新人教版高中数学必修四1.2.2同角三角函数的基本关系》....ppt.ppt
人教版必修4第一章1.2.2同角三角函数的基本关系课件 (共17张PPT)
![人教版必修4第一章1.2.2同角三角函数的基本关系课件 (共17张PPT)](https://img.taocdn.com/s3/m/2cf533bb852458fb760b5613.png)
变式 已知 sincos 12且为第二象限
25
求cos sin
化简问题 练习1.
化简 : 1si2n440.
练习2. 化 简 1cos 1cos 1cos 1cos
( 3 )
2
证明问题
例2. 求证 1 cso : i n s1 cso i n s.
点评 P20 5 作业P22 13
小结
探究 sin : ,cos,ta n之间有何关
设是一个任意角,它的终边与单位圆交于点P(x,y),那么:
y
(1)siny;
P(x,y)
x
MO
A(1,0)
(2)cosx;
(3)tanxyx0;
同角三角函数的基本关系
平方关系: si2 nco 2s1
商数关系:
tan sin (k,kZ)
cos
2
• You have to believe in yourself. That's the secret of success. 人必须相信自己,这是成功的秘诀。
•
例2(1)化简:1s-in21s0in10c ocso1s010
(2)已s知 in2co,s计算
sin2co2s的值
你有什么体会?
课堂小结
同一个角 的正弦、余弦的平方和等于1,
商等于角 的正切.
练习:判断下列式子是否成立?
1 .s2 i3n 0 c2 o 4s 5 1
2 .s2 i3 n 0 c2 o 3s 0 1
3 .s2 i6n 0 c2 o 6s 0 1
4. sin2 2Z.x.x.K co22s 1
高一数学人教A版必修4课件:1.2.2 同角三角函数的基本关系
![高一数学人教A版必修4课件:1.2.2 同角三角函数的基本关系](https://img.taocdn.com/s3/m/3a3f2ddab9d528ea81c779d6.png)
第一章 三角函数§1.2 任意角的三函数 1.2.2 同角三角函数的基本关系明目标 知重点填要点记疑点探要点究所然内容索引010203当堂测查疑缺04明目标、知重点1.能通过三角函数的定义推导出同角三角函数的基本关系式.2.理解同角三角函数的基本关系式.3.能运用同角三角函数的基本关系式进行三角函数式的化简、求值和证明.1.同角三角函数的基本关系式(1)平方关系: .(2)商数关系:sin 2α+cos 2α=1填要点·记疑点1-cos2α1-sin2αcos αtan α探要点·究所然情境导学大家都听过一句话:南美洲亚马逊河雨林中的一只蝴蝶,偶尔扇动几下翅膀,可能在两周后引起美国德克萨斯州的一场龙卷风.这就是著名的“蝴蝶效应”,他本意是说事物初始条件的微弱变化可能会引起结果的巨大变化.两个似乎毫不相干的事物,却有着这样的联系.那么“同一个角”的三角函数一定会有非常密切的关系!到底是什么关系呢?这就是本节课所研究的问题.sin αcos αtan αsin 2α+cos 2α30°探究点一 同角三角函数的基本关系式思考1 写出下列角的三角函数值,观察他们之间的关系,猜想之间的联系?你能发现什么一般规律?你能否用代数式表示这两个规律?145°60°150°111111111tan 30°tan 45°tan 60°tan 150°正切1思考2 如何利用任意角的三角函数的定义推导同角三角函数的基本关系式?同角三角函数的基本关系式对任意角α都成立吗?答 设点P(x,y)为α终边上任意一点,P与O不重合.P到原点的距离为r=探究点二 三角函数式的求值思考 已知某角的一个三角函数值,再利用sin2α+cos2α=1求它的其余三角函数值时,要注意角所在的象限,恰当选取开方后根号前面的正负号,一般有以下三种情况:类型1:如果已知三角函数值,且角的象限已知,那么只有一组解.类型2:如果已知三角函数值,但没有指定角在哪个象限,那么由已知三角函数值的正负确定角可能在的象限,然后求解,这种情况一般有两组解.类型3:如果所给的三角函数值是由字母给出的,且没有确定角在哪个象限,那么就需要进行讨论.例如:已知cos α=m,且|m|<1,求sin α,tan α.答 ∵cos α=m,且|m|<1,当α终边在y轴上时,sin α=±1,tan α不存在.如果α是第三象限角,那么cos α<0.反思与感悟 同角三角函数的基本关系揭示了同角之间的三角函数关系,其最基本的应用是“知一求二”,要注意这个角所在的象限,由此来决定所求的是一解还是两解,同时应体会方程思想的应用.又sin2α+cos2α=1,②又α是第三象限角,探究点三 三角函数式的化简三角函数式的化简是将三角函数式尽量化为最简单的形式,其基本要求:尽量减少角的种数,尽量减少三角函数的种数,尽量化为同角且同名的三角函数等.三角函数式的化简实质上是一种不指定答案的恒等变形,体现了由繁到简的最基本的数学解题原则.它不仅要求熟悉和灵活运用所学的三角公式,还需要熟悉和灵活运用这些公式的等价形式.同时,这类问题还具有较强的综合性,对其他非三角知识的运用也具有较高的要求,因此在平常学习时要注意经验的积累.反思与感悟 解答此类题目的关键在于公式的灵活运用,切实分析好同角三角函数间的关系.化简过程中常用的方法有:(1)化切为弦,即把非正弦、非余弦的函数都化成正弦、余弦函数,从而减少函数名称,达到化简的目的.(2)对于含有根号的,常把根号下化成完全平方式,然后去根号,达到化简的目的.(3)对于化简含高次的三角函数式,往往借助于因式分解.跟踪训练2 已知tan α=3,则1(2)sin2α-3sin αcos α+1= .1探究点四 三角恒等式的证明证明三角恒等式就是通过转化和消去等式两边差异来促成统一的过程,证明的方法在形式上显得较为灵活,常用的有以下几种:①直接法:从等式的一边开始直接化为等式的另一边,常从比较复杂、繁杂的一边开始化简到另一边,其依据是相等关系的传递性;②综合法:由一个已知成立的等式(如公式等)恒等变形得到所要证明的等式,其依据是等价转化的思想;∴原等式成立.方法二 ∵sin2α+cos2α=1,∴cos2α=1-sin2α.∴cos2α=(1-sin α)·(1+sin α).∴原等式成立.∵左边=右边,∴原等式成立.反思与感悟 证明三角恒等式的实质是清除等式两端的差异,有目的地进行化简.证明三角恒等式的基本原则:由繁到简.常用方法:从左向右证;从右向左证;左、右同时证.常用技巧:切化弦、整体代换.∴原式成立.∴左边=右边,原式成立.当堂测·查疑缺 1234cos 40°-sin 40°解 ∵α是第三象限角,∴sin α<0,由三角函数线可知-1<cos α<0.∴原等式成立.呈重点、现规律2.已知角α的某一种三角函数值,求角α的其余三角函数值时,要注意公式的合理选择.一般是先选用平方关系,再用商数关系.在应用平方关系求sin α或cos α时,其正负号是由角α所在象限来决定,切不可不加分析,凭想象写公式.3.在三角函数的变换求值中,已知sin α+cos α,sin αcos α,sin α-cos α中的一个,可以利用方程思想,求出另外两个的值.4.在进行三角函数式的化简或求值时,细心观察题目的特征,灵活、恰当地选用公式,统一角、统一函数、降低次数是三角函数关系式变形的出发点.利用同角三角函数的基本关系主要是统一函数,要掌握“切化弦”和“弦化切”的方法.5.在化简或恒等式证明时,注意方法的灵活运用,常用的技巧有:①“1”的代换;②减少三角函数的个数(化切为弦、化弦为切等);③多项式运算技巧的应用(如因式分解、整体思想等);④对条件或结论的重新整理、变形,以便于应用同角三角函数关系来求解.。
高中数学必修四人教版1.2.2同角三角函数的基本关系10ppt课件
![高中数学必修四人教版1.2.2同角三角函数的基本关系10ppt课件](https://img.taocdn.com/s3/m/96c78fdb5fbfc77da269b143.png)
2.已知 tan α =2,求下列各式的值. 3sin α -2cos α (1) ; 2sin α +cos α 2sin2α +sin α cos α +cos2α (2) . 2 2 4sin α -3cos α
[例 2]
1 已知 0<α<π , sin α +cos α = , 求 tan α 的值. 5
1 3.已知 sin α -cos α = ,则 sin α cos α =________. 2
1 1 解析:由 sin α-cos α= ,得 1-2sin αcos α= , 2 4 3 ∴sin αcos α= . 8
3 答案: 8
4.本例中,把“0<α <π ”改为“α 是三角形的一个内角” , 试判断三角形的形状.
新知初探
若角 α 的终边与单位圆交于点 P(x,y),根据三角函数的定 y cos 义知 y=sin ,x= , = tan x .
问题:能否根据x、y的关系得到sin α,cos α,tan α的关系?
提示:可以,由 x2+y2=1,得 cos2 α+sin2 α=1. sin α y 由x=tan α,得 =tan α. cos α
新知呈现
同角三角函数的基本关系式
基本关系 平方关系 关系式 语言叙述 同一个角 α 的正弦、余弦 的 平方和
sin α tan α= cos α
sin2α+cos2α=1
等于 1
商数关系
同一个角 α 的正弦、余弦
商 等于角 α 的正切 的
[小问题·大思维] 1.同角三角函数基本关系式对任意角α都成立吗?
4 1.若 sin α =- ,求 cos α ,tan α 的值. 5 4 解:∵sin α=- <0,且 sin α≠-1. 5
人教版高中数学必修四1.2.2同角三角函数的基本关系优质课件
![人教版高中数学必修四1.2.2同角三角函数的基本关系优质课件](https://img.taocdn.com/s3/m/0e3717a65fbfc77da369b13e.png)
cos2 a =
1,
1 + tan2 a
sin2 a
=
tan2 a 1 + tan2 a
.
思考4:若已知sinα 的值,如何求cosα 和tanα 的值?
cos a = ? 1 sin2 a , tan sin .
cos
思考5:若已知tanα 的值,如何求sinα 和cosα 的值?
cos a = ?
sin2 cos2 1
y P
P Ox
思考3:设角α 的终边与单位圆交于点
P(x,y),根据三角函数定义,有
s由in此可 得y s,icnoαs,coxsα,t,antanxyα(x
0) , 满足什
么关系?
sin tan cos
思考4:上述关系称为商数关系,那么商 数关系成立的条件是多么?
cos
4 ,tan
5
3.
4
例3 已知tanα =2,求下列各式的值.
(1) sin
a
1 ×cos
a
;(2)1 -
1+ 1 sin a 1 + sin a
5 2
例4 已知 sin q + cos q = 1,
2
求 sin4 q + cos4 q 的值.
小结作业 1.同角三角函数的两个基本关系是对同一个 角而言的,由此可以派生出许多变形公式, 应用中具有灵活、多变的特点.
1.2 任意角的三角函数 1.2.2 同角三角函数的基本关系
问题提出
1.任意角的正弦、余弦、正切函数分别
是如何定义的?
sin y cos x tan y (x 0)
高中数学必修四1:1.2.2 同角三角函数的基本关系
![高中数学必修四1:1.2.2 同角三角函数的基本关系](https://img.taocdn.com/s3/m/85ea5ce20b1c59eef9c7b44c.png)
记 r OP x2 y2
sin
MP OP
y =r
P(x, y)
cos
OM
x =
OP r
tan MP
OM
y =x
P(x, y)
OM
A(1,0)
x
探究点1 任意角三角函数的定义
设α是一个任意角,它的终边与单位圆交于点P(x,y),
y 那么:
(1)y叫做α的正弦(sine),记作sinα,
即sinα=y
S1 画角 在直角坐标系中,作转角 ;
S2 找点 在角的终边上任找一点P,使 OP =1, 并量出该点的纵坐标和横坐标;
S3 求值 根据三角函数定义,求出角 的三角函数值.
探究点3
三角函数在各象限的符号如下图所示:
y
++
-o - x
sin
y
-+ -o + x
cos
y
-+ +o - x
tan
3
5
cos 2 cos 4
3
5
S2 S1
B
P2 P1
A M2 M1 o
T2
T1
课堂练习
2.已知角β的终边过点 P( 2 , 2 ),求角β的三个三 22
角函数值。
7
3.求角 6 的三个三角函数值。
4. 求角 19的三个三角函数值。
6
课堂练习
5.已知角α的终边经过点 P(4a,3a)(a 0),求2sinα cosα的值.
A 邻边C
对边 tan A 邻边
新课引入
• 直角三角中的锐角三角函数 • 象限角中的锐角三角函数 • 单位圆上点的坐标表示的锐角三角函数 • 单位圆上点的坐标表示的任意角三角函数 • 任意角终边上任一点坐标定义三角函数
高中数学人教A版必修4课件:1-2-2同角三角函数的基本关系
![高中数学人教A版必修4课件:1-2-2同角三角函数的基本关系](https://img.taocdn.com/s3/m/83dee779783e0912a3162a11.png)
30° 45° 60° 120°
提示:sin2α+cos2α=1,tan α=cos������.
sin������
首页
Z 自主预习 H合作学习 D当堂检测
I ZHU YU XI
EZUO XUEXI
ANGTANG JIAN
2.填空:同角的三角函数基本关系 (1)平方关系:同一个角α的正弦、余弦的平方和等于1,即 sin2α+cos2α=1. (2)商数关系:同一个角α的正弦、余弦的商等于这个角的正切,即
ANGTANG JIAN
思考辨析 判断下列说法是否正确,正确的在后面的括号内打“√”,错误的 打“×”. (1)对于任意角α,β,均有sin2α+cos2β=1.( )
������π π (2)对于任意角 α ������ ≠ 4 + 8 ,������∈Z ,有 tan 1 (3)存在角 α,使得 sin α=cos α=2. 2 (4)存在角 α,使得 tan α=1,cos α= 2 . sin������ (5)当角 α 是第二象限角时,tan α=-cos������. sin4������ 4α=cos4������.
α 是第三象限角,求 cos α,tan α 的值;
(2)若 cos α= ,求 tan α 的值; (3)已知 α∈ π, ,且 tan α=2,求 sin α,cos α 的值.
sin������ α=cos������
分析(1)先利用 sin2α+cos2α=1 及 α 是第三象限角,得 cos α=1-sin2 ������,求出 cos α 的值,再利用 tan 求出 tan α 的值.
(2)∵cos
8 α=17>0,且 sin������ 4 5
高一数学必修四-6.同角三角函数的基本关系PPT教学课件
![高一数学必修四-6.同角三角函数的基本关系PPT教学课件](https://img.taocdn.com/s3/m/e56a10a25f0e7cd185253635.png)
分析:∵cosα<0 ∴α是第二或第三象限 角.因此要对α所在象限分类讨论. 解:当α是第二象限角时,
s in1 c o s2 1 ( 8 )2 1 5 , 1 7 1 7
15
tansin 17 15.
cos 8 8
17
2020/10/16
7
当α是第三象限角时,
s in 1 c o s 2 1 ( 8 )2 1 5 , 1 7 1 7
A(1,0)
思考 当角α 的终边在坐标轴上时,关系式是否还成立?
当角 α 的终边在x 坐标轴上时, s2 i n c2 o 0 s 1 1
当2角020/α10/的16 终边在y坐标轴上时, s2 i n c2 o 1 s0 12
探究2 观察任意角α的三角函数
siny, c o s x ,tany,(x0) x
2020/10/16
tan tan21
2
22
1
2 5
13
例 3、已知 tan 2,求下面各式的值。
( 4 ) sin cos 2
5
2020/10/16
14
应用2:化简三角函数式:
例4:化简: 1sin2440
解: 1 sin 2 440 1 sin 2 80 cos 2 80 cos 80
1 sin 2 440 cos 2 440 cos 440 cos 80
cos 80
2020/10/16
cos 80 15
1co tsan 212c2os2sin21
切化 ta弦 ncs: ions
解 co : ts an co •s c si o nssin
2020/10/16
角.2020/10/16
高中数学必修四人教版1.2.2同角三角函数的基本关系16ppt课件
![高中数学必修四人教版1.2.2同角三角函数的基本关系16ppt课件](https://img.taocdn.com/s3/m/3f20e643f5335a8102d22030.png)
跟踪训练 1.(邵阳二中2010年期中)已知cos α=
3 ,且α是第四象限角,求 sin α,tan 5
α的值.
3 16 2 2 解析: ∵cos α= ,∴sin α=1-cos α= , 5 25 4 又∵α 是第四象限角,∴sin α=- , 5 sin α 4 ∴tan α= =- . cos α 3
基础梳理 同角三角函数的基本关系 1.同角三角函数的基本关系式 (1)平方关系:________=1; (2)商的关系:tan α=________.
2.同角三角函数基本关系的不同变式
sin2α=________,cos2α=________,sin α=________. 1.(1)sin2α+cos2α (2)
1+tan x 3.已知 =-3,则 tan x=________. 1-tan x
1+tan x 解析:∵ =-3,∴1+tan x=-3+3tan x, 1-tan x 解得 tan x=2. 答案:2
4.已知sin α=
4 ,并且α是第二象限角,求cos α,tan α的值. 5
4 解析:∵sin α= ,且 sin2α+cos2α=1, 5 16 9 2 2 ∴cos α=1-sin α=1- = , 25 25 3 又∵α 是第二象限角,∴cos α=- , 5 sin α 4 ∴tan α= =- . cos α 3
解析:(1)显然 cos α≠0,将已知等式左边的分子、分母 同除以 cos α 得 sin α-3cos α tan α-3 tan α-3 1 = ,即 =- , 11 3sin α+5cos α 3tan α+5 3tan α+5 解得 tan α=2; (2)∵tan α=2,cos α≠0,将式子的分子、分母同除以 cos α 得 3sin α-cos α 3tan α-1 3×2-1 5 = = = ; 2sin α+3cos α 2tan α+3 2×2+3 7 (3)∵tan α=2,cos α≠0,将式子变形后的分子、分母同 除以 cos2α 得 sin2α-2cos2α tan2α-2 22-2 2 原式= = = = . sin2α+cos2α tan2α+1 22+1 5
人教版2017高中数学(必修四)1.2.2 同角三角函数的基本关系 PPT课件
![人教版2017高中数学(必修四)1.2.2 同角三角函数的基本关系 PPT课件](https://img.taocdn.com/s3/m/046d5d1803d8ce2f006623fb.png)
已知角α的某一种三角函数值,求角α的其余三角函数值时,要 注意公式的合理选择,一般是先选用平方关系,再用商数关系. 另外也要注意“1”的代换,如“1=sin2α+cos2α”.本例(1)没 有指出α是第几象限的角,则必须由sin α的值推断出α所在
的象限,再分类求解.
4 1.已知 tan α= ,且 α 是第三象限角,求 sin α,cos α 的值. 3 sin α 4 4 解:由 tan α= = ,得 sin α= cos α.① 3 cos α 3 又 sin2α+ cos2α= 1,② 16 2 9 2 2 由①②得 cos α+ cos α= 1,即 cos α= . 9 25 ∵ α 在第三象限, 3 4 4 ∴ cos α=- , sin α= cos α=- . 5 3 5
7 15 2.已知 sin α= , cos α= ,则 tan α 等于( D ) 8 8 7 A. 8 15 C. 7 15 B. 8 7 D. 15 15
12 3. α 是第四象限角, cos α= ,则 sin α 等于( B ) 13 5 A. 13 5 C. 12 5 B.- 13 5 D.- 12
1.判断:(正确的打“√”,错误的打 “×”) (1)对任意角 α, sin2 3α+cos2 3α= 1 都成立.( √ ) α sin 2 α (2)对任意角 α, = tan 都成立. ( × ) 2 α cos 2 (3)对任意的角 α, β 有 sin2α+ cos2β=1.( × ) (4)sin2α 与 sin α2 所表达的意义相同.( × )
[解 ] (1)因为 sin α< 0, sin α≠- 1, 所以 α 是第三或第四象限角. 由 sin2α+ cos2α= 1,得 3 2 16 2 2 cos α= 1- sin α=1-(- ) = . 5 25
高一数学人教A版必修4课件1.2.2 同角三角函数的基本关系
![高一数学人教A版必修4课件1.2.2 同角三角函数的基本关系](https://img.taocdn.com/s3/m/3fad416a7fd5360cba1adb2d.png)
同角三角函数的基本关系
目标导航
预习导引
1.记住并能推导同角三角函数基本关系式; 学习目标 2.能够利用同角三角函数基本关系式进行求值、化简和 证明. 重点:同角三角函数关系式的应用; 重点难点 难点:同角三角函数关系式的推导及应用.
目标导航
预习导引
同角三角函数的基本关系
描述 方式 基本关系 平方关系 描述 方式 基本关系 商数关系 基本关系式
目标导航
预习导引
预习交流
同角三角函数基本关系式有哪些变形形式?
提示:sin2α+cos2α=1可变形为sin2α=1-cos2α,cos2α=1-sin2α,tan α= 形为sin α=tan α· cos α等.
sin������ 可变 cos������
一
二
ห้องสมุดไป่ตู้
三
知识精要
典题例解
迁移应用
一 利用三角函数基本关系式求值 对同角三角函数基本关系的五点说明 (1)同角三角函数的基本关系式揭示了“同角不同名”的三角函数的运算规律,这 里,“同角”有两层含义:一是“角相同”,二是对“任意”一个角(在使函数有意义的前 提下).关系式成立与角的表达形式无关,如sin23α+cos23α=1.
4sin ������ -2cos ������ 5cos ������ +3sin ������ -8cos ������ -2cos ������ 5cos ������ -6cos ������
(1)
=
=10.
(2) sin2α+ cos2α= =
4 5 2 2 2 co s ������ + co s ������
又 sin α+cos α=1,② 16 9 由①②得 cos2α+cos2α=1,即 cos2α= . 又 α 在第三象限 , 3 4 4 故 cos α=- ,sin α= cos α=- .