第四章 信道
合集下载
通信原理(第四章)
27
第4章 信 道 章
四进制编码信道模型
0 0
1 送
端
发
1
收 端
接
2
2
3
3
28ቤተ መጻሕፍቲ ባይዱ
第4章 信 道 章
4.4 信道特性对信号传输的影响 恒参信道的影响 恒参信道对信号传输的影响是确定的或者 是变化极其缓慢的。因此,其传输特性可以 等效为一个线性时不变网络。 只要知道网络 的传输特性,就可以采用信号分析方法,分 析信号及其网络特性。 线性网络的传输特性可以用幅度频率特 性和相位频率特性来表征。 现在我们首先讨论 理想情况下的恒参信道特性。
平流层 60 km 对流层 10 km 0 km 地 面
6
第4章 信 道 章
电离层对于传播的影响 反射 散射
7
第4章 信 道 章
电磁波的分类: 电磁波的分类: 地波 频率 < 2 MHz 有绕射能力 距离: 距离:数百或数千千米 天波 频率: 频率:2 ~ 30 MHz 特点: 特点:被电离层反射 一次反射距离: 一次反射距离:< 4000 km 寂静区: 寂静区:
13
第4章 信 道 章
4.2 有线信道
明线
14
第4章 信 道 章
对称电缆:由许多对双绞线组成, 对称电缆:由许多对双绞线组成,分非屏蔽 (UTP)和屏蔽(STP)两种。 )和屏蔽( )两种。
塑料外皮
双绞线( 5对)
图4-9 双绞线
15
第4章 信 道 章
同轴电缆
16
第4章 信 道 章
n2 n1 折射率
25
第4章 信 道 章
4.3.2 编码信道模型
调制信道对信号的影响是通过k(t)和 使已调信号发生波形 调制信道对信号的影响是通过 和n(t)使已调信号发生波形 失真。 失真。 编码信道对信号的影响则是一种数字序列的变换, 编码信道对信号的影响则是一种数字序列的变换,即将 一种数字序列变成另一种数字序列。 一种数字序列变成另一种数字序列。误码 输入、输出都是数字信号, 输入、输出都是数字信号,关心的是误码率而不是信号 失真情况,但误码与调制信道有关, 失真情况,但误码与调制信道有关,无调制解调器时误码由 发滤波器设计不当及n(t)引起 引起。 收、发滤波器设计不当及 引起。 编码信道模型是用数字的转移概率来描述。 编码信道模型是用数字的转移概率来描述。
通信原理第4章信道
1
第4章 信道
4.0 信道的定义及分类 4.1 无线信道 4.2 有线信道 4.3 信道数学模型 4.4 信道特性及其对信号传输的影响 4.5 信道中的噪声 4.6 信道容量
2
本章教学目的:了解各种实际信道、信
道的数学模型和信道容量的概念。
本章的讨论思路:通过介绍实际信道的例
子,在此基础上归纳信道的特性,阐述信道的 数学模型,最后简介了信道容量的概念。
信道模型的分类: 调制信道 编码信道
信 息 源 信 源 编 码 加 密 信 道 编 码 数 字 调 制 数 字 解 调 信 道 译 码 解 密 信 源 译 码 受 信 者
信道 噪声源
调制信道 编码信道
31
4.3.1 调制信道模型
有一对(或多对)输入端和一对(或多对)输出端; 绝大多数的信道都是线性的,即满足线性叠加原理;
41
相位-频率畸变
指相位-频率特性偏离线性关系所引起的畸变。
1、理想相频特性是一直线
群延迟-频率特性
|H( )|
d ( ) ( ) d
( ) td
O (b) td
K0
O (a)
O (c)
42
2、实际电话信道的群延迟特性 一种典型的音频电话信道的群延迟特性。
25
光纤呈圆柱形,由芯、封套和外套三部分组成(如 图所示)。芯是光纤最中心的部分,它由一条或多 条非常细的玻璃或塑料纤维线构成,每根纤维线都 有它自己的封套。由于这一玻璃或塑料封套涂层的 折射率比芯线低,因此可使光波保持在芯线内。环 绕一束或多束有封套纤维的外套由若干塑料或其它 材料层构成,以防止外部的潮湿气体侵入,并可防 止磨损或挤压等伤害。
第4章 信道
4.0 信道的定义及分类 4.1 无线信道 4.2 有线信道 4.3 信道数学模型 4.4 信道特性及其对信号传输的影响 4.5 信道中的噪声 4.6 信道容量
2
本章教学目的:了解各种实际信道、信
道的数学模型和信道容量的概念。
本章的讨论思路:通过介绍实际信道的例
子,在此基础上归纳信道的特性,阐述信道的 数学模型,最后简介了信道容量的概念。
信道模型的分类: 调制信道 编码信道
信 息 源 信 源 编 码 加 密 信 道 编 码 数 字 调 制 数 字 解 调 信 道 译 码 解 密 信 源 译 码 受 信 者
信道 噪声源
调制信道 编码信道
31
4.3.1 调制信道模型
有一对(或多对)输入端和一对(或多对)输出端; 绝大多数的信道都是线性的,即满足线性叠加原理;
41
相位-频率畸变
指相位-频率特性偏离线性关系所引起的畸变。
1、理想相频特性是一直线
群延迟-频率特性
|H( )|
d ( ) ( ) d
( ) td
O (b) td
K0
O (a)
O (c)
42
2、实际电话信道的群延迟特性 一种典型的音频电话信道的群延迟特性。
25
光纤呈圆柱形,由芯、封套和外套三部分组成(如 图所示)。芯是光纤最中心的部分,它由一条或多 条非常细的玻璃或塑料纤维线构成,每根纤维线都 有它自己的封套。由于这一玻璃或塑料封套涂层的 折射率比芯线低,因此可使光波保持在芯线内。环 绕一束或多束有封套纤维的外套由若干塑料或其它 材料层构成,以防止外部的潮湿气体侵入,并可防 止磨损或挤压等伤害。
通信原理第四章 (樊昌信第七版)PPT课件
则接收信号为
2 1
fo(t) = K f(t - 1 ) + K f(t - 2 ) 相对时延差
F o () = K F () e j 1 + K F () e j ( 1 )
信道传输函数
H()F F o(( ))K Keejj 11((1 1 eejj ))
常数衰减因子 确定的传输时延因子 与信号频率有关的复因子
课件
精选课件
1
第4章 信道
通信原理(第7版)
樊昌信 曹丽娜 编著
精选课件
2
本章内容:
第4章 信道
信道分类
信道模型
恒参/随参信道特性对信号传输的影响
信道噪声
信道容量
定义·分类
模型·特性
影响·措施
信道噪声 信道容量
精选课件
3
概述
信道的定义与分类
n 狭义信道:
—传输媒质 有线信道 ——明线、电缆、光纤 无线信道 ——自由空间或大气层
1. 传输特性
H ()H ()ej ()
H() ~ 幅频特性
()~ 相频特性
2. 无失真传输
H()Kejtd
H() K
()td
精选课件
27
n 无失真传输(理想恒参信道)特性曲线:
恒参信道
|H()|
K
() td
td
0
H() K
幅频特性
0
0
()td
()d() d
td
相频特性
群迟延特性
精选课件
28
n 理想恒参信道的冲激响应:
恒参信道
H()Kejtd
h(t)K(ttd)
若输入信号为s(t),则理想恒参信道的输出:
第四章超宽带信道模型
为了与在UWB信道测量试验中得到的数据更为 吻合,IEEE信道模型分委会对S-V模型进行了一 些修改。用对数正态分布表示多径增益幅度,用 另一个对数正态随机变量表示总多径增益的波动, 而且信道系数使用实变量而不是复变量 。
IEEE推荐模型的信道冲激响应可以表示为
h ( t ) = X ∑ ∑ α nk δ ( t − Tn − τ nk )
() r (t ) = h (t ) ∗ s (t ) + n (t )
比较式(1)和式(2),显然,信道的冲激响应 h ( t ) 为
h (t ) = ∑ α n (t )δ (t − τ n (t ))
n =1
N (t )
在上式中,考虑了发射机或接收机的移动等因素引起的传播环境的变 化,信道冲激响应是时变的,然而,在通常情况下,信道的变化速率相 对脉冲速率而言是很慢的,因此,假定在观测时间T 内信道是稳定的。 故,信道冲激响应可以表示为
在S-V 模型中,第k 簇第n 径的增益为复随机变量 an ,其模为 β nk ,
θ是统计独立、服从 nk
[0,
2π ) 均匀分布的随机变量,即
2β nk
β nk 2
ρ ( β nk ) =
ρ (θ nk ) =
β nk
2
e
β nk
2
1 , 0 ≤ θ nk<2π 2π
式中, x 表示 x 的期望值,且
β nk
2
= β 00
2
e
−
Tn Γ
−
e
τ nk γ
β 00 项表示第一簇第一条路径的平均能量,
Γ 和 γ 分别为簇和多径的功率衰减系数。
根据上式,平均PDP表现为簇幅度的指数衰减,而在每簇内接收脉冲 的幅度呈现另一个指数衰减,如下图示意。
IEEE推荐模型的信道冲激响应可以表示为
h ( t ) = X ∑ ∑ α nk δ ( t − Tn − τ nk )
() r (t ) = h (t ) ∗ s (t ) + n (t )
比较式(1)和式(2),显然,信道的冲激响应 h ( t ) 为
h (t ) = ∑ α n (t )δ (t − τ n (t ))
n =1
N (t )
在上式中,考虑了发射机或接收机的移动等因素引起的传播环境的变 化,信道冲激响应是时变的,然而,在通常情况下,信道的变化速率相 对脉冲速率而言是很慢的,因此,假定在观测时间T 内信道是稳定的。 故,信道冲激响应可以表示为
在S-V 模型中,第k 簇第n 径的增益为复随机变量 an ,其模为 β nk ,
θ是统计独立、服从 nk
[0,
2π ) 均匀分布的随机变量,即
2β nk
β nk 2
ρ ( β nk ) =
ρ (θ nk ) =
β nk
2
e
β nk
2
1 , 0 ≤ θ nk<2π 2π
式中, x 表示 x 的期望值,且
β nk
2
= β 00
2
e
−
Tn Γ
−
e
τ nk γ
β 00 项表示第一簇第一条路径的平均能量,
Γ 和 γ 分别为簇和多径的功率衰减系数。
根据上式,平均PDP表现为簇幅度的指数衰减,而在每簇内接收脉冲 的幅度呈现另一个指数衰减,如下图示意。
第四章 信道(2)
§4.3.1 调制信道模型
e0 (t ) k (t )ei (t ) n(t )
k(t)——乘性干扰 它是时间t的函数,表示信道的特性是随时间变化的。 随时间变化的信道成为时变信道 k(t)——乘性干扰——引起的失真随时间做随机变化 特性随机变化的信道称为随参信道 特性不随时间变化或者变化很小的信道称为恒参信道
§4.3.1 调制信道模型
输出量表示为:
e0 (t ) k (t )ei (t ) n(t ) ——二端口网络
e0(t)——输出端电压 ei(t)——输入信号电压 k(t)——乘性干扰 n(t)——加性干扰
n(t)——加性干扰 当没有信号输入时,信道输出端也有加性干扰 k(t)——乘性干扰 当没有信号输入时,信道输出端没有乘性干扰
( w)
dw
td (常数)
理想的相—频及群迟延—频率特性曲线:
( )
( )
k
k
恒参信道对信号传输的影响
实际信道对信号产生的两种失真: (1)幅频失真 表示信号中不同频率的分量分 H ( w ) K (频率失真): 别受到信道不同的衰减。
模拟信号:波形失真——信噪比下降
回顾窄带随机过程
(t ) a (t ) cos[ct (t )]
(t ) c (t ) cos ct s (t ) sin ct
可见,随机过程的统计特性可由
a (t )、 (t )或者c (t )、s(t )的特性确定 反之也成立
重要结论之二: 一个均值为零,方差为σ2ξ的窄带高斯过程ξ (t), 其包络a ξ(t)的一维分布是瑞利分布;
设一恒参信道的幅频特性和相频特性分别为:
H ( w) K
北工大信息论第四章 信道及信道容量
数学模型:{X , p( yn | xn ),Y}
如果有 p(yn j | xn i) p(ym j | xm i) ,则信道为平稳
的离散无记忆信道DMC。
二.单符号离散无记忆信道
1.定义:
输入符号X,x取值于A {a1, a2 ,, ar } 输出符号Y,y取值于B {b1, b2 ,, bs} {X , p(bj | ai ),Y}
输出扩展为:00,01,10,11
传递矩阵扩展为: p2 pp pp p2
P2
pp
p2
p2
pp
pp p2 p2 pp
p
2
pp
pp
p
2
请问: I (X N ;Y N ) 与I(X;Y)之间 的关系?
用两个定理回答这个问题
定理1:若信道的输入、输出分别为N长序列X和Y,且信
道是无记忆的,即: N
N
p( h | k ) p(bhi | aki ) i 1
I(X N ;Y N )
XN
YN
p(k h ) log
p(hk ) p(h ) p(k )
例4-4: 求二元无记忆对称信道的二次扩展信
道。
a1 0
1 p p
0 b1
X
p
Y
a2 1
1 p
1 b2
解:
输入扩展为:00,01,10,11
当ω=1/2 时,I (X ห้องสมุดไป่ตู้Y ) 1 H ( p)
1
即取极大值.
H ()
0 0.5 1
当信源固定, 即 ω是一个常数时,可 得到I(X;Y)是信道传递概率p的下凸 函数。
当p=0.5时, I(X;Y)=0, 在接收端未 获得信息量。
第4章_信道
32
4.3 信道的数学模型
内蒙古大学电子信息工程学院 《通信原理》
4.3.2 编码信道模型
由于信道噪声或其它因素的影响,将导致输出数字序列发生 错误,因此输入输出数字序列之间的关系可以用一组 转移概率 来表征。 转移概率:在二进制系统中,就是“0”转移为“1”的 概率和“1”转移为“0”的概率。
8
4.1 无线信道
内蒙古大学电子信息工程学院 《通信原理》
地波
频率在2MHz以下的电磁波,趋于沿弯曲的地球表面传 播,有一定的绕射能力。 地波在传播过程中要不断损失能量,而且频率越高损 失越大,因此传播距离不大,一般在数百千米到数千千米。
传播路径 传播路径
发射天线 发射天线
地面 地面
接收天线 接收天线
导体 绝缘层
图4-9 双绞线
21
4.2 有线信道
内蒙古大学电子信息工程学院 《通信原理》
传输电信号的有线信道主要有三类:
明线、对称电缆和同轴电缆。 同轴电缆
由内外两根同心圆柱导体构成,两根导体之间用绝缘体 隔离开。内导体多为实心导线,外导体是一根空心导电管或 金属编织网,在外导体外面有一层绝缘保护层。其优点是抗 干扰特性好。
增大视线传播距离的途径 卫星中继(卫星通信)
利用三颗地球同步卫星可以覆盖全球,从而实现全球通信。
利用卫星作为中继站能够增大一次 转发的距离,但是却增大了发射功 率和信号传输的延迟。 此外,发射卫星也是一项巨大的工 程。 故开始研究使用平流层通信。 图4-5 卫星中继
15
4.1 无线信道
发射天线 发射天线
地面 地面
接收天线 接收天线
图4-4
无线电中继
特点:容量大、发射功率小、稳定可靠等。
第四章 波形信源和波形信道
2
-2 F 2 F 其他
其自相关函数
Rn
(
)
1
2
Pn
()e
j
d
N0
F
sin(2 F 2 F
)
由功率谱密度可知在时间间隔 1的两个样本点之间的相
2F
关函数等于零,
所以各样本值之间不相关。有因为随即变量是高斯概率
密度分布的,所以随机变量之间统计独立。
第四节 连续信道和波形信道的分类
4.有色噪声信道 除白噪声以外的噪声称为有色噪声。信道的噪声是
率是按正、负两半轴上的频谱定义的。只采用正半轴频谱来
定义,则功率谱为
N
,常称为单边谱密度。而
0
N0 /称2 为双
边谱密度,单位为瓦/赫(W/Hz)。显然。白噪声的相关函数
是 函数:
Pn ()
N0 2
Rn ( )
N0 2
( )
第四节 连续信道和波形信道的分类
3.高斯白噪声信道
具有高斯分布的白噪声称为高斯白噪声。一般情况把既服 从高斯分布而功率谱密度又是均匀的噪声称为高斯白噪声。 关于低频限带高斯白噪声有一个很重要的性质,即低频限带 高斯白噪声经过取样函数取值后可分解成N(=2FT)个统计 独立的高斯随机变量(方差为 N0 / ,2 均值也为零)。
且当随机序列中各变量统计独立时等式成立。
第二节 波形信源和波形信源的信息测度
两种特殊连续信源的差熵
1.均匀分布连续信源的熵值
一维连续随机变量X在[a,b]区间内均匀分布时,这基本连
续信源的熵为 h( X ) log(b a)
N维连续平稳信源,若其输出N维矢量 X ( X1X 2 X N )
其分量分别在 [a1, b2 ], ,[aN , bN ] 的区域内均匀分布,
离散信道
4.3.3信道的平均互信息及其含义 定义4-3信源熵与信道疑义度之差称为平均互 信息 I(X;Y)= H(X) - H(X/Y)
H(X)是信道输入X本身具有的信息量, H(X/Y) 是观察到信道输出之后仍然保留 的关于X的信息量。因此I(X;Y)的含义
是接收到信道的输出符号集Y后,平均每个 符号获得的关于X的信息量,即通过信道传 送过去的信息量。
j=1
共有r*s个P(yj/xi)组成一个矩阵,称为信道转移矩阵
p11 p12 p 21 p 22 PY/X = ... ... pr1 pr2
p1s ... p 2s ... ... ... prs ...
例4-3接例2-12,假设串口通信的误码率为 4%,可以得该信道的转移矩阵为
I ( X ; Y ) p( x, y ) log
x, y
p( x / y) p( x) p( y / x) p( y)
p( x, y) log
x, y
p ( x, y ) p( x) p( y )
p( x, y) log
x, y
可见平均互信息是p(x)和p(y/x)的函数, 而p(x)代表了信源,p(y/x)代表了信道。 因此平均互信息是信源和信道的函数。
例4-10接例4-6 I(X;Y)=
(p p) log 1 1 1 1 (p p) log ( p log p log ) p p p p p p
对于给定的二进制对称信道,当信源为等概分布 时,即ω =1/2时,信道输出端平均每个符号获 得最大信息量,即信道容量为
4.2 信道的分类
1.按输入和输出符号的时间特性分 离散信道、连续信道和半连续信道。 离散信道的输入空间X和输出空间Y都是离散 符号集,离散信道有时又称为数字信道。像 手机和手机之间的信道就是数字信道。 连续信道的输入空间X和输出空间Y都是连续 符号集,连续信道又称为模拟信道。像电台 发出信号,我们用收音机接收就是一个模拟 信道。
(信息论、编码及应用)第4章连续信源与连续信道
应用
连续信源的编码定理是信息论中最重 要的定理之一,它为信源编码提供了 理论依据和指导,广泛应用于数据压 缩、图像处理等领域。
02
连续信道
定义与特性
定义
连续信道是一种能够传输连续信号的通信通道,例如音频、 视频信号等。
特性
连续信道具有带宽限制、噪声干扰、信号衰减等特性,这些 特性会影响信号传输的质量和可靠性。
利用统计学习方法,如自适应滤 波、神经网络等,对信源和信道 进行学习和优化,实现动态匹配。
编码技术
采用适当的编码技术,如差分编 码、增量编码等,对信源进行编 码,使其更适应信道的传输特性。
匹配的优化策略
01
02
03
能效优先
在保证信息传输质量的前 提下,优先考虑能效,通 过优化信源和信道的参数, 降低能耗。
例如,在移动通信网络中,语音信号通常采用码分多址(CDMA)或长期演进(LTE) 等技术进行传输。这些技术能够提供较高的数据传输速率和较低的误码率,从而保 证语音信号的清晰度和可懂度。
图像信号传
图像信号传输是连续信源与连续信道的另一个重要应用领域。在电视广播、视频会议和在线教育等应用中,图像信号需要通 过连续信道进行传输。由于图像信号的数据量较大,因此需要采用高效的压缩编码技术来减小传输数据量,同时还需要保证 图像质量。
输速率,同时保证信息的可靠传输。
03
匹配理论的发展历程
随着信息论的不断发展,匹配理论也在不断完善,从早期的经典匹配理
论到现代的统计匹配理论,为连续信源与连续信道的匹配提供了更精确
的指导。
匹配的实现方法
参数调整
根据信源和信道的特性,调整相 关参数,如信源的压缩比、信道 的调制方式等,以实现匹配。
连续信源的编码定理是信息论中最重 要的定理之一,它为信源编码提供了 理论依据和指导,广泛应用于数据压 缩、图像处理等领域。
02
连续信道
定义与特性
定义
连续信道是一种能够传输连续信号的通信通道,例如音频、 视频信号等。
特性
连续信道具有带宽限制、噪声干扰、信号衰减等特性,这些 特性会影响信号传输的质量和可靠性。
利用统计学习方法,如自适应滤 波、神经网络等,对信源和信道 进行学习和优化,实现动态匹配。
编码技术
采用适当的编码技术,如差分编 码、增量编码等,对信源进行编 码,使其更适应信道的传输特性。
匹配的优化策略
01
02
03
能效优先
在保证信息传输质量的前 提下,优先考虑能效,通 过优化信源和信道的参数, 降低能耗。
例如,在移动通信网络中,语音信号通常采用码分多址(CDMA)或长期演进(LTE) 等技术进行传输。这些技术能够提供较高的数据传输速率和较低的误码率,从而保 证语音信号的清晰度和可懂度。
图像信号传
图像信号传输是连续信源与连续信道的另一个重要应用领域。在电视广播、视频会议和在线教育等应用中,图像信号需要通 过连续信道进行传输。由于图像信号的数据量较大,因此需要采用高效的压缩编码技术来减小传输数据量,同时还需要保证 图像质量。
输速率,同时保证信息的可靠传输。
03
匹配理论的发展历程
随着信息论的不断发展,匹配理论也在不断完善,从早期的经典匹配理
论到现代的统计匹配理论,为连续信源与连续信道的匹配提供了更精确
的指导。
匹配的实现方法
参数调整
根据信源和信道的特性,调整相 关参数,如信源的压缩比、信道 的调制方式等,以实现匹配。
第四章-信道(1-1)介绍
明线 对称平衡电缆(市内) 固体介质 电缆 小同轴(长途) 中同轴(长途) 长波 中波 短波 超短波 移动 1 传输媒介类型 空气介质 视距接力 微波 对流层 散射 电离层 卫星 光波 波导 混合介质 光缆
3>根据用户数量
单用户信道 多用户信道
电话线 广播信道
4>根据输入和输出关系 无反馈信道 输出信号对输入信号没有影响
反馈信道 输出信号反馈到输入端 如网络传输信道
5>根据信道参数和时间关系分
固定参数信道 信道参数(统计特性)不随时间而变化,如光纤
时变参数信道 信道参数(统计特性)随时间而变化,如无线信道
信道划分是人为的,比如:
信源 编码 A 媒介 B 译码 信宿
干扰 c1 c2 c3 c4
其中:c1为连续信道,调制信道; c2为离散信道,编码信道; c3为半离散、半连续信道; c4为半连续、半离散信道。
4.1.2 信道参数 P(Y|X) X X=(X1,X2,….XM) 对信道描述的三要素: 1 信道输入统计概率 2 信道输出统计概率 3 信道本身的统计特性 p(X) p(Y) 转移概率:p(Y|X) 信道 Y Y=(Y1,Y2,….YN)
SISO
SIMO 6>根据输入输出通道数目
对单用户信道而言 MISO
MIMO
7>根据信道统计特性分
无记忆信道 某一时刻,信道的输出消息仅与当时的输入消息 有关,用信道传输概率p(Y/X)来描述。 有记忆信道 信道的输出消息不仅与当时的输入消息有关,还与 以前时刻信道的输入消息和(或)输出消息有关。 码间串扰信道和衰落信道都属于有限记忆信道。
第四章-信道(2)
并联信道
x
信道1
y
yy '
xx '
x'
信道2
y'
当各信道相互独立时,联合条件概率为:
P ( yy | x x ) P ( y | x ) P ( y | x )
平均联合互信息量为:
P ( yy | xx)
P ( yy )
X X YY
P ( y | x ) P ( y | x)
记
I (ak ;Y ) pkj log
因为
p I (a ;Y ) I ( X ;Y )
j
k
qj
k 1,..., r
k
k
C pk I (ak ; Y ) log e
k
,所以
有:
p
ij
log
j
pij
qj
C pij log pij pij (C log q j )
=maxH(Y)-1=log26-1=log13
对称DMC信道(n个输入,m个输出)
对称信道转移概率矩阵中每行的元素相同,每列的元素也相同
1/ 3
如:
1 / 6
1/ 3
1/ 6
1/ 6
1/ 3
1 / 6
和
1 / 3
则条件熵
1 / 2
1 / 6
1 / 3
1/ 3
1/ 2
1/ 6
j 1
i 1
M
达到此信道容量的信道输入消息集合的概率分布
p xk e dk , k 1,2,..., M
c
一般离散信道容量的计算
第四章《通信原理》信道
理想无失真信道, 理想无失真信道,它的
H ( jω ) = ke
jω t d
H ( jω ) = k 幅频特性 (ω ) = ωt d 相频特性
实际的信道往往不能满足这些要求。例如电话信号 实际的信道往往不能满足这些要求。 的频带在300Hz 3400Hz范围内 300Hz范围内; 的频带在300Hz-3400Hz范围内;而电话信道的幅频特性 和相频特性示于下图。
调制信道 编码信道
1、调制信道 指从调制器输出到解调器输入端的所有变换装置 及传输媒介。因为从调制解调角度而言, 及传输媒介。因为从调制解调角度而言,调制信道仅 对已调信号进行传输,因此可视为一个整体。 对已调信号进行传输,因此可视为一个整体。
2、编码信道 、 指从编码器输出到译码器输入端的所有变换装置 及传输媒介。因为从编译码的角度而言, 及传输媒介。因为从编译码的角度而言,它们之间的 一切环节只起了传输数字信号的作用, 一切环节只起了传输数字信号的作用,因此可视为一 个整体。 个整体。
第四章 信道
在讲通信系统模型中我们知道, 在讲通信系统模型中我们知道,信道是信息传 输的媒介。它可分为两大类:有线信道和无线信道。 输的媒介。它可分为两大类:有线信道和无线信道。 传统的固定电话网用有线信道作为传输媒介。 传统的固定电话网用有线信道作为传输媒介。而无 线电广播则是用无线信道传播电台节目。 线电广播则是用无线信道传播电台节目。 信号在信道中传输,一方面受信道特性的影响; 信号在信道中传输,一方面受信道特性的影响; 另一方面还要受到信道中噪声的影响。 另一方面还要受到信道中噪声的影响。本章简单介 绍信道特性和信道中的噪声, 绍信道特性和信道中的噪声,以及信道特性对信号 传输的影响。 传输的影响。
一、加性噪声的分类
各种类型信道
第四章 信道
第一节
一、基本问题
《通信原理(一)》CAI
无线信道
– 无线信道电磁波的频率 • 受天线尺寸限制,一般为电磁波波长的1/10~1/4, 故无线信道电磁波的频率较高。 – 地球大气层的结构 电离层 • 对流层:地面上 0 ~ 10 km 平流层 • 平流层:约10 ~ 60 km 60 • 电离层:约60 ~ 400 km km 对流层
信道是以传输媒质为基础的信号传输通道。 有线信道 狭义信道
明线 电缆 光缆
地波传播 短波电离层反射 超短波、微波视距中继 人造卫星中继等
无线信道
广义信道:包括传输媒质和变换装置(发送接收调制解调) 一般来说,实际信道都不是理想的。首先,这些信道具有 非理想的频率响应特性(无源干扰),另外还有噪声和信号 通过信道传输时掺杂进去的其他干扰(有源干扰) 。
10 km 0 km
地 面
第四章 信道
第一节 无线信道
衰 减
《通信原理(一)》CAI
一、基本问题 电离层对于传播的影响
吸收(衰减) 反射 散射
水蒸气 氧 气
(dB/km)
频率(GHz) (a) 氧气和水蒸气(浓度7.5 g/m3)的衰减
大气层对于传播的影响
吸收 散射
衰 减
降雨率
图 4-3 视线传播
式中,D – 收发天线间距离(km)。 [例] 若要求D = 50 km,则由式(4.1-3)
D 2 D 2 502 h 50 8r 50 50
m
图4-4 无线电中继
增大视线传播距离的其他途径 中继通信: 卫星通信:静止卫星、移动卫星 平流层通信:
第四章 信道
通信原理_第四章 信道
内容简介 第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章 第九章
通信原理
第四章
信
道
东北大学网
短波电离层反射信道 (1) 传播路径
地面高度为60km — 400km
反射层 入射角φo 4000km D F2 F1 E 吸收层
地球
■ □ □ □
电离层: 各个层次的高度、厚度、电子密度等都会随时间变化。 一次或多次反射的距离也会发生变化,且与入射角有关。 不同层次(F1、F2)的不同高度上都会产生反射。
通信原理
4.1 无线信道
第四章
信
道
东北大学网
内容简介 第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章 第九章
通信原理
第四章
信
道
东北大学网
一 地球大气层的结构:
对流层:地面上 0 ~ 10 km 平流层:约10 ~ 60 km 电离层:约60 ~ 400 km
60 km 对流层 10 km 0 km 地 面 电离层
典型的模拟信道是调制信道。 典型的数字信道是编码信道。
内容简介 第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章 第九章
通信原理
第四章
信
道
东北大学网
引言(调制信道与编码信道) 调制信道与编码信道分别是模拟信道与数字信道的 典型例子。
自编码器
调 制 器
发 送 转 换 器
传输媒体 调制信道 编码信道
第四章
信
道
东北大学网
通信卫星
卫星中继信道
内容简介 第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章 第九章
通信原理
第4章离散信道
特性p(x)共同决定的,
I ( X ;Y )
XY
p(xy) log
p(y | x) p( y)
XY
p( y
|
x) p(x)log
p(y | x)
p(y | x) p(x)
I(X;Y)
X
信道1的容量
但是容量C已对所有
信道2的容量
可能的p(x)取最大值,因此
容量C仅与信道特性p(y|x)有关,
也就是说,容量C是信道的固有 特性,与信源无关。
H(X|Y)≤H(X):收到输出符号Y以后,总能 消除一些对X的不确定性,获得一些信息。
【定义4-1】 称信道的输入空间X对输出空 间Y的条件熵
H (X | Y ) p(xi y j ) log p(xi | y j )
为信道疑义度。XY
信道疑义度的含义是观察到信道的输出之 后仍然保留的关于信道输入的平均不确定 性。
I ( X ;Y ) I (Y; X ) p(xy) log p( y | x) H ( p p) H ( p)
XY
p( y)
固定信道
p固定 从0到1 变化
固定信源
固定 p从0到1 变化
4.4 信道的组合
组合方式
并行:积信道 例如:Internet
串行:级联信道 例如:GSM
积信道
P P1P2
2 p(1 p)
(1
p)2
p2
则 I(X;Y)=1-H(p) I(X;Z)=1-H(2p(1-p))
从图中能够看出 I(X;Z)≤I(X;Y)
例4-8
X 1/3
Y
Z
1
信道I和信道II的信道矩阵分别为 1/3 2/3
1 1 1
I ( X ;Y )
XY
p(xy) log
p(y | x) p( y)
XY
p( y
|
x) p(x)log
p(y | x)
p(y | x) p(x)
I(X;Y)
X
信道1的容量
但是容量C已对所有
信道2的容量
可能的p(x)取最大值,因此
容量C仅与信道特性p(y|x)有关,
也就是说,容量C是信道的固有 特性,与信源无关。
H(X|Y)≤H(X):收到输出符号Y以后,总能 消除一些对X的不确定性,获得一些信息。
【定义4-1】 称信道的输入空间X对输出空 间Y的条件熵
H (X | Y ) p(xi y j ) log p(xi | y j )
为信道疑义度。XY
信道疑义度的含义是观察到信道的输出之 后仍然保留的关于信道输入的平均不确定 性。
I ( X ;Y ) I (Y; X ) p(xy) log p( y | x) H ( p p) H ( p)
XY
p( y)
固定信道
p固定 从0到1 变化
固定信源
固定 p从0到1 变化
4.4 信道的组合
组合方式
并行:积信道 例如:Internet
串行:级联信道 例如:GSM
积信道
P P1P2
2 p(1 p)
(1
p)2
p2
则 I(X;Y)=1-H(p) I(X;Z)=1-H(2p(1-p))
从图中能够看出 I(X;Z)≤I(X;Y)
例4-8
X 1/3
Y
Z
1
信道I和信道II的信道矩阵分别为 1/3 2/3
1 1 1
通信原理第4章信道
按噪声来源分类
人为噪声 - 例:开关火花、电台辐射 自然噪声 - 例:闪电、大气噪声、宇宙噪声、热
噪声
30
信道中的噪声
热噪声
来源:来自一切电阻性元器件中电子的热运动。 频率范围:均匀分布在大约 0 ~ 1012 Hz。 热噪声电压有效值:
V 4kTRB(V)
式中 k = 1.38 10-23(J/K) - 波兹曼常数; T - 热力学温度(ºK); R - 阻值(); B - 带宽(Hz)。
8
有线信道
4.2 有线信道
明线
9
有线信道
对称电缆:由许多对双绞线组成
导体 绝缘层
同轴电缆
图4-9 双绞线
实心介质 导体
金属编织网
保护层
图4-10 同轴线
10
有线信道
n2 n1 折射率
光纤
结构
(a)
纤芯 包层
n2 n1 折射率
按折射率分类 (b) 阶跃型
梯度型 按模式分类
噪声等效带宽:
Bn
Pn(f)d
f
2Pn(f0)
0 Pn(f)df Pn(f0)
式中 Pn(f0) - 原噪声功率谱密度曲线的最大值
噪声等效带宽的物理概念:
以此带宽作一矩形
滤波特性,则通过此
接收滤波器特性
特性滤波器的噪声功率,
等于通过实际滤波器的
Pn(f)
噪声功率。
Pn (f0)
噪声等效 带宽
利用噪声等效带宽的概念,
32
信道中的噪声
窄带高斯噪声
带限白噪声:经过接收机带通滤波器过滤的热噪 声
窄带高斯噪声:由于滤波器是一种线性电路,高 斯过程通过线性电路后,仍为一高斯过程,故此 窄带噪声又称窄带高斯噪声。
人为噪声 - 例:开关火花、电台辐射 自然噪声 - 例:闪电、大气噪声、宇宙噪声、热
噪声
30
信道中的噪声
热噪声
来源:来自一切电阻性元器件中电子的热运动。 频率范围:均匀分布在大约 0 ~ 1012 Hz。 热噪声电压有效值:
V 4kTRB(V)
式中 k = 1.38 10-23(J/K) - 波兹曼常数; T - 热力学温度(ºK); R - 阻值(); B - 带宽(Hz)。
8
有线信道
4.2 有线信道
明线
9
有线信道
对称电缆:由许多对双绞线组成
导体 绝缘层
同轴电缆
图4-9 双绞线
实心介质 导体
金属编织网
保护层
图4-10 同轴线
10
有线信道
n2 n1 折射率
光纤
结构
(a)
纤芯 包层
n2 n1 折射率
按折射率分类 (b) 阶跃型
梯度型 按模式分类
噪声等效带宽:
Bn
Pn(f)d
f
2Pn(f0)
0 Pn(f)df Pn(f0)
式中 Pn(f0) - 原噪声功率谱密度曲线的最大值
噪声等效带宽的物理概念:
以此带宽作一矩形
滤波特性,则通过此
接收滤波器特性
特性滤波器的噪声功率,
等于通过实际滤波器的
Pn(f)
噪声功率。
Pn (f0)
噪声等效 带宽
利用噪声等效带宽的概念,
32
信道中的噪声
窄带高斯噪声
带限白噪声:经过接收机带通滤波器过滤的热噪 声
窄带高斯噪声:由于滤波器是一种线性电路,高 斯过程通过线性电路后,仍为一高斯过程,故此 窄带噪声又称窄带高斯噪声。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 信道
3
awgn ( x , snr , ... , state )
MATLAB 将 随 机 数 种 子 设 置 为 state , 其 中 ‘ … ’ 可 以 是 sigpower 或
‘measured’。
例4.4 分别设state=10和state=5,观察噪声结果。
程序运行结果:
第四章 信道
d r。 基站
移动台
第四章 信道
编写代码运行结果如下:
从图中可以看出,即使 移动台静止,由于反射径 存在,使接收的信号最大
值小与直射径信号。
第四章 信道
由此可得,同一位置,由 于有反射径信号存在,产生 了频率选择性衰落。
第四章 信道
1
相干带宽
2
平坦衰落
若信号带宽较窄,小于相干带宽,则信号在频带内受到的衰落是一致的, 这样的衰落称为平坦衰落。
Rx模块结构图
第四章 信道
3.AWGN信道模块 AWGN信道模块作用是将噪声叠加到信号中。参数设置如下图所示。
第四章 信道
建成系统模型后,将
Stop time设置为
Simulation Time并保存. 系统运行结果如图所示。
第四章 信道
4.2 多径衰落信道
4.2.1多径衰落信道的特点:频率选择性和时间选择性。
3
频率选择性衰落
若信号带宽大于相干带宽,则信号在频带内受到的衰落是不同的,这样的 衰落称为频率选择性衰落。
第
将接收信号单独画出来,如下 图所示:
第四章 信道
4.4.2多径衰落信道的仿真
仿真多径衰落信道时,另两个最重要的参数就是多径扩展和多普勒带宽。
由下图可知随着SNR的增加,QPSK的BER和SER都降低,并且BER要小 于相应的SER。
第四章 信道
4.1.4 Simulink中的AWGN模块仿真
AWGN信道的作用是在输入信号中加入高斯白噪声,它有一个输入端和输出端。
对话框中有Initial Seed、
SNR、Mode、Input
signal power几个参数。
从右图可以看出, QPSK 信号经过衰 落信道后的误比特率和误符号率大大高 于AWGN。
MATLAB 中也提供了实现瑞利分布的函数 chan=rayleighchan().
第四章 信道
4.2.3 Simulink中的多径衰落信道模块仿真
多径衰落信道模块主要包括以下几 个参数:最大多普勒频移、各路径相 对时延、各路径相对增益、增益矢量 归一化等。
第四章 信道
例4.11 在例4.6中加入多径瑞利衰落信道模块,重新运行仿真, 并与AWGN信道下的误比特率和误符号率进行对比。
系统模型图
第四章 信道
编写程序后运行,结果如下:
和例4.7仿真结果对比可发现,
两者的结果基本是一致的。
感谢聆听
4.1.2. randn函数
1
randn(n)
返回一个n行n列的随机矩阵,每行每列都服从均值为0,方差为1的正态分布。
2
randn(m,n)
返回一个m行n列的随机矩阵,每行每列都服从均值为0,方差为1的正态分布。
3
randn(‘state’,seed)
randn (‘ state ’, seed )把随机数种子设为 seed ,相同的 state 产生相同 的随机数 序列。
第四章 信道
MODE的设置
1
设置为Signal to Noise Ratio(E/S)时,需要确定E/N、输入信号功率、符号 持续时间。
2
设置为Signal to Noise Ratio(SNR)时,需要确定SNR、输入信号功率。 设置为Variance from Mask时,需要确定Variance 。 设置为Variance from Port时,有两个输入,分别为输入信号和噪声方差。
1.多径扩展
1
2
第四章 信道
2.多普勒带宽
例4.9 分别产生最大多普勒平移为10 和20的单径瑞利衰落信道,假设抽样间 隔为1/1000。
注意:信号经过瑞利衰落信道后,不仅有 信道衰落,还有噪声干扰,因此还要加入高斯 白噪声。
第四章 信道
例4.10 仿真例4.6中QPSK信号经过衰落信道后的误比特率和误符号率。
从图中可看出,叠加噪声 后的信号出现了失真,并且计 算的噪声功率为0.01。
第四章 信道
2
awgn ( x , snr , sigpower ), Sigpower为输入信号的功率。
例4.2 假设信号功率为10dBW,snr不变,重新求解。
与例1的仿真图比较可看出,左
图的失真更大,因为输入信号的功
3 4
第四章 信道
例4.7
用Simulink重做例4.6。
系统结构框图
第四章 信道
1.TX模块
TX模块由随机数产生模块、比特到整数转换模块、数据映射模块、
QPSK基带调制模块、理想矩形脉冲滤波器模块以及三个输出端口。
TX模块结构框图
第四章 信道
2.Rx模块
Rx模块由输入端口、积分清除模块、增益模块、QPSK基带解调模块、 数据映射模块、符号到比特转换模块、输出端口模块等组成。
第四章 信道
例4.5 用randn函数实现例4.3.
第四章 信道
例4.6 仿真正交相移键控调制的基带数字通信系统通过AWGN信道的误符号率和误比 特率, 假设发射端信息比特采用Gray编码映射, 基带脉冲采用矩形脉冲, 仿真时 每个脉冲的抽样点数为8 。
发射信号星座图
接收信号星座图
第四章 信道
率小于10dBW.
第四章 信道
3 awgn(x,snr,’measured’)
先计算信号的功率,再添加相应功率的高斯白噪声。
例4.3 计算例4.1中输入信号的功率,根据snr添加高斯白噪声。
从图中可看出,信号失真要小 于图4.1和4.2。因为实际信号功率 为0.5,因此添加的噪声功率为 0.005。
误比特率就越高。
第四章 信道
4.1.1 awgn函数
MATALAB中通过awgn函数在信号中叠加加性高斯白噪声。 1. 1 awgn(x,snr) 函数awgn(x,snr)把高斯白噪声叠加到信号x中,snr以dB的 形式指定信号的噪声功率。
第四章 信道
例4.1 在正弦信号上叠加功率为 -20dBW的高斯白噪声。
第四章
信道
第四章 信道
信道通常可分为加性高斯白噪声信道、多径Rayleigh衰落信道和 Rician衰落信道等。
4.1 加性高斯白噪声信道
加性高斯白噪声是最常见的一种噪声,表现为信号围绕平均值的 一种随机波动过程。它的均值为0,方差为噪声功率的大小。 噪声功率越大,信号的波动幅度就越大,接收端接收到的信号的