函数的单调性讲义与导数
函数的单调性与导数 课件
【典型例题】
1.若函数f(x)=x3-ax2-x+6在(0,1)内单调递减,则实数a的取
值范围为( )
A.a≥1
B.a=1
C.a≤1
D.0<a<1
2.已知函数f(x)=x3-kx在区间(-3,-1)上不单调,则实数k的
取值范围是______.
3.(2013·天津高二检测)设函数f(x)=ax3+ 3 (2a-1)x2-6x
【解析】1.选A.因为f′(x)=3x2-2ax-1,f(x)在(0,1)内单调 递减,所以f′(0)≤0,f′(1)≤0,所以a≥1. 2.因为f′(x)=3x2-k.当k≤0时,f′(x)≥0,不合题意,舍 去,所以k>0. 令f′(x)=0,则 x k .
3
因为在(-3,-1)上函数不单调,
________,单调递增区间为_______.
3.讨论函数f(x)=x2-aln x(a≥0)的单调性.
【解题探究】1.解含有对数函数的问题,应注意什么?利用 导数求函数的单调区间,其实质是什么? 2.如何求多项式乘积形式函数的导数? 3.当函数的解析式中含有参数时,一般的处理思路是什么?
探究提示: 1.(1)要注意对数函数的定义域,即真数大于零.(2)求函数的单 调区间就是求不等式f′(x)>0(或f′(x)<0)的解集. 2.求多项式乘积式的导数,可以利用积的导数法则求解,也可以 把乘积式展开,利用和与差的导数法则求解. 3.当函数的解析式中含有参数时,一般的处理思路是对参数进 行分类讨论,然后在参数的不同情况下,分别求出结果.
x2
1 a
,
因为f(x)在(-∞,-3)上是增函数,即x<-3时,f′(x)>0恒成
函数的单调性与导数 公开课 ppt课件
所以函数f(x)=x3+3x在R上单调递增。 所以函数f(x)=x3+3x的单调增区间为R。
函数的单调性与导数 公开课
二、讲授新课-----典例精讲
例 3. 判断下列函数的单调性, 并求出单调区间:
(1) f(x)=x2-2x-3,
(2) f(x)=x2-2lnx
函数的单调性与导数 公开课
Байду номын сангаас
1.3.1函数的单调性与导数(第1课时)
函数的单调性与导数 公开课
一、新课导入------复旧知新
1.函数的单调性是怎样定义的?
一般地,设函数f(x)的定义域为I: 如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2, 当x1<x2时,都有f(x1)<f (x2),那么就说f(x)在区间D上是增函数; 当x1<x2时,都有f(x1)>f (x2),那么就说f(x)在区间D上是减函数;
致形状如右图所示.
O1
4
x
函数的单调性与导数 公开课
二、讲授新课-----牛刀小试
练习. 设导函数y=f '(x)的图象如图,则其原函数可能为
( C)
(A) y y=f(x) (B) y y=f(x) o 1 2x o 1 2x
y y f '(x)
(C) y
(D) y
o 2x
y=f(x)
y=f(x)
函数的单调性与导数 公开课
四、巩固练习
判断函数f(x)=3x-x3的单调性, 并求出单调区间:
解:
f '(x)=3x-x3=3-3x2=-3(x2-1)=-3(x-1)(x+1) 当f '(x)>0,即-1<x<1时,函数f(x)=3x-x3 单调递增; 当f '(x)<0,即x>1或x<-1时,函数f(x)=3x-x3 单调递减; 所以函数f(x)=3x-x3的单调增区间为 (-1,1),单调
《函数的单调性与导数》 讲义
《函数的单调性与导数》讲义一、函数单调性的定义在数学中,函数的单调性是描述函数值随着自变量变化而变化的趋势。
如果对于定义域内某个区间上的任意两个自变量的值\(x_1\)、\(x_2\),当\(x_1 < x_2\)时,都有\(f(x_1) < f(x_2)\),那么就说函数\(f(x)\)在这个区间上是增函数;如果当\(x_1 < x_2\)时,都有\(f(x_1) > f(x_2)\),那么就说函数\(f(x)\)在这个区间上是减函数。
简单来说,增函数就是函数值随着自变量的增大而增大,减函数则是函数值随着自变量的增大而减小。
二、导数的定义导数是函数的局部性质。
对于函数\(y =f(x)\),当自变量\(x\)在点\(x_0\)处有增量\(\Delta x\),相应地函数取得增量\(\Delta y = f(x_0 +\Delta x) f(x_0)\)。
如果当\(\Delta x\)趋向于0 时,\(\frac{\Delta y}{\Delta x}\)的极限存在,那么这个极限值就称为函数\(y = f(x)\)在点\(x_0\)处的导数,记作\(f'(x_0)\)。
导数反映了函数在某一点处的变化率,它的几何意义是函数曲线在该点处的切线斜率。
三、函数单调性与导数的关系1、导数大于零与函数单调递增若函数\(f(x)\)在某个区间\((a,b)\)内的导数\(f'(x) >0\),则函数\(f(x)\)在区间\((a,b)\)上单调递增。
这是因为导数大于零意味着函数在该区间内的变化率为正,即函数值随着自变量的增加而增加。
例如,函数\(f(x) = x^2\),其导数为\(f'(x) = 2x\)。
当\(x > 0\)时,\(f'(x) = 2x > 0\),所以函数\(f(x) = x^2\)在区间\((0, +\infty)\)上单调递增。
2、导数小于零与函数单调递减若函数\(f(x)\)在某个区间\((a,b)\)内的导数\(f'(x) <0\),则函数\(f(x)\)在区间\((a,b)\)上单调递减。
导数与函数的单调性解析与归纳
导数与函数的单调性解析与归纳导数与函数的单调性在微积分中占据着重要的地位,它们能够帮助我们更深入地了解函数的性质。
本文将围绕导数与函数的单调性展开讨论,并对其中的解析与归纳进行详细阐述。
一、导数的定义与计算方法函数的导数可以理解为函数在某一点上的变化率。
导数的定义可以用极限来表达,即函数在某点处的导数等于该点附近的函数值变化量与自变量变化量的比值,在数学中可以表示为:\[ f'(x) = \lim_{{\Delta x\to 0}}\frac{{f(x+\Delta x)-f(x)}}{{\Delta x}} \]具体计算导数的方法有多种,如基本的导数运算法则、链式法则、高阶导数等。
这些计算方法能够帮助我们在具体问题中快速求得函数的导数。
二、导数与单调性的关系函数的单调性指的是函数在定义域上的增减性质。
导数与函数的单调性有着密切的联系,具体而言,函数在某一区间上单调递增的条件是其导函数大于零,而单调递减的条件是导函数小于零。
通过导数的符号变化,我们可以判断函数的单调性。
三、导数与函数单调性的解析和证明为了判断函数的单调性,我们需要分析函数的导数在定义域内的符号变化。
具体解析单调性的方法有以下几个步骤:1. 求得函数的导数;2. 找出导数的零点,即导数为零的点,这些点即为函数可能改变单调性的位置;3. 针对导函数的零点,作出符号变化表,利用导函数的符号变化可以得出函数的单调性。
举个例子,考虑函数 $f(x) = x^3 - 3x^2 + 2x$,我们可以按照上述步骤解析其单调性:1. 求导得到 $f'(x) = 3x^2 - 6x + 2$;2. 根据 $f'(x) = 0$,我们可以解得导数的零点为 $x_1 = 1-\frac{{\sqrt{3}}}{{3}}$ 和 $x_2 = 1+\frac{{\sqrt{3}}}{{3}}$;3. 绘制导数的符号变化表:\[\begin{array}{ccccc}x & (-\infty, x_1) & x_1 & (x_1, x_2) & x_2 \\f'(x) & \text{负} & 0 & \text{正} & \text{负} \\\end{array}\]根据符号变化表可以得出函数在 $(-\infty, x_1)$ 单调递减,在 $(x_1, x_2)$ 单调递增,在 $(x_2, +\infty)$ 单调递减。
函数的单调性与导数 课件
解:(1)f′(x)=3x2-3=3(x+1)(x-1), 令 f′(x)>0,得 x<-1 或 x>1; 令 f′(x)<0,得-1<x<1. 所以 f(x)的增区间是(-∞,-1),(1,+∞); f(x)的减区间是(-1,1). (2)由 x>0,得函数定义域为(0,+∞).
f′(x)=2-1x,令 2-1x>0 解得 x>12; 令 2-1x<0,得 0<x<12. 所以 f(x)的增区间是(12,+∞);减区间为(0,12). (3)f(x)=x+ax的定义域是(-∞,0)∪(0,+∞), f′(x)=1-xa2.
当 a>0 时,令 f′(x)=1-xa2>0,解得 x> a或 x<- a; 令 f′(x)=1-xa2<0,解得- a<x<0 或 0<x< a; 当 a<0 时,f′(x)=1-xa2>0 恒成立, 所以当 a>0 时,f(x)的单调递增区间为(-∞,- a) 和( a,+∞);单调递减区间为(- a,0)和(0, a). 当 a<0 时,f(x)的单调递增区间为(-∞,0)和(0,+ ∞).
归纳升华 1.利用导数求函数的单调区间和判断函数单调性的 基本步骤: (1)确定函数 f(x)的定义域; (2)求出函数 f(x)的导数 f′(x); (3)令 f′(x)>0,在定义域内解不等式,求得 x 的相应 区间为 f(x)的单调递增区间; (4)令 f′(x)<0,在函数定义域内解不等式,求得 x 的 相应区间为 f(x)的单调递减区间.
答案:D
函数的单调性与导数 课件
特别提醒:若一个函数的单调递增区间(或单调递减区 间)有两个(或多个),则这些区间要分开写,不能用并集符 号连结.如函数 y=1x的单调递减区间是(-∞,0)和(0,+ ∞),不能表示为“函数 y=x1的单调递减区间是(-∞, 0)∪(0,+∞)”.
由 f′(x)>0,得 x>-2ba; 由 f′(x)<0,得 x<-2ba. ∴函数 f(x)的单调递增区间为-2ba,+∞,单调递减区间为 -∞,-2ba. (2)f′(x)=6x-2x=6x2x-2=2·3x2x-1, 令 f′(x)>0,即3x2x-1>0,
∵x>0,∴3x2-1>0,∴x>
点评:函数f(x)在某一区间上f′(x)>0是f(x)是增函 数的充分不必要条件,若在此区间内有有限个点使f′(x) =0,f(x)在该区间内为增函数,因此,在证明f(x)在给 定区间内是增函数时,证明f′(x)≥0(但f′(x)=0不恒成立) 即可.
题型3 已知函数单调性求参数的范围 例3
已知函数 f(x)=ln x-1ax2-x(a∈R). 2
又因为 x>0,则 ax2+x-1>0 在(0,∞)上有解. ①当 a=0 时,x>1 在(0,∞)上有解; ②当 a>0 时,ax2+x-1>0 在(0,∞)上总有解; ③当 a<0 时,要使 ax2+x-1>0 在(0,∞)上有解, 只需 ax2+x-1=0 有两个不等的正实根,
Δ=1+4a>0, 所以-21a>0,
解得-14<a<0.
综上知,a 的取值范围是-14,+∞. 点评:利用导数解决含参数函数的单调性问题应 从两点考虑:①若参数对函数的定义域有影响,需对 参数分类讨论;②若参数对导数的正负取值有影响, 也需对参数分类讨论.
导数与函数的单调性ppt课件
x1x2 x1 - x2
x0x
一般地,设函数y=f(x)在某个区间内可导,则函数在
该区间有下面的结论:
如果在某区间上f/(x)>0,则f(x)为该区间上的增函数;
如果在某区间上f/(x)<0,则f(x)为该区间上的减函数.
引例:讨论函数y=x2-4x+3的单调性.
(方法3:导数法)
解:函数的定义域为R, f/(x)=2x-4 令f /(x)>0,解得x>2, 则f(x)的单增区间为(2,+∞). 再令f /(x)<0,解得x<2, 则f(x)的单减区间(-∞,2).
上是单调递增的,求a的取值范围. a 16
f
(x) 2x
a x2
0对任意x [2, )恒成立.
2x3 a 0对任意x [2, )恒成立.
2x3 a对任意x [2, )恒成立.
变式:(2已x3)知min函数a对f (任x)意xx2[2,a(a)恒 R成)立在.x (, 2] x
课外作业
教材P84页 习题4-1 第1题
步骤:根据导数确定函数的单调性
1.确定函数f(x)的定义域.
. 2.求出函数的导数f/(x)
3.解不等式f/(x)>0,得函数单增区间; 解不等式f/(x)<0,得函数单减区间.
例5:已知函数f (x) x2 a (a R)在x [2, ) x
解:函数的定义域为x>0, f/(x)=lnx+1.
当lnx+1>0时,解得x>1/e.则f(x)的 单增区间是(1/e,+∞). 当lnx+1<0时,解得0<x<1/e.则f(x) 的单减区间是(0,1/e).
函数的单调性与导数 课件
函数的图象
越大
__快__
比较“ 陡峭 ”(向上或向下)
越小
__慢__
比较“ 平缓 ”(向上或向下)
(1)如果在区间(a,b)内恒有 f′(x)=0,则 f(x)有什么特性? 提示:f(x)为常数函数,不具有单调性.
(2)在区间(a,b)内,若f′(x)>0,则f(x)在此区间上单调递增, 反之也成立吗?
[类题通法] 利用导数判断或证明函数单调性的思路
[针对训练]
2.试证明:函数f(x)=lnxx在区间(0,2)上是单调递增函数.
证明:由于f(x)=lnx
x,所以f′(x)=1x·x-x2ln
x=1-xl2n
x .
由于0<x<2,所以ln x<ln 2<1,
故f′(x)=1-xl2n x>0,
即函数f(x)=lnxx在区间(0,2)上是单调递增函数.
解:(1)由已知得 f′(x)=3x2-a, 因为 f(x)在(-∞,+∞)上是单调增函数, 所以 f′(x)=3x2-a≥0 在(-∞,+∞)上恒成立, 即 a≤3x2 对 x∈R 恒成立.
因为 3x2≥0, 所以只需 a≤0. 又因为 a=0 时,f′(x 求证:函数f(x)=ex-x-1在(0,+∞)内是增函数,在(-∞, 0)内是减函数. [解] 由于f(x)=ex-x-1, 所以f′(x)=ex-1, 当x∈(0,+∞)时,ex>1,即f′(x)=ex-1>0. 故函数f(x)在(0,+∞)内为增函数, 当x∈(-∞,0)时,ex<1,即f′(x)=ex-1<0. 故函数f(x)在(-∞,0)内为减函数.
∵f(x)=x3-2x2+x,∴f′(x)=3x2-4x+1. 令f′(x)>0,解得x>1或x<13. 因此f(x)的单调递增区间是-∞,13,(1,+∞). 令f′(x)<0,解得13<x<1. 因此f(x)的单调递减区间是13,1.
函数的单调性与导数(说课)
05 课程总结
本节课的收获
01
理解了函数的单调性与导数的关系
通过本节课的学习,学生们能够理解函数的单调性与其导数之间的关系,
掌握利用导数判断函数单调性的方法。
02
掌握了求导的基本法则
学生们学会了使用求导的基本法则,如链式法则、乘积法则、商的求导
法则等,能够熟练地求出函数的导数。
03
增强了数学思维能力
04 导数与函数的单调性
导数与单调性的关系
01
02
03
导数大于零
函数在该区间内单调递增。
导数小于零
函数在该区间内单调递减。
导数等于零
函数可能存在拐点或极值 点。
单调性判定定理的应用
判断函数单调性
通过求导数并分析导数的 正负来判断函数的单调性。
确定极值点
通过导数为零的点来确定 可能的极值点,并结合单 调性判断是否为极值点。
通过本节课的学习,学生们不仅掌握了相关的数学知识,更重要的是培
养了他们的数学思维能力,如逻辑推理、抽象思维和归纳演绎等。
课程中的不足与改进
部分学生对于求导法则的运用还不够熟练
在练习过程中,发现部分学生对于求导法则的运用还不够熟练,需要在课后加强练习和巩固。
部分学生对单调性与导数的关系理解不够深入
在讨论单调性与导数的关系时,发现部分学生对其理解不够深入,需要在后续课程中加强这方面的讲解和练习。
详细描述
基本初等函数的导数公式包括指数函数、对数函数、幂函数、三角函数和反三 角函数的导数。复合函数的导数法则涉及到内外函数的导数计算,以及链式法 则的应用。
导数的几何意义
总结词
导数的几何意义是函数图像在某一点处的切线斜率。
知识点一 导数与函数的单调性
1.函数的单调性:在某个区间(a,b )内,如果()0f x '>,那么函数()y f x =在这个区间内单调递增;如果()0f x '<,那么函数()y f x =在这个区间内单调递减.如果()0f x '=,那么函数()y f x =在这个区间上是常数函数.注:函数()y f x =在(a,b )内单调递增,则()0f x '≥,()0f x '>是()y f x =在(a,b )内单调递增的充分不必要条件.2.函数的极值:曲线在极值点处切线的斜率为0,并且,曲线在极大值点左侧切线的斜率为正,右侧为负;曲线在极小值点左侧切线的斜率为负,右侧为正.一般地,当函数 ()y f x = 在点0x 处连续时,判断0()f x 是极大(小)值的方法是:(1)如果在0x 附近的左侧'()0f x > ,右侧'()0f x <,那么0()f x 是极大值. (2)如果在x 附近的左侧'()0f x < ,右侧'()0f x >,那么0()f x 是极小值.注:导数为0的点不一定是极值点知识点一:导数与函数的单调性方法归纳:在某个区间(a,b )内,如果()0f x '>,那么函数()y f x =在这个区间内单调递增;如果()0f x '<,那么函数()y f x =在这个区间内单调递减.如果()0f x '=,那么函数()y f x =在这个区间上是常数函数. 注:函数()y f x =在(a,b )内单调递增,则()0f x '≥,()0f x '>是()y f x =在(a,b )内单调递增的充分不必要条件.例1】(B 类)已知函数32()f x x bx cx d =+++的图象过点(0, 2)P ,且在点(1, (1))M f --处的切线方程为076=+-y x . (Ⅰ)求函数)(x f y=的解析式; (Ⅱ)求函数)(x f y =的单调区间.【解题思路】注意切点既在切线上,又原曲线上.函数()f x 在区间[,]a b 上递增可得:'()0f x ≥;函数()f x 在区间[,]a b 上递减可得:'()0f x ≤.【例2】(A 类)若3()f x ax x =+在区间[-1,1]上单调递增,求a 的取值范围.【解题思路】利用函数()f x 在区间[,]a b 上递增可得:'()0f x ≥;函数()f x 在区间[,]a b 上递减可得:'()0f x ≤.得出恒成立的条件,再利用处理不等式恒成立的方法获解【例3】(B 类)已知函数()ln f x x =,()(0)ag x a x=>,设()()()F x f x g x =+. (Ⅰ)求函数()F x 的单调区间;(Ⅱ)若以函数()((0,3])y F x x =∈图像上任意一点00(,)P x y 为切点的切线的斜率12k ≤恒成立,求实数a 的最小值 【课堂练习】1.(B ) 已知函数32()f x ax bx =+的图像经过点(1,4)M ,曲线在点M 处的切线恰好与直线90x y +=垂直.(Ⅰ)求实数,a b 的值;(Ⅱ)若函数()f x 在区间[,1]m m +上单调递增,求m 的取值范围.2.(B 类)设函数),(2131)(22R b a bx ax x x g ∈-+=,在其图象上一点P (x ,y )处的切线的斜率记为).(x f(1)若方程)(,420)(x f x f 求和有两个实根分别为-=的表达式; (2)若22,]3,1[)(b a x g +-求上是单调递减函数在区间的最小值3.(A 类)已知函数 21()ln (1)2f x x m x m x =-+-,m ∈R .当 0m ≤ 时,讨论函数 ()f x 的单调性.例一[解析】(Ⅰ)由)(x f 的图象经过(0, 2)P ,知2d =,所以32()2f x x bx cx =+++.所以2()32f x x bx c '=++.由在(1, (1))M f --处的切线方程是670x y -+=, 知6(1)70f ---+=,即(1)1f -=,(1)6f -=′. 所以326,12 1.b c b c -+=⎧⎨-+-+=⎩ 即23,0.b c b c -=⎧⎨-=⎩ 解得3b c ==-.故所求的解析式是32()332f x x x x =--+.(Ⅱ)因为2()363f x x x '=--,令23630x x --=,即2210x x --=, 解得11x =21x =.当1x ≤1x ≥'()0f x ≥,当11x ≤≤'()0f x ≤,故32()332f x x x x =--+在(,1-∞内是增函数,在[1+内是减函数,在[1)+∞内是增函数.例二【解析】2()31f x ax '=+又()f x 在区间[-1,1]上单调递增2()310f x ax '∴=+≥在[-1,1]上恒成立 即213a x≥-在x ∈ [-1,1]时恒成立. 13a ∴≥- 故a 的取值范围为1[,]3-+∞例三解析】(I )()()()()ln 0a F x f x g x x x x =+=+>,()()221'0a x aF x x x x x-=-=> ∵0a >,由()()'0,F x x a >⇒∈+∞,∴()F x 在(),a +∞上单调递增.由()()'00,F x x a <⇒∈,∴()F x 在()0,a 上单调递减.∴()F x 的单调递减区间为()0,a ,单调递增区间为(),a +∞. (II )()()2'03x a F x x x -=<≤,()()0020'03x a k F x x x -==<≤恒成立⇔200max12a x x ⎛⎫≥-+ ⎪⎝⎭ 当01x =时,20012x x -+取得最大值12.∴12a ≥,∴a min =12课堂练习;1,【解析】(Ⅰ)32()f x ax bx =+的图象经过点(1,4)M ∴4a b += ∵2()32f x ax bx '=+,∴(1)32f a b '=+由已知条件知1(1)()19f '⋅-=- 即329a b +=∴解4329a b a b +=⎧⎨+=⎩得:13a b =⎧⎨=⎩(Ⅱ)由(Ⅰ)知32()3f x x x =+,2()36f x x x '=+ 令2()360f x x x '=+≥则2x ≤-或0x ≥∵函数()f x 在区间[,1]m m +上单调递增 ∴[,1](,2][0,)m m +⊆-∞-+∞ ∴0m ≥或12m +≤- 即0m ≥或3m ≤-2,解析】(1)根据导数的几何意义知b ax x x g x f -+='=2)()(由已知-2、4是方程02=-+b ax x 的两个实根 由韦达定理,82)(,8242422--=⎩⎨⎧=-=∴⎩⎨⎧-=⨯--=+-x x x f b a b a(2))(x g 在区间[—1,3]上是单调递减函数,所以在[—1,3]区间上恒有,931931,0)3(0)1(]3,1[0)(,0)()(2222方内的点到原点距离的平可视为平面区域而也即即可这只需满足恒成立在即⎩⎨⎧≥-≥++⎩⎨⎧≥-≥+⎩⎨⎧≤≤--≤-+=≤-+='=a b b a b a a b b a f f b ax x x f b ax x x g x f其中点(—2,3)距离原点最近, 所以当22,32b a b a +⎩⎨⎧=-=时有最小值133,【解析】∵2(1)(1)()()(1)m x m x m x x m f x x m x x x+---+'=-+-==,∴(1)当10m -<≤时,若()0,,()0,()x m f x f x '∈->时为增函数;(),1,()0,()x m f x f x '∈-<时为减函数; ()1,,()0,()x f x f x '∈+∞>时为增函数.(2)当1m ≤-时,()0,1,()0,()x f x f x '∈>时为增函数;()1,,()0,()x m f x f x '∈-<时为减函数; (),,()0,()x m f x f x '∈-+∞>时为增函数知识点二: 导数与函数的极值最值方法归纳:1.求函数的极值的步骤:(1)确定函数的定义域,求导数'()f x . (2)求方程'()0f x =的根.(3)用函数的导数为0的点,顺次将函数的定义域分成若干小开区间,并列成表格.检查'()f x 在方程根左右的值的符号,如果左正右负,那么)(x f 在这个根处取得极大值;如果左负右正,那么)(x f 在这个根处取得极小值;如果左右不改变符号,那么)(x f 在这个根处无极值. 2.求函数在[,]a b 上最值的步骤:(1)求出()f x 在(,)a b 上的极值. (2)求出端点函数值(),()f a f b .(3)比较极值和端点值,确定最大值或最小值.注:可导函数()y f x =在0x x =处取得极值是0'()0f x =的充分不必要条件.【例4】(A 类)若函数1()cos sin 22f x m x x =+在4x π=处取得极值,则m = .【解题思路】若在0x 附近的左侧'()0>f x ,右侧()0f x '<,且'0()0f x =,那么0()f x 是()f x 的极大值;若在0x 附近的左侧'()0<f x ,右侧'()0>f x ,且'0()0f x =,那么0()f x 是()f x 的极小值.【解析】因为()f x 可导,且'()sin cos 2f x m x x =-+,所以'()sincos0442f m πππ=-+=,解得0m =.验证当0m =时, 函数1()sin 22=f x x 在4x π=处取得极大值.【注】 若()f x 是可导函数,注意0()0f x '=是0x 为函数()f x 极值点的必要条件.要确定极值点还需在0x 左右判断单调性.[例5】(B 类)已知函数()()xf x x k e =-,(I )求()f x 的单调区间;(II )求()f x 在区间[]0,1上的最小值.【解析】(I )/()(1)x f x x k e =-+,令/()01f x x k =⇒=-;所以()f x 在(,1)k -∞-上递减,在(1,)k -+∞上递增;(II )当10,1k k -≤≤即时,函数()f x 在区间[]0,1上递增,所以min()(0)f x f k==-;当011k <-≤即12k <≤时,由(I )知,函数()f x 在区间[]0,1k -上递减,(1,1]k -上递增,所以1min ()(1)k f x f k e -=-=-;当11,2k k ->>即时,函数()f x 在区间[]0,1上递减,所以min ()(1)(1)f x f k e==-.【例6】(B 类)设1,2x x ==是()ln f x a x bx x =++函数的两个极值点.(1)试确定常数a 和b 的值; (2)试判断1,2x x ==是函数()f x 的极大值点还是极小值点,并求相应极值.【解析】(1)()'21,afx bx x=++ 由已知得:()()''210101204102a b f f a b ++=⎧⎧=⎪⎪⇒⎨⎨=++=⎪⎩⎪⎩ 2316a b ⎧=-⎪⎪∴⎨⎪=-⎪⎩(2)x 变化时.(),()f x f x '的变化情况如表:故在1x =处,函数()f x 取极小值6;在2x =处,函数()f x 取得极大值ln 233-4.(A 类)设ax x x x f 22131)(23++-=.若)(x f 在),32(+∞上存在单调递增区间,求a 的取值范围.5.(B 类)设()ln f x x =,()()()g x f x f x '=+.(1)求()g x 的单调区间和最小值; (2)讨论()g x 与1()g x 的大小关系;6.(C 类)已知函数32()3(36)124()f x x ax a x a a R =++-+-∈ (Ⅰ)证明:曲线()0y f x x ==在(2,2)的切线过点; .课堂练习;4,【解析】)(x f 在),32(+∞上存在单调递增区间, 即存在某个子区间),32(),(+∞⊆n m 使得0)('>x f . 由ax a x x x f 241)21(2)(22'++--=++-=, )('x f 在区间),32[+∞上单调递减,则只需0)32('>f 即可.由0292)32('>+=a f 解得91->a , 所以,当91->a 时,)(x f 在),32(+∞上存在单调递增区间5,解】(1)由题设知1()ln ,()ln f x x g x x x ==+,∴21(),x g x x -'=令()g x '=0得x =1,当x ∈(0,1)时,()g x '<0,()g x 是减函数,故(0,1)是()g x 的单调减区间. 当x ∈(1,+∞)时,()g x '>0,()g x 是增函数,故(1,+∞)是()g x 的单调递增区间,因此,x =1是()g x 的唯一极值点,且为极小值点,从而是最小值点,所以()g x 的最小值为(1) 1.g =(2)1()ln g x x x =-+,设11()()()ln h x g x g x x x x =-=-+,则22(1)()x h x x -'=-, 当1x =时,(1)0h =,即1()()g x g x =,当(0,1)(1,)x ∈⋃+∞时,()0h x '<, 因此,()h x 在(0,)+∞内单调递减,当01x <<时,()(1)0h x h >=,即1()().g x g x <6,【解析】(Ⅰ)2()36(36)f x x ax a '=++-,(0)36f a '=-,又(0)124f a =- 曲线()0y f x x ==在的切线方程是:(124)(36)y a a x --=-,在上式中令2x =,得2y =. 所以曲线()0y f x x ==在(2,2)的切线过点;。
函数的单调性与导数 课件
引申探究 1.若将本例中条件递增改为递减,求k的取值范围. 解 ∵f′(x)=k-1x, 又f(x)在(1,+∞)上单调递减,
∴f′(x)=k-1x≤0 在(1,+∞)上恒成立, 即 k≤1x,∵0<1x<1,∴k≤0. 即k的取值范围为(-∞,0].
2.若将本例中条件递增改为不单调,求k的取值范围. 解 f(x)=kx-ln x的定义域为(0,+∞), f′(x)=k-1x. 当k≤0时,f′(x)<0. ∴f(x)在(0,+∞)上单调递减,故不合题意. 当 k>0 时,令 f′(x)=0,得 x=1k, 只需1k∈(1,+∞),即1k>1,则 0<k<1. ∴k的取值范围是(0,1).
跟踪训练 2 已知 x>0,证明不等式 ln(1+x)>x-12x2 成立. 证明 设 f(x)=ln(1+x)-x+12x2, 则 f′(x)=1+1 x-1+x=1+x2 x. 当x>-1时,f′(x)>0, 则f(x)在(-1,+∞)内是增函数. ∴当x>0时,f(x)>f(0)=0.
∴当 x>0 时,不等式 ln(1+x)>x-12x2 成立.
函数的单调性与导数
1.函数的单调性与其导数正负的关系 定义在区间(a,b)内的函数y=f(x):
f′(x)的正负 f′(x)>0 f′(x)<0
f(x)的单调性 单调递_增__ 单调递_减__
特别提醒:①若在某区间上有有限个点使f′(x) =0 ,其余的点恒有 f′(x)>0,则f(x)仍为增函数(减函数的情形完全类似). ②f(x)为增函数的充要条件是对任意的x∈(a,b)都有f′(x)≥0且在(a,b) 内的任一非空子区间上f′(x)不恒为0.
《函数单调性与导数》课件
导数在物理问题中的应用
速度与加速度
在运动学中,导数可以用来描述 物体的速度和加速度。例如,自 由落体运动中,物体的速度和加
速度可以通过求导得到。
热传导
在热力学中,导数可以用来描述 热量传递的过程。例如,通过求 导得到温度场的变化率,可以帮
助我们理解热传导的规律。
弹性力学
在弹性力学中,导数可以用来描 述物体的应力应变关系。例如, 通过求导得到物体的应力分布和 应变状态,可以帮助我们理解物
调性
利用导数的符号变化,确定函数 在某区间内的增减性
通过求解一阶导数的不等式,判 断函数的单调性
利用导数判断函数单调性的方法
直接求导
对于已知函数,直接求导并分 析导数的符号变化
利用导数的几何意义
通过导数的几何意义,绘制函 数图像,直观判断函数的单调 性
构造新函数
通过构造函数并求导,利用导 数判断新函数的单调性来研究 原函数的单调性
成本效益分析
导数可以用来分析企业的成本效益,从而制定最优的经营策略。例如,通过求导找到最小 化成本或最大化的利润点,可以帮助企业制定合理的价格和产量策略。
投资组合优化
在金融领域,导数可以用来优化投资组合,以实现最大的收益或最小的风险。例如,通过 求导找到最优的投资组合比例,可以帮助投资者实现资产配置的目标。
详细描述:导数的计算方法包括定义法、求导公式和法则、复合函数求导、隐函数求导、参数方程确定的函数求导等。
03
利用导数判断函数单调性
导数与函数单调性的关系
导数大于零,函数单 调递增
导数等于零,函数可 能为极值点或拐点
导数小于零,函数单 调递减
单调性判定定理的推导
基于极限的导数定义,通过分析 函数在某区间的变化率来判断单
函数的单调性与导数讲义
导数的应用讲义一、知识梳理1.函数的单调性在某个区间(a,b)内,如果f′(x)>0,那么函数y=f(x)在这个区间内单调递增;如果f′(x)<0,那么函数y =f(x)在这个区间内单调递减.2.函数的极值(1)一般地,求函数y=f(x)的极值的方法解方程f′(x)=0,当f′(x0)=0时:①如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;②如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.(2)求可导函数极值的步骤①求f′(x);②求方程f′(x)=0的根;③考查f′(x)在方程f′(x)=0的根附近的左右两侧导数值的符号.如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值.3.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.(3)设函数f(x)在[a,b]上连续,在(a,b)内可导,求f(x)在[a,b]上的最大值和最小值的步骤如下:①求函数y=f(x)在(a,b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个为最大值,最小的一个为最小值.注意:1.在某区间内f′(x)>0(f′(x)<0)是函数f(x)在此区间上为增(减)函数的充分不必要条件.2.可导函数f(x)在(a,b)上是增(减)函数的充要条件是对∀x∈(a,b),都有f′(x)≥0(f′(x)≤0)且f′(x)在(a,b)上的任何子区间内都不恒为零.3.对于可导函数f(x),f′(x0)=0是函数f(x)在x=x0处有极值的必要不充分条件.二、基础检测题组一:思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若函数f(x)在(a,b)内单调递增,那么一定有f′(x)>0.()(2)如果函数f(x)在某个区间内恒有f′(x)=0,则f(x)在此区间内没有单调性.()(3)函数的极大值不一定比极小值大.()(4)对可导函数f (x ),f ′(x 0)=0是x 0点为极值点的充要条件.( )(5)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.( )题组二:教材改编2.如图是函数y =f (x )的导函数y =f ′(x )的图象,则下面判断正确的是( )A .在区间(-2,1)上f (x )是增函数B .在区间(1,3)上f (x )是减函数C .在区间(4,5)上f (x )是增函数D .当x =2时,f (x )取到极小值3.[设函数f (x )=2x +ln x ,则( ) A .x =12为f (x )的极大值点 B .x =12为f (x )的极小值点 C .x =2为f (x )的极大值点 D .x =2为f (x )的极小值点4.]函数f (x )=x 3-6x 2的单调递减区间为__________.5.函数y =x +2cos x 在区间]2,0[ 上的最大值是__________.题组三:易错自纠6.函数f (x )的定义域为R ,导函数f ′(x )的图象如图所示,则函数f (x )( )A .无极大值点、有四个极小值点B .有三个极大值点、一个极小值点C .有两个极大值点、两个极小值点D .有四个极大值点、无极小值点7.已知定义在实数集R 上的函数f (x )满足f (1)=3,且f (x )的导数f ′(x )在R 上恒有f ′(x )<2(x ∈R ),则不等式f (x )<2x +1的解集为____________.8.设a ∈R ,若函数y =e x +ax 有大于零的极值点,则实数a 的取值范围是________.三、典型例题(一)导数与函数的单调性题型一不含参数的函数的单调性1.函数y =4x 2+1x的单调增区间为 2.已知函数f (x )=x ln x ,则f (x )( )A .在(0,+∞)上单调递增B .在(0,+∞)上单调递减C .在)1,0(e 上单调递增D .在)1,0(e 上单调递减3.已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的单调递增区间是______________________. 思维升华:确定函数单调区间的步骤(1)确定函数f (x )的定义域.(2)求f ′(x ).(3)解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间.(4)解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间.题型二:含参数的函数的单调性典例 已知函数f (x )=ln(e x +1)-ax (a >0),讨论函数y =f (x )的单调区间.思维升华:(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为零的点和函数的间断点. 跟踪训练 已知函数f (x )=e x (ax 2-2x +2)(a >0).试讨论f (x )的单调性.题型三:函数单调性的应用问题命题点1:比较大小或解不等式典例 (1)已知定义在)2,0(π上的函数f (x )的导函数为f ′(x ),且对于任意的x ∈)2,0(π,都有f ′(x )sin x <f (x )cos x ,则( ) A.3f )4(π>2f )3(πB .f )3(π>f (1) C.2f )6(π<f )4(π D.3f )3(π<f )3(π (2)设f (x )是定义在R 上的奇函数,f (2)=0,当x >0时,有xf ′(x )-f (x )x 2<0恒成立,则不等式x 2f (x )>0的解集是__________________.命题点2:根据函数单调性求参数典例:已知函数f (x )=ln x ,g (x )=12ax 2+2x (a ≠0). (1)若函数h (x )=f (x )-g (x )存在单调递减区间,求a 的取值范围;(2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围.引申探究:本例(2)中,若函数h (x )=f (x )-g (x )在[1,4]上单调递增,求a 的取值范围.2.本例(2)中,若h (x )在[1,4]上存在单调递减区间,求a 的取值范围.思维升华:根据函数单调性求参数的一般思路(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.(2)f (x )为增函数的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0且在(a ,b )内的任一非空子区间上,f ′(x )不恒为零,应注意此时式子中的等号不能省略,否则漏解.(3)函数在某个区间存在单调区间可转化为不等式有解问题.跟踪训练:已知函数f (x )=3x a -2x 2+ln x 在区间[1,2]上为单调函数,求a 的取值范围. 四、反馈练习1.函数f (x )=x 2-2ln x 的单调递减区间是( )A .(0,1)B .(1,+∞)C .(-∞,1)D .(-1,1)2.已知定义在R 上的函数f (x ),其导函数f ′(x )的大致图象如图所示,则下列叙述正确的是( )A .f (b )>f (c )>f (d )B .f (b )>f (a )>f (e )C .f (c )>f (b )>f (a )D .f (c )>f (e )>f (d )3.已知m 是实数,函数f (x )=x 2(x -m ),若f ′(-1)=-1,则函数f (x )的单调增区间是( )A.)0,34(-B.)34,0(C.)34,(--∞,(0,+∞)D.)34,(--∞∪(0,+∞) 4.已知函数f (x )=12x 3+ax +4,则“a >0”是“f (x )在R 上单调递增”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.若函数f (x )=kx -ln x 在区间(1,+∞)上单调递增,则k 的取值范围是( )A .(-∞,-2]B .(-∞,-1]C .[2,+∞)D .[1,+∞)6.函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,设a =f (0),b =f )21(,c =f (3),则( ) A .a <b <cB .c <b <aC .c <a <bD .b <c <a7.若函数f (x )=x 3+bx 2+cx +d 的单调递减区间为(-1,3),则b +c =________.8.已知函数f (x )(x ∈R )满足f (1)=1,f (x )的导数f ′(x )<12,则不等式f (x 2)<x 22+12的解集为________________. 9.已知g (x )=2x+x 2+2a ln x 在[1,2]上是减函数,则实数a 的取值范围为__________. 10.设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是____________.11.已知函数f (x )=ln x +k e x(k 为常数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行. (1)求实数k 的值;(2)求函数f (x )的单调区间.12.已知函数f (x )=b ex -1(b ∈R ,e 为自然对数的底数)在点(0,f (0))处的切线经过点(2,-2).讨论函数F (x )=f (x )+ax (a ∈R )的单调性.13.已知f (x )是可导的函数,且f ′(x )<f (x )对于x ∈R 恒成立,则( )A .f (1)<e f (0),f (2 017)>e 2 017f (0)B .f (1)>e f (0),f (2 017)>e 2 017f (0)C .f (1)>e f (0),f (2 017)<e 2 017f (0)D .f (1)<e f (0),f (2 017)<e 2 017f (0)14.若函数f (x )=-13x 3+12x 2+2ax 在)32[∞+,上存在单调递增区间,则a 的取值范围是________. 15.已知函数f (x )=-12x 2+4x -3ln x 在区间[t ,t +1]上不单调,则t 的取值范围是________. 16.已知函数f (x )=a ln x -ax -3(a ∈R ).(1)求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数g (x )=x 3+x 2·⎣⎡⎦⎤f ′(x )+m 2在区间(t,3)上总不是单调函数,求m 的取值范围.。
课件14:1.3.1 函数的单调性与导数
【解析】由函数y=xf′(x)的图象可知当x<-1时,xf′(x)<0, f′(x)>0, ∴f(x)为增,当-1<x<0时,xf′(x)>0,f′(x)<0,此时f(x)为 减,当0<x<1时,xf′(x)<0,f′(x)<0此时f(x)为减函数;当 x>1时,xf′(x)>0,f′(x)>0,此时f(x)为增函数,∴选C.
例 1 (1)f′(x)是函数 y=f(x)的导函数,若 y=f′(x)的图象 如图所示,则函数 y=f(x)的图象可能是 ( D )
【解析】由导函数图象可知函数 f(x)在(-∞,0)上增函数, 排除 A,C,在(0,2)上为减函数,排除 B,故选 D.
(2)证明函数 f(x)=lnxx在区间(0,2)上是单调递增函数. 证明:∵f(x)=lnxx,∴f′(x)=1-x2lnx, 令 f′(x)>0.可知 lnx<1,即 0<x<e.
由此我们得出: 设函数y=f(x)在区间(a,b)内可导, (1)如果在区间(a,b)内,f ′(x)>0,则f(x)在此区间单调 __递__增__; (2)如果在区间(a,b)内,f ′(x)<0,则f(x)在此区间内单调 _递__减___.
2.函数的变化快慢与导数的关系 如果一个函数在某一范围内导数的绝对值较大,那么这个 函数在这个范围内变化较___快___,其图象比较__陡__峭__. 即|f ′(x)|越大,则函数f(x)的切线的斜率越大,函数f(x)的 变化率就越大.
2.利用导数证明或判断函数单调性的思路 求函数f(x)的导数f′(x):(1)若f′(x)>0,则y=f(x)在(a,b) 上单调递增;(2)若f′(x)<0,则y=f(x)在(a,b)上单调递 减;(3)若恒有f′(x)=0,则y=f(x)是常数函数,不具有 单调性.