非线性动力学

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

即non-linear 是指输出输入既不是正比例也不是反比例的情形。如宇宙形成初的混沌状态。

自变量与变量之间不成线性关系,成曲线或抛物线关系或不能定量,这种关系叫非线性关系。

“线性”与“非线性”,常用于区别函数y = f (x)对自变量x的依赖关系。线性函数即一次函数,其图像为一条直线。其它函数则为非线性函数,其图像不是直线。

线性,指量与量之间按比例、成直线的关系,在空间和时间上代表规则和光滑的运动;而非线性则指不按比例、不成直线的关系,代表不规则的运动和突变。如问:两个眼睛的视敏度是一个眼睛的几倍?很容易想到的是两倍,可实际是 6-10倍!这就是非线性:1+1不等于2。

非线性关系虽然千变万化,但还是具有某些不同于线性关系的共性。

线性关系是互不相干的独立关系,而非线性则是相互作用,而正是这种相互作用,使得整体不再是简单地等于部分之和,而可能出现不同于"线性叠加"的增益或亏损。

激光的生成就是非线性的!当外加电压较小时,激光器犹如普通电灯,光向四面八方散射;而当外加电压达到某一定值时,会突然出现一种全新现象:受激原子好像听到“向右看齐”的命令,发射出相位和方向都一致的单色光,就是激光。

迄今为止,对非线性的概念、非线性的性质,并没有清晰的、完整的认识,对其哲学意义也没有充分地开掘。

线性:从相互关联的两个角度来界定,其一:叠加原理成立;其二:物理变量间的函数关系是直线,变量间的变化率是恒量。

在明确了线性的含义后,相应地非线性概念就易于界定:

其—,“定义非线性算符N(φ)为对一些a、b或φ、ψ不满足L(aφ+bψ)=aL(φ)+bL(ψ)的算符”,即叠加原理不成立,这意味着φ与ψ间存在着耦合,对(aφ+bψ)的*作,等于分别对φ和ψ*作外,再加上对φ与ψ的交叉项(耦合项)的*作,或者φ、ψ是不连续(有突变或断裂)、不可微(有折点)的。

其二,作为等价的另—种表述,我们可以从另一个角度来理解非线性:在用于描述—个系统的一套确定的物理变量中,一个系统的—个变量最初的变化所造成的此变量或其它变量的相应变化是不成比例的,换言之,变量间的变化率不是恒量,函数的斜率在其定义域中有不存在或不相等的地方,概括地说,就是物理变量间的一级增量关系在变量的定义域内是不对称的。可以说,这种对称破缺是非线性关系的最基本的体现,也是非线性系统复杂性的根源。

对非线性概念的这两种表述实际上是等价的,其—叠加原理不成立必将导致其二物理变量关系不对称;反之,如果物理变量关系不对称,那么叠加原理将不成立。之所以采用了两种表述,是因为在不同的场合,对于不同的对象,两种表述有各自的方便之处,如前者对于考察系统中整体与部分的关系、微分方程的性质是方便的,后者对于考察特定的变量间的关系(包括变量的时间行为)将是方便的。

非线性的特点是:横断各个专业,渗透各个领域,几乎可以说是:“无处不在时时有。”确实如此。

非线性动力学随着科学技术的发展,非线性问题出现在许多学科之中.传统的线性化方法已不能满足解决非线性问题的要求.非线性动力学也就由此产生. 非线性动力学联系到许多学科,如力学.数学.物理学.化学,甚至某些社会科学等. 非线性动力学的三个主要方面:分叉.混沌和孤立子.事实上,这不是三个孤立的方面.混沌是一种分叉过程.孤立子有时也可以和同宿轨或异宿轨相联系,同宿轨和异宿轨是分叉研究中的两种主要对象. 经过

多年的发展,非线性动力学已发展出了许多分支,如分叉.混沌.孤立子和符号动力学等.然而,不同的分支之间又不是完全孤立的.非线性动力学问题的解析解是很难求出的.因此,直接分析非线性动力学问题解的行为(尤其是长时期行为)成为研究非线性动力学问题的一种必然手段. Non-linear Dynamics

随着科学技术的发展,非线性问题出现在许多学科之中.传统的线性化方法已不能满足解决非线性问题的要求.非线性动力学也就由此产生.

非线性动力学联系到许多学科,如力学.数学.物理学.化学,甚至某些社会科学等. 非线性动力学的三个主要方面:分叉.混沌和孤立子.事实上,这不是三个孤立的方面.混沌是一种分叉过程.孤立子有时也可以和同宿轨或异宿轨相联系,同宿轨和异宿轨是分叉研究中的两种主要对象.

经过多年的发展,非线性动力学已发展出了许多分支,如分叉.混沌.孤立子和符号动力学等.然而,不同的分支之间又不是完全孤立的.非线性动力学问题的解析解是很难求出的.因此,直接分析非线性动力学问题解的行为(尤其是长时期行为)成为研究非线性动力学问题的一种必然手段. 真实的动力系统几乎都含有各种各样的非线性因素,诸如机械系统中的间隙、干摩擦,结构系统中的材料弹塑性、构件大变形,控制系统中的元器件饱和特性、变结构控制策略等。实践中,人们经常试图用线性模型来替代实际的非线性系统,以求方便地获得其动力学行为的某种逼近.然而,被忽略的非线性因素常常会在分析和计算中引起无法接受的误差,使得线性逼近徒劳无功.特别对于系统的长时间历程动力学问题,有时即使略去很微弱的非线性因素,也会在分析和计算中出现本质性的错误.

因此,人们很早就开始关注非线性系统的动力学问题.早期研究可追溯到1673年Huygens对单摆大幅摆动非等时性的观察,从19世纪末起,Poincar6,Lyapunov,Birkhoff,Andronov,Arnold和Smale等数学家和力学家相继对非线性动力系统的理论进行了奠基性研究,Duffing,van der Pol,Lorenz,Ueda等物理学家和工程师则在实验和数值模拟中获得了许多启示性发现.他们的杰出贡献相辅相成,形成了分岔、混沌、分形的理论框架,使非线性动力学在20世纪70年代成为一门重要的前沿学科,并促进了非线性科学的形成和发展.

近20年来,非线性动力学在理论和应用两个方面均取得了很大进展.这促使越来越多的学者基于非线性动力学观点来思考问题,采用非线性动力学理论和方法,对工程科学、生命科学、社会科学等领域中的非线性系统建立数学模型,预测其长期的动力学行为,揭示内在的规律性,提出改善系统品质的控制策略,一系列成功的实践使人们认识到:许多过去无法解决的难题源于系统的非线性,而解决难题的关键在于对问题所呈现的分岔、混沌、分形、孤立子等复杂非线性动力学现象具有正确的认识和理解.

近年来,非线性动力学理论和方法正从低维向高维乃至无穷维发展.伴随着计算机代数、数值模拟和图形技术的进步,非线性动力学所处理的问题规模和难度不断提高,已逐步接近一些实际系统.在工程科学界,以往研究人员对于非线性问题绕道而行的现象正在发生变化.人们不仅力求深入分析非线性对系统动力学的影响,使系统和产品的动态设计、加工、运行与控制满足日益提高的运行速度和精度需求,而且开始探索利用分岔、混沌等非线性现象造福人类。《非线性动力学理论与应用的新进展》主要研究工程系统中的非线性动力学、分叉和混沌理论、控制理论及其应用,重点介绍近几年来国内外的最新进展,包括高维非线性系统的多脉冲全局分叉、时滞动力系统、非光滑动力系统等变非线性动力系统、C-L方法、规范形的计算、非线性随机优化控制、后绝对稳定性、网络结构与动力学、非线性色散波、非线性系统大范围运动动力学、碰撞振动系统、微转子系统、轴向运动弦线和梁的非线性动力

相关文档
最新文档