)科学兴趣小组的同学们,将自己收集的标本向本组的其他成员各赠送一件,全组共互赠了132件,那么全组共有()名学生.A.12 B.12或66C.15ﻩD.33二、耐心填一填:(把答案填放相应的空格里.每小题3分,共15分).11.(3分)写一个一元二次方程,使它的二次项系数是﹣3,一次项系数是2: .12.(3分)﹣1是方程x2+bx﹣5=0的一个根,则b=,另一个根是.13.(3分)方程(2y+1)(2y﹣3)=0的根是.14.(3分)已知一元二次方程x2﹣3x﹣1=0的两根为x1、x2,x1+x2= .15.(3分)用换元法解方程+2x=x2﹣3时,如果设y=x2﹣2x,则原方程可化为关于y的一元二次方程的一般形式是.三、按要求解一元二次方程:(20分)16.(20分)按要求解一元二次方程(1)4x2﹣8x+1=0(配方法)(2)7x(5x+2)=6(5x+2)(因式分解法)(3)3x2+5(2x+1)=0(公式法)(4)x2﹣2x﹣8=0.四、细心做一做:17.(6分)有一面积为150m2的长方形鸡场,鸡场的一边靠墙(墙长18m),另三边用竹篱笆围成,如果竹篱笆的总长为35 m,求鸡场的长与宽各为多少?18.(6分)如图所示,在一块长为32米,宽为15米的矩形草地上,在中间要设计一横二竖的等宽的、供居民散步的小路,要使小路的面积是草地总面积的八分之一,请问小路的宽应是多少米?19.(7分)某企业2006年盈利1500万元,2008年克服全球金融危机的不利影响,仍实现盈利2160万元.从2006年到2008年,如果该企业每年盈利的年增长率相同,求:(1)该企业2007年盈利多少万元?(2)若该企业盈利的年增长率继续保持不变,预计2009年盈利多少万元?20.(7分)中华商场将进价为40元的衬衫按50元售出时,每月能卖出500件,经市场调查,这种衬衫每件涨价4元,其销售量就减少40件.如果商场计划每月赚得8000元利润,那么售价应定为多少?这时每月应进多少件衬衫?21.(9分)如图1,在Rt△ABC中,∠C=90°,AC=8m,BC=6m,点P由C点出发以2m/s的速度向终点A匀速移动,同时点Q由点B出发以1m/s的速度向终点C匀速移动,当一个点到达终点时另一个点也随之停止移动.(1)经过几秒△PCQ的面积为△ACB的面积的?(2)经过几秒,△PCQ与△ACB相似?(3)如图2,设CD为△ACB的中线,那么在运动的过程中,PQ与CD有可能互相垂直吗?若有可能,求出运动的时间;若没有可能,请说明理由.参考答案与试题解析一、精心选一选,相信自己的判断!(每小题3分,共30分)1.(3分)方程2x2﹣3=0的一次项系数是( )A.﹣3B.2C.0D.3【考点】一元二次方程的一般形式.【分析】一元二次方程的一般形式是ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.【解答】解:方程2x2﹣3=0没有一次项,所以一次项系数是0.故选C.【点评】要特别注意不含有一次项,因而一次项系数是0,注意不要说是没有.2.(3分)方程x2=2x的解是( )A.x=0B.x=2C.x1=0,x2=2D.x1=0,x2=【考点】解一元二次方程-因式分解法;因式分解-提公因式法.【专题】因式分解.【分析】把右边的项移到左边,用提公因式法因式分解,可以求出方程的两个根.【解答】解:x2﹣2x=0x(x﹣2)=0∴x1=0,x2=2.故选C.【点评】本题考查的是用因式分解法解一元二次方程,把右边的项移到左边,用提公因式法因式分解,可以求出方程的根.3.(3分)方程x2﹣4=0的根是( )A.x=2B.x=﹣2 C.x1=2,x2=﹣2D.x=4【考点】解一元二次方程-直接开平方法.【分析】先移项,然后利用数的开方解答.【解答】解:移项得x2=4,开方得x=±2,∴x1=2,x2=﹣2.故选C.【点评】(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0),ax2=b (a,b同号且a≠0),(x+a)2=b(b≥0),a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”;(2)运用整体思想,会把被开方数看成整体;(3)用直接开方法求一元二次方程的解,要仔细观察方程的特点.4.(3分)若一元二次方程2x(kx﹣4)﹣x2+6=0无实数根,则k的最小整数值是()A.﹣1B.0C.1D.2【考点】根的判别式;一元二次方程的定义.【分析】先把方程变形为关于x的一元二次方程的一般形式:(2k﹣1)x2﹣8x+6=0,要方程无实数根,则△=82﹣4×6(2k﹣1)<0,解不等式,并求出满足条件的最小整数k.【解答】解:方程变形为:(2k﹣1)x2﹣8x+6=0,当△<0,方程没有实数根,即△=82﹣4×6(2k﹣1)<0,解得k>,则满足条件的最小整数k为2.故选D.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.5.(3分)用配方法解一元二次方程x2﹣4x﹣5=0的过程中,配方正确的是()A.(x+2)2=1 B.(x﹣2)2=1ﻩC.(x+2)2=9D.(x﹣2)2=9【考点】解一元二次方程-配方法.【分析】先移项,再方程两边都加上一次项系数一半的平方,即可得出答案.【解答】解:移项得:x2﹣4x=5,配方得:x2﹣4x+22=5+22,(x﹣2)2=9,故选D.【点评】本题考查了解一元二次方程,关键是能正确配方.6.(3分)在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,做成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x满足的方程是( )A.x2+130x﹣1400=0B.x2+65x﹣350=0C.x2﹣130x﹣1400=0D.x2﹣65x﹣350=0【考点】由实际问题抽象出一元二次方程.【专题】几何图形问题.【分析】本题可设长为(80+2x),宽为(50+2x),再根据面积公式列出方程,化简即可.【解答】解:依题意得:(80+2x)(50+2x)=5400,即4000+260x+4x2=5400,化简为:4x2+260x﹣1400=0,即x2+65x﹣350=0.故选:B.【点评】本题考查的是一元二次方程的运用,解此类题目要注意运用面积的公式列出等式再进行化简.7.(3分)已知直角三角形的三边长为三个连续整数,那么,这个三角形的面积是()A.6B.8ﻩC.10ﻩD.12【考点】勾股定理.【分析】设三边长分别为x,x+1,x+2,根据勾股定理可得(x+2)2=(x+1)2+x2,解方程可求得三角形的三边长,利用直角三角形的性质直接求得面积即可.【解答】解:设这三边长分别为x,x+1,x+2,根据勾股定理得:(x+2)2=(x+1)2+x2解得:x=﹣1(不合题意舍去),或x=3,∴x+1=4,x+2=5,则三边长是3,4,5,∴三角形的面积=××4=6;故选:A.【点评】本题考查了勾股定理、直角三角形面积的计算方法;熟练掌握勾股定理,由勾股定理得出方程是解决问题的关键.8.(3分)方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A.12ﻩB.12或15 C.15ﻩD.不能确定【考点】等腰三角形的性质;解一元二次方程-因式分解法;三角形三边关系.【专题】分类讨论.【分析】先解一元二次方程,由于未说明两根哪个是腰哪个是底,故需分情况讨论,从而得到其周长.【解答】解:解方程x2﹣9x+18=0,得x1=6,x2=3∵当底为6,腰为3时,由于3+3=6,不符合三角形三边关系∴等腰三角形的腰为6,底为3∴周长为6+6+3=15故选C.【点评】此题是一元二次方程的解结合几何图形的性质的应用,注意分类讨论.9.(3分)若关于一元二次方程x2+2x+k+2=0的两个根相等,则k的取值是()A.1ﻩB.1或﹣1 C.﹣1ﻩD.2【考点】根的判别式.【分析】根据判别式的意义得到△=22﹣4(k+2)=0,然后解一次方程即可.【解答】解:根据题意得△=22﹣4(k+2)=0,解得k=﹣1.故选C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.10.(3分)科学兴趣小组的同学们,将自己收集的标本向本组的其他成员各赠送一件,全组共互赠了132件,那么全组共有()名学生.A.12ﻩB.12或66ﻩC.15 D.33【考点】一元二次方程的应用.【分析】设全组共有x名学生,每一个人赠送x﹣1件,全组共互赠了x(x﹣1)件,共互赠了132件,可得到方程,求解即可.【解答】解:设全组共有x名学生,由题意得x(x﹣1)=132解得:x1=﹣11(不合题意舍去),x2=12,答:全组共有12名学生.故选:A.【点评】本题考查一元二次方程的实际运用,找出题目蕴含的数量关系是解决问题的关键.二、耐心填一填:(把答案填放相应的空格里.每小题3分,共15分).11.(3分)写一个一元二次方程,使它的二次项系数是﹣3,一次项系数是2:﹣3x2+2x﹣3=0.【考点】一元二次方程的一般形式.【专题】开放型.【分析】根据一元二次方程的一般形式和题意写出方程即可.【解答】解:由题意得:﹣3x2+2x﹣3=0,故答案为:﹣3x2+2x﹣3=0.【点评】本题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+b x+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.在一般形式中a,b,c分别叫二次项系数,一次项系数,常数项.12.(3分)﹣1是方程x2+bx﹣5=0的一个根,则b=﹣4,另一个根是 5 .【考点】一元二次方程的解.【分析】把x=﹣1代入方程得出关于b的方程1+b﹣2=0,求出b,代入方程,求出方程的解即可.【解答】解:∵x=﹣1是方程x2+bx﹣5=0的一个实数根,∴把x=﹣1代入得:1﹣b﹣5=0,解得b=﹣4,即方程为x2﹣4x﹣5=0,(x+1)(x﹣5)=0,解得:x1=﹣1,x2=5,即b的值是﹣4,另一个实数根式5.故答案为:﹣4,5;【点评】本题考查了一元二次方程的解的概念:使方程两边成立的未知数的值叫方程的解.13.(3分)方程(2y+1)(2y﹣3)=0的根是y1=﹣,y2=.【考点】解一元二次方程-因式分解法.【专题】因式分解.【分析】解一元二次方程的关键是把二次方程化为两个一次方程,解这两个一次方程即可求得.【解答】解:∵(2y+1)(2y﹣3)=0,∴2y+1=0或2y﹣3=0,解得y1=,y2=.【点评】解此题要掌握降次的思想,把高次的降为低次的,把多元的降为低元的,这是解复杂问题的一个原则.14.(3分)已知一元二次方程x2﹣3x﹣1=0的两根为x1、x2,x1+x2=3.【考点】根与系数的关系.【分析】根据一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两,x2,则x1+x2=﹣,代入计算即可.根为x1【解答】解:∵一元二次方程x2﹣3x﹣1=0的两根是x1、x2,∴x1+x2=3,故答案为:3.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.15.(3分)用换元法解方程+2x=x2﹣3时,如果设y=x2﹣2x,则原方程可化为关于y的一元二次方程的一般形式是y2﹣3y﹣1=0.【考点】换元法解分式方程.【专题】换元法.【分析】此题考查了换元思想,解题的关键是要把x2﹣2x看作一个整体.【解答】解:原方程可化为:﹣(x2﹣2x)+3=0设y=x2﹣2x﹣y+3=0∴1﹣y2+3y=0∴y2﹣3y﹣1=0.【点评】此题考查了学生的整体思想,也就是准确使用换元法.解题的关键是找到哪个是换元的整体.三、按要求解一元二次方程:(20分)16.(20分)按要求解一元二次方程(1)4x2﹣8x+1=0(配方法)(2)7x(5x+2)=6(5x+2)(因式分解法)(3)3x2+5(2x+1)=0(公式法)(4)x2﹣2x﹣8=0.【考点】解一元二次方程-因式分解法;解一元二次方程-配方法;解一元二次方程-公式法.【分析】(1)首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式.(2)方程移项变形后,采用提公因式法,可得方程因式分解的形式,即可求解.(3)方程化为一般形式,找出二次项系数,一次项系数及常数项,计算出根的判别式,发现其结果大于0,故利用求根公式可得出方程的两个解.(4)方程左边分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(1)4x2﹣8x+1=0(配方法)移项得,x2﹣2x=﹣,配方得,x2﹣2x+1=﹣+1,(x﹣1)2=,∴x﹣1=±∴x=1+,x2=1﹣.1(2)7x(5x+2)=6(5x+2)(因式分解法)7x(5x+2)﹣6(5x+2)=0,(5x+2)(7x﹣6)=0,∴5x+2=0,7x﹣6=0,∴x=﹣,x2=;1(3)3x2+5(2x+1)=0(公式法)整理得,3x2+10x+5=0∵a=3,b=10,c=5,b2﹣4ac=100﹣60=40,∴x===,∴x1=,x2=;(4)x2﹣2x﹣8=0.(x+4)(x﹣2)=0,∴x+4=0,x﹣2=0,∴x1=﹣4,x2=2.【点评】本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程.四、细心做一做:17.(6分)有一面积为150m2的长方形鸡场,鸡场的一边靠墙(墙长18 m),另三边用竹篱笆围成,如果竹篱笆的总长为35 m,求鸡场的长与宽各为多少?【考点】一元二次方程的应用.【专题】几何图形问题.【分析】设养鸡场的宽为xm,则长为(35﹣2x),根据矩形的面积公式即可列方程,列方程求解.【解答】解:设养鸡场的宽为xm,则长为(35﹣2x),由题意得x(35﹣2x)=150解这个方程;x2=10当养鸡场的宽为时,养鸡场的长为20m不符合题意,应舍去,当养鸡场的宽为x1=10m时,养鸡场的长为15m.答:鸡场的长与宽各为15m,10m.【点评】本题考查的是一元二次方程的应用,难度一般.18.(6分)如图所示,在一块长为32米,宽为15米的矩形草地上,在中间要设计一横二竖的等宽的、供居民散步的小路,要使小路的面积是草地总面积的八分之一,请问小路的宽应是多少米?【考点】一元二次方程的应用.【专题】几何图形问题.【分析】本题可根据关键语“小路的面积是草地总面积的八分之一”,把小路移到一起正好构成一个矩形,矩形的长和宽分别是(32﹣2x)和(15﹣x),列方程即可求解.【解答】解:设小路的宽应是x米,则剩下草总长为(32﹣2x)米,总宽为(15﹣x)米,由题意得(32﹣2x)(15﹣x)=32×15×(1﹣)即x2﹣31x+30=0解得x1=30 x2=1∵路宽不超过15米∴x=30不合题意舍去答:小路的宽应是1米.【点评】找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.19.(7分)某企业2006年盈利1500万元,2008年克服全球金融危机的不利影响,仍实现盈利2160万元.从2006年到2008年,如果该企业每年盈利的年增长率相同,求:(1)该企业2007年盈利多少万元?(2)若该企业盈利的年增长率继续保持不变,预计2009年盈利多少万元?【考点】一元二次方程的应用.【专题】增长率问题.【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率).(1)可先求出增长率,然后再求2007年的盈利情况.(2)有了2008年的盈利和增长率,求出2009年的就容易了.【解答】解:(1)设每年盈利的年增长率为x,根据题意,得1500(1+x)2=2160.=0.2,x2=﹣2.2(不合题意,舍去).解得x1∴1500(1+x)=1500(1+0.2)=1800.答:2007年该企业盈利1800万元.(2)2160(1+0.2)=2592.答:预计2009年该企业盈利2592万元.【点评】本题考查的是增长率的问题.增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.20.(7分)中华商场将进价为40元的衬衫按50元售出时,每月能卖出500件,经市场调查,这种衬衫每件涨价4元,其销售量就减少40件.如果商场计划每月赚得8000元利润,那么售价应定为多少?这时每月应进多少件衬衫?【考点】一元二次方程的应用.【专题】销售问题.【分析】设涨价4x元,则销量为(500﹣40x),利润为(10+4x),再由每月赚8000元,可得方程,解方程即可.【解答】解:设涨价4x元,则销量为(500﹣40x),利润为(10+4x),由题意得,(500﹣40x)×(10+4x)=8000,整理得,5000+2000x﹣400x﹣160x2=8000,解得:x1=,x2=,当x1=时,则涨价10元,销量为:400件;当x2=时,则涨价30元,销量为:200件.答:当售价定为60元时,每月应进400件衬衫;售价定为80元时,每月应进200件衬衫.【点评】本题考查的是一元二次方程的应用,根据题意正确找出等量关系、列出方程是解题的关键,注意分情况讨论思想的应用.21.(9分)如图1,在Rt△ABC中,∠C=90°,AC=8m,BC=6m,点P由C点出发以2m/s的速度向终点A匀速移动,同时点Q由点B出发以1m/s的速度向终点C 匀速移动,当一个点到达终点时另一个点也随之停止移动.(1)经过几秒△PCQ的面积为△ACB的面积的?(2)经过几秒,△PCQ与△ACB相似?(3)如图2,设CD为△ACB的中线,那么在运动的过程中,PQ与CD有可能互相垂直吗?若有可能,求出运动的时间;若没有可能,请说明理由.【考点】一元二次方程的应用;相似三角形的判定.【专题】几何动点问题.【分析】(1)分别表示出线段PC和线段CQ的长后利用S△PCQ =S△ABC列出方程求解;(2)设运动时间为ts,△PCQ与△ACB相似,当△PCQ与△ACB相似时,可知∠CPQ=∠A或∠CPQ=∠B,则有=或=,分别代入可得到关于t的方程,可求得t的值;(3)设运动时间为ys,PQ与CD互相垂直,根据直角三角形斜边上的中线的性质以及等腰三角形的性质得出∠ACD=∠A,∠BCD=∠B,再证明△PCQ∽△BCA,那么=,依此列出比例式=,解方程即可.【解答】解:(1)设经过x秒△PCQ的面积为△ACB的面积的,由题意得:PC=2xm,CQ=(6﹣x)m,则×2x(6﹣x)=××8×6,解得:x=2或x=4.故经过2秒或4秒,△PCQ的面积为△ACB的面积的;(2)设运动时间为ts,△PCQ与△ACB相似.当△PCQ与△ACB相似时,则有=或=,所以=,或=,解得t=,或t=.因此,经过秒或秒,△OCQ与△ACB相似;( 3)有可能.由勾股定理得AB=10.∵CD为△ACB的中线,∴∠ACD=∠A,∠BCD=∠B,又PQ⊥CD,∴∠CPQ=∠B,∴△PCQ∽△BCA,∴=,=,解得y=.因此,经过秒,PQ⊥CD.【点评】本题考查了一元二次方程的应用,相似三角形的判定与性质,三角形的面积,勾股定理,直角三角形、等腰三角形的性质,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.第21章一元二次方程测试卷(2)一.选择题(本题共12小题,每小题3分,共36分.每小题给出4个选项,其中只有一个是正确的)1.(3分)把方程x(x+2)=5(x﹣2)化成一般式,则a、b、c的值分别是()A.1,﹣3,10B.1,7,﹣10C.1,﹣5,12D.1,3,22.(3分)一元二次方程x2﹣6x﹣5=0配方可变形为()A.(x﹣3)2=14ﻩB.(x﹣3)2=4C.(x+3)2=14ﻩD.(x+3)2=43.(3分)如果关于x的一元二次方程k2x2﹣(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是()A.k>B.k>且k≠0ﻩC.k<D.k≥且k≠04.(3分)用换元法解方程﹣=3时,设=y,则原方程可化为()A.y﹣﹣3=0B.y﹣﹣3=0C.y﹣+3=0ﻩD.y﹣+3=05.(3分)等腰三角形的底和腰是方程x2﹣7x+12=0的两个根,则这个三角形的周长是()A.11B.10ﻩC.11或10ﻩD.不能确定6.(3分)若分式的值为零,则x的值为()A.3ﻩB.3或﹣3ﻩC.0ﻩD.﹣37.(3分)一元二次方程x2﹣x﹣1=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根8.(3分)在某次聚会上,每两人都握了一次手,所有人共握手10次,设有x人参加这次聚会,则列出方程正确的是()A.x(x﹣1)=10B.=10ﻩC.x(x+1)=10ﻩD.=109.(3分)某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=182ﻩB.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182ﻩD.50+50(1+x)+50(1+2x)2=18210.(3分)已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则b a的值是( )A.B.﹣ C.4D.﹣111.(3分)定义运算:aﻩb=a(1﹣b).若a,b是方程x2﹣x+m=0(m<0)的两根,则bﻩb﹣aﻩa的值为()A.0B.1 C.2ﻩD.与m有关12.(3分)使用墙的一边,再用13m的铁丝网围成三边,围成一个面积为20m2的长方形,求这个长方形的两边长.设墙的对边长为xm,可得方程()A.x(13﹣x)=20B.x•=20C.x(13﹣x)=20D.x•=20二.填空题(每小题3分,共12分)13.(3分)方程x2﹣3=0的根是.14.(3分)当k= 时,方程x2+(k+1)x+k=0有一根是0.15.(3分)设m,n分别为一元二次方程x2+2x﹣2018=0的两个实数根,则m2+3m+n=.16.(3分)写出以4,﹣5为根且二次项的系数为1的一元二次方程是.三.解答题(本题有7小题,共52分)17.(10分)解方程(1)x2﹣4x﹣5=0(2)3x(x﹣1)=2﹣2x.18.(5分)试证明关于x的方程(a2﹣8a+20)x2+2ax+1=0无论a取何值,该方程都是一元二次方程.19.(6分)某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1.在温室内,沿前侧内墙保留3m宽的空地,其它三侧内墙各保留1m宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是288m2?20.(8分)某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件?21.(6分)阅读下面的例题,范例:解方程x2﹣|x|﹣2=0,解:(1)当x≥0时,原方程化为x2﹣x﹣2=0,解得:x1=2,x2=﹣1(不合题意,舍去).(2)当x<0时,原方程化为x2+x﹣2=0,解得:x1=﹣2,x2=1(不合题意,舍去).∴原方程的根是x1=2,x2=﹣2请参照例题解方程x2﹣|x﹣1|﹣1=0.22.(8分)龙华天虹商场以120元/件的价格购进一批上衣,以200元/件的价格出售,每周可售出100件.为了促销,该商场决定降价销售,尽快减少库存.经调查发现,这种上衣每降价5元/件,每周可多售出20件.另外,每周的房租等固定成本共3000元.该商场要想每周盈利8000元,应将每件上衣的售价降低多少元? 23.(9分)如图,在△ABC中,∠B=90°,AB=6厘米,BC=8厘米.点P从A点开始沿A边向点B以1厘米/秒的速度移动(到达点B即停止运动),点Q从C点开始沿CB边向点B以2厘米/秒的速度移动(到达点C即停止运动).(1)如果P、Q分别从A、C两点同时出发,经过几秒钟,△PBQ的面积等于是△ABC的三分之一?(2)如果P、Q两点分别从A、C两点同时出发,而且动点P从A点出发,沿AB移动(到达点B即停止运动),动点Q从C出发,沿CB移动(到达点C即停止运动),几秒钟后,P、Q相距6厘米?(3)如果P、Q两点分别从A、C两点同时出发,而且动点P从A点出发,沿A B移动(到达点B即停止运动),动点Q从C出发,沿CB移动(到达点B即停止运动),是否存在一个时刻,PQ同时平分△ABC的周长与面积?若存在求出这个时刻的t值,若不存在说明理由.ﻩ参考答案与试题解析一.选择题(本题共12小题,每小题3分,共36分.每小题给出4个选项,其中只有一个是正确的)1.(3分)把方程x(x+2)=5(x﹣2)化成一般式,则a、b、c的值分别是() A.1,﹣3,10ﻩB.1,7,﹣10ﻩC.1,﹣5,12 D.1,3,2【考点】一元二次方程的一般形式.【专题】压轴题;推理填空题.【分析】a、b、c分别指的是一元二次方程的一般式中的二次项系数、一次项系数、常数项.【解答】解:由方程x(x+2)=5(x﹣2),得x2﹣3x+10=0,∴a、b、c的值分别是1、﹣3、10;故选A.【点评】本题考查了一元二次方程的一般形式.一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),在一般形式中ax2叫二次项,bx叫一次项,c 是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.2.(3分)一元二次方程x2﹣6x﹣5=0配方可变形为()A.(x﹣3)2=14B.(x﹣3)2=4ﻩC.(x+3)2=14D.(x+3)2=4【考点】解一元二次方程-配方法.【分析】先把方程的常数项移到右边,然后方程两边都加上32,这样方程左边就为完全平方式.【解答】解:x2﹣6x﹣5=0,x2﹣6x=5,x2﹣6x+9=5+9,(x﹣3)2=14,故选:A.【点评】本题考查了利用配方法解一元二次方程ax2+bx+c=0(a≠0):先把二次系数变为1,即方程两边除以a,然后把常数项移到方程右边,再把方程两边加上一次项系数的一半.3.(3分)如果关于x的一元二次方程k2x2﹣(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是()A.k>ﻩB.k>且k≠0ﻩC.k<D.k≥且k≠0【考点】根的判别式.【专题】压轴题.【分析】若一元二次方程有两不等根,则根的判别式△=b2﹣4ac>0,建立关于k的不等式,求出k的取值范围.【解答】解:由题意知,k≠0,方程有两个不相等的实数根,所以△>0,△=b2﹣4ac=(2k+1)2﹣4k2=4k+1>0.又∵方程是一元二次方程,∴k≠0,∴k>且k≠0.故选B.【点评】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.注意方程若为一元二次方程,则k≠0.4.(3分)用换元法解方程﹣=3时,设=y,则原方程可化为()A.y﹣﹣3=0ﻩB.y﹣﹣3=0 C.y﹣+3=0ﻩD.y﹣+3=0【考点】换元法解分式方程.【分析】把y=代入原方程,移项即可得到答案.【解答】解:设=y,则原方程可化为:y﹣=3,即y﹣﹣3=0,故选:A.【点评】本题主要考查换元法解分式方程,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化.5.(3分)等腰三角形的底和腰是方程x2﹣7x+12=0的两个根,则这个三角形的周长是()A.11B.10C.11或10ﻩD.不能确定【考点】解一元二次方程-因式分解法;三角形三边关系;等腰三角形的性质.【专题】计算题;一次方程(组)及应用.【分析】利用因式分解法求出方程的解得到x的值,确定出底与腰,即可求出周长.【解答】解:方程分解得:(x﹣3)(x﹣4)=0,解得:x1=3,x2=4,若3为底,4为腰,三角形三边为3,4,4,周长为3+4+4=11;若3为腰,4为底,三角形三边为3,3,4,周长为3+3+4=10.故选C.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解法是解本题的关键.6.(3分)若分式的值为零,则x的值为()A.3 B.3或﹣3C.0ﻩD.﹣3【考点】分式的值为零的条件;解一元二次方程-直接开平方法;解一元一次不等式.【专题】计算题.【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:由题意,可得x2﹣9=0且2x﹣6≠0,解得x=﹣3.故选D.【点评】本题主要考查分式的值为0的条件.由于该类型的题易忽略分母不为0这个条件,所以常以这个知识点来命题.7.(3分)一元二次方程x2﹣x﹣1=0的根的情况为()A.有两个不相等的实数根 B.有两个相等的实数根C.只有一个实数根D.没有实数根【考点】根的判别式.【分析】先求出△的值,再判断出其符号即可.【解答】解:∵a=1,b=﹣1,c=﹣1,∴△=b2﹣4ac=(﹣1)2﹣4×1×(﹣1)=5>0,∴方程有两个不相等的实数根,故选:A.【点评】本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根与△的关系是解答此题的关键.8.(3分)在某次聚会上,每两人都握了一次手,所有人共握手10次,设有x人参加这次聚会,则列出方程正确的是()A.x(x﹣1)=10B.=10ﻩC.x(x+1)=10D.=10【考点】由实际问题抽象出一元二次方程.【专题】其他问题;压轴题.【分析】如果有x人参加了聚会,则每个人需要握手(x﹣1)次,x人共需握手x(x﹣1)次;而每两个人都握了一次手,因此要将重复计算的部分除去,即一共握手:次;已知“所有人共握手10次”,据此可列出关于x的方程.【解答】解:设x人参加这次聚会,则每个人需握手:x﹣1(次);依题意,可列方程为:=10;故选B.【点评】理清题意,找对等量关系是解答此类题目的关键;需注意的是本题中“每两人都握了一次手”的条件,类似于球类比赛的单循环赛制.9.(3分)某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=182ﻩB.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182D.50+50(1+x)+50(1+2x)2=182【考点】由实际问题抽象出一元二次方程.【专题】增长率问题;压轴题.【分析】主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂五、六月份平均每月的增长率为x,那么可以用x分别表示五、六月份的产量,然后根据题意可得出方程.【解答】解:依题意得五、六月份的产量为50(1+x)、50(1+x)2,∴50+50(1+x)+50(1+x)2=182.故选B.【点评】增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学单元测试(一元二次方程)单元测试(一) 一元二次方程
(时间:45分钟满分:100分)
题号
一
二
三
总分
合分人
复分人
得分
一、选择题(每小题3分,共30分)
1.下列方程是关于x的一元二次方程的是( )
A.ax2+bx+c=0 B.+=2 C.x2+2x=y2-1 D.3(x+1)2=2(x+1)
2.一元二次方程(x-5)2=x-5的解是( )
A.x=5 B.x=6
C.x=0 D.x1=5,x2=6
3.(锦州中考)一元二次方程x2-2x+1=0的根的情况为( )
A.有两个相等的实数根 B.有两个不相等的实数根
C.只有一个实数根 D.没有实数根
4.已知关于x的一元二次方程x2-bx+c=0的两根分别为x1=1,x2=-2,则b与c的值分别为( )
A.b=-1,c=2 B.b=1,c=-2
C.b=1,c=2 D.b=-1,c=-2
5.(钦州中考)用配方法解方程x2+10x+9=0,配方后可得( )
A.(x+5)2=16 B.(x+5)2=1
C.(x+10)2=91 D.(x+10)2=109
6.老师出示了小黑板上的题目(如图)后,小敏回答:“方程有一根为4”,小聪回答:“方程有一根为-1”.则你认为( )
A.只有小敏回答正确 B.只有小聪回答正确
C.小敏、小聪回答都正确 D.小敏、小聪回答都不正确
7.当x取何值时,代数式x2-6x-3的值最小( )
A.0 B.-3 C.3 D.-9
8.(济南中考)将一块正方形铁皮的四角各剪去一个边长为3 cm的小正方形,做成一个无盖的盒子,已知盒子的容积为300 cm3,则原铁皮的边长为( )
A.10 cm B.13 cm C.14 cm D.16 cm
9.(攀枝花中考)关于x的一元二次方程(m-2)x2+(2m+1)x+m-2=0有两个不相等的正实数根,则m的取值范围是( )
A.m> B.m>且m≠2 C.-<m<2 D.<m<2
10.已知α,β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,且满足+=-1,则m的值是( )
A.3或-1 B.3 C.1 D.-3或1
二、填空题(每小题4分,共24分)
11.把方程3x(x-1)=(x+2)(x-2)+9化成ax2+bx+c=0的形式为________________.
12.(丽水中考)解一元二次方程x2+2x-3=0时,可转化为解两个一元一次方程,请写出其中的一个一元一次方程__________.
13.已知实数a,b是方程x2-x-1=0的两根,则+的值为________.
14.六一儿童节当天,某班同学每人向本班其他每个同学送一份小礼品,全班共互送306份小礼品,则该班有______名同学.
15.(姜堰模拟)在一幅长8分米,宽6分米的矩形风景画(如图1)的四周镶上宽度相同的金色纸边,制成一幅矩形挂图(如图2),使整个挂图的面积是80平方分米,设金色纸边宽为x 分米,可列方程为________________________.
16.三角形的每条边的长都是方程x2-6x+8=0的根,则三角形的周长是__________.三、解答题(共46分)
17.(16分)我们已经学习了一元二次方程的四种解法:因式分解法,直接开平方法,配方法和公式法.请选择合适的方法解下列方程.
(1)x2-3x+1=0;(2)(x-1)2=3;(3)x2-3x=0;(4)x2-2x=4.
18.(8分)关于x的一元二次方程x2-3x-k=0有两个不相等的实数根.
(1)求k的取值范围;
(2)请选择一个k的负整数值,并求出方程的根.
19.(10分)(南京中考)某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元,设可变成本平均每年增长的百分率为x.
(1)用含x的代数式表示第3年的可变成本为______________万元;
(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率x.
20.(12分)某批发商以每件50元的价格购进800件T恤.第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓时单价为40元.设第二个月单价降低x元.
(1)填表(不需化简).
时间
第一个月
第二个月
清仓时
单价(元)
80
40
销售量(件)
200
(2)如果批发商希望通过销售这批T恤获利9 000元,那么第二个月的单价应是多少元?
参考答案
1.D
2.D
3.A
4.D
5.A
6.C
7.C
8.D
9.D 10.B 11.2x2-3x-5=0 12.x+3=0(或x-1=0) 13.-3 14.18 15.(2x+6)(2x+8)=80 16.6或10或12
17.方程(1)用公式法∵a=1,b=-3,c=1,∴b2-4ac=(-3)2-4×1×1=5>0.∴方程(1)的根为x1=,x2=.方程(2)用直接开平方法x-1=±,∴方程(2)的根为x1=-+1,x2=+1.方程(3)用因式分解法x(x-3)=0,∴方程(3)的根为x1=0,x2=3.方程(4)用配方法x2-2x+1=4+1,(x-1)2=5,x-1=±,∴方程(4)的根为x1=-+1,x2=+1.
18.(1)∵方程有两个不相等的实数根,∴Δ=(-3)2-4(-k)>0,即4k>-9.解得k>-.(2)若k是负整数,k只能为-1或-2.①当k=-1时,原方程为x2-3x+1=0.解得x1=,x2=.②当k=-2时,原方程为x2-3x+2=0.解得x3=2,x4=1.
19.(1)2.6(1+x)2 (2)由题意,得4+2.6(1+x)2=7.146,解得x1=0.1=10%,x2=-2.1(不合题意,舍去).答:可变成本平均每年增长的百分率为10%.
20.(1)80-x 200+10x 800-200-(200+10x) (2)根据题意,得80×200+(80-x)(200+10x)+40[800-200-(200+10x)]-50×800=9 000.整理,得x2-20x+100=0,解得x1=x2=10.当x=10时,80-x=70>50.答:第二个月的单价应是70元.。