同济大学泰勒公式

合集下载

同济大学《高等数学》(第四版)第三章习题课

同济大学《高等数学》(第四版)第三章习题课
一 点 的 个 , 果 在 点 一 邻 , 于 邻 内 如 存 着 x0的 个 域 对 这 域 的 任 点 ,除 点 0外 f (x) < f (x0 )均 立就 何 x 了 x , 成 , 称 f (x0)是 数 (x)的 个 大 ; 函 f 一 极 值 果 在 点 一 邻 , 于 邻 内 如 存 着 x0的 个 域 对 这 域 的 何 x 了 x , 任 点 ,除 点 0外 f (x) > f (x0 )均 立就 成 , 称 f (x0)是 数 (x)的 个 小 . 函 f 一 极 值
上页 下页 返回
求极值的步骤: 求极值的步骤:
(1) 求导数 f ′( x ); ( 2) 求驻点,即方程 f ′( x ) = 0 的根; 求驻点,
( 3) 检查 f ′( x ) 在驻点左右的正负号或 f ′′( x ) 在 该点的符号 , 判断极值点;
(4) 求极值 .
上页
下页 返回
(3) 最大值、最小值问题 最大值、
做函数 f ( x )的驻点.
驻点和不可导点统称为临界点. 驻点和不可导点统称为临界点. 临界点
上页 下页 返回
定理(第一充分条件) 定理(第一充分条件) x (1)如 x∈(x0 −δ , x0),有f '(x) > 0;而 ∈(x0, x0 +δ ), 如 果 x 取 极 值 有f '(x) < 0, f (x)在 0处 得 大 . 则 x (2)如 x∈(x0 −δ , x0),有f '(x) < 0;而 ∈(x0, x0 +δ ) 如 果 x 取 极 值 有f '(x) > 0, f (x)在 0处 得 小 . 则 x (3)如 当x∈(x0 −δ , x0)及 ∈(x0, x0 +δ )时 f '(x) 符 如 果 , (x x 无 值 号 同则f (x)在 0处 极 . 相 ,则 定理(第二充分条件) 定理(第二充分条件)设f (x)在 0 处 有 阶 数 x 具 二 导 , 且f '(x0 ) = 0, f ''(x0 ) ≠ 0, 那 末 f ''(x0 ) < 0时 函 f (x)在 0 处 得 大 ; x 取 极 值 (1)当 , 数 当 '' x 取 极 值 (2)当f (x0) > 0时 函 f (x)在 0 处 得 小 . , 数 当

《高等数学》(同济大学第七版)上册知识点总结

《高等数学》(同济大学第七版)上册知识点总结

高等数学(同济第七版)上册-知识点总结第一章 函数与极限一. 函数的概念1.两个无穷小的比较设0)(lim ,0)(lim ==x g x f 且l x g x f =)()(lim(1)l = 0,称f (x)是比g(x)高阶的无穷小,记以f (x) = 0[)(x g ],称g(x)是比f(x)低阶的无穷小。

(2)l ≠ 0,称f (x)与g(x)是同阶无穷小。

(3)l = 1,称f (x)与g(x)是等价无穷小,记以f (x) ~ g(x)2.常见的等价无穷小 当x →0时sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x ,1− cos x ~ 2/2^x , x e −1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α二.求极限的方法1.两个准则准则 1. 单调有界数列极限一定存在准则 2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x )若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim2.两个重要公式公式11sin lim 0=→x xx公式2e x x x =+→/10)1(lim3.用无穷小重要性质和等价无穷小代换 4.用泰勒公式当x 0→时,有以下公式,可当做等价无穷小更深层次)()!12()1(...!5!3sin )(!...!3!2112125332++++-+++-=++++++=n n n n nxx o n x x x x x x o n x x x x e )(!2)1(...!4!21cos 2242n n n x o n x x x x +-+++-= )()1(...32)1ln(132n nn x o nx x x x x +-++-=++ )(!))1()...(1(...!2)1(1)1(2n n x o x n n x x x +---++-++=+ααααααα)(12)1(...53arctan 1212153+++++-+-+-=n n n x o n x x x x x 5.洛必达法则定理1 设函数)(x f 、)(x F 满足下列条件:(1)0)(lim 0=→x f x x ,0)(lim 0=→x F x x ;(2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;(3))()(lim 0x F x f x x ''→存在(或为无穷大),则 这个定理说明:当)()(lim 0x F x f x x ''→存在时,)()(lim 0x F x f x x →也存在且等于)()(lim 0x F x f x x ''→;当)()(lim0x F x f x x ''→为无穷大时,)()(lim 0x F x f x x →也是无穷大. 这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(H L 'ospital )法则.∞∞型未定式 定理2 设函数)(x f 、)(x F 满足下列条件:(1)∞=→)(lim 0x f x x ,∞=→)(lim 0x F x x ;(2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;(3))()(lim 0x F x f x x ''→存在(或为无穷大),则 注:上述关于0x x →时未定式∞∞型的洛必达法则,对于∞→x 时未定式∞∞型同样适用.使用洛必达法则时必须注意以下几点:(1)洛必达法则只能适用于“00”和“∞∞”型的未定式,其它的未定式须先化简变形成“00”或“∞∞”型才能运用该法则; )()(lim)()(lim 00x F x f x F x f x x x x ''=→→)()(lim )()(lim 00x F x f x F x f x x x x ''=→→(2)只要条件具备,可以连续应用洛必达法则;(3)洛必达法则的条件是充分的,但不必要.因此,在该法则失效时并不能断定原极限不存在. 6.利用导数定义求极限基本公式)()()(lim 0'000x f xx f x x f x =∆-∆+→∆(如果存在)7.利用定积分定义求极限基本格式⎰∑==∞→11)()(1lim dx x f n kf n n k n (如果存在)三.函数的间断点的分类函数的间断点分为两类:(1)第一类间断点设0x 是函数y = f (x )的间断点。

高等教育数学[同济第六版](上册)期末复习重点

高等教育数学[同济第六版](上册)期末复习重点

第一章:1、极限(夹逼准则)2、连续(学会用定义证明一个函数连续,判断间断点类型)第二章:1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续2、求导法则(背)3、求导公式也可以是微分公式第三章:1、微分中值定理(一定要熟悉并灵活运用--第一节)2、洛必达法则3、泰勒公式拉格朗日中值定理4、曲线凹凸性、极值(高中学过,不需要过多复习)5、曲率公式曲率半径第四章、第五章:积分不定积分:1、两类换元法 2、分部积分法(注意加C )定积分: 1、定义 2、反常积分第六章:定积分的应用主要有几类:极坐标、求做功、求面积、求体积、求弧长第七章:向量问题不会有很难1、方向余弦2、向量积3、空间直线(两直线的夹角、线面夹角、求直线方程) 3、空间平面4、空间旋转面(柱面)第一章函数与极限1、函数的有界性在定义域内有f(x)≥K1则函数f(x)在定义域上有下界,K1 为下界;如果有f(x)≤K2,则有上界,K2称为上界。

函数f(x)在定义域内有界的充分必要条件是在定义域内既有上界又有下界。

2、数列的极限定理(极限的唯一性)数列{xn}不能同时收敛于两个不同的极限。

定理(收敛数列的有界性)如果数列{xn}收敛,那么数列 {xn}一定有界。

如果数列{xn}无界,那么数列{xn}一定发散;但如果数列{xn}有界,却不能断定数列{xn}一定收敛,例如数列 1,-1,1,-1,(-1)n+1…该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件。

定理(收敛数列与其子数列的关系)如果数列{xn}收敛于a,那么它的任一子数列也收敛于a.如果数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是发散的,如数列 1,-1,1,-1,(-1)n+1…中子数列{x2k-1}收敛于1,{xnk}收敛于-1,{xn}却是发散的;同时一个发散的数列的子数列也有可能是收敛的。

3、函数的极限函数极限的定义中0<|x-x0|表示x≠x0,所以x→x0时f(x)有没有极限与f(x)在点x0有没有定义无关。

(同济大学)高等数学课件D3_3泰勒

(同济大学)高等数学课件D3_3泰勒

4 3x
1( 9 n) o( x 2 n1 n1 x2 ) ( 1) 16 (1 x) 9 x 原式 lim 2 32 (n x0 1) ! x2
(2) 当 n = 1 时, 泰勒公式变为 可见
f ( ) ( x x0 ) 2 f (x) f ( x0 ) f ( x0 )( x x0 ) 2!
( 在 x0 与 x 之间)
df
返回 结束
误差
( 在 x0 与 x 之间)
机动 目录 上页 下页
在泰勒公式中若取 x0 0 , x (0 1) , 则有 f (0) 2 f ( n ) (0) n x x f (0) f (0) x 2! n!
其中 R2 m ( x)
sin() m x 2 x ) 2 m1 (1 cos(m 1 ) 2 (0 1) x (2m 1) !
机动
目录
上页
下页返回结束 Nhomakorabea类似可得
x2 x4 x 2m cos x 1 (1) m R2m1 ( x) 2! 4! ( 2 m) !
其中 Rn (x)
( 1)( n)
(n 1) !
(1 x) n1 x n1
(0 1)
机动 目录 上页 下页 返回 结束
已知 f 类似可得
(k )
( x) (1)
k 1
(k 1)! (k 1, 2 ,) k (1 x)
x 2 x3 xn ln(1 x) x (1) n 1 Rn (x) 2 3 n
其中
(1) m1 cos( x) 2 m 2 R2m1 ( x) x (2m 2) !

同济大学高等数学7.泰勒公式

同济大学高等数学7.泰勒公式

注意到 f (n1) ( ) e 代入公式,得
ex 1 x x2 xn e xn1
2!
n! (n 1)!
(在x与0之间).
由公式可知
ex 1 x x2 xn
2!
n!
估计误差 (设 x 0)
Rn (x)
e xn1 (n 1)!
ex xn1(0
(n 1)!
x).
取x 1, e 1 1 1 1
于是(i) Rn (x)与f (x)有相同的连续性,可导性;
(ii )
Rn (x0 )
Rn (x0) Rn(x0)
R(n) n
(
x0
)
0.
lim x x0
Rn (x) (x x0 )n
lim
x x0
Rn (x) n(x x0 )n1
lim
Rn( x)
xx0 n(n 1)( x x0 )n2
a2.
P2 (x)
f (x0 )
f (x0 )(x x0 )
f
( x0 2
)
(
x
x0
)
2
P2(x)近似f (x)的误差:
f
(x) P2 (x) (x x0 )2
0
(x x0 )
f (x)
f
(x0 )
f (x0 )(x x0 )
f
(x0 2
)
(
x
x0
)2
o(x x0 )2.
)
f
(x2 )
2
2
证:不妨设 x1
x2 ,记
x0
x1
x2 2
,有
f (x)
f (x0 )
f (x0 )(x x0 )

同济大学高等数学第六版上册第三章第三节Taylor泰勒公式

同济大学高等数学第六版上册第三章第三节Taylor泰勒公式

o
x0
x
LL LL
假设
0
Pn( k ) ( x0 ) = f ( k ) ( x0 ) k = 1,2,L, n

a = f ( x ),
1 ⋅ a = f ′( x ),
1 0
2!⋅a = f ′′( x )
2 0
L L , n!⋅a n = f ( n ) ( x 0 ) 1 (k ) 得 ak = f ( x0 ) ( k = 0,1,2,L , n ) k!
f ( x ) = f ( x 0 ) + f ′(ξ )( x − x 0 ) (ξ在x 0与x之间)
2.取 x 0 = 0, ξ 在0 与 x 之间,令ξ = θx
(0 < θ < 1) f ( n + 1) (θx ) n + 1 x 则余项 Rn ( x ) = ( n + 1)!
四、简单的应用
即 Rn ( x ) = o[( x − x0 )n ].
M ≤ ( x − x0 )n+1 (n + 1)!
皮亚诺形式的余项
∴ f ( x) = ∑
k =0
n
f
(k )
( x0 ) ( x − x0 )k + o[( x − x0 )n ] k!
注意:
1. 当 n = 0 时,泰勒公式变成拉氏中值公式
(n + 1) !
(1 + θ x)α −n−1 x n+1 (0 < θ < 1)
(5) f ( x) = ln(1 + x) ( x > −1) k −1 ( k − 1) ! (k ) (k = 1, 2 ,L) 已知 f ( x) = (−1) k (1 + x) 类似可得 x 2 x3 xn n −1 ln(1 + x) = x − − L + (−1) + + Rn (x) 2 3 n

高等数学-第三章-泰勒公式-同济大学

高等数学-第三章-泰勒公式-同济大学

代入⑹式, 得
ex 1 x 1 x2 2!
1 n!
xn
e x
n 1!
xn1
0 1.
因而相应的近似表达式为
ex 1 x 1 x2 2!
1 xn. n!
当 x 0 时, 相应的误差估计式为
Rn x
e x xn1
n 1!
ex xn1,
n 1!
如果取 x 1, 即得到 e的近似表达式:
2!
f n 0 xn.

n!
上式称为函数 f x的n阶麦克劳林多项式. 而相应的误
差估计式为
Rn x
M
n 1!
x
n1 .

例2 求出函数 f x ex 的n 阶麦克劳林展开式.
解 因 f x f x f x f n x ex ,
所以: f 0 f 0 f 0 f n 0 1,
来近似表示 f x 并给出误差的具体表达式.
为了使所求出的多项式与函数 f x在数值与性质方 面吻合得更好, 进一步要求 Pn x 在点 x0处的函数值以 及它的n 阶导数值与 f x在 x0处的函数值以及它的n
阶导数值分别相等. 即
Pnk x0 f k x0 k 0,1, ,n.
e 11 1 1 . 2! n!
例3

y
x
x
1

x0
2 处的三阶泰勒展开式.
解因
y x 1 1 , y2 2,
x 1 x 1
y
x
1
12
,
y2 1, y2 2,
y
2
6,
y4
x
x
4!
15
,
y4 2 24 4!

泰勒公式判断级数敛散性的方法

泰勒公式判断级数敛散性的方法

教学方法课程教育研究学法教法研究 123引言大学数学课程中,级数部分是该课程知识体系中重要的组成部分。

数学专业的后续课程,如《复变函数论》等都和级数有密切的关系,对于工科的学生来讲,傅立叶级数和傅立叶变换主要应用在信号分析领域,包括滤波、数据压缩、电力系统的监控和电子产品的制造等领域,因此级数和这些内容的相应的课程紧密相关。

作为函数项级数基础的数项级数部分自然尤为重要。

判断数项级数敛散性是学习级数的重要环节,关系到后面各类函数项级数的学习。

数项级数敛散性的判断如果掌握了一些特定的技巧,则可以帮助我们巧妙地解决这个问题。

关于数项级数敛散性的判断,有一些基本方法,如:敛散性的定义、级数收敛的必要条件、比较审敛法、比值审敛法、根值审敛法等,这些方法针对一些特定形式的级数敛散性判断都非常有效,该部分在文献[4]中有详细讲解,这里不再赘述。

但是,这里存在的普遍问题是,以上方法只是针对一些特定形式的数项级数能够确定其敛散性,对于一般级数的问题,需要探索新的方法,比如对于交错级数,只有级数满足Leibniz 定理[4]的两个条件时,才能判断它是收敛的,显然这个方法有一定的局限性。

泰勒公式是高等数学课程中一个功能强大的工具,我们熟知的在近似计算、误差估计、极限计算等方面都有广泛的使用[3]。

用泰勒公式判定级数的敛散性在一些文章已有所提及[5],但这些论证没有深入挖掘它的奇妙之处及具体使用方法。

下面,本文将论证用泰勒公式判定级数的敛散性的方法::该等式称为按的幂展开的带有拉格朗日型余项的n 。

2.在几类基本初等函数中,幂函数是形式简单,容易确定极限的一类函数,借助泰勒公式可以把各类函数转化为幂函数的问题。

泰勒公式中,参照点取零,展开式各项都是关于的幂函数,余项是当变量趋向零时的无穷小量,这样无论原始级数什么形式都可以通过幂函数的次数判断该项的敛散性。

以下通过三个实例分别说明用泰勒公式判别交错级数、任意项级数、正项级数的敛散性的方法。

同济大学 高等数学公式大全

同济大学 高等数学公式大全

高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x aa a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgxarctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

同济高数(第七版)--第三章

同济高数(第七版)--第三章

第三章:泰勒公式以及导数运用1.泰勒公式(注意:麦克劳林公式是特殊的泰勒公式,即00=x )(1))(!!212x xxe n nx o n x +++= 证:令e x x f =)(,e f x n x x f x f x f ='''=''=')()()()()( ,那么就有1)0()0()0()0()(='''=''='f n f f f ,而根据带有佩亚诺余项的麦克劳林的公式则有)(!)0()0()0()(x x fennn xo n x f f +'+==)(!!212x xxn no n x +++ (2))()!12(!5!3sin 121253)1(x xxxm m mo m x x ++++++-=- 证:令x x f sin )(=,)2sin()()(π⋅+=n x x f n ,故 2,1,0,12,2,02sin )0()1()(=⎪⎩⎪⎨⎧+===⋅=-m m n m n n mn f π,而根据带有佩亚诺余项的麦克劳林的公式则有)(!)0()0()0()()(x x fn nn o n x f f x f +'+= ,故)()!12(!5!3)(121253)1(x xxxm m mo m x x f ++++++-=- (3))()!2(!4!21cos 2242)1(x xx x m mm o m x +++-=- 证:令x x f cos )(=,)2cos()()(π⋅+=n x x f n ,故 2,1,0,12,02,2cos )0()1()(=⎪⎩⎪⎨⎧+===⋅=-m m n mn n m n f π,而根据带有佩亚诺余项的麦克劳林的公式则有)(!)0()0()0()()(x x fn nn o n x f f x f +'+=,故)()!2(!4!21)(2242)1(x xxxm mmo m x f +++-=- (4))(!)1()1(!2)1(12)1(x x x x n n o n n x ++--+-++=+ααααααα 证:令)1()(x x f +=α,)1()1()1()()(x fnn n x +-+--=αααα ,故)1()1()0()(+--=n f n ααα ,而根据带有佩亚诺余项的麦克劳林的公式则有)(!)0()0()0()()(x x fn nn o n x f f x f +'+=,故)(!)1()1(1)(x x n no n n x x f ++--++=αααα(5))(3!2)1ln()1(132x x x x n nn o nx x ++-=+-- 证:令)1ln()(x x f +=,)1()1()!1()(1)(x f nn n n x +--=-,故)!1()0()1(1)(-⋅=--n n n f,而根据带有佩亚诺余项的麦克劳林的公式则有)(!)0()0()0()()(x x fn nn o n x f f x f +'+=,故)(3!2)()1(132x x x x n nn o nx x f +++-=-- (6)按(4-x )的幂展开多项式435)(234+-+-=x x f x x x 由32154)(23-+-='x x f x x ,23012)(2+-=''x x f x ,3024)(-='''x x f ,24)()4(=x f ,)5(0)()(≥=n x f n ,而21)4(='f ,74)4(=''f ,66)4(='''f ,根据泰勒公式得!)4()4)(4()4()()4()(n x f f x f x fnn -+-'+=(未带有余项),故)4()3()4(4321137)4(2156)(---+++-+-=x x x x x f 解:x x f 2121)(-=',x x f 2341)(--='',x x f 2583)(-=''',x f x 27)4(1615)(--=,故41)4(='f ,321)4(-=''f ,2563)4(='''f ,ξ27)4(1615)(--=f,故根据带有拉格朗日余项的泰勒公式则有)!1()(!)4()4)(4()4()()4()4(1)1()(+++-'+=--++n n x f f x f x fx f n n nn ξ)4()4()4(42732384155121641)4(412)(-----+--+=⇒x x x x x f ξ(ξ在x 与4之间)(8)求函数x x f ln )(=按)2(-x 的幂展开的带有佩亚诺余项的n 阶泰勒公式解:xf n n n n x 1)!1()()1(1)(-=--2)1(1)!1()2(1)(n n n n f -=⇒--,故根据带有佩亚诺余项的泰勒公式则有][!)2()2)(2()2()()2()2()(--+++-'+=⇒x x fnnn o n x f f x f ][81)2(212ln )()2()2()1()2(12----+⋅+--+=⇒-x x x nnnn o n x x f解:⇒=+-xfn nn n x 1)(1!)()1()1()1(1)(1!)1(--+=-n nn n f)1()1(!)1()(++-=-⇒x x fnnn n ,故根据带有拉格朗日余项的泰勒公式得)!1()(!)1()1)(1()1()()1()1(1)1()(++-+-'+-=++++n n x f f x f x fx fn n n n ξξ2112)1()1()1()1()1(1)(++++-+++--+--=⇒n n n nx x x x x f ξ在1-与x 之间。

同济大学高等数学5.7 泰勒公式与极值

同济大学高等数学5.7 泰勒公式与极值

x y 14, z 116,
| 1 1 1 1| d 4 4 4
2
18
8
方法二:当曲面4z 3x2 2xy 3y2上点M处的
切平面与平面x y 4z 1 0平行时,切点到
平面的距离即为所求的最短距离。
曲面4z 3x2 2xy 3y2上点M (x, y, z)处的
法向量为n (6x 2 y,6 y 2x,4),
对 (1, 1) : A 10, B 2, C 10, AC B2 96 0, A 0 f ( 1, 1) 2为极小值 对 ( 0, 0 ) : A B C 2, 0. 沿 y x,有 f (x,x) 2 x4 f ( 0, 0 ) 0 沿 x 0, | y | 1, 有 f (0, y) y 2 ( y 2 1) f (0, 0) 0 ( 0, 0 ) 不是极值点
S 为一定值
周长
u a 2h
sin
S
h
h
cot
2h
sin
h
a
S
h
2
cos sin
h
求 u ( h, )在区域 D : h 0, 0 2 上的最小值

S 2 cos
uhLeabharlann h2sin 0,
u
1 2 cos sin 2
h0
解得
cos
1 2
S 3 h2
3,
h S 43
令 F 1 (x y 4z 1)2 (3x2 2xy 3y 2 4z)
18
Fx
1 9
(x
y
4z
1)
(6x
2y)
0
Fy
1 9
(x
y
4z

泰勒公式及其应用论

泰勒公式及其应用论

本科毕业论文(设计) 论文题目:泰勒公式及其应用学生姓名:学号:专业:数学与应用数学班级:指导教师:完成日期:2012年 5月20日泰勒公式及其应用内容摘要本文介绍泰勒公式及其应用,分为两大部分:第一部分介绍了泰勒公式的相关基础知识,包括带Lagrange余项、带Peano余项两类不同泰勒公式;第二部分通过详细的例题介绍了泰勒公式在八个方面的应用.通过本文的阅读,可以提高对泰勒公式及其应用的认识,明确其在解题中的作用,为我们以后更好的应用它解决实际问题打好坚实的基础.关键词:泰勒公式Lagrange余项Peano余项应用The Taylor Formula and The Application Of Taylor FormulaAbstractThis paper focuses on Taylor formula and the application of Taylor formula. It has two parts. The first part of this paper introduces the basic knowledge of the Taylor formula,Including Taylor formula with Lagrange residual term and with Peano residual term. With the detailed examples,The second part introduces eight applications of Taylor formula.By reading this paper,you can build a preliminary understanding of Taylor formula,define the function in problem solving ,in the later application that can be a good reference.Key Words:Taylor formula Lagrange residual term Peano residual term application目录一、泰勒公式 (1)(一)带Lagrange余项的泰勒公式 (1)(二)带Peano余项的泰勒公式 (2)二、公式的应用 (3)(一)、泰勒公式在近似运算上的应用 (3)(二)、泰勒公式在求极限中的应用 (5)(三)、泰勒公式在方程中的应用 (6)(四)、泰勒公式在中值公式证明中的应用 (8)(五)、泰勒公式在有关于界的估计中的应用 (9)(六)、泰勒公式在证明不等式中的应用 (10)(七)、泰勒公式在级数中的应用 (11)(八)、泰勒公式在求高阶导数值中的应用 (13)三、结论 (14)参考文献 (15)序 言泰勒公式是数学分析中一个非常重要的内容,它将一些复杂函数近似地表示为简单的多项式函数.这种化繁为简的功能,使它成为分析和研究其他数学问题的有力杠杆.[]1因为泰勒公式在解决一些数学问题时的确有着不可替代的作用,故有关它的理论在教材中一般都有比较详细的介绍,而关于它的应用则介绍甚少或不全面.本文比较详细地介绍了泰勒公式在近似计算、求极值、方程、证明中值公式、关于界的估计、证明不等式、级数、高阶导数值等方面的应用.作者在阅读了大量参考文献的基础上,通过例题给出了泰勒公式的许多应用,使我们能更直接的看到泰勒公式在各方面的运用.一、泰勒公式对于函数f ,设它在点0x 存在直到n 阶的导数.由这些导数构造一个n 次多项式()20000000'()''()()()()()()...()1!2!!n n f x f x f x Tn x f x x x x x x x n =+-+-++-,称为函数f 在点0x 处的泰勒多项式.[2]泰勒公式根据所带的余项的不同有不同的定义.泰勒公式的余项分为两类,一类是定量的,一类是定性的,它们的本质相同,但性质各异.下面我们来介绍一下:(一)带Lagrange 余项的泰勒公式对于这种泰勒公式,Lagrange 余项是一种定量形式. 定理1[]3 若函数f 在[,]a b 上存在直到n 阶的连续导函数,在),(b a 内存在直到+1n 阶导函数,则对任意给定的0[,]x x a b ∈、,至少存在一点(,)a b ξ∈,使得()(1)2100000000''()()()()()'()()()...()()2!!(1)!n n nn f x f x f f x f x f x x x x x x x x x n n ξ++=+-+-++-+-+,该式称为(带有Lagrange 余项的)泰勒公式.证明 作辅助函数])(!)())(()([)()()('n n t x n t f t x t f t f x f t F -++---= ,1)()(+-=n t x t G ,所以要证明的式子即为)!1()()()()()!1()()()1(000)1(0+=+=++n f x G x F x G n f x F n n ζζ或. 不妨设x x <0,则)(t F 与)(t G 在],[0x x 上连续,在),(0x x 内可导,且 0))(1()()(!)()(')1('≠-+-=--=+n nn t x n t G t x n t f t F , 又因0)()(==x G x F ,所以由柯西中值定理证得)!1()()()()()()()()()()1(''0000+==--=+n f G F x G x G x F x F x G x F n ζζζ, 其中),(),(0b a x x ⊂∈ζ. 所以定理1成立.(二)带Peano 余项的泰勒公式对于这种泰勒公式,Peano 余项是一种定性形式. 定理2[]3 若函数f 在点0x 存在直到n 阶导数,则有0()()(())nf x Tn x o x x =+-,即()200000000''()()()()'()()()...()(())2!!n n n f x f x f x f x f x x x x x x x o x x n =+-+-++-+-,称为函数f 在点0x 处的(带有Peano 余项的)泰勒公式,该公式定性的说明当x 趋于0x 时,逼近误差是较0()nx x -高阶的无穷小量.证明 设)()()(x T x f x R n n -=,n n x x x Q )()(0-=,现在只需证0)()(lim0=-x Q x R nn x x .由n k x T x f k n k ,,2,1,0)()(0)(0)( ==,可知,0)()()(0)(0'0====x R x R x R n n n n .并易知!)(,0)()()(0)(0)1(0'0n x Q x Q x Q x Q n n n n n n =====- ,因为)(0)(x f n 存在,所以在点0x 的某邻域)(0x U 内)(x f 存在1-n 阶导函数)(x f .于是,当o0x U x ∈()且0x x →时,允许接连使用洛必达(L'Hospital )法则1-n 次,得到)]()()([lim !1)(2)1())(()()(lim )()(lim )()(lim )()(lim 0)(00)1()1(000)(0)1()1()1()1(''00000=---=-----====--→--→--→→→x f x x x f x f n x x n n x x x f x f x f x Q x R x Q x R x Q x R n n n x x n n n x x n nn n x x n n x x n n x x 所以定理2成立.当00x =时,得到泰勒公式)10(,)!1()(!)0(...!2)0('')0(')0()(1)1()(2<<++++++=++θθn n n n x n x f x n f x f x f f x f ,该式称为(带有Lagrange 余项的)麦克劳林公式. 当上式中00x =时有()2''(0)(0)()(0)'(0)...()2!!n nn f f f x f f x x x o x n =+++++,它称为(带有Peano 余项的)麦克劳林公式.二、公式的应用(一)、泰勒公式在近似运算上的应用利用泰勒公式可以得到函数的近似计算式和一些数值的近似计算,利用)(x f 麦克劳林展开得到函数的近似计算式为'''2(0)(0)()(0)(0)2!!n n f f f x f f x x xn ≈++++[]4,其误差是余项()n R x . 例1[]5:计算e 的值,使其误差不超过610-.解 应用泰勒公式有11111...2!3!!(1)!e e n n θ=+++++++,(01)θ<<,估3(1)!(1)!n e R n n θ=<++,当=9n 时,便有6331010!3628800n R -<=<, 从而略去9R 而求得e 的近似值为718285.2!91...!31!2111≈+++++≈e . 例2[]5: 求21x edx -⎰的近似值,精确到510-.解 因为21x e dx -⎰中的被积函数是不可积的(即不能用初级函数表达),现用泰勒公式的方法求21x e dx -⎰的近似值.在xe 的展开式中以2x -代替x 得24221(1)2!!nx nx x e x n -=-+++-+,逐项积分,得2421111121(1)2!!nx nx x edx dx x dx dx dx n -=-+-+-+⎰⎰⎰⎰⎰111111(1)32!5!2n 1n n =-+-+-++11111111310422161329936075600=-+-+-+-+,上式右端为一个收敛的交错级数,由其余项()n R x 的估计式知71||0.00001575600R ≤<,所以2111111110.7468363104221613299360x e dx -≈-+-+-+≈⎰.由于泰勒公式可以将一些复杂函数近似地表示为简单的多项式函数,所以当选定函数中的自变量时,就可以进行近似计算.在这个应用中主要注意选择适当的函数,然后运用麦克劳林展开式,带入数值.(二)、泰勒公式在求极限中的应用为了简化极限运算,有时可用某项的泰勒展开式来代替该项,使得原来函数的极限转化为类似多项式有理式的极限,就能简洁的求出.接下来我们用两个例子来说明: 例3[]6:求极限2240cos limx x x ex -→-.解 考虑到极限式的分母为4x ,我们用麦克劳林公式表示极限的分子(取=4n )245cos 1()224x x x o x =-++ ,)(82154222x o x x ex ++-=-,)(12cos 5422x o x ex x +-=--,因而求得,245244001()cos 112limlim 12x x x x o x x e x x -→→-+-==-. 例4[]7: 求极限 )3(211ln 3)76(sin 6lim 2202x x xx x x x e x x +--+---→.解 )(!51!31sin 653x o x x x x ++-=, )(402767sin e 5532x o x x x x x ++-=-)(51413121)1ln(55432x o x x x x x x ++-+-=+ )(51413121)1ln(55432x o x x x x x x +-----=-)(52322)1ln()1ln(11ln 553x o x x x x x x x +++=+-+=-+,原式=5505527()40lim 6()5x x o x x o x →++=169.由上边两个例子可见,因为通常情况下对于函数多项式和有理分式的极限问题的计算是十分简单的,所以对于一些复杂的函数可以根据泰勒公式将原来的复杂的问题转化为类似多项式和有理分式的极限问题.综上所述,在式子满足下列情况时可以考虑用泰勒公式来求极限:(1)用洛必达法则时,次数比较多、求导过程和化简过程比较复杂的情况. (2)分子或分母中有无穷小的差, 且此差不容易转化为等价无穷小替代形式. (3)函数可以很容易的展开成泰勒公式.(三)、泰勒公式在方程中的应用泰勒公式在函数方程中应用比较广泛,题型也比较多,主要有判断根,方程次数等等一些证明类问题,做此类题,要注意观察题目中导数阶数,以便用泰勒公式展开到相应阶数.我们用三个例子来说明: 例5[]8: 设()f x 在[,)a +∞上二阶可导,且()0f a >,'()0f a <,对(,)x a ∈+∞,''0f ≤证明 ()0f x =在(,)a +∞内存在唯一实根.分析: 这里()f x 是抽象函数,直接讨论()0f x =的根有困难,由题设()f x 在[,)a +∞上二阶可导且()0f a >,'()0f a <,可考虑将()f x 在a 点展开一阶泰勒公式,然后设法应用介值定理证明.证明 因为''()0f x ≤,所以'()f x 单调减少,又'()0f a <,因此>x a 时,''()()0f x f a <<, 故()f x 在(,)a +∞上严格单调减少.在a 点展开一阶泰勒公式有''2()()()()()()()2f f x f a f a x a x a a x ξξ=+-+-<<.由题设'()0f a <,'()0f ξ≤,于是有lim ()x f x →∞=-∞,从而必存在b a >,使得()0f b <,又因为()0f a >,在[,]a b 上应用连续函数的介值定理,存在0(,)x a b ∈,使0()0f x =,由()f x 的严格单调性知0x 唯一,因此方程()0f x =在(,)a +∞内存在唯一实根.例6[]8: 设()f x 在(,)-∞+∞内有连续三阶导数,且满足方程,()()'(),01f x h f x hf x h θθ+=++<<. (1)试证:()f x 是一次或二次函数.证明 问题在于证明:''()0f x ≡或'''()0f x ≡.为此将(1)式对h 求导,注意θ与h 无 关.我们有'()'()''()f x h f x h hf x h θθθ+=+++, (2) 从而'()'()'()'()''()f x h f x f x f x h f x h hθθθ+-+-+=+.令0→h 取极限,得''()''()''()f x f x f x θθ-=,''()2''()f x f x θ=. 若21≠θ,由此知)(,0)(''x f x f ≡为一次函数;若21=θ,(2)式给出 111'()'()''()222f x h f x h hf x h +=+++,此式两端同时对h 求导,减去''()f x ,除以h ,然后令0→h 取极限,即得'''()0f x ≡,()f x 为 二次函数. 例7[]9: 已知函数)(x f 在区间(-1,1)内有二阶导数,且(0)'(0)0f f ==,''()()'()f x f x f x ≤+试证:0δ∃>,使得δδ-(,)内()0f x ≡. 证明 为了证明)(x f 在0=x 处的邻域内恒为零.我们将(3)式右端的)(x f ,)('x f 在0=x 处按公式展开.注意到(0)'(0)0f f ==.我们有22''()1()(0)'(0)''()22f f x f f x x f x ξξ=++=, '()'(0)''()''()f x f f x f x ηη=+=.从而21()|'()|''()''()2f x f x f x f x ξη+=+, 今限制11[,]44x ∈-,则()'()f x f x +在11[,]44-上连续有界,011[,]44x ∃∈-,使得 001144()'()max ()'().x f x f x f x f x M -≤≤+=+≡我们只要证明0M =即可.事实上20000001()'()''()''()2M f x f x f x f x ξη=+=+, ))('')(''(4100ηξf f +≤, ))()(')()('(410000ηηξξf f f f +++≤, 11242M M ≤⋅=. 即102M M ≤≤.所以0M =,在11[]44-,上()0f x ≡.由以上例题可见,在函数方程方面,泰勒公式对于求二阶或二阶以上的连续导数的问题来说十分的好用,主要是通过作辅助函数,对有用的点进行泰勒公式展开并对余项作合适的处理.(四)、泰勒公式在中值公式证明中的应用由于泰勒公式将函数和它的高阶导数结合了起来,所以遇到这类有高阶导数的证明时,首先应考虑用泰勒公式来求解.接下来我们用一个例子来说明: 例8[]9: 设)(x f 在],[b a 上三次可导,试证:(,)c a b ∃∈,使得31()()'()()'''()()224a b f b f a f b a f c b a +=+-+-. 证明 设k 为使下式成立的实数:31()()'()()()0224a b f b f a f b a k b a +-----=, 这时,我们的问题归为证明:(,)c a b ∃∈,使得'''()k f c =.令31()()()'()()()0224a x g x f x f a f x a k x a +=-----=. 则0)()(==b g a g ,根据Rolle 定理,(,)a b ξ∃∈,使得,0)('=ξg 即:1'()'()''()()202228a a a f f f k a ξξξξξ++-----=. 这是关于k 的方程,注意到)('ξf 在点2ξ+a 处的泰勒公式: 21'()'()''()'''()()022222a a a a f f f f c ξξξξξ++--=++=. (五)、泰勒公式在有关于界的估计中的应用我们知道有些函数是有界的,有的有上界,而有的有下界,结合泰勒公式的知识与泰勒公式的广泛应用,这里我们将探讨泰勒公式关于界的估计,下面通过例题来分析. 例9[]9: 设)(x f 在[0,1]上有二阶导数,10≤≤x 时|()|1f x ≤,''()2f x <.试证:当10≤≤x时,|'()|3f x ≤.证明 21(1)()'()(1)''()(1)2f f x f x x f x ξ=+-+-, 21(0)()'()()''()()2f f x f x x f x η=+-+-, 所以2211(1)(0)'()''()(1)''()22f f f x f x f x ξη-=+--, 22)1(|)(''|21)(''21|)0(||)1(||)('|x f x f f f x f -+++≤ξη,222(1)213x x ≤+-+≤+=.例10[]10: 设)(x f 二次可微,(0)(1)0f f ==,01max ()2x f x ≤≤=,试证01max ''()16x f x ≤≤≤-.证明 因)(x f 在[0,1]上连续,有最大、最小值.又因01max ()2x f x ≤≤=,(0)(1)0f f ==,最大值在(0,1)内部达到.所以)1,0(0∈∃x 使得001()max ()x f x f x ≤≤=.于是)(0x f 为最大值.由Fermat 定理,有0'()0f x =,在0x x =处按泰勒公式展开,)1,0(,∈∃ηξ使得:22000110(0)()''()(0)2''()22f f x f x f x ξξ==+-=+, 22000110(1)()''()(1)2''()(1)22f f x f x f x ηη==+-=+-.因此22010044max ''()min{''(),''()}min{,}(1)x f x f f x x ξη≤≤≤=---. 而 01[,1]2x ∈时,222000444min{,}16(1)1x x x --=-≤---(), 01[0,]2x ∈时,222000444min{,}16(1)x x x --=-≤--, 所以 01max ''()16x f x ≤≤≤-.由上边例题可以总结出一些经验,比如当遇到求有关于界的问题,且涉及高阶导数时,通常考虑用泰勒公式来解题.在解题时可以应用这个经验尝试解题.(六)、泰勒公式在证明不等式中的应用当所要证明的不等式是含有多项式和初等函数的混合物,不妨作一个辅助函数并用泰勒公式代替,往往使证明方便简捷.[]7例11[]11: 设)(x f 在],[b a 上二次可微,''()0f x <.试证:12...0,n i a x x x b k ∀≤<<<≤≥,11nii k==∑,有)()(11i ni i i ni i x f k x k f ∑∑==>.证明 取01ni ii x k x==∑,将)(i x f 在0x x =处按泰勒公式展开有:20000))((''21))((')()(x x f x x x f x f x f i i i i -+-+=ξ, ))((')(000x x x f x f i -+<, (1,2,3...,)i n = 以i k 乘此式两端,然后n 个不等式相加,注意11nii k==∑,11()0nniii ii i k x x k x x==-=-=∑∑,得)()()(101∑∑===<ni i i i ni ix k f x f x f k.例12[]11: 当0x ≥时,证明31sin 6x x x ≥-. 证明 取31()sin 6f x x x x =-+,00x =,则 '''''''''(0)0(0)0(0)0()1cos (0)0f f f f x x f ====-≥,,,,.带入泰勒公式,其中=3n ,得31cos ()0003!x f x x θ-=+++,其中10<<θ. 故当0x ≥时,31sin 6x x x ≥-. 由此可见,关于不等式的证明,有多种方法,如利用拉格朗日中值定理来证明不等式,利用函数的凸性来证明不等式,以及通过讨论导数的符号来得到函数的单调性,从而证明不等式的方法.但归结起来都可以看做是泰勒公式的特殊情形,所以证明不等式时,注意应用泰勒公式这个重要方法.(七)、泰勒公式在级数中的应用在级数敛散性的理论中,要判断一个正项级数∑=nn na1是否收敛,通常找一个简单的函数,)0(111>=∑∑==p n b nn p nn n ,在用比较判定法来判定,但是在实际应用中比较困难的问题是如何选取适当的∑=nn pn11(0>p 中的p 值).如 当2=p ,此时∑∞=121n n收敛,但是+∞=∞→21lim n a n n , 当1=p 时,此时∑∞=11n n发散,但是01lim =∞→na n n . 在这种情况下我们就无法判定∑=nn n a 1的敛散性,为了更好的选取∑=nn pn11中p 的值,使得lim 1n n p a t n→∞=且0t <<+∞,在用比较判别法,我们就可以判定∑=nn n a 1的敛散性. 例13[]11:讨论级数1n ∞=∑的敛散性.分析:直接根据通项去判断该级数是正向级数还是非正项级数比较困难,因而也就无法恰当选择判敛方法,注意到11lnln(1)n n n +=+,若将其泰勒展开为1n 的幂的形式,相呼应,会使判敛容易进行.解 因为2341111111lnln(1)234n n nn n n nn+=+=-+-+<, 所以<从而0n u=>,故该级数是正项级数.又因为3212n =>==-, 所以332211)22nun n=-<-=.因为31212n n∞=∑收敛,所以由正项级数比较判别法知原级数收敛.利用基本初等函数的幂级数展开式,通过加减乘等运算进而可以求得一些较复杂的初等函数的幂级数展开式.例14[]12:求211x x++的幂级数展开式.解利用泰勒公式231111xx x x-=++-36934679103467910(1)(1)1()222222222(1)[sin]3nnx x x x x x x x x x xx x x x x x xnxπ∞=-++++=-+-+-+-+=-+-+-+-++=由例题可见,当级数的通项表达式是由不同类型函数式构成的繁难形式时,往往利用泰勒公式将级数通项简化成统一形式,以便利用判敛准则.利用基本初等函数的幂级数展开式,通过加减乘等运算进而可以求得一些较复杂的初等函数的幂级数展开式.(八)、泰勒公式在求高阶导数值中的应用如果()f x泰勒公式已知,其通项中的加项nxx)(-的系数正是)(!1)(xfnn,从而可反过来求高阶导数数值,而不必再依次求导.例15[]12: 求函数x exxf2)(=在1x=处的高阶导数(100)(1)f.解设=+1x u,则eeueuugxf uu⋅+=+==+2)1(2)1()1()()(,)0()1()()(nn gf=,ue在=0u的泰勒公式为)(!100!99!9811001009998uouuuue u++++++= ,从而))(!100!99!981)(12()(10010099982u o u u u u u u e u g +++++++= ,而()g u 中的泰勒展开式中含100u的项应为100100!100)0(u g ,从()g u 的展开式知100u 的项为100)!1001!992!981(u e ++,因此 100(0)121()100!98!99!100!g e =++,100(0)10101g e =⋅,e gf 10101)0()1(100100==.通过泰勒公式求高阶导数,这是泰勒公式比较简单的一种应用,重点就在于掌握,其通项中的加项nx x )(0-的系数正是)(!10)(x f n n .在求导数时只需在系数上乘以!n 即可. 三、结 论泰勒公式是数学分析中的重要组成部分,是一种非常重要的数学工具.它集中体现了微积分“逼近法”的精髓,在微积分学及相关领域的各个方面都有重要的应用.本文介绍了泰勒公式以及它在八个方面应用,使我们对泰勒公式有了更深一层的理解,对怎样应用泰勒公式解答具体问题有了更深一层的认识,只要在解题过程中注意分析,研究题设条件及其形式特点,并把握上述处理规则,就能比较好地掌握利用泰勒公式解题的技巧.参考文献[1]华东师范大学数学系,《数学分析》(上),高等数学出版社,2008,134-141[2]裴礼文,《数学分析中的典型问题及方法》,高等教育出版社,2009,150-157[3]同济大学数学教研室主编,《高等数学》,人民教育出版社,2007,139-145[4]刘玉琏,《数学分析讲义》,人民教育出版社,2000,120-138[5]张利凯,《高等数学学习辅导》,科学技术文献出版社,2002,138-156[6]M.克莱因,《古今数学思想》,上海科学技术出版社,1988,165-168[7]W.盖勒特、H.奎斯特纳等,《简明数学全书Ⅱ.高等数学与现代数学》,上海科学技术出版社,1985,295-297[8]H.J.巴茨,《数学公式书册》,科学出版社,1987,439-440[9]闵祥伟,《高等数学学习指导与例题分析》,北京邮电大学出版社,2004,520-521,539-540[10]吴炯圻,陈跃辉等,《高等数学及其思想方法与实验》(上),厦门大学出版社,2008,122-127[11]上海财经大学应用数学系,《高等数学》,上海财经大学出版社,2004,66-71[12]蔡子华,《新编高等数学导学》,科学出版社,2002,336-337,369-376(本资料素材和资料部分来自网络,仅供参考。

同济第3版-高数-(3.3) 第三节 泰勒公式

同济第3版-高数-(3.3) 第三节 泰勒公式
R n( x )= o[( x - x 0)]n .
(1) 泰勒中值定理及其意义
泰勒中值定理
如果函数 f( x )在含有 x 0 的某个开区间( a ,b )内具 有直到 n + 1 阶的导数,则对任一 x ( a ,b ),有
f x
f x0
f x0 x x0
1 2!
f x0 x x0 2 L
究竟有多小,即 R n( x )具体是( x - x 0 )的几阶无穷小。 由高阶无穷小阶的定义,就是要由极限
lim
xx0
Rn x x x0k
A0
去推断 k 的值有多大。
因此余项 R n( x )定量估计的问题最终归结为确定 k
的值。从计算精度考虑,自然希望 k 的值越大越好。
从形式上看
lim
于 x 和 0 之间,故可表为 = x ,0 < < 1 . 通常称此
时的泰勒公式为马克劳林公式,即
f x
f 0
f 0 x
1 2!
f 0 x 2 L
1 n!
f n 0 x n
f n1 x
n 1 !
x n1.
马克劳林公式形式简单,应用方便,且以马克劳
林公式对函数进行讨论并不会损失讨论的一般性。
(2) 多项式系数的选择及相应条件的设置 考虑在点 x = x0 的邻域内用多项式 P n( x )表示函数
f( x ),就是选择合当系数 a 0 ,a1,a 2,… , a n,使多项式 曲线 y = Pn( x )与函数曲线 y = f( x )尽可能“吻合”。
从理论和实际两个方面考虑,选择多项式 P n( x ) 的适当系数 a 0 ,a1,a 2,… , a n 在点 x 0 的邻域内表示函数 f( x )应满足两个基本要求: • 有较好的精度,使得 f( x ) P n( x ); • 能够估计误差,即能对误差 R n( x )= f( x )- P n( x )作

同济版《高等数学》 多元函数泰勒展开

同济版《高等数学》 多元函数泰勒展开

同济大学的《高等数学》教材是一部经典的数学教材,其中关于多元函数的泰勒展开是数学学习者所必须掌握的重要内容。

本文将从多元函数泰勒展开的基本概念、公式推导和具体实例分析三个方面来详细介绍该内容。

一、多元函数泰勒展开的基本概念1.1 多元函数的概念多元函数是指自变量不止一个的函数,通常表示为$f(x_1, x_2,\cdots, x_n)$,其中$x_1, x_2, \cdots, x_n$为自变量,$f$为因变量。

在实际问题中,常常遇到多个自变量同时改变而导致因变量发生变化的情况,所以研究多元函数的泰勒展开对于理解函数的性质和应用具有重要意义。

1.2 泰勒展开的定义若函数$f(x)$在某点$x=a$处有各阶导数,那么$f(x)$在点$x=a$处可以展开为以$a$为中心的幂级数,即泰勒展开式:$$f(x)=f(a)+f'(a)(x-a)+\frac{f''(a)(x-a)^2}{2!}+\cdots+\frac{f^{(n)}(a)(x-a)^n}{n!}+R_n(x)$$其中$R_n(x)$为泰勒余项。

1.3 多元函数的泰勒展开对于多元函数$f(x_1, x_2, \cdots, x_n)$,若其各阶偏导数在点$(a_1, a_2, \cdots, a_n)$处存在,那么可以利用多元函数的偏导数来推广泰勒展开式,得到多元函数的泰勒展开式:$$f(x_1, x_2, \cdots, x_n)=f(a_1, a_2, \cdots,a_n)+\sum_{i=1}^n\frac{\partial f}{\partial x_i}(a_1, a_2, \cdots, a_n)(x_i-a_i)$$$$+\sum_{i=1}^n\sum_{j=1}^n\frac{\partial^2 f}{\partialx_i\partial x_j}(a_1, a_2, \cdots, a_n)(x_i-a_i)(x_j-a_j)+\cdots+R_n(x)$$其中$R_n(x)$为多元函数的泰勒余项。

泰勒公式的证明及其应用2

泰勒公式的证明及其应用2

泰勒公式的证明及其应用XXX(XX 学校 XX 院 09级 XX 专业 2班)摘 要:泰勒公式是数学分析中的一部分重要内容。

本文论述了泰勒公式的基本内容,并着重从7个方面介绍了泰勒公式在数学分析和实际生活中的一些应用:利用泰勒公式证明恒等式和不等式,求极限和中值点的极限,还有应用在函数方程中,除此外,还可用泰勒公式求极值,研究函数图形的局部形态,从而更加清楚地认识泰勒公式的重要性.关键词:泰勒公式;极限;极值;中值点;函数;应用引言泰勒主要是从有限差分出发,得到格里戈里–牛顿插值公式,然后令初始变量为零,项数为无穷,但没有给出余项的具体表达式.随着后人的不断研究与完善,形成今天实用的泰勒公式.现代也有很多期刊和教材对这部分内容进行了介绍,对近似计算上的应用介绍也较全面,较系统,但在其它领域的应用则显简单,不系统,不全面,为了方便以后的学习,有必要对此部分内容进行归纳总结,而泰勒公式是一个多项式的拟合问题,而多项式是一种简单函数,它的研究对计算机编程计算极为方便.1 Taylor 公式首先看第一个问题,为了提高近似的精确程度,可以设想用一个x 的n 次多项式在0x 附近去逼近f ,即令()()()nn x x a x x a a x f 0010-++-+= (1.1)从几何上看,这表示不满足在0x 附近用一条直线(曲线()x f y =在点()()00,x f x 的切线)去代替()x f y =,而是想用一条n 次抛物线()()()nn x x a x x a a x f 0010-++-+= 去替代它.由此猜想在点()()00,x f x 附近这两条曲线可能会拟合的更好些,那么系数n a a a ,,10如何确定呢?假设f 本身就是一个n 次多项式,显然,要用一个n 次多项式去替代它,最好莫过它自身了,因此应当有()()()nn x x a x x a a x f 0010-++-+=于是得:()00x f a =求一次导数可得: ()01x f a '= 又求一次导数可得:()!202x f a ''= 这样进行下去可得:()()()()()!,,!4,!3004403n x f a x f a x f a n n =='''= 因此当f 是一个n 次多项式时,它就可以表成:()()()()()()()()()()k nk k nn x x k x f x x n x f x x x f x f x f 00000000!!-=-++-'+=∑= (1.2) 即0x 附近的点x 处的函数值()f x 可以通过0x 点的函数值和各级导数去计算.通过这个特殊的情形,得到一个启示,对于一般的函数f ,只要它在0x 点存在直到n 阶的导数,由这些导数构成一个n 次多项式()()()()()()()()()200000002!!nnn f x f x T x f x f x x x x x x x n '''=+-+-++-称为函数()f x 在点0x 处的泰勒多项式,()n T x 的各项系数()()()01,2,3,,!kf x k n k =,称为泰勒系,因而n 次多项式的n 次泰勒多项式就是它本身.2 泰勒公式的应用由于泰勒公式涉及到的是某一定点0x 及0x 处函数()0f x 及n 阶导数值:()0x f ',()()()00,,x f x f n '',以及用这些值表示动点x 处的函数值()f x ,本文研究泰勒公式的具体应用,比如证明中值公式,求极限等中的应用.2.1 应用Taylor 公式证明等式例1 设()f x 在[],a b 上三次可导,试证:(),c a b ∃∈,使得 ()()()()()1224a b f b f a f b a f c b a +⎛⎫''''=+-+- ⎪⎝⎭证明 (利用待定系数法)设k 为使下列式子成立的实数:()()()()310224a b f b f a f b a k b a +⎛⎫'-----= ⎪⎝⎭(2.1) 这时,问题归为证明,(),c a b ∃∈,使得:()k f c '''=令()()()()()31224a x g x f x f a f x a k x a +⎛⎫'=-----⎪⎝⎭,则()()0g a g b ==. 根据罗尔定理,(),a b ξ∃∈,使得()0g ξ'=,即:()()202228a a a k f f f a ξξξξξ++-⎛⎫⎛⎫''''----=⎪ ⎪⎝⎭⎝⎭ 这是关于k 的方程,注意到()f ξ'在点2a ξ+处的泰勒公式:()()()212228a a a f f f f c a ξξξξξ++-⎛⎫⎛⎫'''''''=++- ⎪ ⎪⎝⎭⎝⎭其中(),c a b ∃∈,比较可得原命题成立.例2 设()f x 在[],a b 上有二阶导数,试证:(),c a b ∃∈,使得()()()()31224baa b f x dx b a f f c b a +⎛⎫''=-+- ⎪⎝⎭⎰ (2.2) 证明 记02a bx +=,则()f x 在0x 处泰勒公式展开式为:()()()()()()200002f f x f x f x x x x x ξ'''=+-+- (2.3)对(2.3)式两端同时取[],a b 上的积分,注意右端第二项积分为0,对第三项的积分,由于导数有介值性,第一积分中值定理成立:(),c a b ∃∈,使得()()()()()()2300112bbaaf x x dx f c x x dx f c b a ξ''''''-=-=-⎰⎰ 因此原命题成立.从上述两个例子中得出泰勒公式可以用来证明一些恒等式,既可以证明微分中值等式,也可以证明积分中值等式,以后在遇到一些等式的证明时,不妨可以尝试用泰勒公式来证明,证明等式后我们在思考,它能否用来证明不等式呢?经研究是可以的,下面通过两个例子来说明一下.2.2 应用Taylor 公式证明不等式例3 设()f x 在[],a b 上二次可微,()0f x ''<,试证:12n a x x x b ∀≤≤<<≤,()1110,1,nn ni i i i i i i i i k k f k x k f x ===⎛⎫≥=> ⎪⎝⎭∑∑∑.证明 取01ni ii x k x ==∑,将()i f x 在0x x =处展开()()()()()()()()()200000002!i i i i i f f x f x f x x x x x f x f x x x ξ''''=+-+-<+-其中(1,2,3,.)i n =以i k 乘此式两端,然后n 个不等式相加,注意11nii k==∑()0110nniii ii i k x x k x x==-=-=∑∑得:()()011nn i i i i i i k f x f x f k x ==⎛⎫<= ⎪⎝⎭∑∑例4 设()f x 在[]0,1上有二阶导数,当01x ≤≤时,()(),2f x f x ''<.试证:当01x ≤≤时,()3f x '≤. 证明 ()f t 在x 处的泰勒展开式为:()()()()()()22!f f t f x f a t x t x ξ'''=+-+- 其中将t 分别换为1,0t t ==可得:()()()()()()21112!f f f x f x x x ξ'''=+-+- (2.4) ()()()()()()202!f f f x f x x x ψ'''=+-+- (2.5)所以(2.4)式减(2.5)()()()()()()221012!2!f f f f f x x x ξψ'''''-=+-- 从而()()()()()()()2222111012121322f x f f f x f x x x ξψ''''≤++-+≤+-+≤+= 由上述两个例子可以看出泰勒公式还可以用来证明不等式.例3说明泰勒公式可以根据题目的条件来证明函数的凹凸性,例4说明可以对某些函数在一定范围内的界进行估计,证明不等式有很多种方法,而学习了泰勒公式后,又增添了一种方法,在以后的学校中,要会灵活应用,但前提是要满足应用的条件,那就是泰勒公式成立的条件.2.3 应用Taylor 公式求极限例5 设函数()x ϕ在[),o +∞上二次连续可微,如果()x x ϕ+∞→lim 存在,且()x ϕ''在[),o +∞上有界,试证:()0lim ='+∞→x x ϕ. 证明 要证明()0lim ='+∞→x x ϕ,即要证:0,0εδ∀>∃>,当x M >时()x ϕε'<.利用Taylor 公式,0h ∀>,()()()()212x h x x h h ϕϕϕϕξ'''+=++ (2.6) 即()()()()112x x h x h hϕϕϕϕξ'''=+--⎡⎤⎣⎦ (2.7)记()x A x ϕ+∞→=lim ,因()x ϕ''有界,所以0M ∃>,使得()x M ϕ''≤ , ()0x ∀≥ 故由(2.7)知()()()()112x x h A A x h h ϕϕϕϕξ⎡⎤'''≤+-+-+⎣⎦ (2.8) 0ε∀>,首先可取0h >充分小,使得122Mh ε<,然后将h 固定,因()x A x ϕ+∞→=lim ,所以0δ∃>,当x δ>时()()12x h A A x h εϕϕ⎡⎤+-+-<⎣⎦ 从而由(2.8)式即得:()22x εεϕε'<+=,即()0lim ='+∞→x x ϕ例6 判断下列函数的曲线是否存在渐近线,若存在的话,求出渐近线方程.(1)y =(2)1521cos x y x e x -⎛⎫=- ⎪ ⎪⎝⎭. 解 (1)首先设所求的渐近线为y ax b =+,并令1u x=,则有:()()12330121lim lim x u u u a bu ax b u→∞→-+--⎤-=⎥⎦()0221133lim u u u a bu o u u →⎛⎫⎛⎫-+--+ ⎪⎪⎝⎭⎝⎭= ()01lim0u a bu o u u→--+== 从中解出:1,0a b ==。

泰勒公式的几种证明及应用

泰勒公式的几种证明及应用

泰勒公式的几种证明及应用摘要:泰勒公式是高等数学中的重要公式,它在理论上和使用上都有很重要的作用.本文将运用分析法或数学归纳法对带有佩亚诺型余项、拉格朗日型余项、积分型余项这三种带有不同型余项的泰勒公式进行简单易懂的证明,从而能更好地理解泰勒公式的内容及性质.在深刻理解的基础上,对泰勒公式在高等数学中有关近似计算及误差估计、求极限、研究函数的极值问题、证明等式或不等式和关于界的估计等方面的应用给予一定的介绍,然后分别给出例题.关键词:泰勒公式 佩亚诺型余项 拉格朗日型余项 积分型余项 应用Several Proofs and Applications of Taylor FormulaAbstract: Taylor formula is an important formula in higher mathematics, it plays a very important role intheoretical and methodological. In order to better understand the content and nature of Taylor formula, this article will use the method of analysis or mathematical induction to prove three different kinds of Taylor formula with remainder terms: Peano remainder term, Lagrange remainder term, and Integral remainder term. On the basis of deep understanding, then the article gives some introductions about the applications of Taylor formula in these aspects: approximate calculation and error estimation, work out limit, research problem of function’s extreme value, the proving of equality or inequality, and about boundary estimate, also supported by examples.Keywords: Taylor formula; Peano remainder term; Lagrange remainder term; Integral remainder term;application1. 引言大家都知道,多项式函数是各类函数中结构较简单、计算较方便的一种,用多项式逼近函数是近似计算和理论分析的一个重要内容.可以看到用00()()()f x f x x x '+-这个)(0x x -的一次多项式近似代替)(x f 且求其在0x 附近的函数值是很方便的,但是它的精确度往往并不能满足我们的实际需求,这就要求我们能够找到一个关于)(0x x -的n 次多项式.由此,著名数学家泰勒在1912年7月给其老师梅钦的信中提出了著名的定理——泰勒定理,用泰勒公式可以很好地解决用多项式近似代替某些较复杂函数这类复杂的问题.2.泰勒公式的证明泰勒公式有几种不同的形式,在这里我们将对三种带有不同型余项的泰勒公式给予逻辑严谨、简单易懂的证明. 2.1带有佩亚诺型余项的泰勒公式定理1[1] 若函数f 在点o x 存在直至n 阶导数,则有()()()()()()()()()()()()2000000002!!n n n f x f x f x f x f x x x x x x x o x x n '''=+-+-++-+-证:设()()()()()()()()200000002!!n n n f x f x T f x f x x x x x x x n '''=+-+-++-(1) ()()n n R f x T x =- ()0()nn Q x x x =-现在只要证 ()()0lim0n x x nR x Q x →=由关系式(1)可知()()()()0000n n n n R x R x R x '====并易知()()()()10000,n n n n Q x Q x Q x -'==== ()()0!n n Q x n =因为()()0n f x 存在,所以在点o x 的某邻域()0U x 内f 存在1n -阶导函数.于是,当()0x U x ︒∈且0x x →时,允许接连使用洛必达法则1-n 次,得 到 ()()()()()()()()0011lim lim lim n n n n n x x x x x x n nn R x R x R x Q x Q x Q x --→→→'===' ()()()()()()()()()110000lim12n n n x x f x f x f x x x n n x x --→---=--()()()()()()0110001lim !n n n x x f x f x f x n x x --→⎡⎤-=-⎢⎥-⎢⎥⎣⎦0= 所以有()()()()()()()()()()()2000000002!!n n n f x f x f x f x f x x x x x x x o x x n '''=+-+-++-+-则此式得证.2.2带有拉格朗日型余项的泰勒公式定理2[2] 设函数f 在某个包含0x 的开区间),(b a 中有1到n +1阶的各阶导数,则(),x a b ∀∈,有()()()()()()()()()200000002!!n n f x f x f x f x f x x x x x x x n '''=+-+-++-()()()()1101!n n f x x n ξ+++-+ (2)其中ξ是介于0x 与x 之间的某个点,当0x 固定之后,ξ只与x 有关. 证:(2)式可以改写成()()()()()()()()()200000002!!n nf x f x f x f x f x x x x x x x n ⎡⎤'''-+-+-++-⎢⎥⎢⎥⎣⎦()()()()1101!n n f x x n ξ++=-+ 或者()()()()(1)101!n n n R x f n x x ξ++=+-. (3) 为了证明(3)式,我们对于(3)式左端连续运用柯西中值定理(已推出()()()()0000n n n n R x R x R x '====): ()()()()()()()()011100101n n nn n nR x R x R x R x x x x n x ξξ++'-==--+-()()()()()()()1021102011nn nnn R R x R n xn n x ξξξξ-''''-==+-+-()()()()201201nn n R R x n n x ξξ-''''-==+-()()()()0231n n n n R n n x ξξ=⋅+-()()()()()()00231n n n n n n R R x n n x ξξ-=⋅+-()()()11!n n R n ξ+=+ (4)在此推导过程中,1ξ是介于0x 与x 之间的某个点;2ξ是介于0x 与1ξ之间的某个点,,ξ是介于0x 与n ξ之间的点.因而,ξ介于0x 与x 之间. 又注意到 ()()()()11n n n R f ξξ++= ,所以(4)式就可以得到(3)式 ,进而推出(2)式. 即定理得证.在这里定理1和定理2我们都是用分析法来证明的,实际上,我们还可以用递推法或数学归纳法来进行证明,下面的定理3我们就是用数学归纳法来证明的. 2.3带有积分型余项的泰勒公式定理3[3] 设函数()f x 在点0x 的某邻域()0U x 内有n +1阶连续导函数,则()()()()()()()()()200000002!!n n f x f x f x f x f x x x x x x x n '''=+-+-++-()()()011!x nn x f t x t dt n ++-⎰ ,0[,].t x x ∈ (5) 证:从已知条件可知()1,,,n f f f +'在0[,]x x 上是连续的.那么我们有()()()00x x f x f x f t dt '-=⎰ (6) 在(6)中令(),()u f t v x t '==-- 则(),du f t dt dv dt ''==.利用分部积分公式 我们就有()()()()()0||xxx xx x x x x x f t dt uv vdu f t x t x t f t dt ''''=-=--+-⎰⎰⎰(7)结合(6)式和(7)式得到()()()()()()0000x x x t f f x f d x x t x f x t '''=---+⎰这就是1n =时的情形,符合公式(5).我们同理可容易看出2n =时也成立. 假设1n -(此时指的是2n ≥的情形)时仍然可以得到(5)式是成立的, 即是有()()()()()()()()()()1200000002!1!n n f x f x f x f x f x x x x x x x n -'''-=-+-++--()()()()0111!x n n x x t f t dt n -+--⎰ (8) 在(8)式中令()()(),!n n x t u ft v n -==- 则()()()()11,1!n n x t du f t dt dv dt n -+-==-. 利用推广分部积分公式我们就有()()()()011!n xn x x t f t dt n ---⎰()()()()()()01!!xn n nxn x x x t x t f d n t f n t t +--=-+⎰()()()()()()0100!!nxn nn x x t x f x x n dt n f t +--=+⎰(9) 将(9)式代入(8)式得到(5)式,即在n 的情形下(5)式仍然成立. 故证得此泰勒公式成立.定理3运用分部积分法的推广公式结合数学归纳法来证明的,但实际上定理3也是可以用分析法来证明的.经过三个定理的证明我们可以清楚地看到这几种带不同型余项的泰勒公式是可以相互转化的,例如:在定理3中存在),(0x x ∈ξ有由推广的积分第一中值定理得到=)(x R ()()()011!x nn x f x t dt n ξ+-⎰=10)1())(()!1(1++-+n n x x f n ξ.这就转化成了定理2中的余项形式,这就是说带有积分型余项的泰勒公式和带有拉格朗日型余项的泰勒公式是可以相互转化的,经过实际演算我们还可以很容易地得到其它几种型余项的泰勒公式之间的相互转化.那么也可以说只需要知道其中一种余项的泰勒公式的证明,我们就可以轻松证明出其它型余项的泰勒公式,当然这其中也包括很重要的带有柯西型余项的泰勒公式.3.泰勒公式的应用泰勒公式是解决高等数学问题的很重要的工具,但是很多同学仅仅对泰勒公式的展开式比较熟悉,而对泰勒公式的其它应用方法没有深入的了解.实际上,泰勒公式在近似计算及误差估计、求极限、研究函数的极值问题等问题的解决过程中也有很重要的应用.下面举几个例子进行阐述. 3.1近似计算及误差估计例1.=3273=,所以可以设()f x = 先求027x =处()f x 的三阶泰勒公式:因 ()2313f x x -'=,()5329f x x -''=-,()831027f x x -'''=. 所以得(27)3f = , 31(27)3f '= , 72(27)3f ''=- , 1110(27)3f '''= 及 11(4)3480()3fx x -=- ,故23411371243115803(27)(27)(27)(27).3334!3[27(27)]x x x x x θ=+---+---⋅+-其中()0,1θ∈, 又30x =, 于是43114380||(3027)4!3[27(27)]R x θ=-⋅+-454111280103 1.88104!333-<⋅=≈⨯⋅⋅2591153333≈+-+30.1111110.0041150.000254≈+-+ 3.10725=计算时,分数化小数取六位小数,合起来误差不超过50.310,-⨯再加上余项误差,总误差不超过52.210.-⨯用多项式逼近函数进行近似计算是泰勒公式的重要应用,且应用高阶导数可以进一步精确地求出近似值,减小误差.本题用已知函数的泰勒公式的值(其项数可根据实际需要取),作为已知函数的近似值,用来进行近似计算,且用泰勒公式的余项来估计所产生的误差.一般如果对我们已经确定的n ,我们先令M x f n ≤+|)(|)1(,则有估计误差110)1()!1()()!1()(||+++-+≤-+=n n n n x x n Mx x n f R ξ.3.2求极限例2:求()2220112lim cos sin x x x x e x→+-- 的极限值.解: 在这里由于22~sin x x ,把其它各项分别展开成带有佩亚诺型余项的泰勒公式,则有)(8121114422x o x x x +-+=+,那么分子变为244111()28x x o x +=+, 分子式4=n ,则分母中可以将括号里展开成2=n 的情形,即有)(211cos 32x o x x +-= , )(1222x o x e x ++= , 则有 )(23cos 222x o x e x x +-=-,所以此求极限的式子可以简化为244220022211()1182lim lim 312(cos )sin ()2x x x x o x x x e x x o x x →→++==-⎡⎤--+⎢⎥⎣⎦. 故所求极限值是121-. 对于求0型的极限问题,常可以用洛必达法则,但对于像此例这种要连求几次导数,运算非常麻烦的情形我们可以考虑用带有佩亚诺型余项的泰勒公式加以解决.由此例可以看出泰勒公式是进行无穷小量分析比较的一个非常精细的工具.有些求极限的问题并非0型的,我们仍然需要用到泰勒公式去求极限,如下例:例3:求⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-∞→x x x x 11ln lim 2 的极限值.解:因为⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+221121111ln x o x x x ,)(∞→x ,所以得到⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-∞→x x x x 11ln lim 22211lim 12x o x x →∞⎡⎤⎛⎫ ⎪⎢⎥⎝⎭⎢⎥=+⎢⎥⎢⎥⎣⎦12=得到极限值是12.3.3研究函数的极值问题在研究函数的极值问题时我们往往也可以应用泰勒公式达到化整为零、快速解题的效果.例4:设f 在0x 的某邻域内存在直到1n -阶导数,在0x 处n 阶可导,且0)(0)(=x f k)1,,2,1(-=n k ,0)(0)(≠x fn ,证明:若n 为偶数,则0x 是)(x f 的极值点;若n 为奇数,则)(x f 在0x 处不取极值.证:由定理1我们知道f 在点0x 处的n 阶泰勒公式即为()()()()()()()()()()()()2000000002!!n n n f x f x f x f x f x x x x x x x o x x n '''=+-+-++-+-又由题目条件可以看到0)()()(0)1(00===''='-x f x f x f n ,则上式可以简化成))(())((!1)()(000)(0n n n x x o x x x f n x f x f -+-+=,因此有n n x x o x f n x f x f )()1()(!1)()(00)(0-⎥⎦⎤⎢⎣⎡+=- (10)又因为0)(≠n f,故存在正数δδ'≤,当);(0δ'∈x U x 时,)(!10)(x f n n 与)1()(!10)(o x f n n +同号.所以, 若n 为偶数,则当0)(0)(<x f n 时(10)式取负号,从而对任意);(0δ'∈x U x 有)()(0x f x f <,则此时f 在0x 处取得极大值;同理0)(0)(>x fn 时f 在0x 处取得极小值. 故若n 为偶数,0x 是)(x f 的极值点.若n 为奇数,则任取),(001δ'+∈x x x ,),(002x x x δ'-∈,且0)(01>-n x x ,0)(02<-n x x 当0)(0)(<x f n 时,有)()()(201x f x f x f << ,在0x 处取不到极值;同理当0)(0)(<x f n 时也在0x 处取不到极值.故若n 为奇数,)(x f 在0x 处不取极值.题目中提到了几阶导数的问题,而我们有时感觉到无从下手,此时我们就应该想到应用泰勒公式,常常能达到意料不到的效果,事半功倍. 3.4证明等式或不等式证明等式或不等式的方法有很多种,但是在含有一阶以上的导数时一般可运用泰勒公式进行证明.3.4.1证明等式问题例5:证明:若()f x 在[,]a b 上有n 阶导数存在,且()()()()()()10n f a f b f b f b f b -'''======,则在(,)a b 内至少存在一点ξ,使得()()0n f ξ=.证:由于()f x 在[,]a b 上有n 阶导数,故可在x b =处展成1-n 阶泰勒公式()()()()()()1112()()()()()().2!(1)!!n n n n f b f f b f x f b f b x b x b x b x b n n ξ--'''=+-+-++-+-- 其中1ξ在x 与b 之间. 又因为()()()()()10,n f b f b f b f b -'''=====故由上式可得()()()()11!nn f x f x b n ξ=-. 当x a =时,有()()()()()1,!nn f a f a b a b n ξξ=-<<.又()()0,0,nf a a b =-≠故知在(),a b 内必有一点,ξ使得()()0.nf ξ=3.4.2证明不等式问题例6:证明:若函数()f x 在[,]a b 上存在二阶导数,且()()0f a f b ''==,则在(),a b 内存在一点c ,使()()()()24||||f c f b f a b a ''≥--.证:将2a b f +⎛⎫⎪⎝⎭分别在点a 和点b 展成泰勒公式,并注意()()0f a f b ''==,有()()211,22!22f a b b a a b f f a a ξξ''+-+⎛⎫⎛⎫=+<< ⎪ ⎪⎝⎭⎝⎭; ()()222,22!22f a b b a a b f f b b ξξ''+-+⎛⎫⎛⎫=+<< ⎪ ⎪⎝⎭⎝⎭. 令 ()()()12||max{||,||}f c f f ξξ''''''=.则 ()()()()||22a b a b f b f a f b f f f a ++⎛⎫⎛⎫-≤-+- ⎪ ⎪⎝⎭⎝⎭()()22212222f f b a b a ξξ''''--⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭()()()()2211||||24b a f f ξξ-⎡⎤''''=+⎢⎥⎣⎦ ()()2||4b a fc -''≤即()()()()24||||f c f b f a b a ''≥--.由例4、例5可以看出用泰勒公式证明问题这类题目中往往涉及函数的高阶导数.应用的关键在于如何选择要展开的函数,在哪一点展开,以及展开的次数(一般比最高阶导数低一阶)等,这些都要根据题设的条件进行具体问题具体分析. 3.5关于界的估计泰勒公式在有关界的估计方面的应用也是非常巧妙的.例7:设函数f 在(,)-∞+∞上有三阶导数,如果()f x 与()f x '''有界,试证()f x '与()f x ''也有界.证: 设 ()0||,f x M ≤ ()3||,()f x M x '''≤-∞<<+∞, 其中03,M M 都是常数.将f 在任意一点x 处展开成带有拉格朗日型余项的二阶泰勒公式 即有()()()()()()()()()()111,26111,26f x f x f x f x f f x f x f x f x f ξη''''''+-=++''''''--=-+-其中()(),1,1,x x x x ξη∈+∈-.以上两式加减分别得到 ()()()112f x f x f x ++--()()()1[],6f x f f ξη''''''''=+-()()()()()1112[],6f x f x f x f f ξη'''''''+--=++ 由以上两式分别得到 ()()()()()()1||112[]6f x f x f x f x f f ξη''''''''=++---- 0314,3M M ≤+ ()()()()()1|2|11[]6f x f x f x f f ξη'''''''=+---+ 03123M M ≤+, 即()f x '与()f x ''在(,)-∞+∞上也有界.4.总结从泰勒公式在微积分的重要地位可以看出对泰勒公式进行证明是非常有必要的,进一步加深了我们对泰勒公式的理解及应用.通过上述证明及应用举例,我们能够知道:①泰勒公式是应用高阶导数研究函数性态的工具,凡是已知函数()f x 的高阶导数研究函数()f x 的性态都要应用泰勒公式;②泰勒公式有两种不同类型的余项:一种是定性的,如佩亚诺型余项;一种是定量的,如拉格朗日型余项等.参考文献:[1] 华东师范大学数学系.数学分析(上)[M].北京:高等教育出版社,2001.134-140页.[2] 韩云端,扈志明. 微积分教程(上)[M].北京:清华大学出版社,1999.188-203页.[3] S.I.Grossmon ,周性伟.微积分及其应用[M].天津:天津科学技术出版社,1988. 51-56页.[4] 蔡光兴,李德宜.微积分(经管类)[M].北京:科学出版社,2004.127页.[5] 王元殿.带不同型余项泰勒公式的证明[J].电大理工,2000,第205期:36-38页.[6] 同济大学数学系.高等数学(上)[M].北京:高等教育出版社,2007.139-145页.[7] 王素芳,陶荣,张永胜.泰勒公式在计算及证明中的应用[N].洛阳工业高等专科学校学报,2003-6-第13卷第2期.[8] 耿晓哲.Taylor公式及其应用[J].潍坊高等职业技术教育,2009,第5卷第3期:45页.[9] 刘云,王阳,崔春红.浅谈泰勒公式的应用[N].和田师范专科学院学报,2008-7-第28卷第1期.[10] 董斌斌.泰勒公式及其在解题中的应用[J].科技信息,2010,第31期:243页.[11] 郭顺生,微积分入门指导(一元函数部分)[M].河北:河北人民出版社,1985.247-266页.[12] 刘红艳.一元泰勒公式在解题中的应用[J].林区教学,2008,第8期:140-141页.[13] 刘玉琏,杨奎元,吕凤. 数学分析讲义学习指导书——附解题方法提要[M].北京:高等教育出版社,1787.225-232页.[14] 潘劲松.泰勒公式的证明及应用[N].廊坊师范学院学报,2010-4-第10卷第2期.。

高等数学同济大学课件下第89二元泰勒公式

高等数学同济大学课件下第89二元泰勒公式
高等数学同济大学课件下 第89二元泰勒公式
目录
二元泰勒公式的基本概念 二元泰勒公式的推导过程 二元泰勒公式的应用实例 二元泰勒公式的扩展与推广
二元函数的泰勒展开式
二元泰勒公式:将二元函数展开为幂级数的形式
展开式:f(x,y)=f(a,b)+(x-a)f'(a,b)+(y-b)f''(a,b)+(x-a)^2f'''(a,b)+(yb)^2f''''(a,b)+...
二元泰勒公式的扩展形式
二元泰勒公式的 定义:将二元函 数在某点附近的 局部近似为多项 式
二元泰勒公式的 扩展形式:将多 元函数在某点附 近的局部近似为 多项式
二元泰勒公式的 推广:将多元函 数在某点附近的 局部近似为多项 式,并可以推广 到更高维的情况
二元泰勒公式的 应用:在数学、 物理、工程等领 域都有广泛的应 用
收敛速度:泰勒公式的收敛速度与函数的光滑性有关
收敛性分析:通过分析泰勒公式的收敛性,可以判断泰勒公式的准确性和适用范 围
利用二元泰勒公式近似计算函数值
泰勒公式:将函数展开为多项式形式,便于计算 应用实例:计算sin(x)的近似值 计算方法:将sin(x)展开为泰勒级数,取前几项求和 误差分析:分析误差来源,提高计算精度
添加标题
二元泰勒公式在数学、物理、工程等领域有着广泛的 应用
二元泰勒公式的应用场景
数值分析:用于近似计算函数值,提高计算精度 优化问题:用于求解非线性优化问题,如最小二乘法 控制理论:用于控制系统的设计和分析,如PID控制 信号处理:用于信号的滤波、变换和压缩等处理
二元函数的泰勒级数展开式
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

f ( x0 )( x x0 ) 2
机动 目录 上页 下页 返回 结束
2. 余项估计
令 Rn ( x) f ( x) pn ( x) (称为余项) , 则有
Rn ( x) ( x x0 ) n1 (1 ) Rn Rn ( x) Rn ( x0 ) (1 在 x0 与 x 之间) n n1 (n 1)(1 x0 ) ( x x0 ) 0 (1 ) Rn ( 2 ) Rn Rn ( x0 ) ( 2 在 x0 与 n (n 1)(1 x0 ) 0 (n 1)n( 2 x0 ) n1 1 之间)
机动 目录 上页 下页 返回 结束
说明: 注意舍入误差对计算结果的影响.
1 1 本例 e 1 1 2! 9!
若每项四舍五入到小数点后 6 位,则 各项舍入误差之和不超过 7 0.5 10 , 总误差为 7 0.5 106 10 6 5 106 这时得到的近似值不能保证误差不超过 10 6. 因此计算时中间结果应比精度要求多取一位 .
第三节 泰勒 ( Taylor )公式
用多项式近似表示函数 — 应用
第三章
理论分析 近似计算
一、泰勒公式的建立 二、几个初等函数的麦克劳林公式 三、泰勒公式的应用
机动 目录 上页 下页 返回 结束
一、泰勒公式的建立
在微分应用中已知近似公式 :
f ( x) f ( x0 ) f ( x0 )( x x0 )
称为麦克劳林( Maclaurin )公式 .
(n) f (0) 2 f ( 0 ) n f ( x) f (0) f (0) x x x f ( x0 ) 2 2 ! n ! x0 ) f ( x) f ( x0 ) f ( x0 )( x ( x x0 ) ( n1) 2 ! , 则有误差估计式 若在公式成立的区间上 f ( x ) M ( n 1) f ( n ) ( x0 ) f ( ) n n 1 ( x x0 ) M n 1 ( x x0 ) n ! Rn ( x) (n x 1) ! ( 在 x0 与 x 之间) (n 1) !
n 1 n a ( x x ) a1 2a2 ( x x0 ) n 0
( n) pn ( x) a0 pn ( x0 ) f ( x0 ) ,
1 p ( x ) a2 2 ! n 0

2 !a2 n(n 1)an ( x x0 ) n!an ( x0 ) f ( x0 ) , a1 pn

Rn ( x) f ( x) pn ( x)
( 在 x0 与 x 之间)
( n1) ( n1) pn ( x) 0 , Rn ( x) f ( n1) ( x)
Rn ( x)
f ( n1) ( ) (n 1) !
( x x0 ) n1 ( 在 x0 与 x 之间)
1 2!
n2
1 2!
1 p ( n) ( x ) 1 f ( n) ( x ) f ( x0 ) , , an n 0 0 n! ! n
故 pn ( x) f ( x0 ) f ( x0 )( x x0 )
( n) n 1 n f ( x )( x x ) 0 0 !
(2) 当 n = 1 时, 泰勒公式变为 可见
f ( ) ( x x0 ) 2 f ( x) f ( x0 ) f ( x0 )( x x0 ) 2!
( 在 x0 与 x 之间)
df
返回 结束
误差
( 在 x0 与 x 之间)
机动 目录 上页 下页
在泰勒公式中若取 x0 0 , x (0 1) , 则有 f (0) 2 f ( n ) (0) n x x f (0) f (0) x 2! n!
( n 1) ( x) 在包含 0 , x 的某区间上的上界. M为 f
需解问题的类型: 1) 已知 x 和误差限 , 要求确定项数 n ; 2) 已知项数 n 和 x , 计算近似值并估计误差; 3) 已知项数 n 和误差限 , 确定公式中 x 的适用范围.
机动 目录 上页 下页 返回 结束
例1. 计算无理数 e 的近似值 , 使误差不超过 解: 已知 的麦克劳林公式为 x 2 x3 xn x e 1 x 2 ! 3! n! (0 1) 令x=1,得
其中 R2 m ( x)
m m1 ) sin( x 2 (1) cos( 2 x) x 2 m1 (0 1) (2m 1) !
机动
目录
上页
下页
返回
结束
类似可得
2m x2 x4 x cos x 1 (1) m R2m1 ( x) 2! 4! ( 2 m) !
f ( x0 ) f ( x0 ) f ( x0 )( x x0 ) ( x x0 ) 2 2! f ( n ) ( x0 ) ( x x0 ) n o[( x x0 ) n ] ④ n!
公式 ③ 称为n 阶泰勒公式的佩亚诺(Peano) 余项 .
* 可以证明:
机动 目录 上页 下页 返回 结束
2. 利用泰勒公式求极限
例3. 求
用洛必塔法则 不方便 !
解: 用泰勒公式将分子展到 x 2 项, 由于
x 3x 4 2 1 3 4
2 1 1 ( 3 x) 1 1 ( 1 1) ( 3 x) 2 o( x 2 ) 4 2! 2 2 2 4 2 2 3 9 1 x x o ( x ) 2 4 4 16
其中
(1) m1 cos( x) 2 m 2 R2m1 ( x) x (2m 2) !
(0 1)
机动
目录
上页
下页
返回
结束
f ( k ) ( x) ( 1)( k 1)(1 x) k
(k 1, 2 ,) f ( k ) (0) ( 1)( k 1) ( 1) 2 (1 x) 1 x x 2! ( 1)( n 1) n x Rn ( x) n!
x 的一次多项式
y
y f ( x)
p1 ( x)
特点:
f ( x0 ) f ( x0 )
如何提高精度 ? 如何估计误差 ?
o
x0 x
以直代曲
x
需要解决的问题
机动
目录
上页
下页
返回
结束
1. 求 n 次近似多项式 令 则
要求:
2 n
pn ( x) a0 a1 ( x x0 ) a2 ( x x0 ) an ( x x0 ) ( x) pn ( x) pn
其中
(1) n x n 1 Rn ( x) n 1 (1 x) n 1
(0 1)
机动
目录
上页
下页
返回
结束
三、泰勒公式的应用
1. 在近似计算中的应用
f (0) 2 f ( n ) (0) n x f ( x) f (0) f (0) x x 2! n! M n 1 x 误差 Rn ( x) (n 1) !
4 3x
1 9 x 2 o( x 2 ) ( 1) (16 n) n 1 x n 1 2 9 ( 1 x ) 原式 lim 2 32 (0 n 1) ! x x
④ 式成立
机动 目录 上页 下页 返回 结束
( x0 ) f f ( x) f ( x0 ) f ( x0 )( x x0 ) ( x x0 ) 2 2! ( n 1) f ( n ) ( x0 ) f ( ) n ( x x0 ) ( x x0 ) n1 n! (n 1) ! ( 在 x0 与 x 之间) 特例: 给出拉格朗日中值定理 (1) 当 n = 0 时, 泰勒公式变为 f ( x) f ( x0 ) f ( )( x x0 ) ( 在 x0 与 x 之间)
6
机动
目录
上页
下页
返回
结束
例2. 用近似公式
计算 cos x 的近似值,
使其精确到 0.005 , 试确定 x 的适用范围.
解: 近似公式的误差

解得
x x R3 ( x) cos( x) 24 4! 4 x 0.005 24 x 0.588
4
4
即当 x 0.588 时, 由给定的近似公式计算的结果 能准确到 0.005 .
(n) ( n 1) R ( x ) R ( ) n 0 n ( 在 x0 与 xn 之间) (n 1) 2( n x0 ) 0 (n 1) !
(n) Rn ( n )
机动 目录 上页 下页 返回 结束
(n) ( x0 ) Rn Rn ( x0 ) Rn ( x0 ) 0
其中 Rn ( x)
( 1)( n)
(n 1) !
(1 x) n1 x n1
(0 1)
机动 目录 上页 下页 返回 结束
已知 f 类似可得
(k )
( x) (1)
k 1
(k 1)! (k 1, 2 ,) k (1 x)
n x 2 x3 x ln(1 x) x (1) n 1 Rn ( x) 2 3 n
1 1 e 11 (0 1) 2! n ! (n 1) ! 由于 0 e e 3, 欲使 3 6 10 Rn (1) (n 1) !
由计算可知当 n = 9 时上式成立 , 因此
相关文档
最新文档