浙江省宁波市2018-2019学年高一第一学期期末考试数学试题

合集下载

人教A版数学高二弧度制精选试卷练习(含答案)1

人教A版数学高二弧度制精选试卷练习(含答案)1

人教A 版数学高二弧度制精选试卷练习(含答案) 学校:___________姓名:___________班级:___________考号:___________一、单选题1.设扇形的周长为4cm ,面积为21cm ,则扇形的圆心角的弧度数是 ( ) A .1 B .2 C .3 D .4【来源】黑龙江省鹤岗市第一中学2018-2019学年高一12月月考数学(理)试题【答案】B 2.已知扇形的面积为,扇形圆心角的弧度数是,则扇形的周长为( ) A . B . C . D .【来源】同步君人教A 版必修4第一章1.1.2弧度制【答案】C3.扇形圆心角为3π,半径为a ,则扇形内切圆的圆面积与扇形面积之比为( ) A .1:3B .2:3C .4:3D .4:9【来源】2012人教A 版高中数学必修四1.1任意角和弧度制练习题(二)(带解析)【答案】B4.已知扇形的圆心角为2弧度,弧长为4cm , 则这个扇形的面积是( ) A .21cm B .22cm C .24cm D .24cm π【来源】陕西省渭南市临渭区2018—2019学年高一第二学期期末数学试题【答案】C5.若扇形的面积为38π、半径为1,则扇形的圆心角为( ) A .32π B .34π C .38π D .316π 【来源】浙江省杭州第二中学三角函数 单元测试题【答案】B 6.一场考试需要2小时,在这场考试中钟表的时针转过的弧度数为( ) A .3π B .3π- C .23π D .23π-【来源】浙江省台州市2019-2020学年高一上学期期末数学试题【答案】B7.实践课上小华制作了一副弓箭,如图所示的是弓形,弓臂BAC 是圆弧形,A 是弧BAC 的中点,D 是弦BC 的中点,测得10AD =,60BC =(单位:cm ),设弧AB 所对的圆心角为θ(单位:弧度),则弧BAC 的长为( )A .30θB .40θC .100θD .120θ【来源】安徽省池州市2019-2020学年高一上学期期末数学试题【答案】C8.已知扇形AOB 的半径为r ,弧长为l ,且212l r =-,若扇形AOB 的面积为8,则该扇形的圆心角的弧度数是( )A .14B .12或2C .1D .14或1 【来源】广西贵港市桂平市2019-2020学年高一上学期期末数学试题【答案】D9.已知扇形的圆心角为150︒,弧长为()5rad π,则扇形的半径为( )A .7B .6C .5D .4【来源】安徽省六安市六安二中、霍邱一中、金寨一中2018-2019学年高二下学期期末联考数学(文)试题【答案】B10.已知扇形AOB ∆的周长为4,当扇形的面积取得最大值时,扇形的弦长AB 等于( )A .2B .sin1C .2sin1D .2cos1【来源】湖北省宜昌市一中、恩施高中2018-2019学年高一上学期末联考数学试题【答案】C11.“圆材埋壁”是《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,学会一寸,锯道长一尺,问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知道大小,用锯取锯它,锯口深一寸,锯道长一尺,问这块圆柱形木材的直径是多少?现有圆柱形木材一部分埋在墙壁中,截面如图所示,已知弦1AB =尺,弓形高1CD =寸,则阴影部分面积约为(注: 3.14π≈,5sin 22.513︒≈,1尺=10寸)( )A .6.33平方寸B .6.35平方寸C .6.37平方寸D .6.39平方寸【来源】山东省潍坊市2018-2019学年高一下学期期中考试数学试题【答案】A12.已知扇形OAB 的面积为1,周长为4,则弦AB 的长度为( ) A .2 B .2/sin 1 C .2sin 1 D .sin 2【来源】黑龙江省部分重点高中2019-2020学年高一上学期期中联考数学试题【答案】C13.已知扇形OAB 的面积为4,圆心角为2弧度,则»AB 的长为( ) A .2 B .4 C .2π D .4π【来源】江苏省南京市2019-2020学年高一上学期期末数学试题【答案】B14.已知α 为第三象限角,则2α所在的象限是( ). A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限【来源】四川省南充高级中学2016-2017学年高一4月检测考试数学试题【答案】D15.若扇形的面积为216cm ,圆心角为2rad ,则该扇形的弧长为( )cm . A .4 B .8 C .12 D .16【来源】江苏省盐城市大丰区新丰中学2019-2020学年高一上学期期末数学试题【答案】B16.周长为6,圆心角弧度为1的扇形面积等于( )A .1B .32πC .D .2【来源】河北省邯郸市魏县第五中学2019-2020学年高一上学期第二次月考数学试题【答案】D17.已知一个扇形弧长为6,扇形圆心角为2rad ,则扇形的面积为 ( )A .2B .3C .6D .9【来源】2013-2014学年辽宁省实验中学分校高二下学期期末考试文科数学试卷(带解析)【答案】D18.集合{|,}42k k k Z ππαπαπ+≤≤+∈中角所表示的范围(阴影部分)是( ) A . B . C .D .【来源】2015高考数学理一轮配套特训:3-1任意角弧度制及任意角的三角函数(带解析)【答案】C19.已知⊙O 的半径为1,A ,B 为圆上两点,且劣弧AB 的长为1,则弦AB 与劣弧AB 所围成图形的面积为( )A .1122-sin 1B .1122-cos 1C .1122-sin 12D .1122-cos 12【来源】河北省衡水中学2019-2020学年高三第一次联合考试数学文科试卷【答案】A20.已知一个扇形的圆心角为56π,半径为3.则它的弧长为( ) A .53π B .23π C .52π D .2π 【来源】河南省新乡市2018-2019学年高一下学期期末数学试题【答案】C21.中国传统扇文化有着极其深厚的底蕴. 一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形的面积为1S ,圆面中剩余部分的面积为2S ,当1S 与2S 的比值为12时,扇面看上去形状较为美观,那么此时扇形的圆心角的弧度数为( )A .(3π-B .1)πC .1)πD .2)π【来源】吉林省长春市2019-2020学年上学期高三数学(理)试题【答案】A22.《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就,其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=12(弦⨯矢+矢⨯矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,按照上述经验公式计算所得弧田面积与其实际面积之间存在误差,现有圆心角为23π,弦长为实际面积与按照上述经验公式计算出弧田的面积之间的误差为( )平方米(其中3π≈ 1.73≈)A .14B .16C .18D .20【来源】上海市实验学校2018-2019学年高一下学期期末数学试题【答案】B23.已知某扇形的面积为22.5cm ,若该扇形的半径r ,弧长l 满足27cm r l +=,则该扇形圆心角大小的弧度数是()A .45B .5C .12D .45或5 【来源】安徽省阜阳市太和县2019-2020学年高三上学期10月质量诊断考试数学(文)试题【答案】D24.已知一个扇形的圆心角为3弧度,半径为4,则这个扇形的面积等于( ). A .48 B .24 C .12 D .6【来源】湖南师范大学附属中学2016-2017学年高一下学期期中考试数学试题【答案】B25.已知扇形的圆心角23απ=,所对的弦长为 ) A .43π B .53π C .73π D .83π 【来源】河南省新乡市辉县市一中2018-2019高一下学期第一阶段考试数学试题【答案】D26.如果2弧度的圆心角所对的弦长为4,那么这个圆心所对的弧长为( ) A .2 B .2sin1 C .2sin1 D .4sin1【来源】黑龙江省大兴安岭漠河一中2019-2020学年高一上学期11月月考数学试题【答案】D27.若α是第一象限角,则下列各角中属于第四象限角的是( )A .90α︒-B .90α︒+C .360α︒-D .180α︒+【来源】福建省厦门双十中学2017-2018学年高一下学期第二次月考数学试题【答案】C28.已知扇形的半径为2,面积为4,则这个扇形圆心角的弧度数为( )A B .2 C . D .【来源】河南省南阳市2016—2017学年下期高一期终质量评估数学试题【答案】B二、填空题29.已知大小为3π的圆心角所对的弦长为2,则这个圆心角所夹扇形的面积为______. 【来源】安徽省马鞍山市第二中学2018-2019学年高一下学期开学考试数学试题【答案】23π. 30.135-=o ________弧度,它是第________象限角.【来源】浙江省杭州市七县市2019-2020学年高一上学期期末数学试题【答案】34π- 三 31.设扇形的半径长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是【来源】2011-2012学年安徽省亳州一中高一下学期期中考试数学试卷(带解析)【答案】32.在北纬60o 圈上有甲、乙两地,若它们在纬度圈上的弧长等于2R π(R 为地球半径),则这两地间的球面距离为_______ . 【来源】上海市浦东新区川沙中学2018-2019学年高二下学期期末数学试题 【答案】3R π 33.已知一个扇形的弧长等于其所在圆半径的2倍,则该扇形圆心角的弧度数为________,若该扇形的半径为1,则该扇形的面积为________.【来源】浙江省宁波市2019-2020学年高一上学期期末数学试题【答案】2 134.设O 为坐标原点,若直线l :102y -=与曲线τ0y =相交于A 、B 点,则扇形AOB 的面积为______.【来源】上海市普陀区2016届高三上学期12月调研(文科)数学试题 【答案】3π 35.已知扇形的圆心角为12π,面积为6π,则该扇形的弧长为_______; 【来源】福建省漳州市2019-2020学年学年高一上学期期末数学试题 【答案】6π 36.在半径为5的圆中,5π的圆心角所对的扇形的面积为_______. 【来源】福建省福州市八县一中2019-2020学年高一上学期期末联考数学试题 【答案】52π37.已知集合M ={(x ,y )|x ﹣3≤y ≤x ﹣1},N ={P |PA PB ,A (﹣1,0),B (1,0)},则表示M ∩N 的图形面积为__.【来源】上海市复兴高级中学2015-2016学年高二上学期期末数学试题【答案】4338.圆心角为2弧度的扇形的周长为3,则此扇形的面积为 _____ .【来源】山东省泰安市2019届高三上学期期中考试数学(文)试题 【答案】91639.已知圆心角是2弧度的扇形面积为216cm ,则扇形的周长为________【来源】上海市向明中学2018-2019学年高三上学期第一次月考数学试题【答案】16cm40.扇形的圆心角为3π,其内切圆的面积1S 与扇形的面积2S 的比值12S S =______. 【来源】上海市七宝中学2015-2016学年高一下学期期中数学试题 【答案】2341.已知扇形的半径为6,圆心角为3π,则扇形的面积为__________. 【来源】江苏省苏州市2019届高三上学期期中调研考试数学试题【答案】6π42.若扇形的圆心角120α=o ,弦长12AB cm =,则弧长l =__________ cm .【来源】黑龙江省齐齐哈尔八中2018届高三8月月考数学(文)试卷43.已知扇形的周长为8cm ,圆心角为2弧度,则该扇形的半径是______cm ,面积是______2cm .【来源】浙江省杭州市西湖高级中学2019-2020学年高一上学期12月月考数学试题【答案】2 444.已知扇形的弧长是半径的4倍,扇形的面积为8,则该扇形的半径为_________【来源】江西省宜春市上高县第二中学2019-2020学年高一上学期第三次月考数学(理)试题【答案】2.45.已知点P(tan α,cos α)在第三象限,则角α的终边在第________象限.【来源】[同步]2014年湘教版必修二 3.1 弧度制与任意角练习卷1(带解析)【答案】二三、解答题46.已知角920α=-︒.(Ⅰ)把角α写成2k πβ+(02,k Z βπ≤<∈)的形式,并确定角α所在的象限;(Ⅱ)若角γ与α的终边相同,且(4,3)γππ∈--,求角γ.【来源】安徽省合肥市巢湖市2019-2020学年高一上学期期末数学试题【答案】(Ⅰ)α=8(3)29ππ-⨯+,第二象限角;(Ⅱ)289πγ=- 47.已知一扇形的圆心角为α,半径为R ,弧长为l .(1)若60α=︒,10cm R =,求扇形的弧长l ;(2)若扇形周长为20cm ,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?【来源】山东省济南市外国语学校三箭分校2018-2019学年高一下学期期中数学试题【答案】(1)()10cm 3π(2)2α= 48.已知一扇形的圆心角为60α=o ,所在圆的半径为6cm ,求扇形的周长及该弧所在的弓形的面积.【来源】江西省南昌市新建一中2019-2020学年高一上学期期末(共建部)数学试题【答案】2π+12,6π﹣49.已知一扇形的周长为4,当它的半径与圆心角取何值时,扇形的面积最大?最大值是多少?【来源】宁夏大学附中2019-2020学年高一上学期第一次月考数学试题【答案】半径为1,圆心角为2,扇形的面积最大,最大值是2.50.已知扇形的圆心角为α(0α>),半径为R .(1)若60α=o ,10cm R =,求圆心角α所对的弧长;(2)若扇形的周长是8cm ,面积是24cm ,求α和R .【来源】安徽省阜阳市颍上二中2019-2020学年高一上学期第二次段考数学试题【答案】(1)10cm 3π(2)2α=,2cm R =。

浙江省宁波市2023-2024学年高一下学期期末考试数学试题卷含答案

浙江省宁波市2023-2024学年高一下学期期末考试数学试题卷含答案

镇海2023学年第二学期期末考试高一数学试题卷(答案在最后)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.点P 是椭圆2212x y +=上一动点,则点P 到两焦点的距离之和为()A.2B.C. D.4【答案】C 【解析】【分析】由椭圆的定义求解即可.【详解】由2212x y +=可得:a =,由椭圆的定义可知:点P到两焦点的距离之和为2a =.故选:C .2.若{,,}a b c是空间中的一组基底,则下列可与向量,2a c a c +-构成基底的向量是()A.aB.2a b+C.2a c+D.c【答案】B 【解析】【分析】借助空间中基底定义,计算该向量能否用,2a c a c +-表示即可得.【详解】由{,,}a b c 是空间中的一组基底,故,,a b c两两不共线,对A :有()()1223a a c a c ⎡⎤=++-⎣⎦,故A 错误;对B :设()()22a b m a c n a c +=++- ,则有()()22a b m n a m n c +=++-,该方程无解,故2a b +可与,2a c a c +-构成基底,故B 正确;对C :有()()12423a c a c a c ⎡⎤+=+--⎣⎦,故C 错误;对D :有()()123c a c a c ⎡⎤=+--⎣⎦,故D 错误.故选:B.3.l 为直线,α为平面,则下列条件能作为l α∥的充要条件的是()A.l 平行平面α内的无数条直线B.l 平行于平面α的法向量C.l 垂直于平面α的法向量D.l 与平面α没有公共点【答案】D 【解析】【分析】根据直线与平面平行的定义,由于定义是充要条件得到选项.【详解】对A :没有强调l α⊄,故A 错误;对B :l 平行于平面α的法向量,可得l α⊥,故B 错误;对C :同A 一样,没有强调l α⊄,故C 错误;对D :根据直线与平面平行的定义:直线与平面没有公共点时,直线与平面平行.所以“直线l 与平面α没有公共点”是“l α∥”的充要条件.故D 正确.故选:D4.己知 (2,2,1)(1,1,0)a b ==,,则a 在b 上的投影向量的坐标为()A.(1,1,0)B.(1,2,0)C.(2,2,0)D.(1,1,1)【答案】C 【解析】【分析】根据投影向量的概念求解即可.【详解】向量a 在b上的投影向量为:()()21,1,02,2,0a b b bb⋅⋅⨯==,故选:C5.点()()1122,,,P x y Q x y 为直线20kx y -+=上不同的两点,则直线111:1l x x y y -=与直线222:1l x x y y -=的位置关系是()A.相交B.平行C.重合D.不确定【答案】A 【解析】【分析】利用这两直线的斜率来结合已知条件,即可以作出判断.【详解】由点()()1122,,,P x y Q x y 为直线20kx y -+=上不同的两点,则直线111:1l x x y y -=与直线222:1l x x y y -=的斜率存在时一定为1212x x y y ,,可以把这两个斜率看成直线上两点到原点的斜率的倒数,由已知可得OP OQ k k ≠,则1212x x y y ≠,即两直线不可能平行与重合,则只能相交;若直线111:1l x x y y -=与直线222:1l x x y y -=的斜率有一个不存在,则另一个斜率必存在,也能判定两直线相交;故选:A.6.如图,平行六面体各棱长为1,且1160A AB A AD BAD ∠=∠=∠=︒,动点P 在该几何体内部,且满足1(1)(,R)AP xAB y AD x y AA x y =++--∈ ,则||AP的最小值为()A.4B.3C.62D.12【答案】B 【解析】【分析】由平面向量共面定理可知:点P 在平面1BDA 内,则||AP的最小值即为点P 到平面1BDA 的距离,求出三棱锥1A A BD -为正四面体,过点A 作AH ⊥平面1BDA ,求解AH 即可得出答案.【详解】因为1(1)(,R)AP xAB y AD x y AA x y =++--∈,则()()111AP AA x AB AA y AD AA -=-+- ,即111A P xA B y A D =+ ,由平面向量共面定理可知:点P 在平面1BDA 内,则||AP的最小值即为点P 到平面1BDA 的距离,连接11,,,BD DA A B 因为平行六面体各棱长为1,且1160A AB A AD BAD ∠=∠=∠=︒,所以111BD DA A B ===,所以三棱锥1A A BD -为正四面体,过点A 作AH ⊥平面1BDA ,因为1A H ⊂平面1BDA ,所以AH ⊥1A H ,如图,所以1223323A H ==⨯=,所以3AH ===,所以||AP的最小值为3AH =.故选:B .7.实数,x y 满足2222x y x y +=-,则|3|x y -+的最小值为()A.3B.7C. D.3+【答案】A 【解析】【分析】化简2222x y x y +=-可得()()22112x y -++=,|3|x y -+表示为圆上点到直线30x y -+=【详解】化简2222x y x y +=-可得()()22112x y -++=,即(),x y 在圆上,则|3|x y -+表示为圆上点到直线30x y -+=倍,圆心()1,1-到直线距离为d =则|3|x y -+的最小值为3-=.故选:A8.在棱长为2的正四面体O ABC -中,棱,OA BC 上分别存在点,M N (包含端点),直线MN 与平面ABC ,平面OBC 所成角为θ和ϕ,则sin sin θϕ+的取值范围是()A.2,33⎡⎢⎣⎦B.2,33⎡⎢⎣⎦C.,33⎣⎦D.,33⎣⎦【答案】C 【解析】【分析】建立空间直角坐标系,然后利用空间向量得到3sin sin θϕ+=最后根据,a b 范围求sin sin θϕ+的取值范围即可.【详解】如图,取ABC 的中心1O ,连接1OO ,取BC 中点F ,连接1O F ,过点1O 作1O E BC ∥交AB 于点E ,以1O 为原点,分别以111,,O E O F O O 为,,x y z 轴建立空间直角坐标系,因为O ABC -为正四面体,所以13O A =,13O F =,13O O =,()10,0,0O,1,,03B ⎛⎫ ⎪ ⎪⎝⎭,1,,03C ⎛⎫- ⎪ ⎪⎝⎭,0,0,3O ⎛⎫ ⎪ ⎪⎝⎭,10,0,3O O ⎛⎫= ⎪ ⎪⎝⎭,1,,33OB ⎛⎫=- ⎪ ⎪⎝⎭,1,,33OC ⎛⎫=-- ⎪ ⎪⎝⎭,设230,3M a ⎛⎫- ⎪ ⎪⎝⎭,3,,03N b ⎛⎫ ⎪ ⎪⎝⎭,230,3a ⎡∈⎢⎣⎦,[]1,1b ∈-,则(),MN b a =,由题意得1O O uuu r可以作为平面ABC 的一个法向量,则113sin a MN O O MN O Oθ⋅==,设平面OBC 的法向量为(),,m x y z =,033033m OB x y z m OC x y z ⎧⋅=+-=⎪⎪⎨⎪⋅=-+-=⎪⎩,则0x =,令y =4z =,所以4m ⎛= ⎝⎭ ,33332sin a m MNm MNϕ--⋅==33sin sin θϕ-+=因为0,3a ⎡∈⎢⎣⎦,[]1,1b ∈-,所以[]2332,3a -+∈,[]20,1b ∈,⎤⎦,3sin sin ,33θϕ+=⎥⎣⎦.故选:C.【点睛】关键点点睛:本题关键在于利用相似设出点M 的坐标,然后利用空间向量的方法求出线面角,最后求范围即可.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,部分选对的得部分.9.已知椭圆222:14x y C a +=的焦点分别为12,FF ,焦距为P 为椭圆C 上一点,则下列选项中正确的是()A.椭圆C 的离心率为53B.12F PF △的周长为3C.12F PF ∠不可能是直角D.当1260F PF ∠=︒时,12F PF △的面积为3【答案】AD【解析】【分析】先确定椭圆的方程,再根据方程分析椭圆的性质.【详解】由题意,焦距为2c =⇒c =,又2<,所以椭圆焦点必在x 轴上,由245a -=3a ⇒=.所以椭圆的离心率3c e a ==,故A 正确;根据椭圆的定义,12F PF △的周长为226a c +=+,故B 错误;如图:取()0,2M 为椭圆的上顶点,则()()123,23,250MF MF ⋅=-⋅--=-<,所以12F MF ∠为钝角,所以椭圆上存在点P ,使得12F PF ∠为直角,故C 错误;如图:当1260F PF ∠=︒时,设11PF t =,22PF t =,则1222121262cos6020t t t t t t +=⎧⎨+-︒=⎩⇒12221212620t t t t t t +=⎧⎨+-=⎩⇒12163t t =,所以12121116343sin 6022323F PF S t t =︒=⨯⨯=,故D 正确.故选:AD10.已知圆221:(1)(2)9C x y a -+-=,圆2222:82120,C x y x ay a a +-+++=∈R .则下列选项正确的是()A.直线12C C 恒过定点(3,0)B.当圆1C 和圆2C 外切时,若,P Q 分别是圆12,C C 上的动点,则max ||10PQ =C.若圆1C 和圆2C 共有2条公切线,则43a <D.当13a =时,圆1C 与圆2C 相交弦的弦长为2【答案】ABD 【解析】【分析】根据圆的方程确定圆心,可求出直线12C C 的方程,即可判断A ;根据圆1C 和圆2C 外切求出a 的值,数形结合,可判断B ;根据两圆公切线条数判断两圆相交,列不等式求解判断C ;求出两圆的公共弦方程,即可求得两圆的公共弦长,判断D.【详解】对于A ,由圆221:(1)(2)9C x y a -+-=,圆2222:82120,C x y x ay a a +-+++=∈R ,可知()()121,2,4,C a C a -,故直线12C C 的方程为(4)y a a x +=--,即()3y a x =--,即得直线12C C 恒过定点(3,0),A 正确;对于B ,2222:82120,C x y x ay a a +-+++=∈R 即()()222:44,C x y a a -++=∈R ,当圆1C 和圆2C 32=+,解得43a =±,当43a =时,如图示,当12,,,P C C Q 共线时,max 12||32510PQ C C =++==;同理求得当43a =-时,max ||10PQ =,B 正确;对于C ,若圆1C 和圆2C 共有2条公切线,则两圆相交,则123232C C -<<+,即15<<,解得4433a -<<,C 错误对于D ,当13a =时,两圆相交,2212:(1)(93C x y -+-=,()2221:443C x y ⎛⎫-++= ⎪⎝⎭,将两方程相减可得公共弦方程596203x y --=,则121,3C ⎛⎫⎪⎝⎭到596203x y --=4=,则圆1C 与圆2C相交弦的弦长为2=,D 正确,故选:ABD11.埃舍尔是荷兰著名的版画家,《哈利波特》《盗梦空间》《迷宫》等影片的灵感都来源于埃舍尔的作品.通过著名的《瀑布》(图1)作品,可以感受到形状渐变、几何体组合和光学幻觉方面的魅力.画面中的两座高塔上方各有一个几何体,右塔上的几何体首次出现,后称“埃舍尔多面体”(图2),其可以用两两垂直且中心重合的三个正方形构造.如图4,,,,(1,2,3)n n n n A B C D n =分别为埃舍尔多面体的顶点,,(1,2,3)n n P Q n =分别为正方形边上的中点,埃舍尔多面体的可视部分是由12个四棱锥构成.为了便于理解,图5中构造了其中两个四棱锥11122A PE P E -与22131,,(1,2)n n A P E P F E F n -=分别为线段的中点.左塔上方是著名的“三立方体合体”(图3),取棱长为2的正方体ABCD A B C D -''''的中心O ,以O 为原点,,,x y z 轴均平行于正方体棱,建立如图6所示的空间直角坐标系,将正方体分别绕,,x y z 轴旋转45︒,将旋转后的三个正方体,1,2,3n n n n n n n n A B C D A B C D n ''''-=(图7,8,9)结合在一起便可得到“三立方体合体”(图10),下列有关“埃舍尔多面体”和“三立方体合体”的说法中,正确的是()A.在图5中,1322A P E P ⊥B.在图5中,直线12Q A 与平面122A E P 所成角的正弦值为63C.在图10中,设点nA '的坐标为(),,,1,2,3n n n x y z n =,则()122239n n n n x y z =∑++=D.在图10中,若E 为线段22B C 上的动点(包含端点),则异面直线2D E 与23A A 所成角余弦值的最大值为22【答案】BCD 【解析】【分析】利用建立空间直角坐标系,结合空间向量法可以解决各个问题.【详解】对A ,在图5中,如图建系,设1231OP OP OP ===,则()10,1,1A ,()31,0,0P ,()20,1,0P ,2111,,222E ⎛⎫-⎪⎝⎭,所以()13221111,1,1,,,222A P E P ⎛⎫=--=- ⎪⎝⎭,则()132********1,1,1,,02222222A P E P ⎛⎫⋅=--⋅-=-+=≠ ⎪⎝⎭ ,13A P 与22E P 不垂直,故A 错误;对B ,由图知:()10,0,1Q -,()21,1,0A ,()10,1,1A ,1111,,222E ⎛⎫⎪⎝⎭,()20,1,0P 则()121,1,1Q A = ,()120,0,1A P =-,22111,,222E P ⎛⎫=-- ⎪⎝⎭,设平面122A E P 的法向量为(),,n x y z =,则122200n A P n E P ⎧⋅=⎪⎨⋅=⎪⎩ ,得01110222z x y z -=⎧⎪⎨-+-=⎪⎩,令1y =得,01z x ==,,即()01,1n =,,又由121212cos ,3Q A nQ A n Q A n⋅==,所以直线12Q A 与平面122A E P所成角的正弦值为3,故B 正确;对C ,在平面直角坐标系中,正方形绕中心旋转45︒,1A 坐标由()11,变为(),所以结合图形可知:点1A '的坐标为(1,0,2,点2A '的坐标为(0,1,2,-点3A '的坐标为)2,0,1,-则()()()()322211212129n n n n xy z =++=+++++=∑,故C 正确;对D ,由图知:)22,1,0A -,)22,1,0B ,(22C ,(20,2D -,)32,0,1A ,则()2301,1A A =,,由E 为线段22B C 上的动点(包含端点),则可设222C E C B λ=,[]0,1λ∈,所以())222222220,2,02,0,22,2,2D E D C C E D C C B λλλλ=+=+=+-=-,则22322322223222cos ,44221D E A A D E A A D E A A λλλλ⋅--==⋅+⋅+2t λ=,22t ∈,则()223222cos ,322121221212333t D E A A tt tt ==⎛⎫-+-+-+⎪⎝⎭,由1221,2t ⎤∈⎥⎣⎦,得2212221,32318t ⎛⎛-≥-= ⎪ ⎝⎭⎝⎭即22322cos ,=211121232318333D E A A t=≤⎛⎫⨯+-+⎪⎝⎭ 所以异面直线2D E 与23A A 所成角余弦值的最大值为22,故D 正确;故选:BCD.【点睛】关键点点睛:就是针对旋转后的点的空间坐标表示,这里先通过借助平面旋转时的坐标变化关系,再来写空间旋转后的点的坐标表示,只有表示出各点坐标,再就是借助空间向量的运算就能求解各选项问题.三、填空题:本题共3小题,每小题5分,共15分.12.在空间直角坐标系中,点(2,0,0)A 为平面α外一点,点(0,1,1)B 为平面α内一点.若平面α的一个法向量为(1,1,2)-,则点A 到平面α的距离是_______.【答案】62【解析】【分析】根据条件,利用点到面的距离的向量法,即可求出结果.【详解】由题知(2,1,1)AB =-,又平面α的一个法向量为(1,1,2)n =-,所以点A 到平面α的距离为62AB n d n ⋅==,故答案为:2.13.已知点P 是直线80-+=x y 上的一个动点,过点P 作圆()()22:114C x y -+-=的两条切线,与圆切于点,M N ,则cos MPN ∠的最小值是_______.【答案】34##0.75【解析】【分析】结合切线的性质与二倍角公式可将求cos MPN ∠的最小值转化为求sin MPC ∠的最大值,结合三角函数定义与点到直线距离公式计算即可得.【详解】由题意可得PM CM ⊥、PN CN ⊥,MPC NPC ∠=∠,设MPC α∠=,则2MPN α∠=,则2cos cos 212sin MPN αα∠==-,由()()22:114C x y -+-=可得圆心为()1,1C ,半径为2r =,则2sin MC PCPC α==,又min PC ==,则()max min 2sin 4PC α===,则()22min 23cos 12sin 1244MPN α⎛⎫∠=-=-⨯= ⎪ ⎪⎝⎭.故答案为:34.14.已知椭圆2222:1(0)x y C a b a b+=>>的左,右焦点分别是12(,0),(,0)F c F c -,下顶点为点()0,M b -,直线2MF 交椭圆C 于点N ,设1△MNF 的内切圆与1NF 相切于点E ,若122NE F F ==,则椭圆C 的离心率为_______,1△MNF 的内切圆半径长为_______.【答案】①.12##0.5②.5【解析】【分析】借助切线长定理与椭圆性质可得12F E FF =,从而可结合椭圆定义得到a 的值,即可得其离心率;借助余弦定理的推论可得三角形各边长,结合面积公式运用等面积法即可求取内切圆半径.【详解】设1△MNF 的内切圆与NM 、1MF 相切于点F ,G ,由切线长定理可得11F E FG =,MF MG =,NE NF =,又12MF MF a ==,则12FG FF =,故12F E FF =,由椭圆定义可知122NF NF a +=,即122222NE EF NF NE FF NF NE a ++=++==,故2a NE ==,又1222F F c ==,则12c e a ==;则2π6OMF ∠=,故12π3F MF ∠=,设1EF m =,则2422NF m m =--=-,即12NF m =+,4NM m =-,则有()()()22222111442πcos 32224m m MF MN NF MF MN m +--++-==⨯⋅⨯⨯-,计算可得45m =,则()11π24sin 235MNF S m =⨯⨯-= ,又184MNF C a == ,则11412MNF MNF S r C r =⋅= ,即有45r =,即5r =.故答案为:12;5.【点睛】关键点点睛:本题关键点一个是借助切线长定理与椭圆性质得到12F E FF =,从而可结合椭圆定义得到a 的值,第二个是借助等面积法求取内切圆半径.四、解答题:本题共5小题,共77分.解答应写出文字说明、正明过程或演算步骤.15.已知直线l 经过点(4,4)A ,且点(5,0)B 到直线l 的距离为1.(1)求直线l 的方程;(2)O 为坐标原点,点C 的坐标为(6,3)-,若点P 为直线OA 上的动点,求||||PB PC +的最小值,并求出此时点P 的坐标.【答案】(1)4x =或158920x y +-=(2)10,1515,77P ⎛⎫⎪⎝⎭【解析】【分析】(1)考虑直线l 的斜率存在和不存在情况,存在时,设直线方程,根据点到直线的距离求出斜率,即得答案.(2)确定(6,3)-关于直线OA 的对称点,数形结合,利用几何意义即可求得答案.【小问1详解】由题意知直线l 经过点(4,4)A ,当直线斜率不存在时,方程为4x =,此时点(5,0)B 到直线l 的距离为1,符合题意;当直线l 斜率存在时,设方程为4(4)y k x -=-,即440kx y k --+=,则由点(5,0)B 到直线l 的距离为11=,解得158k =-,即得15604088x y --++=,即158920x y +-=,故直线l 的方程为4x =或158920x y +-=;【小问2详解】由点(4,4)A ,可得直线OA 的方程为y x =,故点(5,0)B 关于y x =的对称点为1(0,5)B ,连接1PB ,则1PB PB =,则11||||||||||10PB PC PB PC B C +=+≥==,当且仅当1,,B P C 共线时,等号成立,即||||PBPC +的最小值为10,此时1B C 的方程为53455063y x x +=+=-+-,联立y x =,解得157x y ==,即151577P ,⎛⎫ ⎪⎝⎭.16.如图,正三棱柱111ABC A B C -所有的棱长均为2,点D 在棱11A B 上,且满足11123A D A B =,点E 是棱1BB 的中点.(1)证明://EC 平面1AC D ;(2)求直线AE 与平面1AC D 所成角的正弦值.【答案】(1)证明见解析(2)65【解析】【分析】(1)(2)建立空间直角坐标系,利用空间向量证明线面平行,也可利用空间向量求线面角的大小.【小问1详解】如图:取AB 的中点O ,因为三棱柱是正三棱柱且棱长为2,故以O 为原点,建立空间直角坐标系,则()1,0,0A -,()3,0C ,()13,2C ,1,0,23D ⎛⎫ ⎪⎝⎭,()1,0,1E ,所以4,0,23AD ⎛⎫= ⎪⎝⎭ ,113,03DC ⎛⎫=- ⎪⎝⎭,()3,1EC =--.设平面1AC D 的法向量为(),,n x y z =,由1n ADn DC ⎧⊥⎪⎨⊥⎪⎩ ⇒()()4,,,0,2031,,3,003x y z x y z ⎧⎛⎫⋅= ⎪⎪⎪⎝⎭⎨⎛⎫⎪⋅-= ⎪⎪⎝⎭⎩⇒460330x z x +=⎧⎪⎨-+=⎪⎩,取()6n =-.因为()()16EC n ⋅=--⋅-9360=-++=,又直线EC ⊄平面1AC D ,所以//EC 平面1AC D .【小问2详解】因为()2,0,1AE =,设直线AE 与平面1AC D 所成的角为θ,则sin θcos ,n AE n AE n AE ⋅===⋅5=.17.已知圆C 的圆心在x轴上,且过(-.(1)求圆C 的方程;(2)过点(1,0)P -的直线与圆C 交于,E F 两点(点E 位于x 轴上方),在x 轴上是否存在点A ,使得当直线变化时,均有PAE PAF ∠=∠?若存在,求出点A 的坐标;若不存在,请说明理由.【答案】(1)224x y +=(2)存在,且()4,0A -【解析】【分析】(1)设出圆的方程,借助代入所过点的坐标计算即可得;(2)圆问题可转化为在x 轴上是否存在点A ,使0AE AF k k +=,设出直线方程,联立曲线,借助韦达定理与斜率公式计算即可得.【小问1详解】设圆C 为()222x a y r -+=,则有()()2222212a r a r ⎧--+=⎪⎨⎪-=⎩,解得24a r =⎧⎨=⎩,故圆C 的方程为224x y +=;【小问2详解】由题意可得,直线EF 斜率不为0,故可设:1EF l x my =-,()11,E x y ,()22,F x y ,联立2214x my x y =-⎧⎨+=⎩,有()221230m y my +--=,2224121216120m m m ∆=++=+>,12221my y m +=+,12231y y m -=+,设(),0A t ,1t ≠-,由PAE PAF ∠=∠,则有0AE AF k k +=,即()()()()12211212120y x t y x t y yx t x t x t x t -+-+==----,即()1221120y x y x t y y +-+=,()()()()12211212211211y x y x t y y y my y my t y y +-+=-+--+()()()()1212222216216210111m t m m t m my y t y y m m m +--+-=-++=-==+++,即()()621240m m t m t ++=+=,则当4t =-时,0AE AF k k +=恒成立,故存在定点()4,0A -,使得当直线变化时,均有PAE PAF ∠=∠.18.如图,三棱柱111ABC A B C -中,ABC 为等边三角形,1π4B BC ∠=,平面11ABB A ⊥平面11CBB C .(1)求证:1AC BB ⊥;(2)若12BB ==,点E 是线段AB 的中点,(i )求平面1ECC 与平面1ACC 夹角的余弦值;(ii )在平面11ABB A 中是否存在点P ,使得14PB PB +=且1PC PC =P 的位置;若不存在,请说明理由.【答案】(1)答案见解析(2)(i )10;(ii )存在,(2,0,0)P -【解析】【分析】(1)用线面垂直的判定定理证明BB 1⊥平面AOC ,后转移到线线垂直即可.(2)(i )空间向量解题,先求出平面1ECC 与平面1ACC 的法向量,后按照夹角公式求解即可.(ii )设假设存在(,0,)P x z ,若1PC PC =22560x z x +++=(∗).1142PB PB BB +=>=,则根据椭圆定义知道P 的轨迹为椭圆,求出轨迹方程为:22143x z +=,整理得22334z x =-,联立(∗),解出即可【小问1详解】如图,过A 作1BB 的垂线AO ,交1BB 于O ,连接OC ,则,AO OB AO OC ⊥⊥.ABC 为等边三角形,则AB AC =,又AO AO =,则Rt Rt AOB AOC ≅ ,则BO CO =,则π4OCB ∠=,则π2COB ∠=,即11,,B B CO B B AO CO AO O ⊥⊥= ,,CO AO ⊂平面AOC ,则1BB ⊥平面AOC ,AC ⊂平面AOC ,则1AC BB ⊥.【小问2详解】(i )由(1)可知OB ,OA ,OC 两两垂直,则可以O 为原点,建立如图所示空间坐标系O -xyz .122BB ==,点E 是线段AB 的中点,则2AB BC CA ===1OA OB OC ===.1111(0,0,1),(1,0,0),(0,1,0),(1,0,0),(2,1,0),(,0,22A B C B C E --,111(2,0,0),(0,1,1),(,1,)22CC CA CE =-=-=- .设平面1ECC 法向量(,,)m x y z = ,则100m CE m CC ⎧⋅=⎪⎨⋅=⎪⎩ 即1102220x y z x ⎧-+=⎪⎨⎪-=⎩解得012x y z =⎧⎪=⎨⎪=⎩,故(0,1,2)m = ;同理平面1ACC 法向量(0,1,1)n = .则cos ,2510m n m n m n ⋅==⋅ ,设平面1ECC 与平面1ACC 夹角θ,则310cos 10θ=.(ii )平面11ABB A 中,假设存在(,0,)P x z ,若15PCPC =222215(2)1x z x z ++=--++,整理得,22560x z x +++=(∗).1142PB PB BB +=>=,则根据椭圆定义知道P 在以1BB 为焦距的椭圆上,且1142,22PB PB a c BB +====,解得2,1,3a c b ===则P 的轨迹方程为:22143x z +=,整理得22334z x =-,与(∗)联立方程组.2222560334x z x z x ⎧+++=⎪⎨=-⎪⎩,解得120x z =-⎧⎨=⎩,22180)x z =-<(,舍去.故在平面11ABB A 中存在点P ,使得14PB PB +=且1PCPC =P 坐标为(2,0,0)-.19.在空间直角坐标系O xyz -中,己知向量(,,)u a b c = ,点()0000,,P x y z .若直线l 以u 为方向向量且经过点0P ,则直线l 的标准式方程可表示为000(0)x x y y z z abc a b c---==≠;若平面α以u 为法向量且经过点0P ,则平面α的点法式方程可表示为()()()0000a x x b y y c z z -+-+-=,一般式方程可表示为0ax by cz d +++=.(1)若平面1:210x y α+-=,平面1:210y z β-+=,直线l 为平面1α和平面1β的交线,求直线l 的单位方向向量(写出一个即可);(2)若三棱柱的三个侧面所在平面分别记为22αβγ、、,其中平面2α经过点(4,0,0),(3,1,1)-,(1,5,2)-,平面2:4y z β+=,平面:(1)(2)30mx m y m z γ+++++=,求实数m 的值;(3)若集合{}(,,)|4,4,4M x y z x y y z z x =+≤+≤+≤,记集合M 中所有点构成的几何体为S ,求几何体S 的体积和相邻两个面(有公共棱)所成二面角的大小.【答案】(1)212,,333⎛⎫--⎪⎝⎭(2)1m =-(3)体积为128,相邻两个面(有公共棱)所成二面角为2π3【解析】【分析】(1)记平面1α,1β的法向量为11(1,2,0),(0,2,1)αβ==-,设直线l 的方向向量(,,)l x y z = ,由直线l 为平面1α和平面1β的交线,则1l α⊥,1l β⊥ ,列出方程即可求解;(2)设2:α10ax by cz +++=,由平面2α经过点(4,0,0),(3,1,1)-,(1,5,2)-,列出方程中求得2:4x y α+=,记平面22αβγ、、的法向量为22(1,1,0),(0,1,1),(,1,2)m m m αβγ===++ ,求出2α与2β交线方向向量为()1,1,1p =- ,根据p γ⊥ ,即可求得m 的值;(3)由题可知,S 由一个边长是4的正方体和6个高为2的正四棱锥构成,即可计算出体积,设几何体S 相邻两个面(有公共棱)所成二面角为()0,πθ∈,由题得出平面EBC 和平面ECD 的法向量,根据两平面夹角的向量公式计算即可.【小问1详解】记平面1α,1β的法向量为11(1,2,0),(0,2,1)αβ==-,设直线l 的方向向量(,,)l x y z = ,因为直线l 为平面1α和平面1β的交线,所以1l α⊥,1l β⊥ ,即112020l x y l y z αβ⎧⋅=+=⎪⎨⋅=-=⎪⎩ ,取2x =,则(2,1,2)l =-- ,所以直线l 的单位方向向量为212,,333⎛⎫--⎪⎝⎭.【小问2详解】设2:α10ax by cz +++=,由平面2α经过点(4,0,0),(3,1,1)-,(1,5,2)-,所以4103105210a a b c a b c +=⎧⎪+-+=⎨⎪-+++=⎩,解得14140a b c ⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩,即2:4x y α+=,所以记平面22αβγ、、的法向量为22(1,1,0),(0,1,1),(,1,2)m m m αβγ===++ ,与(1)同理,2α与2β确定的交线方向向量为()1,1,1p =-,所以p γ⊥ ,即()1210p m m m m γ⋅=-+++=+= ,解得1m =-.【小问3详解】由集合{}(,,)|4,4,4M x y z x y y z z x =+≤+≤+≤知,S 由一个边长是4的正方体和6个高为2的正四棱锥构成,如图所示,13224433V =⨯⨯⨯=正四棱锥,3244461283S V =⨯⨯+⨯=,设几何体S 相邻两个面(有公共棱)所成二面角为()0,πθ∈,平面:40EBC x z +-=,设平面EBC 法向量1(1,0,1)n = ,平面:40ECD y z +-=,设平面ECD 法向量2(0,1,1)n = ,所以121cos cos ,2n n θ== ,所以几何体S相邻两个面(有公共棱)所成二面角为2π3.【点睛】关键点点睛:本题第三问的关键是作出空间图形,求出相关法向量,利用二面角的空间向量求法即可.。

人教版数学高三期末测试精选(含答案)8

人教版数学高三期末测试精选(含答案)8

【答案】C
x 0,
9.设点
P(
x,
y)
在不等式组
2x
y
0,
表示的平面区域上,则 z
x y 3 0
(x 1)2 y2 的
最小值为( )
A.1
B. 5 5
C. 2
D. 2 5 5
【来源】辽宁省沈阳市东北育才学校 2019 届高三第五次模拟数学(文)试题
【答案】D
10.已知各项均为正数的等比数列an 单调递增,且 a1 a3 36,a1 a2 a3 26 ,
人教版数学高三期末测试精选(含答案)
学校:___________姓名:___________班级:___________考号:___________
评卷人 得分
一、单选题
1.在 ABC 中,内角 A , B , C 所对的边分别为 a , b , c .若 ABC 的面积为
b2 c2 a2 ,则角 A =(
A. ab ac
B. c b a 0
C. cb2 ab2
D. ac a c 0
【来源】2019 年上海市格致中学高三上学期第一次检测数学试题
【答案】C
6.已知 a,b ∈ R,则 a > |b|是 a|a| > b|b|的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
则 Ð B =___________. 【来源】重庆市綦江实验中学校 2017-2018 学年高一下学期半期考试数学(理)试题.
【答案】150
23.已知等差数列an 的公差为 2,若 a1,a3 ,a4 成等比数列,则 a2 ________.
【来源】安徽省阜阳三中 2018-2019 学年高二上学期第一次调研考试数学(文)试题

人教A版数学高二弧度制精选试卷练习(含答案)2

人教A版数学高二弧度制精选试卷练习(含答案)2

人教A 版数学高二弧度制精选试卷练习(含答案)学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知扇形的周长是5cm ,面积是322cm ,则扇形的中心角的弧度数是( ) A .3B .43C .433或 D .2【来源】江西省九江第一中学2016-2017学年高一下学期期中考试数学(文)试题 【答案】C2.已知扇形的周长为8cm ,圆心角为2,则扇形的面积为( ) A .1B .2C .4D .5【来源】四川省双流中学2017-2018学年高一1月月考数学试题 【答案】C3.《掷铁饼者》 取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把掷铁饼者张开的双臂近似看成一张拉满弦的“弓”,掷铁饼者的手臂长约为4π米,肩宽约为8π米,“弓”所在圆的半径约为1.25米,你估测一下掷铁饼者双手之间的距离约为( )1.732≈≈)A .1.012米B .1.768米C .2.043米D .2.945米【来源】安徽省五校(怀远一中、蒙城一中、淮南一中、颍上一中、淮南一中、涡阳一中)2019-2020学年高三联考数学(理)试题 【答案】B4.已知扇形的周长为4,圆心角所对的弧长为2,则这个扇形的面积是( ) A .2B .1C .sin 2D .sin1【来源】福建省泉州市南安侨光中学2019-2020学年高一上学期第二次阶段考试数学试题 【答案】B5.已知α是第三象限角,且cos cos22αα=-,则2α是( ) A .第一象限角B .第二象限角C .第三象限角D .第四象限角【来源】2012人教A 版高中数学必修四1.2任意角的三角函数练习题 【答案】B6.如图,2弧度的圆心角所对的弦长为2,这个圆心角所对应的扇形面积是( )A .1sin1B .21sin 1C .21cos 1D .tan1【来源】广西河池市高级中学2017-2018学年高一下学期第二次月考数学试题 【答案】B7.半径为10cm ,面积为2100cm 的扇形中,弧所对的圆心角为( ) A .2 radB .2︒C .2π radD .10 rad【来源】第一章滚动习题(一) 【答案】A8.若一扇形的圆心角为72︒,半径为20cm ,则扇形的面积为( ). A .240πcmB .280πcmC .240cmD .280cm【来源】陕西省西安市长安区第一中学2016-2017学年高一下学期第一次月考数学试题 【答案】D9.如图,把八个等圆按相邻两两外切摆放,其圆心连线构成一个正八边形,设正八边形内侧八个扇形(无阴影部分)面积之和为1S ,正八边形外侧八个扇形(阴影部分)面积之和为2S ,则12S S =( )A .34B .35C .23D .1【来源】广西省南宁市马山县金伦中学、武鸣县华侨中学等四校2017-2018学年高一10月月考数学试题. 【答案】B10.在-360°到0°内与角1250°终边相同的角是( ) . A .170° B .190° C .-190°D .-170°【来源】2012人教A 版高中数学必修四1.1任意角和弧度制练习题(一)(带解析) 【答案】C11.下列各角中,终边相同的角是 ( ) A .23π和240o B .5π-和314oC .79π-和299π D .3和3o【来源】新疆伊西哈拉镇中学2018-2019学年高一上学期第二次月考数学试题 【答案】C12.已知2弧度的圆心角所对的弧长为2,则这个圆心角所对的弦长是( ) A .sin 2B .2sin 2C .sin1D .2sin1【来源】广东省东莞市2018-2019学年高一第二学期期末教学质量检查数学试题 【答案】D13,弧长是半径的3π倍,则扇形的面积等于( ) A .223cm πB .26cm πC .243cm πD .23cm π【来源】河北省隆华存瑞中学(存瑞部)2018-2019学年高一上学期第二次数学试题 【答案】D14.如图所示,用两种方案将一块顶角为120︒,腰长为2的等腰三角形钢板OAB 裁剪成扇形,设方案一、二扇形的面积分别为12S , S ,周长分别为12,l l ,则( )A .12S S =,12l l >B .12S S =,12l l <C .12S S >,12l l =D .12S S <,12l l =【来源】浙江省省丽水市2018-2019学年高一下学期期末数学试题 【答案】A15.已知sin sin αβ>,那么下列命题成立的是( ) A .若,αβ是第一象限角,则cos cos αβ> B .若,αβ是第二象限角,则tan tan αβ> C .若,αβ是第三象限角,则cos cos αβ> D .若,αβ是第四象限角,则tan tan αβ>【来源】正定中学2010高三下学期第一次考试(数学文) 【答案】D16.半径为1cm ,中心角为150°的角所对的弧长为( )cm . A .23B .23π C .56D .56π 【来源】宁夏石嘴山市第三中学2018-2019学年高一5月月考数学试题 【答案】D 17.设5sin 7a π=,2cos 7b π=,2tan 7c π=,则( ) A .a b c <<B .a c b <<C .b c a <<D .b a c <<【来源】2008年高考天津卷文科数学试题 【答案】D18.扇形的中心角为120o )A .πB .45πC D 2【来源】辽宁省大连市第八中学2016-2017学年高一下学期期中考试数学试题【答案】A19.若扇形的周长为8,圆心角为2rad ,则该扇形的面积为( ) A .2B .4C .8D .16【来源】河南省洛阳市2018-2019学年高一下学期期中考试数学试卷 【答案】B20.-300° 化为弧度是( ) A .-43πB .-53πC .-54πD .-76π【来源】2014-2015学年山东省宁阳四中高一下学期期中学分认定考试数学试卷(带解析) 【答案】B21.一个扇形的面积为3π,弧长为2π,则这个扇形的圆心角为( ) A .3π B .4π C .6π D .23π 【来源】湖北省荆门市2017-2018学年高一(上)期末数学试题 【答案】D22.《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就.其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=12(弦×矢+矢×矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为23π,弦长为的弧田.其实际面积与按照上述经验公式计算出弧田的面积之间的误差为( )平方米.(其中3π≈,1.73≈)A .15B .16C .17D .18【来源】湖北省2018届高三5月冲刺数学(理)试题 【答案】B23.下列各式不正确的是( ) A .-210°=76π-B .405°=49πC .335°=2312πD .705°=4712π【来源】河南信阳市息县第一高级中学、第二高级中学、息县高中2018-2019学年高一下学期期中联考数学(文)试题 【答案】C24.下列函数中,最小正周期为π2的是( )A .y =sin (2x −π3)B .y =tan (2x −π3)C .y =cos (2x +π6) D .y =tan (4x +π6)【来源】20102011年山西省汾阳中学高一3月月考数学试卷 【答案】B25.已知扇形的周长为12cm ,圆心角为4rad ,则此扇形的弧长为 ( ) A .4cmB .6cmC .8cmD .10cm【来源】江西省玉山县一中2018-2019学年高一(重点班)下学期第一次月考数学(理)试卷 【答案】C二、填空题26.已知扇形的圆心角18πα=,扇形的面积为π,则该扇形的弧长的值是______.【来源】上海市黄浦区2018-2019学年高一下学期期末数学试题 【答案】3π 27.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的底面半径为_______ . 【来源】上海市浦东新区川沙中学2018-2019学年高二下学期期末数学试题 【答案】128.一个扇形的弧长与面积的数值都是5,则这个扇形中心角的弧度数为__________. 【来源】河南省灵宝市实验高中2017-2018学年高一下学期第一次月考考数学试题 【答案】5229.已知圆锥的侧面展开图是一个扇形,若此扇形的圆心角为65π、面积为15π,则该圆锥的体积为________.【来源】上海市杨浦区2019-2020学年高三上学期期中质量调研数学试题 【答案】12π30.圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示 ,正方形的顶点A 和点P 重合)沿着圆周顺时针滚动,经过若干次滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为 .【来源】2015届山东省日照市高三3月模拟考试理科数学试卷(带解析)31.已知扇形的圆心角为1弧度,扇形半径为2,则此扇形的面积为______. 【来源】上海市复兴高级中学2018-2019学年高一下学期3月份质量检测数学试题 【答案】232.一个球夹在120°的二面角内,且与二面角的两个面都相切,两切点在球面上的最短距离为π,则这个球的半径为_______ .【来源】上海市七宝中学2017-2018学年高二下学期期中数学试题 【答案】333.用半径为,面积为cm 2的扇形铁皮制作一个无盖的圆锥形容器(衔接部分忽略不计), 则该容器盛满水时的体积是 .【来源】2012届江苏省泗阳中学高三上学期第一次调研考试数学试卷(实验班) 【答案】31000cm 3π34.《九章算术》是体现我国古代数学成就的杰出著作,其中(方田)章给出的计算弧田面积的经验公式为:弧田面积12=(弦⨯矢+矢2),弧田(如图阴影部分)由圆弧及其所对的弦围成,公式中“弦”指圆弧所对弦的长,“矢”等于半径长与圆心到弦的距离之差,现有弧长为43π米,半径等于2米的弧田,则弧所对的弦AB 的长是_____米,按照上述经验公式计算得到的弧田面积是___________平方米.【来源】山东省济南市2018-2019学年高一下学期期末学习质量评估数学试题【答案】1235.设扇形的半径长为2cm ,面积为24cm ,则扇形的圆心角的弧度数是 【来源】2013-2014学年山东济南商河弘德中学高一下学期第二次月考数学试卷(带解析) 【答案】236.已知一个圆锥的展开图如图所示,其中扇形的圆心角为120o ,弧长为2π,底面圆的半径为1,则该圆锥的体积为__________.【来源】2018年春高考数学(文)二轮专题复习训练:专题三 立体几何【答案】337.现用一半径为10cm ,面积为280cm π的扇形铁皮制作一个无盖的圆锥形容器(假定衔接部分及铁皮厚度忽略不计,且无损耗),则该容器的容积为__________3cm . 【来源】江苏省苏州市2018届高三调研测试(三)数学试题 【答案】128π38.已知扇形的周长为6,圆心角为1,则扇形的半径为___;扇形的面积为____. 【来源】浙江省宁波市镇海区镇海中学2018-2019学年高一上学期期中数学试题 【答案】2 2 39.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论用角度制还是用弧度制度量一个角,它们与扇形所在半径的大小无关; ④若sin sin αβ=,则α与β的终边相同;⑤若cos 0θ<,则θ是第二或第三象限的角. 其中正确的命题是______.(填序号)【来源】江苏省南通市启东中学2018-2019学年高二5月月考数学(文)试题 【答案】③40.设扇形的周长为4cm ,面积为21cm ,则扇形的圆心角的弧度数是________. 【来源】广东省中山市第一中学2016-2017学年高一下学期第一次段考(3月)数学(理)试题 【答案】2三、解答题41.已知扇形AOB 的周长为8.(1)若这个扇形的面积为3,求其圆心角的大小.(2)求该扇形的面积取得最大时,圆心角的大小和弦长AB .【来源】2015-2016学年四川省雅安市天全中学高一11月月考数学试卷(带解析) 【答案】(1)或;(2);.42.已知一扇形的中心角是120︒,所在圆的半径是10cm ,求: (1)扇形的弧长; (2)该弧所在的弓形的面积【来源】福建省福州市平潭县新世纪学校2019-2020学年高一上学期第二次月考数学试题【答案】(1)203π;(2)1003π-43.某公司拟设计一个扇环形状的花坛(如图所示),该扇环是由以点O 为圆心的两个同心圆弧和延长后通过点AD 的两条线段围成.设圆弧AB 、CD 所在圆的半径分别为()f x 、R 米,圆心角为θ(弧度).(1)若3πθ=,13r =,26=r ,求花坛的面积;(2)设计时需要考虑花坛边缘(实线部分)的装饰问题,已知直线部分的装饰费用为60元/米,弧线部分的装饰费用为90元/米,预算费用总计1200元,问线段AD 的长度为多少时,花坛的面积最大?【来源】江苏省泰州市泰州中学2019~2020学年高一上学期期中数学试题 【答案】(1)292m π(2)当线段AD 的长为5米时,花坛的面积最大44.已知一个扇形的周长为30厘米,求扇形面积S 的最大值,并求此时扇形的半径和圆心角的弧度数.【来源】上海市华东师范大学第二附属中学2018-2019学年高一上学期期末数学试题 【答案】()2rad α= 152r =45.如图所示为圆柱形大型储油罐固定在U 型槽上的横截面图,已知图中ABCD 为等腰梯形(AB ∥DC ),支点A 与B 相距8m ,罐底最低点到地面CD 距离为1m ,设油罐横截面圆心为O ,半径为5m ,56D ∠=︒,求:U 型槽的横截面(阴影部分)的面积.(参考数据:sin530.8︒≈,tan56 1.5︒≈,3π≈,结果保留整数)【来源】上海市闵行区七宝中学2019-2020学年高一上学期9月月考数学试题 【答案】202m46.明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地,送行二步恰竿齐,五尺板高离地…”某教师根据这首词的思想设计如下图形,已知CE l ⊥,DF l ⊥,CB CD =,AD BC ⊥,5DF =,2BE =,AD =则在扇形BCD 中随机取一点求此点取自阴影部分的概率.【来源】山西省阳泉市2018-2019学年高一第一学期期末考试试题数学试题【答案】1)4(P A π=-47.某企业欲做一个介绍企业发展史的铭牌,铭牌的截面形状是如图所示的扇形环面(由试卷第11页,总11页 扇形OAD 挖去扇形OBC 后构成的).已知10, (0<<10)OA=OB =x x ,线段BA 、CD与弧BC 、弧AD 的长度之和为30米,圆心角为θ弧度.(1)求θ关于x 的函数解析式;(2)记铭牌的截面面积为y ,试问x 取何值时,y 的值最大?并求出最大值.【来源】上海市黄浦区2018届高三4月模拟(二模)数学试题【答案】(1)210(010)10x x x θ+=<<+;(2)当52x =米时铭牌的面积最大,且最大面积为2254平方米. 48.已知一扇形的圆心角为()0αα>,所在圆的半径为R .(1)若90,10R cm α==o ,求扇形的弧长及该弧所在的弓形的面积;(2)若扇形的周长是一定值()0C C >,当α为多少弧度时,该扇形有最大面积?【来源】2019高考备考一轮复习精品资料 专题十五 任意角和弧度制及任意角的三角函数 教学案【答案】(1)2550π-;(2)见解析49.已知在半径为10的圆O 中,弦AB 的长为10.(1)求弦AB 所对的圆心角α(0<α<π)的大小;(2)求圆心角α所在的扇形弧长l 及弧所在的弓形的面积S .【来源】(人教A 版必修四)1.1.2弧度制(第一课时)同步练习02【答案】(1)π3(2)10π3;50(π3−√32) 50.已知在半径为6的圆O 中,弦AB 的长为6,(1)求弦AB 所对圆心角α的大小;(2)求α所在的扇形的弧长l 以及扇形的面积S.【来源】江西省玉山县一中2018-2019学年高一(重点班)下学期第一次月考数学(文)试卷【答案】(1)3π ;(2)2l π= ,6S π=。

2018学年第一学期宁波九校联考高一上数学期末考试

2018学年第一学期宁波九校联考高一上数学期末考试

2018学年第一学期宁波市九校联考高一数学试题一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 设全集为R ,集合{|03},{|1}A x x B x x =<<=≥,则()R A B = ð A.{|3}x x < B.{|01}x x << C.{|13}x x ≤< D.{|0}x x >2. 函数3()f x x =的图象A.关于x 轴对称B.关于y 轴对称C.关于直线y x =对称D.关于原点对称3. 若3tan 4α=,则22cos sin 2αα+= A.5625 B.4425 C.45 D.8254. 在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EC =A.3144AB AC -B.1344AB AC -C.3144AC AB -D.1344AC AB -(第4题图) 5. 已知曲线12:sin(),:sin 23C y x C y x π=+=,则下列结论正确的是A.把曲线1C 上各点的横坐标变化到原来的12倍,纵坐标不变,再把得到的曲线向右平移3π个单位长度,得到曲线2CB.把曲线1C 上各点的横坐标变化到原来的12倍,纵坐标不变,再把得到的曲线向右平移6π 个单位长度,得到曲线2CC.把曲线1C 上各点的横坐标变化到原来的2倍,纵坐标不变,再把得到的曲线向右平移3π个单位长度,得到曲线2CCD.把曲线1C 上各点的横坐标变化到原来的2倍,纵坐标不变,再把得到的曲线向右平移6π个单位长度,得到曲线2C6. 已知函数()2sin()(0,||)f x x ωϕωϕπ=+><部分图象如图所示,则A.15,312πωϕ== B.17,312πωϕ==- C.2,33πωϕ== D.22,33πωϕ==-7. 已知函数2, 0,()()()1ln ,0,x x f x g x f x x a x x-⎧≤⎪==--⎨>⎪⎩.若()g x 有2个零点,则实数a 的 取值范围是A.[1,0)-B.[0,)+∞C.[1,)-+∞D.[1,)+∞8. 设x ,y ,z 均为正数,且236x y z==,则A.236x y z <<B.623z x y <<C.362y z x <<D.326y x z <<9. 如图,在四边形ABCD 中,,3,2AB BC AB BC CD DA ⊥====,AC 与BD 交于点O ,记123,,I OA OB I OB OC I OC OD =⋅=⋅=⋅,则A.123I I I <<B.132I I I <<C.213I I I <<D.312I I I << 10.已知当[0,1]x ∈时,函数1y mx =+的图象与y =的图象 (第9题图) 有且只有一个交点,则正实数m 的取值范围是 A.1(,)2+∞ B.1[,)2+∞ C.1[,)2+∞ D.1[,)2+∞二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

2024-2025学年浙江省宁波市北仑中学高一上学期第一次检测数学试题(含答案)

2024-2025学年浙江省宁波市北仑中学高一上学期第一次检测数学试题(含答案)

2024-2025学年浙江省宁波市北仑中学高一上学期第一次检测数学试题一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列说法中正确的是( )A. 1与{1}表示同一个集合B. 由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}C. 方程(x−1)2(x−2)=0的所有解的集合可表示为{1,1,2}D. 集合{x|4<x<5}可以用列举法表示2.若a∈{1,2,a2},则a的取值集合为( )A. {0}B. {0,1}C. {0,2}D. {0,1,2}3.已知集合A满足{0,1}⊆AÜ{0,1,2,3},则集合A的个数为( )A. 1B. 2C. 3D. 44.已知全集U={1,3,5,7,9},M={x|x>4且x∈U},N={3,7,9},则M∩(∁U N)=( )A. {1,5}B. {5}C. {1,3,5}D. {3,5}5.已知a,b,c∈R,使a>b成立的一个充分不必要条件是( )A. a+c>b+cB. ac>bcC. a2>b2D. ac2>bc26.若ab>0,且a<b,则下列不等式一定成立的是( )A. a2<b2B. 1a <1bC. ba+ab>2 D. a+b2>ab7.已知命题p:“∀x∈R,(a+1)x2−2(a+1)x+3>0”为真命题,则实数a的取值范围是( )A. −1<a<2B. a≥1C. a<−1D. −1≤a<28.已知a>0,b>0,且1a +2b=1,则2a−1+1b−2的最小值为( )A. 2B. 22C. 322D. 1+324二、多选题:本题共3小题,共18分。

在每小题给出的选项中,有多项符合题目要求。

9.命题p:∃x∈R,x2+bx+1≤0的否定是真命题,则实数b的值可能是( )A. −74B. −32C. 2D. 5210.若正实数x,y满足2x+y=1,则下列说法正确的是( )A. xy 有最大值为18B. 1x +4y 有最小值为6+4 2C. 4x 2+y 2有最小值为12D. x (y +1)有最大值为1211.已知b >0,若对任意的x ∈(0,+∞),不等式ax 3+3x 2−abx−3b ≤0恒成立,则( )A. a <0B. a 2b =3C. a 2+4b 的最小值为12D. a 2+ab +3a +b 的最小值为6−6 3三、填空题:本题共3小题,每小题5分,共15分。

2018-2019学年高一数学必修一学业分层测评:第一章 集合(2)

2018-2019学年高一数学必修一学业分层测评:第一章 集合(2)

学业分层测评(二)(建议用时:45分钟)[学业达标]一、选择题1.(2016·德州市高一期中)已知集合A ={x |x -2≤1,x ∈N *},则集合A 的真子集的个数为( )A .3个B .6个C .7个D .8个【解析】 因为集合A ={x |x -2≤1,x ∈N *}={1,2,3},所以其真子集个数为23-1=7,故选C.【答案】 C2.(2016·石家庄高一期末)已知{1,2}⊆X ⊆{1,2,3,4,5},满足这个关系式的集合X 的个数为( )A .2个B .6个C .4个D .8个【解析】 由题意知,集合X 中的元素一定含有1,2,另外可从3,4,5中可取0个,取1个,取2个,取3个,∴集合X ={1,2},{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,2,3,4,5},共8个.故选D.【答案】 D3.(2016·北京高一月考)设集合A ={x ,y },B ={0,x 2},若A =B ,则2x +y 等于( )A .0B .1C .2D .-1【解析】 因为A ={x ,y },B ={0,x 2},若A =B ,则⎩⎪⎨⎪⎧ x =0,y =x 2或⎩⎪⎨⎪⎧x =x 2,y =0,解得⎩⎪⎨⎪⎧ x =0,y =0或⎩⎪⎨⎪⎧x =1,y =0.x =0时,B ={0,0}不成立.当x =1,y =0时,A ={1,0},B ={0,1},满足条件. 所以2x +y =2.故选C. 【答案】 C4.(2016·洛阳高一检测)已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x =k3,k ∈Z,B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k6,k =Z,则( )A .A ⊆B B .B ⊆AC .A =BD .A 与B 关系不确定【解析】 集合A 中x =k 3=2k 6,B 中x =k6,2k 为偶数,k 为整数,故A 中的元素都是B 中的元素,即A ⊆B ,故选A.【答案】 A5.已知集合A ={x |x 是平行四边形},B ={x |x 是矩形},C ={x |x 是正方形},D ={x |x 是菱形},则( )A .A ⊆B B .C ⊆B C .D ⊆CD .A ⊆D【解析】 选项A 错,应当是B ⊆A .选项B 对,正方形一定是矩形,但矩形不一定是正方形.选项C 错,正方形一定菱形,但菱形不一定是正方形.选项D 错,应当是D ⊆A .【答案】 B 二、填空题6.已知集合A ={x |-1<x <4},B ={x |x <a },若A B ,则实数a 的取值范围是________.【解析】 用数轴表示集合A ,B ,AB ,如图所示:则a≥4.【答案】a≥47.设集合A={x,y},B={4,x2},若A=B,则x+y=__________.【解析】因为A=B,当x=4时,B={4,16},A={4,16},即x=4,y=16;x=0时,B={4,0},A={0,4},即x=0,y=4;x=1时,B={4,1},A={1,4},x=1,y=4.【答案】20或4或58.设集合P={(x,y)|x+y<4,x,y∈N+},则集合P的非空子集的个数是________.【解析】∵x+y<4,x,y∈N+,∴x=1,y=3;x=2,y=2;x=3,y=1.故P={(1,3),(2,2),(3,1)},共有8个子集,其中非空子集有7个.【答案】7三、解答题9.判断下列各组中两集合之间的关系:(1)P={x∈R|x2-4=0},Q={x∈R|x2=0};(2)P={y∈R|y=t2+1,t∈R},Q={t∈R|t=y2-2y+2,y∈R};(3)P={x|x=2k,k∈Z},Q={x|x=4k+2,k∈Z};(4)P={y|y=x2-1,x∈R},Q={(x,y)|y=x2-1,x,y∈R}.【解】(1)集合P={x∈R|x2-4=0}={2,-2},集合Q={x∈R|x2=0}={0},所以P与Q不存在包含关系.(2)集合P={y∈R|y=t2+1,t∈R}={y∈R|y≥1},集合Q={t∈R|t=(y-1)2+1,y ∈R }={t ∈R |t ≥1},所以P =Q .(3)集合P ={x |x =2k ,k ∈Z }是偶数集,集合Q ={x |x =4k +2,k ∈Z }={x |x =2(2k +1),k ∈Z }={…,-6,-2,2,6,…},显然Q P .(4)集合P 是数集,且P ={y |y ≥-1},集合Q ={(x ,y )|y =x 2-1,x ,y ∈R }中的代表元素是点(x ,y ),所以Q 是点集,所以P 与Q 不存在包含关系.10.已知集合A ={x |1<ax <2},B ={x |-1<x <1},求满足A ⊆B 的实数a 取值的范围.【解】 (1)当a =0时,A =∅,满足A ⊆B . (2)当a >0时,A =⎩⎨⎧⎭⎬⎫x |1a <x <2a , 又B ={x |-1<x <1},A ⊆B , ∴⎩⎪⎨⎪⎧1a ≥-1,2a ≤1,∴a ≥2.(3)当a <0时,A =⎩⎨⎧⎭⎬⎫x 2a <x <1a . ∵A ⊆B ,∴⎩⎪⎨⎪⎧2a ≥-1,1a ≤1,∴a ≤-2.综上所述,实数a 的取值范围是:a =0或a ≥2或a ≤-2.[能力提升]1.设集合A ={x |x =2k +1,k ∈Z },B ={x |x =2k -1,k ∈Z },C ={x |x =4k +1,k ∈Z },则集合A 、B 、C 之间关系完全正确的是( )A .A ≠B ,AC ,BCB .A =B ,AC ,B CC .A =B ,C A ,C BD .A ≠B ,C A ,C B【解析】 集合A 中元素所具有的特征:x =2k +1=2(k +1)-1,∵k ∈Z ,∴k +1∈Z 与集合B 中元素所具有的特征完全相同,∴A =B ;当k =2n 时,x =2k +1=4n +1 当k =2n +1时,x =2k +1=4n +3.即C 是由集合A 中的部分元素所组成的集合.∴CA ,CB .【答案】 C2.(2016·宣城市高一月考)已知集合A ={x |x 2-4=0},集合B ={x |ax =1},若B ⊆A ,则实数a 的值是( ) 【导学号:04100005】A .0B .±12 C .0或±12D .0或12【解析】 ∵集合A ={x |x 2-4=0}={-2,2},且B A ,∴B 有两种情况: (1)a =0,B =∅,满足B ⊆A ;(2)a ≠0,由1a =±2,得a =±12.综上a =0或±12. 【答案】 C3.设集合A ={x |x 2+4x =0},B ={x |x 2+2(a +1)x +a 2-1=0,a ∈R },若B ⊆A ,求实数a 的取值范围.【解】 因为A ={x |x 2+4x =0}={0,-4},B ⊆A , 所以B 可能为∅,{0},{-4},{0,-4}. ①当B =∅时,方程x 2+2(a +1)x +a 2-1=0无解. 所以Δ=4(a +1)2-4(a 2-1)<0, 所以a <-1.②当B ={0}时,方程x 2+2(a +1)x +a 2-1=0有两个相等的实数根0, 由根与系数的关系,得⎩⎪⎨⎪⎧0+0=-2(a +1),0×0=a 2-1,解得a =-1.③当B ={-4}时,方程x 2+2(a +1)x +a 2-1=0有两个相等的实数根-4, 由根与系数的关系,得⎩⎪⎨⎪⎧-4+(-4)=-2(a +1),-4×(-4)=a 2-1,该方程组无解.④当B ={0,-4}时,方程x 2+2(a +1)x +a 2-1=0有两个不相等的实数根0与-4,由根与系数的关系,得⎩⎪⎨⎪⎧0+(-4)=-2(a +1),0×(-4)=a 2-1,解得a =1.综上可得a ≤-1或a =1.。

2018-2019学年第二学期期末考试高一年级数学试卷(含答案)

2018-2019学年第二学期期末考试高一年级数学试卷(含答案)

2018-2019学年第二学期期末考试高一年级数学试卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.某电视台在因特网上就观众对其某一节目的喜爱程度进行调查,参加调查的人数为20000人,其中持各种态度的人数如表所示:电视台为了了解观众的具体想法和意见,打算从中抽选出100人进行更为详细的调查,为此要进行分层抽样,那么在分层抽样时,每类人中各应抽选出的人数为()A.25,25,25,25 B.48,72,64,16 C.20,40,30,10 D.24,36,32,82.某校为了解学生学习的情况,采用分层抽样的方法从高一1000人、高二1200人、高三n人中,抽取81人进行问卷调查.已知高二被抽取的人数为30,那么n=()A.860 B.720 C.1020 D.10403. 在中,,,则等于()A. 3B.C. 1D. 24.(1+tan20°)(1+tan25°)=()A.2 B.1 C.﹣1 D.﹣25.在△ABC中,若sin2A+sin2B<sin2C,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定6.如图,给出的是的值的一个程序框图,判断框内应填入的条件是()A.i<99 B.i≤99 C.i>99 D.i≥997. 已知直线平面,直线平面,则下列命题正确的是()A. 若,则B. 若,则C. 若,则D. 若,则8.已知过点P(0,2)的直线l与圆(x﹣1)2+y2=5相切,且与直线ax﹣2y+1=0垂直,则a=()A.2 B.4 C.﹣4 D.19.《数学九章》中对已知三角形三边长求三角形的面积的求法填补了我国传统数学的一个空白,与著名的海伦公式完全等价,由此可以看出我国古代已具有很高的数学水平,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上.以小斜幂乘大斜幂减上,余四约之,为实.一为从隔,开平方得积.”若把以上这段文字写成公式,即S=.现有周长为2+的△ABC满足sinA:sinB:sinC=(﹣1)::( +1),试用以上给出的公式求得△ABC的面积为()A. B. C. D.10.天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989据此估计,这三天中恰有两天下雨的概率近似为()A.0.35 B.0.25 C.0.20 D.0.1511.在区间(0,3]上随机取一个数x,则事件“0≤log2x≤1”发生的概率为()A.B.C.D.12.已知函数f(x)=sin2x向左平移个单位后,得到函数y=g(x),下列关于y=g(x)的说法正确的是()A.图象关于点(﹣,0)中心对称B.图象关于x=﹣轴对称C.在区间[﹣,﹣]单调递增D.在[﹣,]单调递减二、填空题(共4小题,每小题5分,满分20分)13.函数f(x)=Asin(ωx+φ)+b的图象如图所示,则f(x)的解析式为.14.在△ABC中,内角A、B、C所对应的边分别为a、b、c,若bsinA﹣acosB=0,则A+C= .15. 已知直线的倾斜角为,则直线的斜率为__________.16.已知正实数x,y满足x+2y﹣xy=0,则x+2y的最小值为8y的取值范围是.三、解答题(本大题共6小题,共70分.第17题10分,其它均12分)17.某同学用“五点法”画函数f (x )=Asin (ωx+φ)(ω>0,|φ|<)在某一个周期内的图象时,列表并填入了部分数据,如表:(1)请将上表数据补充完整,填写在相应位置,并直接写出函数f (x )的解析式;(2)将y=f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y=g (x )的图象.若y=g (x )图象的一个对称中心为(,0),求θ的最小值.18. 在中,内角所对的边分别为,且.(1)求;(2)若,且的面积为,求的值.19.设函数f (x )=mx 2﹣mx ﹣1.若对一切实数x ,f (x )<0恒成立,求实数m 的取值范围.20.已知函数f (x )=cosx (sinx+cosx )﹣. (1)若0<α<,且sin α=,求f (α)的值;(2)求函数f (x )的最小正周期及单调递增区间.21.根据国家环保部新修订的《环境空气质量标准》规定:居民区PM2.5的年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.我市环保局随机抽取了一居民区2016年20天PM2.5的24小时平均浓度(单位:微克/立方米)的监测数据,数据统计如表(1)从样本中PM2.5的24小时平均浓度超过50微克/立方米的天数中,随机抽取2天,求恰好有一天PM2.5的24小时平均浓度超过75微克/立方米的概率;(2)将这20天的测量结果按上表中分组方法绘制成的样本频率分布直方图如图.①求图中a的值;②求样本平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境质量是否需要改善?并说明理由.22.(12分)(2016秋•德化县校级期末)已知f(x)=sin2(2x﹣)﹣2t•sin(2x﹣)+t2﹣6t+1(x∈[,])其最小值为g(t).(1)求g(t)的表达式;(2)当﹣≤t≤1时,要使关于t的方程g(t)=kt有一个实根,求实数k的取值范围.参考答案:一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.D2.D3.D4.A5.C6.B7. B8.C9.A10.B11.C12.C二、填空题(共4小题,每小题5分,满分20分)13..14.120°. 15. 16. 8;(1,+∞).三、解答题(本大题共6小题,共70分.第17题10分,其它均12分)17.(1)根据表中已知数据,解得A=5,ω=2,φ=﹣.数据补全如下表:且函数表达式为f(x)=5sin(2x﹣).(2)由(Ⅰ)知f(x)=5sin(2x﹣),得g(x)=5sin(2x+2θ﹣).因为y=sinx的对称中心为(kπ,0),k∈Z.令2x+2θ﹣=kπ,解得x=,k∈Z.由于函数y=g(x)的图象关于点(,0)成中心对称,令=,解得θ=,k∈Z.由θ>0可知,当K=1时,θ取得最小值.18. (1) ;(2). 19.(﹣4,0].20.(1)∵0<α<,且sinα=,∴cosα=,∴f(α)=cosα(sinα+cosα)﹣=×(+)﹣=;(2)∵函数f(x)=cosx(sinx+cosx)﹣=sinxcosx+cos2x﹣=sin2x+﹣=(sin2x+cos2x)=sin(2x+),∴f(x)的最小正周期为T==π;令2kπ﹣≤2x+≤2kπ+,k∈Z,解得kπ﹣≤x≤kπ+,k∈Z;∴f(x)的单调增区间为[kπ﹣,kπ+],k∈Z..21.1) P==.(2)a=0.00422.(1)∵x∈[,],∴sin(2x﹣)∈[﹣,1],∴f(x)=[sin(2x﹣﹣t]2﹣6t+1,当t<﹣时,则当sinx=﹣时,f(x)min=;当﹣≤t≤1时,当sinx=t时,f(x)min=﹣6t+1;当t>1时,当sinx=1时,f(x)min=t2﹣8t+2;∴g(t)=(2)k≤﹣8或k≥﹣5.。

浙江省宁波市九校2017-2018学年高一上学期期末联考数学试题+Word版含答案

浙江省宁波市九校2017-2018学年高一上学期期末联考数学试题+Word版含答案

浙江省宁波市九校2017-2018学年高一上学期期末联考数学试题+Word版含答案2017学年宁波市九校联考高一数学试题第一学期选择题部分(共40分)2018.01一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合 $A=\{1,2a\}$,$B=\{a,b\}$,若 $A\capB=\{1\}$,则 $AB$ =()。

A。

$\{\frac{1}{2},1,b\}$。

B。

$\{-1,1,b\}$。

C。

$\{1,b\}$。

D。

$\{-1,1\}$改写:已知集合 $A=\{1,2a\}$,$B=\{a,b\}$,且 $A\capB=\{1\}$,则 $AB$ 的元素为 $\{1,b\}$ 或 $\{-1,1\}$。

2.已知向量 $a=3$,$b=2\pi/3$,$c=5\pi/3$,且$b\perp(a+b)$,则 $a$ 与 $b$ 的夹角为()。

A。

$\pi/3$。

B。

$2\pi/3$。

C。

$\pi$。

D。

$2\pi/3$改写:已知向量 $a=3$,$b=2\pi/3$,$c=5\pi/3$,且$b$ 与 $a+b$ 垂直,则 $a$ 与 $b$ 的夹角为 $2\pi/3$。

3.已知 $A$ 是 $\triangle ABC$ 的内角且 $\sin A+2\cos A=-1$,则 $\tan A$ =()。

A。

$-\frac{3}{4}$。

B。

$-\frac{4}{3}$。

C。

$-\frac{1}{3}$。

D。

$-\frac{4}{5}$改写:已知 $\triangle ABC$ 中 $A$ 角的正弦和余弦之和为 $-1$,则 $\tan A$ 等于 $-\frac{4}{3}$。

4.若当 $x\in R$ 时,函数 $f(x)=a$ 始终满足 $-1<f(x)\leq 1$,则函数 $y=\log_a\frac{1}{x}$ 的图象大致为()。

2018-2019学年浙江省宁波市镇海中学高一(下)期末数学试卷

2018-2019学年浙江省宁波市镇海中学高一(下)期末数学试卷

2018-2019学年浙江省宁波市镇海中学高一(下)期末数学试卷一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)如图是一个正四棱锥,它的俯视图是( )A .B .C .D .2.(4分)已知点(1,)(0)a a >到直线:20l x y +-=的距离为1,则a 的值为( ) A .2B .22-C .21-D .21+3.(4分)如图,正方体1111ABCD A B C D -中,直线1AB 与1BC 所成角为( )A .30︒B .45︒C .60︒D .90︒4.(4分)在直角梯形ABCD 中,//AB CD ,AB BC ⊥,5AB =,4BC =,2CD =,则梯形ABCD 绕着BC 旋转而成的几何体的体积为( )A .52πB .1163π C .1003πD (28410)+ 5.(4分)已知直线倾斜角的范围是2[,)(,]3223ππππα∈⋃,则此直线的斜率的取值范围是()A .[3,3]-B .(,3][3,)-∞-+∞C .33[,]33-D .33(,][,)33-∞-+∞ 6.(4分)正三角形ABC 的边长为2cm ,如图,△A B C '''为其水平放置的直观图,则△A B C '''的周长为( )A .8cmB .6cmC .(26)cm +D .(223)cm +7.(4分)一个几何体的三视图如图所示,则该几何体的外接球的体积为( )A .24πB .6πC .86πD 6π8.(4分)已知m ,n 表示两条不同的直线,α,β,γ表示三个不同的平面,给出下列四个命题: ①m αβ=,n α⊂,n m ⊥,则αβ⊥;②αβ⊥,m αγ=,n βγ=,则m n ⊥;③αβ⊥,αγ⊥,m βγ=,则m α⊥;④m α⊥,n β⊥,m n ⊥,则αβ⊥ 其中正确命题的序号为( ) A .①②B .②③C .③④D .②④9.(4分)若实数x ,y 满足不等式组031y x y x y ⎧⎪+⎨⎪--⎩,则2||z x y =-的最小值是( )A .1-B .0C .1D .210.(4分)已知圆1Γ与2Γ交于两点,其中一交点的坐标为(3,4),两圆的半径之积为9,x轴与直线(0)y mx m =>都与两圆相切,则实数(m = ) A .158B .74C .235 D .35二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.(6分)已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为4的正方形,则该圆柱的表面积为 ,体积为 .12.(6分)若直线12y kx k =+-与曲线21y x =-有交点,则实数k 的最大值为 ,最小值为 .13.(6分)若过点(1,1)的直线l 被圆224x y +=截得的弦长最短,则直线l 的方程是 ,此时的弦长为 .14.(6分)已知点(2,1)和圆22:220C x y ax y ++-+=,若点P 在圆C 上,则实数a = ;若点P 在圆C 外,则实数a 的取值范围为 . 15.(4分)异面直线a ,b 所成角为3π,过空间一点O 的直线l 与直线a ,b 所成角均为θ,若这样的直线l 有且只有两条,则θ的取值范围为 .16.(4分)在棱长均为2的三棱锥A BCD -中,E 、F 分别AB 、BC 上的中点,P 为棱BD 上的动点,则PEF ∆周长的最小值为 .17.(4分)在三棱锥P ABC -中,AB BC ⊥,2PA PB ==,22PC AB BC ===,作BD PC ⊥交PC 于D ,则BD 与平面PAB 所成角的正弦值是 .三、解答题:本大题共5小题,共74分.解答应写岀文字说明、证明过程或演算步骤. 18.(14分)正四棱锥P ABCD -的侧棱长与底面边长都相等,E 为PC 中点. (1)求证://PA 平面BDE ;(2)求异面直线PA 与DE 所成角的余弦值.19.(15分)已知圆22:(2)(3)2C x y -+-=.(1)过原点O 的直线l 被圆C 所截得的弦长为2,求直线l 的方程;(2)过圆C 外的一点P 向圆C 引切线PA ,A 为切点,O 为坐标原点,若||||PA OP =,求使||PA 最短时的点P 坐标.20.(15分)如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,AD AB ⊥,//AB DC ,2AD DC AP ===,1AB =,点E 为棱PC 的中点.(Ⅰ)证明:BE DC ⊥;(Ⅱ)求直线BE 与平面PBD 所成角的正弦值.21.(15分)如图,在正方体1111ABCD A B C D -中,M 是AB 的中点,E 在1CC 上,且12CE C E =. (1)求证:1AC ⊥平面1A BD ;(2)在线段1DD 上存在一点P ,1DP D P λ=,若1//PB 平面DME ,求实数λ的值.22.(15分)已知点(1,0)A ,(4,0)B ,曲线C 上任意一点P 满足||2||PB PA =. (1)求曲线C 的方程;(2)设点(3,0)D ,问是否存在过定点Q 的直线l 与曲线C 相交于不同两点E ,F ,无论直线l 如何运动,x 轴都平分EDF ∠,若存在,求出Q 点坐标,若不存在,请说明理由.2018-2019学年浙江省宁波市镇海中学高一(下)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)如图是一个正四棱锥,它的俯视图是( )A .B .C .D .【解答】解:该几何体直观图为一个正四棱锥,所以其俯视图轮廓为正方形,并且能够看到其四个侧棱,构成正方形的对角线, 故选:D .2.(4分)已知点(1,)(0)a a >到直线:20l x y +-=的距离为1,则a 的值为( ) A .2B .22-C .21-D .21+【解答】解:点(1,)(0)a a >到直线:20l x y +-=的距离为1,∴|12|12a +-=,解得12a =+故选:D .3.(4分)如图,正方体1111ABCD A B C D -中,直线1AB 与1BC 所成角为( )A .30︒B .45︒C .60︒D .90︒【解答】解:11//AB DC ,1DC B ∴∠是直线1AB 与1BC 所成角, 1BDC ∆是等边三角形,∴直线1AB 与1BC 所成角60︒.故选:C .4.(4分)在直角梯形ABCD 中,//AB CD ,AB BC ⊥,5AB =,4BC =,2CD =,则梯形ABCD 绕着BC 旋转而成的几何体的体积为( ) A .52πB .1163π C .1003π D .(28410)3π+ 【解答】解:梯形ABCD 绕着BC 旋转而成的几何体是圆台,圆台的高4h BC ==,上底面圆半径2r CD ==,下底面圆半径5R AB ==,∴梯形ABCD 绕着BC 旋转而成的几何体的体积:221()3V h R Rr r π=++14(25104)3π=⨯⨯++ 52π=.故选:A .5.(4分)已知直线倾斜角的范围是2[,)(,]3223ππππα∈⋃,则此直线的斜率的取值范围是()A .[3,3]-B .(,3][3,)-∞-+∞C .33[,]33-D .33(,][,)33-∞-+∞ 【解答】解:根据题意,直线倾斜角的范围是2[,)(,]3223ππππα∈⋃,其斜率tan k α=, 则3k -或3k,即k 的取值范围为(-∞,3)(3-⋃,)+∞; 故选:B .6.(4分)正三角形ABC 的边长为2cm ,如图,△A B C '''为其水平放置的直观图,则△A B C '''的周长为( )A .8cmB .6cmC .(26)cmD .(223)cm +【解答】解:正ABC ∆的边长为2cm ,则它的直观图△A B C '''中,2A B ''=,132sin 602O C ''=︒=; 2222332726612cos45121()42B C O B O C O B O C --∴''=''+''-''''︒=+-⨯==, 612B C ∴''=; 又2222332726612cos135121(()4A C O A O C O A O C ++''=''+''-''''︒=+-⨯=, 61A C +∴''=; ∴△A B C '''的周长为61612(26)()cm -+=+. 故选:C .7.(4分)一个几何体的三视图如图所示,则该几何体的外接球的体积为( )A .24πB .6πC .86πD .6π【解答】解:由已知的三视图可得:该几何体是一个以俯视图为底面的三棱锥, 其四个顶点是以俯视图为底面,以1为高的三棱锥的四个顶点,如图是长方体的一部分, 故其外接球,相当于一个长2,宽1,高1的长方体的外接球,故外接球的半径2221612122R ⨯++=, 故球的体积346()632V ππ=⨯=,故选:D .8.(4分)已知m ,n 表示两条不同的直线,α,β,γ表示三个不同的平面,给出下列四个命题: ①m αβ=,n α⊂,n m ⊥,则αβ⊥;②αβ⊥,m αγ=,n βγ=,则m n ⊥;③αβ⊥,αγ⊥,m βγ=,则m α⊥;④m α⊥,n β⊥,m n ⊥,则αβ⊥ 其中正确命题的序号为( ) A .①②B .②③C .③④D .②④【解答】解:①m αβ=,n α⊂,n m ⊥,则n β⊥不一定成立,进而αβ⊥不一定成立,故错误;②令α,β,γ为底面为直角三角形的三棱柱的三个侧面,且αβ⊥,m αγ=,n βγ=,则//m n ,即m n ⊥不一定成立,故错误; ③αβ⊥,αγ⊥,m βγ=,则m α⊥,故正确;④若m α⊥,m n ⊥,则//n α,或n α⊂,又由n β⊥,则αβ⊥,故正确; 故选:C .9.(4分)若实数x ,y 满足不等式组031y x y x y ⎧⎪+⎨⎪--⎩,则2||z x y =-的最小值是( )A .1-B .0C .1D .2【解答】解:画出实数x ,y 满足不等式组031y x y x y ⎧⎪+⎨⎪--⎩的可行域如图所示,可得(1B ,2)(1A -,0),(3,0)C ,(0,1)D当目标函数2||z x y =-经过点(0,1)D 时,z 的值为1-, 故选:A .10.(4分)已知圆1Γ与2Γ交于两点,其中一交点的坐标为(3,4),两圆的半径之积为9,x 轴与直线(0)y mx m =>都与两圆相切,则实数(m = ) A .158B .74C 23D .35【解答】解:两切线均过原点,∴连心线所在直线经过原点,该直线设为y tx =,设两圆与x 轴的切点分别为1x ,2x ,则两圆方程分别为:222111222222()()()()()()x x y tx tx x x y tx tx ⎧-+-=⎪⎨-+-=⎪⎩, 圆1Γ与2Γ交点的坐标为(3,4)P , (3,4)P ∴在两圆上.∴222111(3)(4)()x tx tx -+-=①,222222(3)(4)()x tx tx -+-=②,又两圆半径之积为9,∴21212||||||9tx tx x x t ==③,联立①②③,可得1x ,2x 是方程222(3)(4)()x tx tx -+-=的两根, 化简得2(68)250x t x -++=,即1225x x =. 代入③,得2925t =,即35t =.由于所求直线的倾斜角是连心线所在直线倾斜角的两倍,即221tm t =-. 158m ∴=. 故选:A .二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.(6分)已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为4的正方形,则该圆柱的表面积为 6π ,体积为 . 【解答】解:设圆柱的底面直径为2R ,则高为2R , 圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为4的正方形,244R ∴=,解得1R =,∴该圆柱的表面积2122126S πππ=⨯⨯+⨯⨯⨯=,体积2122V ππ=⨯⨯=. 故答案为:6π,2π.12.(6分)若直线12y kx k =+-与曲线21y x =-有交点,则实数k 的最大值为 1 ,最小值为 .【解答】解:直线12y kx k =+-,即(2)1y k x =-+经过定点(2,1)P . 曲线21y x =-表示圆221x y +=的上半部分,(1,0)A ,(0,1)B . 直线12y kx k =+-与曲线21y x =-有交点, 则实数k 的最大值为10121PA k -==-,最小值为0PB k =. 故答案为:1,0.13.(6分)若过点(1,1)的直线l 被圆224x y +=截得的弦长最短,则直线l 的方程是 2x y += ,此时的弦长为 .【解答】解:直线I 的方程为1(1)y k x -=-,与圆联立可得出两点M ,N ,即22(1)4x kx k +-+=,韦达定理求解得2122221k k x x k -+=+,2122231k k x x k --=+,2222121222323(1)1()442211k k k MN k x x x x k k +++=++-=+++,当1k =-时,MN 最短,直线I 为2x y +=,弦长为22 故填:2x y +=;2214.(6分)已知点(2,1)和圆22:220C x y ax y ++-+=,若点P 在圆C 上,则实数a = 52- ;若点P 在圆C 外,则实数a 的取值范围为 .【解答】解:①P 在圆C 上,将P 点代入圆的方程,即22212220a ++-+=,解得52a =-,代入圆检验成立,②P 在圆C 外,将P 点代入圆的方程,即22212220a ++-+,解得5a -,圆的方程为222()(1)124a a x y ++-=-,2104a ->,解得2a >或2a <-,25a ∴->-或2a >,故填52-;25a ->-或2a >.15.(4分)异面直线a ,b 所成角为3π,过空间一点O 的直线l 与直线a ,b 所成角均为θ,若这样的直线l 有且只有两条,则θ的取值范围为 (6π,)3π.【解答】解:由最小角定理可得:异面直线a ,b 所成角为3π,过空间一点O 的直线l 与直线a ,b 所成角均为θ,若这样的直线l 有且只有两条,则θ的取值范围为:63ππθ<<,故答案为:(6π,)3π.16.(4分)在棱长均为2的三棱锥A BCD -中,E 、F 分别AB 、BC 上的中点,P 为棱BD 上的动点,则PEF ∆周长的最小值为 23 .【解答】解:棱长均为2的三棱锥A BCD -中,E 、F 分别AB 、BC 上的中点,首先把三棱锥转换为平面图形,即转换为平面图形在平面展开图,棱长均为2的三棱锥A BCD -中,EF 分别为AB ,BC 的中点(中位线定理)得1EF =,因为所求周长最小为PE PF EF ++的值,所以要求PE PF +的值最小故2222cos120EF BE BF BE BF =+-︒,由于1BE BF ==,解得EF由于E 、F 分别为AB ,BC 的中点(中位线定理)得1EF =, 所以PEF ∆周长的最小值1EG FG EF ++=.故答案为:1+17.(4分)在三棱锥P ABC -中,AB BC ⊥,2PA PB ==,PC AB BC ===,作BD PC ⊥交PC 于D ,则BD 与平面PAB 所成角的正弦值是. 【解答】解:如图,取AB 中点E ,AC 中点F ,连接EF ,PE ,AF ,2,AP PB AB ===PE ∴ AB BC ⊥,AB BC ==4AC ∴=,在APC ∆中,余弦定理可得2223cos 24PC AP AC PAC AP AC -++∠==.在APF∆中,余弦定理可得cos PF AP AF PAC =∠ 在PEF ∆中,PE PF EF ===AB ⊥面PEF , 过F 作FO EP ⊥,易得FO ⊥面ABP ,且FO=,∴点C 到面ABP122PBCS∆=⨯=. ∴12PC BD ⨯⨯,∴BD =,PD =, :1:4PD PC ∴=,∴点D 到面ABP故BD 与平面PAB=,故答案为:2114.三、解答题:本大题共5小题,共74分.解答应写岀文字说明、证明过程或演算步骤. 18.(14分)正四棱锥P ABCD -的侧棱长与底面边长都相等,E 为PC 中点. (1)求证://PA 平面BDE ;(2)求异面直线PA 与DE 所成角的余弦值.【解答】解:(1)连接AC , 设AC ,BD 的交点为O , 连接OE , 因为//OE PA ,PA ⊂/面EBD ,又OE ⊂面EBD , 故//AP 面BDE , (2)由(1)可得:DEO ∠为异面直线PA 与DE 所成的角,设2AB =,则1EO =,2OD ,3DE , 由勾股定理可得:ODE ∆为直角三角形,则13cos 33OE DEO DE ∠===, 故异面直线PA 与DE 所成角的余弦值为33.19.(15分)已知圆22:(2)(3)2C x y -+-=.(1)过原点O 的直线l 被圆C 所截得的弦长为2,求直线l 的方程;(2)过圆C 外的一点P 向圆C 引切线PA ,A 为切点,O 为坐标原点,若||||PA OP =,求使||PA 最短时的点P 坐标.【解答】(1)原点O 在圆22:(2)(3)2C x y -+-=外,可得直线l 的斜率存在, 设直线方程为y kx =,即0kx y -=.由直线l 被圆C 所截得的弦长为2,得圆心(2,3)到直线的距离为1. 211k =+,解得623k ±=. ∴直线l 的方程为623y -=或623y +; (2)由圆的切线长公式可得22222||||(2)(3)2PA PC R x y =-=-+--, 由||||PA PO =得,2222(2)(3)2x y x y -+--=+,即46110x y +-=,即11342x y =-, 此时22222113133121||||()13()4222613PA PO x y y y y ==+-+=-+∴当3326y =,即11(13P ,33)26时,||PA 最短.20.(15分)如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,AD AB ⊥,//AB DC ,2AD DC AP ===,1AB =,点E 为棱PC 的中点.(Ⅰ)证明:BE DC ⊥;(Ⅱ)求直线BE 与平面PBD 所成角的正弦值.【解答】(Ⅰ)证明:如图,取PD 中点M ,连接EM ,AM . 由于E ,M 分别为PC ,PD 的中点,故//EM DC , 且12EM DC =, 又由已知,可得//EM AB ,且EM AB =, 故四边形ABEM 为平行四边形,所以//BE AM . 因为PA ⊥底面ABCD ,故PA CD ⊥, 而CD DA ⊥,从而CD ⊥平面PAD , 因为AM ⊂平面PAD ,于是CD AM ⊥, 又//BE AM ,所以BE CD ⊥.⋯(6分)(Ⅱ)解:连接BM ,由(Ⅰ)有CD ⊥平面PAD ,得CD PD ⊥, 而//EM CD ,故PD EM ⊥.又因为AD AP =,M 为PD 的中点,故PD AM ⊥, 可得PD BE ⊥,所以PD ⊥平面BEM ,故平面BEM ⊥平面PBD .所以直线BE 在平面PBD 内的射影为直线BM , 而BE EM ⊥,可得EBM ∠为锐角,故EBM ∠为直线BE 与平面PBD 所成的角.⋯(9分) 依题意,有22PD =,而M 为PD 中点, 可得2AM =,进而2BE =. 故在直角三角形BEM 中,12tan 22EM AB EBM BE BE ∠====, 所以直线BE 与平面PBD 所成的角的正切值为22.⋯(12分)21.(15分)如图,在正方体1111ABCD A B C D -中,M 是AB 的中点,E 在1CC 上,且12CE C E =. (1)求证:1AC ⊥平面1A BD ;(2)在线段1DD 上存在一点P ,1DP D P λ=,若1//PB 平面DME ,求实数λ的值.【解答】证明:(1)以D 为原点,分别以DA ,DC ,DD 所在直线为x ,y ,z 轴,建立空间直角坐标系,设6AB =,则(6A ,0,0),1(0C ,6,6),1(6A ,0,6),(6B ,6,0),(0D ,0,0), 1(6AC =-,6,6),1(6DA =,0,6),(6DB =,6,0),110AC DA =,10AC DB =, 11AC DA ∴⊥,1AC DB ⊥, 1DA DB D =,1AC ∴⊥平面1A BD .解:(2)在线段1DD 上存在一点P ,1DP D P λ=,设(06)DP t t =,则(0P ,0,)t ,1(6B ,6,6),(6M ,3,0),(0E ,6,4), 1(6PB =,6,6)t -,(6DM =,3,0),(0DE =,6,4),设平面DME 的法向量(n x =,y ,)z ,则630640n DM x y n DE y z ⎧=+=⎪⎨=+=⎪⎩,取1x =,得(1n =,2-,3), 1//PB 平面DME ,∴16121830PB n t =-+-=,解得4t =,2λ∴=.22.(15分)已知点(1,0)A ,(4,0)B ,曲线C 上任意一点P 满足||2||PB PA =. (1)求曲线C 的方程;(2)设点(3,0)D ,问是否存在过定点Q 的直线l 与曲线C 相交于不同两点E ,F ,无论直线l 如何运动,x 轴都平分EDF ∠,若存在,求出Q 点坐标,若不存在,请说明理由. 【解答】解:(1)设(,)P x y ,||2||PB PA =.∴2222(4)2(1)x y x y -+-+224x y +=.(2)设存在定点Q 满足条件,设直线l 的方程为y kx b =+. 设1(E x ,1)y ,2(F x ,2)y . 联立224y kx b x y =+⎧⎨+=⎩, 化为:22()4x kx b ++=, 222(1)240k x kbx b ∴+++-=,△0>.12221kbx x k ∴+=-+,212241b x x k -=+, 无论直线l 如何运动,x 轴都平分EDF ∠, 则0DE DF k k +=,∴1212033y yx x +=--. 1221()(3)()(3)0kx b x kx b x ∴+-++-=, 12122(3)()60kx x b k x x b ∴+-+-=,222422(3)6011b kb k b k b k k -∴---=++,化为:430k b +=.34k b ∴=-.3(1)4y b x ∴=-+,可得直线经过定点4(3,0).∴存在过定点4(3Q ,0)的直线l 与曲线C 相交于不同两点E ,F ,无论直线l 如何运动,x轴都平分EDF ∠.。

浙江省宁波市九校2021-2022学年高一上学期期末联考数学试题及答案

浙江省宁波市九校2021-2022学年高一上学期期末联考数学试题及答案

浙江省宁波市九校2021-2022学年高一上学期期末联考数学试题学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.已知全集{}1,2,3,4U =,集合{}1,2,3A =,{}3,4B =,则()UA B =( )A .{}1,2B .{}1,3C .{}1,4D .{}1,24,2.已知弧长为4π的扇形圆心角为6π,则此扇形的面积为( ) A .24πB .36πC .48πD .96π3.已知,,a b c ∈R ,0a ≠,则“关于x 的不等式20ax bx c ++>有解”是“240b ac ->”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件4.已知函数()2cos 4x xf x x =-,则其图象可能是( ) A . B .C .D .5.酒驾是严重危害交通安全的违法行为,为了保障安全,根据国家有关规定:100ml 血液中酒精含量达到2079mg 的驾驶员即为酒后驾车,80mg 及以上人定为醉酒驾车,某驾驶员喝了一定量的酒后,其血液中酒精含量上升到了0.6mg /ml ,如果停止饮酒后,他的血液中的酒精会以每小时25%的速度减少,那么他至少要经过几个小时后才能驾车(参考数据:lg20.301=,lg30.477=)( ) A .3B .4C .5D .76.已知()f x 是定义在R 上的偶函数,且在()0,∞+为减函数,则( )A .23133log 2sin22f f f π⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ B .23133sinlog 222f f f π⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C .231332sinlog 22f f f π⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ D .231332log 2sin2f f f π⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭7.已知4k <-,则函数()()cos21sin f x x k x =+-的最大值为( ) A .-1B .1C .21k -D .21k +8.已知函数()()4sin ,2212,22x x f x f x x π⎧≤⎪⎪=⎨⎪->⎪⎩,则方程()()lg 2f x x =+的根的个数是( ) A .4 B .5C .6D .7二、多选题9.下列命题是真命题的是( ) A .若0a b >>,则22ac bc >B .若0a b >>,且0c d <<,则ac bd <C .若11a b>,则a b < D .若0a b c >>>,则a c ab c b+<+ 10.下列等式成立的是( ) A.22sin 75cos 75︒-︒= B.1sin152︒︒C .1sin 75cos 754︒︒=D.tan1652︒=11.已知()f x 在定义在R 上的奇函数,满足()()2f x f x -=,当[]1,1x ∈-时,())lnf x x =,则下列说法正确的是( )A .()20,f k k Z =∈B .())21ln1,f k k Z -=∈C .0x R ∃∈,()()0021f x f x +-=D .方程()12f x =在[]4,2-的各根之和为-6 12.对:R f D →,:R g D →,若0k ∃>,使得12,x x D ∀∈,都有()()()()1212f x f x k g x g x -≤-,则称()f x 在D 上相对于()g x 满足“k -普希兹”条件,下列说法正确的是( )A .若()()2log ,f x x g x x ==,则()f x 在()0,∞+上相对于()g x 满足“2-利普希兹”条件B .若()()f x g x x =,()f x 在[]1,4上相对于()g x 满足“k -利普希兹”条件,则k 的最小值为12C .若()()()1,,f x ax g x f x x ==在[]2,3上相对于()g x 满足“4-利普希兹”条件,则a 的最大值为49D .若()()()()2,log 41,xf x xg x f x ==+在非空数集D 上相对于()g x 满足“1-利普希兹”条件,则(],0D ⊆-∞ 三、填空题13.计算2338log 27-=___________.14.若tan ,tan αβ是方程2420x x --=的两根,θαβ=+,则()()32cos cos 211sin sin 52ππθθπθπθ⎛⎫++- ⎪⎝⎭=⎛⎫-+- ⎪⎝⎭___________.15.已知()()()e 1ln 21x af x x a -=-+-,若()0f x ≥对()12,x a ∈-+∞恒成立,则实数=a ___________.16.已知正实数,a b 满足()33810511a a b b +≤+++,则32a b +的最小值是___________. 四、解答题17.从①()12|log 12A x x ⎧⎫=+≥-⎨⎬⎩⎭;①11|282xA x ⎧⎫⎪⎪⎛⎫=≤<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭;①3|01x A x x -⎧⎫=≤⎨⎬+⎩⎭,三个条件中任选一个,补充在下面问题中,并求解.已知集合___________,集合{}2|2,B x m x m m R =<<∈.(1)当1m =-时,求A B ;(2)若A B A ⋃=,求实数m 的取值范围.18.已知函数()53sin 22sin cos 644f x x x x πππ⎛⎫⎛⎫⎛⎫=---+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)求()f x 的最小正周期及单调递增区间;(2)将()f x 的图象向左平移6π个单位,再将此时图象的横坐标变为原来的2倍,纵坐标保持不变,得到()g x 的图象,求()g x 图象的对称轴方程.19.已知函数()()212xxa f x a R -=∈+是定义在R 上的奇函数.(1)求实数a 的值;(2)若不等式()()4220x xx f k f a ⎡⎤⋅++-≤⎣⎦对[]1,2x ∈恒成立,求实数k 的取值范围. 20.如图,某污水处理厂要在一个矩形污水处理池ABCD 的池底水平铺设污水净化管道(直角三角形FHE 三条边,H 是直角顶点)来处理污水,管道越长,污水净化效果越好.要求管道的接口H 是AB 的中点,,E F 分别落在线段,BC AD 上(含线段两端点),已知40AB =米,AD =BHE θ∠=.(1)试将污水净化管道的总长度L (即FHE 的周长)表示为θ的函数,并求出定义域;(2)问θ取何值时,污水净化效果最好?并求出此时管道的总长度.21.已知函数()()()2ln 2R f x x kx k k =-+∈.(1)若()f x 在[]0,3单调递减,求实数k 的取值范围;(2)若方程()2434ln f x x x x ⎛⎫=++ ⎪⎝⎭在[]2,6上有两个不相等的实根,求k 的取值范围.22.已知函数()()()21f x x x a a R =--+∈.(1)若2a =-,写出()f x 的单调递增区间(不要求写出推证过程); (2)若存在b R ∈,使得对任意[]4,8x ∈都有()92f x b -≤,求实数a 的取值范围.参考答案:1.A 【解析】 【分析】根据交集和补集的定义即可得出答案. 【详解】解:因为全集{}1,2,3,4U =,集合{}1,2,3A =,{}3,4B =,, 所以{}1,2U B =,所以()UA B ={}1,2.故选:A. 2.C 【解析】 【分析】根据题意求出扇形的半径,再根据扇形的面积公式即可得解. 【详解】解:设扇形的半径为R ,因为弧长为4π的扇形圆心角为6π, 所以46R ππ=,所以24R =,所以此扇形的面积为214826R ππ⨯=.故选:C. 3.B 【解析】 【分析】根据充分条件和必要条件的定义即可得出答案. 【详解】解:若关于x 的不等式20ax bx c ++>有解,当0a >时,关于x 的不等式20ax bx c ++>一定有解,此时无法确定判别式是否大于零, 当0a <时,则240b ac ->,则关于x 的不等式20ax bx c ++>有解不能推出240b ac ->,若240b ac ->,当0a >时,关于x 的不等式20ax bx c ++>一定有解, 当0a <时,关于x 的不等式20ax bx c ++>有解,所以240b ac ->能推出关于x 的不等式20ax bx c ++>有解,所以“关于x 的不等式20ax bx c ++>有解”是“240b ac ->”的必要不充分条件. 故选:B. 4.C 【解析】 【分析】从奇偶性,特殊点处的函数值的正负即可判断. 【详解】函数的定义域为{}|2x x ≠±,其定义域关于原点对称, 由函数的解析式可得:()()f x f x -=-, 则函数图象关于坐标原点对称,选项B,D 错误;而26206436f πππ⎛⎫=< ⎪⎝⎭-,选项A 错误,C 正确;故选:C. 5.B 【解析】 【分析】由题意可知经过t 小时后,体内的酒精含量为30.6mg ml 4t⎛⎫⨯ ⎪⎝⎭∕,令30.6()0.24t ⨯<求出t 的取值范围,即可求出结果. 【详解】解:经过t 小时后,体内的酒精含量为:30.6mg ml 4t⎛⎫⨯ ⎪⎝⎭∕,只需30.6()0.24t⨯<,∴t >341log 3=lg 33lg 4-=lg 32lg 2lg 3-≈0.4770.6020.477-=3.8,∴他至少要经过4个小时后才能驾车. 故选:B . 6.C 【解析】 【分析】 先比较13log 2、3sin2π、232的大小,然后再根据函数的性质比较即可. 【详解】 因为1113331log 3log 2log 10-=<<=,3sin=12π-,203221>=. 根据()f x 是定义在R 上的偶函数,且在()0,∞+为减函数,则有23133|2||sin ||log 2|2f f f π⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以231332sinlog 22f f f π⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故选:C 7.A 【解析】 【分析】由题意()22sin sin 1f x x k x k =--++,然后由二次函数的性质可得答案.【详解】()()2cos21sin 2sin sin 1f x x k x x k x k =+-=--++设sin ,x t =则[]1,1t ∈-所以转化为求221y t kt k =--++,则其对称轴方程为4kt =-由4k <-,则14k t =-> 所以221y t kt k =--++在[]1,1t ∈-上单调递增。

浙江省宁波市镇海中学2023-2024学年高三上学期期末考试数学试题

浙江省宁波市镇海中学2023-2024学年高三上学期期末考试数学试题

镇海中学2023学年第一学期期末考试高三数学试题说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试时间120分钟,本次考试不得使用计算器,请考生将所有题目都做在答题卷上.一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.A =x x 2-5x +6≤0 ,B =x -1≤x <3 ,则A ∩B =A.x -1≤x <3B.x -1≤x ≤3C.x 2≤x <3D.x 2≤x ≤32.函数f x =2x +x 3-9的零点所在区间为A.0,1 B.1,2C.2,3D.3,43.设函数f x =a -1a x -1+b (a >0,a ≠1),则函数f x 的单调性A.与a 有关,且与b 有关 B.与a 无关,且与b 有关C.与a 有关,且与b 无关D.与a 无关,且与b 无关4.已知等差数列a n ,则k =2是a 1+a 11=a k +a 10成立的()条件A.充要B.充分不必要C.必要不充分D.既不充分也不必要5.已知直线a ,m ,n ,l ,且m ,n 为异面直线,m ⊥平面α,n ⊥平面β.若l 满足l ⊥m ,l ⊥n ,则下列说法中正确的是A.l ∥αB.l ⊥βC.若α∩β=a ,则a ∥lD.α⊥β6.已知e 1 ,e 2 是单位向量,且它们的夹角是60°.若a =e 1 +2e 2 ,b =λe 1 -e 2 ,且a =b ,则λ=A.2 B.-2C.2或-3D.3或-27.函数f x =5sin xex+x cos x 在-2π,2π 上的图象大致为AB C D8.设实数x ,y 满足x >32,y >3,不等式k 2x -3 y -3 ≤8x 3+y 3-12x 2-3y 2恒成立,则实数k 的最大值为A.12B.24C.23D.43二、选择题:本题共3小题,每小题6分,共18分。

浙江省宁波市2021-2022学年高一上学期期末考试数学试题(解析版)

浙江省宁波市2021-2022学年高一上学期期末考试数学试题(解析版)

浙江省宁波市2021-2022学年高一上学期期末考试数学试题一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合U={1,2,3,4,5,6},A={1,2,3},B={3,4,5},则A∩(∁U B)=()A.{3}B.{1,2}C.{1,2,6}D.{1,2,3,6}2.已知A是△ABC的内角,则”是“”的()A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件3.下列函数中,既是奇函数又是增函数的是()A.B.y=tan x C.y=2x D.y=x34.已知,,,则()A.b<a<c B.a<b<c C.b<c<a D.c<a<b5.已知函数f(x)是定义在R上的奇函数,且满足f(x+2)=﹣f(x),则f(2022)=()A.﹣2022B.0C.1D.20226.在流行病学中,基本传染数是指每名感染者平均可传染的人数.当基本传染数高于1时,每个感染者平均会感染一个以上的人,从而导致感染这种疾病的人数呈指数级增长.当基本传染数持续低于1时,疫情才可能逐渐消散.广泛接种疫苗可以减少疾病的基本传染数.假设某种传染病的基本传染数为R0,1个感染者在每个传染期会接触到N个新人,这N人中有V个人接种过疫苗(称为接种率),那么1个感染者新的传染人数为(N﹣V).已知新冠病毒在某地的基本传染数R0=2.5,为了使1个感染者传染人数不超过1,该地疫苗的接种率至少为()A.40%B.50%C.60%D.70%7.已知函数f(x)的图象如图所示,则函数f(x)的解析式可能是()A.f(x)=(2x+2﹣x)|x|B.f(x)=(2x﹣2﹣x)|x|C.f(x)=(2x+2﹣x)D.f(x)=(2x+2﹣x)log2|x|8.已知函数f(x)=x2+mx+n,则存在m,n∈R,对任意的x∈R有()A.f(x)<f(x+2022)B.2022f(f(x))≥2022xC.f(x2﹣1)<f(x﹣2022)D.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分.9.若cosθ•tanθ>0,则角θ的终边可能落在()A.第一象限B.第二象限C.第三象限D.第四象限10.已知正实数x,y,z满足2x=5y=10z,则下列选项正确的()A.x+y=z B.C.D.xy>4z211.设函数,则下列结论正确的是()A.∃α∈R,使得f(α)=f(﹣α)=1B.∃α∈R,使得C.∀x∈R,都有D.∀x∈R,都有12.若实数a,b满足3a+4a=4b+3b,则下列关系式中可能成立的是()A.0<a<b<1B.b<a<0C.1<a<b D.a=b三、填空题:本题共4小题,每小题5分,共20分.13.已知某扇形的圆心角是,半径是3,则扇形的面积是.14.已知,则=.15.已知函数若f(a)+f(a2﹣2)<0,则a的取值范围是.16.已知x1、x2、x3(x1<x2<x3)是函数f(x)=x(2x+1)+m(2x﹣1)(m∈R,m≠0)的三个零点,则的取值范围是.四、解答题:本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(10分)已知集合A={x||x|≤4},B={x|5﹣m≤x≤5+m,m>0}.(Ⅰ)若m=10,求A∩B;(Ⅱ)若命题p:“∀x∈A,x∈B”是真命题,求实数m的取值范围.18.(12分)已知函数f(x)=sin(+x)sin(﹣x)+sin x cos x(x∈R).(1)求的值;(2)在△ABC中,若f()=1,求sin B+sin C的最大值.19.(12分)已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图.(Ⅰ)求函数f(x)的解析式;(Ⅱ)将函数f(x)的图家向左平移个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的单调递减区间.20.(12分)已知函数.(Ⅰ)证明:函数f(x)在(1,+∞)上为增函数?(Ⅱ)若对于区间〖3,4〗上的每一个x值,不等式恒成立,求实数m 的取值范围.21.(12分)如图所示,摩天轮的直径为100m,最高点距离地面高度为110m,摩天轮的圆周上均匀地安装24个座舱,游客在座舱转到距离地面最近的位置进舱,并且运行时按逆时针匀速旋转,转一周大约需要12min.(Ⅰ)游客甲坐上摩天轮的座舱,开始转动t min后距离地面的高度为H m,求在转动一周的过程中,H关于t的函数解析式;(Ⅱ)在甲进座舱后间隔3个座舱乙游客进座舱(如图所示,此时甲,乙分别位于P,Q两点,本题中将座舱视为圆周上的点),以乙进座舱后开始计时,在运行一周的过程中,求两人距离地面的高度差h(单位:m)关于t的函数解析式,并求出h≥25时t的取值范围.22.(12分)已知函数f(x)=x|x﹣a|,g(x)=.(Ⅰ)当a=1时,函数f(x)在(m,m+1)上不单调,求实数m的取值范围;(Ⅱ)对∀t∈〖1,2〗,∃x i∈〖1,2〗(i=1,2),且x1≠x2,使f(x i)=g(t),求实数a 的取值范围.▁▃▅▇█参*考*答*案█▇▅▃▁一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.B〖解析〗∵U={1,2,3,4,5,6},B={3,4,5},∴∁U B={1,2,6},∵A={1,2,3},∴A∩(∁U B)={1,2}.故选:B.2.C〖解析〗当sin A=时,A可能为或,”是“”的必要不充分条件.故选:C.3.D〖解析〗根据函数图象可知,A中函数在(﹣∞,0),(0,+∞)上是减函数,∴A错;B中函数为正切函数,在定义域上不具有单调性,∴B错;C中函数为单调递增的指数函数不具有奇偶性,∴C错;D中函数既是奇函数又是单调递增函数.故选:D.4.A〖解析〗∵指数函数y=2x在R上单调递增,且,∴,即a>b,∵幂函数y=在(0,+∞)上单调递增,且2<3,∴,即a<c,∴b<a<c,故选:A.5.B〖解析〗根据题意,f(x)满足f(x+2)=﹣f(x),则f(x+4)=﹣f(x+2)=f(x),即函数f(x)是周期为4的周期函数,则有f(﹣2)=f(2),又由f(x)为奇函数,则f(﹣2)=﹣f(2),则有f(2)=0,函数f(x)是周期为4的周期函数,则f(2022)=f(2+505×4)=f(2)=0,故选:B.6.C〖解析〗为了使1个感染者传染人数不超过1,只需,即R,所以R,由题意可得R0=2.5,所以2.5(1﹣)≤1,解得0.6=60%,故选:C.7.D〖解析〗观察图象可知,函数定义域为{x|x≠0},故AB错误,当0<x<1时,f(x)<0,故C错误,D正确.故选:D.8.D〖解析〗对于选项A:当x+2022≤﹣时,有f(x)>f(x+2022),故选项A错误,对于选项B:f(f(x))为四次函数,y=2022x为指数函数,且是单调递增的,当x取得足够大的实数时,不存在m,n∈R,2022f(f(x))≥2022x,故选项B错误,对于选项C:要使f(x2﹣1)<f(x﹣2022),必须满足||<|x﹣2022﹣(﹣)|,即恒有|x2﹣1|<|x﹣2022|,当x=100时,就有|x2﹣1|>|x﹣2022|,故选项C错误.对于选项D:,即,此时若m≥0,则≤0,那么对任意的x∈R,都有f()≥f()恒成立,故选项D正确,故选:D.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分.9.AB〖解析〗当cosθ•tanθ>0,则cosθ与tanθ同号,角θ的终边可能落在第一或第二象限.故选:AB.10.BD〖解析〗设2x=5y=10z=t,则t>1,∴x=log2t,y=log5t,z=lg t,对于选项A:x+y=log2t+log5t===≠z=lg t,故选项A错误,对于选项B:+=+=log t2+log t5=log t10,==log t10,∴+=,故选项B正确,对于选项C:====,====,====,∵t>1,∴函数y=log t x在(0,+∞)上单调递增,∴log t100<log t1024<log t3125,∴>>,即>>,故选项C错误,对于选项D:xy=log2t×log5t=,4z2=4(lg t)2,∵lg2×lg5=,∴,∴xy=>4(lg t)2=4z2,故选项D正确,故选:BD.11.BD〖解析〗由于,对于A:根据关系式:,故不存在f(α)=f(﹣α)=1,故A错误;对于B:当α=0时,,故B正确;对于C:f(x﹣)+f(﹣x)=,当x=0时,f(﹣)+f(0)=1,故C错误;对于D:f(x﹣)=cos2x,f(﹣x﹣)=cos(﹣2x)=cos2x,故D正确;故选:BD.12.ABD〖解析〗根据题意,设f(x)=3x+4x,g(x)=4x+3x,画出f(x),g(x)的大致图象如图:若实数a,b满足3a+4a=4b+3b,即f(a)=g(b),两个函数的图象有2个交点,即(0,1)和(1,7),故当a=b=0或a=b=1时,原等式成立,同时:在区间(1,+∞)上,有g(x)>f(x),当1<b<a时,f(a)=f(b)即3a+4a=4b+3b可能成立;在区间(0,1)上,有g(x)<f(x),当0<a<b<1时,f(a)=f(b)即3a+4a=4b+3b可能成立;在区间(﹣∞,0)上,有g(x)>f(x),当b<a<0时,f(a)=f(b)即3a+4a=4b+3b 可能成立;故选:ABD.三、填空题:本题共4小题,每小题5分,共20分.13.3〖解析〗∵扇形的圆心角α为,半径r是3,∴扇形的面积S=r2α=32×=3.故答案为:3.14.﹣7或﹣〖解析〗因为=﹣sinα,可得sinα=,所以cosα=﹣,或cosα=,当cosα=﹣时,tanα=﹣,==﹣7;当cosα=时,tanα=,==﹣.故答案为:﹣7或﹣.15.(﹣2,1)〖解析〗当x≥0时,f(x)=x2为单调递增函数,当x<0时,f(x)=﹣x2为单调递增函数,当x=0时,x2=﹣x2=0,所以函数f(x)在R上单调递增,又当x>0时,﹣x<0,则f(﹣x)=﹣(﹣x)2=﹣x2=﹣f(x),所以函数在R上为奇函数,则由f(a)+f(a2﹣2)<0可得:f(a)<f(2﹣a2),则a<2﹣a2,即a2+a﹣2<0,解得﹣2<a<1,所以实数a的取值范围为(﹣2,1),故答案为:(﹣2,1).16.(1,+∞)〖解析〗显然f(0)=0,即x2=0.设f(x0)=0,即,则=,所以x3=﹣x1,且x3>0,所以,因为x3>0,所以,所以,所以的取值范围是(1,+∞).故答案为:(1,+∞).四、解答题:本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.解:集合A={x||x|≤4}={x|﹣4≤x≤4},B={x|5﹣m≤x≤5+m,m>0}.(Ⅰ)若m=10,则B={x|﹣5≤x≤10},∴A∩B={x|﹣4≤x≤4};(Ⅱ)若命题p:“∀x∈A,x∈B”是真命题,则A⊆B,∴5﹣m≤5+m,且,解得m≥9,∴实数m的取值范围是〖9,+∞).18.解:(1)∵f(x)=sin(+x)sin(﹣x)+sin x cos x=cos2x+sin2x=sin(2x+),∴f()=1.(2)由f()=sin(A+)=1,而0<A<π可得:A+=,即A=.∴sin B+sin C=sin B+sin(﹣B)=sin B+cos B=sin(B+).∵0<B<,∴<B+<,<sin(B+)≤1,∴sin B+sin C的最大值为.19.解:(Ⅰ)根据图象的性质,所以A=2;,整理得:T=π,故ω=2;当x=时,f()=2sin(φ)=0,由于|φ|<π,所以φ=;故函数f(x)=2sin(2x+);(Ⅱ)将函数f(x)的图家向左平移个单位后,得到y=2sin(2x+)的图象,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变得到g(x)=2sin()的图象,令(k∈Z);整理得:(k∈Z);故函数的单调递减区间为〖〗(k∈Z).20.(Ⅰ)证明:∀x1,x2∈(1,+∞)且x1<x2,则,所以,即,所以,即f(x1)<f(x2),所以函数f(x)在(1,+∞)上单调递增.(Ⅱ)解:由题意,恒成立,令且x1<x2,则=,由(Ⅰ)得f(x1)﹣f(x2)<0,又x1﹣x2<0,,所以g(x1)﹣g(x2)<0,即g(x1)<g(x2),所以g(x)是〖3,4〗上的增函数,则,所以,所以m的取值范围为.21.解:(Ⅰ)座舱距离地面最近的位置为点Q,以轴心OQ为y轴,地面所在的直线为x 轴,建立平面直角坐标系,如图所示:设t=0min时,游客甲位于点Q(0,10),以OQ为终边的角为﹣;根据摩天轮转一周大约需要12min,可知座舱转动的角速度为ω==,由题意可得H=50sin(t﹣)+60,t≥0.即H=﹣50cos(t)+60,t≥0.(Ⅱ)因为×2π=,所以两人距离地面的高度差为h=〖﹣50cos(t+)+60〗﹣〖﹣50cos(t)+60〗=﹣50〖cos(t+)﹣cos(t)〗=50〖sin(t)+cos(t)〗=50sin(t+),t≥0;令h≥25,得sin(t+)≥,解得+2kπ≤t+≤+2kπ,k∈N;即12k≤t≤12k+4,k∈N;所以t的取值范围是〖12k,12k+4〗,k∈Z.22.解:(Ⅰ)当a=1时,f(x)=x|x﹣1|=,所以f(x)在(﹣∞,)上单调递增,在(,1)上单调递减,在(1,+∞)上单调递增,因为f(x)在(m,m+1)上不单调,所以,解得﹣<m<1.即实数m的取值范围是(﹣,1).(Ⅱ)因为g(t)==,所以g(t)在t∈〖1,2〗上单调递减,所以g(t)∈〖.2〗,而f(x)=x|x﹣a|=,当a≤0时,f(x)=x2﹣ax在〖1,2〗上单调递增,所以方程f(x)=g(t)至多有一个根,不符合题意;当a>0时,f(x)在(﹣∞,〗单调递增,在(,a)单调递减,在(a,+∞)单调递增,所以符合题意的a必须满足1<<2或1<a<2.即2<a<4或1<a<2,①当2<a<4时,函数(f(x)在〖1,〗单调递增,在(,2〗单调递减,由题意,对任意的g(t)∈〖,2〗,方程f(x)=g(t)在〖1,2〗上至少有两个不同的解,等价于〖,2〗⊆〖max{f(1),f(2)},f()〗,则,即,解得2≤a≤;②当1<a<2时,函数f(x)在〖1,a〗单调递减,在(a,2〗单调递增,所以〖,2〗⊆〖0,min{f(1),f(2)}〗,则,所以,即,解得a∈∅.综上所述,实数a的取值范围是〖2,〗.浙江省宁波市2021-2022学年高一上学期期末考试数学试题一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合U={1,2,3,4,5,6},A={1,2,3},B={3,4,5},则A∩(∁U B)=()A.{3}B.{1,2}C.{1,2,6}D.{1,2,3,6}2.已知A是△ABC的内角,则”是“”的()A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件3.下列函数中,既是奇函数又是增函数的是()A.B.y=tan x C.y=2x D.y=x34.已知,,,则()A.b<a<c B.a<b<c C.b<c<a D.c<a<b5.已知函数f(x)是定义在R上的奇函数,且满足f(x+2)=﹣f(x),则f(2022)=()A.﹣2022B.0C.1D.20226.在流行病学中,基本传染数是指每名感染者平均可传染的人数.当基本传染数高于1时,每个感染者平均会感染一个以上的人,从而导致感染这种疾病的人数呈指数级增长.当基本传染数持续低于1时,疫情才可能逐渐消散.广泛接种疫苗可以减少疾病的基本传染数.假设某种传染病的基本传染数为R0,1个感染者在每个传染期会接触到N个新人,这N人中有V个人接种过疫苗(称为接种率),那么1个感染者新的传染人数为(N﹣V).已知新冠病毒在某地的基本传染数R0=2.5,为了使1个感染者传染人数不超过1,该地疫苗的接种率至少为()A.40%B.50%C.60%D.70%7.已知函数f(x)的图象如图所示,则函数f(x)的解析式可能是()A.f(x)=(2x+2﹣x)|x|B.f(x)=(2x﹣2﹣x)|x|C.f(x)=(2x+2﹣x)D.f(x)=(2x+2﹣x)log2|x|8.已知函数f(x)=x2+mx+n,则存在m,n∈R,对任意的x∈R有()A.f(x)<f(x+2022)B.2022f(f(x))≥2022xC.f(x2﹣1)<f(x﹣2022)D.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分.9.若cosθ•tanθ>0,则角θ的终边可能落在()A.第一象限B.第二象限C.第三象限D.第四象限10.已知正实数x,y,z满足2x=5y=10z,则下列选项正确的()A.x+y=z B.C.D.xy>4z211.设函数,则下列结论正确的是()A.∃α∈R,使得f(α)=f(﹣α)=1B.∃α∈R,使得C.∀x∈R,都有D.∀x∈R,都有12.若实数a,b满足3a+4a=4b+3b,则下列关系式中可能成立的是()A.0<a<b<1B.b<a<0C.1<a<b D.a=b三、填空题:本题共4小题,每小题5分,共20分.13.已知某扇形的圆心角是,半径是3,则扇形的面积是.14.已知,则=.15.已知函数若f(a)+f(a2﹣2)<0,则a的取值范围是.16.已知x1、x2、x3(x1<x2<x3)是函数f(x)=x(2x+1)+m(2x﹣1)(m∈R,m≠0)的三个零点,则的取值范围是.四、解答题:本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(10分)已知集合A={x||x|≤4},B={x|5﹣m≤x≤5+m,m>0}.(Ⅰ)若m=10,求A∩B;(Ⅱ)若命题p:“∀x∈A,x∈B”是真命题,求实数m的取值范围.18.(12分)已知函数f(x)=sin(+x)sin(﹣x)+sin x cos x(x∈R).(1)求的值;(2)在△ABC中,若f()=1,求sin B+sin C的最大值.19.(12分)已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图.(Ⅰ)求函数f(x)的解析式;(Ⅱ)将函数f(x)的图家向左平移个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的单调递减区间.20.(12分)已知函数.(Ⅰ)证明:函数f(x)在(1,+∞)上为增函数?(Ⅱ)若对于区间〖3,4〗上的每一个x值,不等式恒成立,求实数m 的取值范围.21.(12分)如图所示,摩天轮的直径为100m,最高点距离地面高度为110m,摩天轮的圆周上均匀地安装24个座舱,游客在座舱转到距离地面最近的位置进舱,并且运行时按逆时针匀速旋转,转一周大约需要12min.(Ⅰ)游客甲坐上摩天轮的座舱,开始转动t min后距离地面的高度为H m,求在转动一周的过程中,H关于t的函数解析式;(Ⅱ)在甲进座舱后间隔3个座舱乙游客进座舱(如图所示,此时甲,乙分别位于P,Q两点,本题中将座舱视为圆周上的点),以乙进座舱后开始计时,在运行一周的过程中,求两人距离地面的高度差h(单位:m)关于t的函数解析式,并求出h≥25时t的取值范围.22.(12分)已知函数f(x)=x|x﹣a|,g(x)=.(Ⅰ)当a=1时,函数f(x)在(m,m+1)上不单调,求实数m的取值范围;(Ⅱ)对∀t∈〖1,2〗,∃x i∈〖1,2〗(i=1,2),且x1≠x2,使f(x i)=g(t),求实数a 的取值范围.▁▃▅▇█参*考*答*案█▇▅▃▁一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.B〖解析〗∵U={1,2,3,4,5,6},B={3,4,5},∴∁U B={1,2,6},∵A={1,2,3},∴A∩(∁U B)={1,2}.故选:B.2.C〖解析〗当sin A=时,A可能为或,”是“”的必要不充分条件.故选:C.3.D〖解析〗根据函数图象可知,A中函数在(﹣∞,0),(0,+∞)上是减函数,∴A错;B中函数为正切函数,在定义域上不具有单调性,∴B错;C中函数为单调递增的指数函数不具有奇偶性,∴C错;D中函数既是奇函数又是单调递增函数.故选:D.4.A〖解析〗∵指数函数y=2x在R上单调递增,且,∴,即a>b,∵幂函数y=在(0,+∞)上单调递增,且2<3,∴,即a<c,∴b<a<c,故选:A.5.B〖解析〗根据题意,f(x)满足f(x+2)=﹣f(x),则f(x+4)=﹣f(x+2)=f(x),即函数f(x)是周期为4的周期函数,则有f(﹣2)=f(2),又由f(x)为奇函数,则f(﹣2)=﹣f(2),则有f(2)=0,函数f(x)是周期为4的周期函数,则f(2022)=f(2+505×4)=f(2)=0,故选:B.6.C〖解析〗为了使1个感染者传染人数不超过1,只需,即R,所以R,由题意可得R0=2.5,所以2.5(1﹣)≤1,解得0.6=60%,故选:C.7.D〖解析〗观察图象可知,函数定义域为{x|x≠0},故AB错误,当0<x<1时,f(x)<0,故C错误,D正确.故选:D.8.D〖解析〗对于选项A:当x+2022≤﹣时,有f(x)>f(x+2022),故选项A错误,对于选项B:f(f(x))为四次函数,y=2022x为指数函数,且是单调递增的,当x取得足够大的实数时,不存在m,n∈R,2022f(f(x))≥2022x,故选项B错误,对于选项C:要使f(x2﹣1)<f(x﹣2022),必须满足||<|x﹣2022﹣(﹣)|,即恒有|x2﹣1|<|x﹣2022|,当x=100时,就有|x2﹣1|>|x﹣2022|,故选项C错误.对于选项D:,即,此时若m≥0,则≤0,那么对任意的x∈R,都有f()≥f()恒成立,故选项D正确,故选:D.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分.9.AB〖解析〗当cosθ•tanθ>0,则cosθ与tanθ同号,角θ的终边可能落在第一或第二象限.故选:AB.10.BD〖解析〗设2x=5y=10z=t,则t>1,∴x=log2t,y=log5t,z=lg t,对于选项A:x+y=log2t+log5t===≠z=lg t,故选项A错误,对于选项B:+=+=log t2+log t5=log t10,==log t10,∴+=,故选项B正确,对于选项C:====,====,====,∵t>1,∴函数y=log t x在(0,+∞)上单调递增,∴log t100<log t1024<log t3125,∴>>,即>>,故选项C错误,对于选项D:xy=log2t×log5t=,4z2=4(lg t)2,∵lg2×lg5=,∴,∴xy=>4(lg t)2=4z2,故选项D正确,故选:BD.11.BD〖解析〗由于,对于A:根据关系式:,故不存在f(α)=f(﹣α)=1,故A错误;对于B:当α=0时,,故B正确;对于C:f(x﹣)+f(﹣x)=,当x=0时,f(﹣)+f(0)=1,故C错误;对于D:f(x﹣)=cos2x,f(﹣x﹣)=cos(﹣2x)=cos2x,故D正确;故选:BD.12.ABD〖解析〗根据题意,设f(x)=3x+4x,g(x)=4x+3x,画出f(x),g(x)的大致图象如图:若实数a,b满足3a+4a=4b+3b,即f(a)=g(b),两个函数的图象有2个交点,即(0,1)和(1,7),故当a=b=0或a=b=1时,原等式成立,同时:在区间(1,+∞)上,有g(x)>f(x),当1<b<a时,f(a)=f(b)即3a+4a=4b+3b可能成立;在区间(0,1)上,有g(x)<f(x),当0<a<b<1时,f(a)=f(b)即3a+4a=4b+3b可能成立;在区间(﹣∞,0)上,有g(x)>f(x),当b<a<0时,f(a)=f(b)即3a+4a=4b+3b 可能成立;故选:ABD.三、填空题:本题共4小题,每小题5分,共20分.13.3〖解析〗∵扇形的圆心角α为,半径r是3,∴扇形的面积S=r2α=32×=3.故答案为:3.14.﹣7或﹣〖解析〗因为=﹣sinα,可得sinα=,所以cosα=﹣,或cosα=,当cosα=﹣时,tanα=﹣,==﹣7;当cosα=时,tanα=,==﹣.故答案为:﹣7或﹣.15.(﹣2,1)〖解析〗当x≥0时,f(x)=x2为单调递增函数,当x<0时,f(x)=﹣x2为单调递增函数,当x=0时,x2=﹣x2=0,所以函数f(x)在R上单调递增,又当x>0时,﹣x<0,则f(﹣x)=﹣(﹣x)2=﹣x2=﹣f(x),所以函数在R上为奇函数,则由f(a)+f(a2﹣2)<0可得:f(a)<f(2﹣a2),则a<2﹣a2,即a2+a﹣2<0,解得﹣2<a<1,所以实数a的取值范围为(﹣2,1),故答案为:(﹣2,1).16.(1,+∞)〖解析〗显然f(0)=0,即x2=0.设f(x0)=0,即,则=,所以x3=﹣x1,且x3>0,所以,因为x3>0,所以,所以,所以的取值范围是(1,+∞).故答案为:(1,+∞).四、解答题:本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.解:集合A={x||x|≤4}={x|﹣4≤x≤4},B={x|5﹣m≤x≤5+m,m>0}.(Ⅰ)若m=10,则B={x|﹣5≤x≤10},∴A∩B={x|﹣4≤x≤4};(Ⅱ)若命题p:“∀x∈A,x∈B”是真命题,则A⊆B,∴5﹣m≤5+m,且,解得m≥9,∴实数m的取值范围是〖9,+∞).18.解:(1)∵f(x)=sin(+x)sin(﹣x)+sin x cos x=cos2x+sin2x=sin(2x+),∴f()=1.(2)由f()=sin(A+)=1,而0<A<π可得:A+=,即A=.∴sin B+sin C=sin B+sin(﹣B)=sin B+cos B=sin(B+).∵0<B<,∴<B+<,<sin(B+)≤1,∴sin B+sin C的最大值为.19.解:(Ⅰ)根据图象的性质,所以A=2;,整理得:T=π,故ω=2;当x=时,f()=2sin(φ)=0,由于|φ|<π,所以φ=;故函数f(x)=2sin(2x+);(Ⅱ)将函数f(x)的图家向左平移个单位后,得到y=2sin(2x+)的图象,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变得到g(x)=2sin()的图象,令(k∈Z);整理得:(k∈Z);故函数的单调递减区间为〖〗(k∈Z).20.(Ⅰ)证明:∀x1,x2∈(1,+∞)且x1<x2,则,所以,即,所以,即f(x1)<f(x2),所以函数f(x)在(1,+∞)上单调递增.(Ⅱ)解:由题意,恒成立,令且x1<x2,则=,由(Ⅰ)得f(x1)﹣f(x2)<0,又x1﹣x2<0,,所以g(x1)﹣g(x2)<0,即g(x1)<g(x2),所以g(x)是〖3,4〗上的增函数,则,所以,所以m的取值范围为.21.解:(Ⅰ)座舱距离地面最近的位置为点Q,以轴心OQ为y轴,地面所在的直线为x 轴,建立平面直角坐标系,如图所示:设t=0min时,游客甲位于点Q(0,10),以OQ为终边的角为﹣;根据摩天轮转一周大约需要12min,可知座舱转动的角速度为ω==,由题意可得H=50sin(t﹣)+60,t≥0.即H=﹣50cos(t)+60,t≥0.(Ⅱ)因为×2π=,所以两人距离地面的高度差为h=〖﹣50cos(t+)+60〗﹣〖﹣50cos(t)+60〗=﹣50〖cos(t+)﹣cos(t)〗=50〖sin(t)+cos(t)〗=50sin(t+),t≥0;令h≥25,得sin(t+)≥,解得+2kπ≤t+≤+2kπ,k∈N;即12k≤t≤12k+4,k∈N;所以t的取值范围是〖12k,12k+4〗,k∈Z.22.解:(Ⅰ)当a=1时,f(x)=x|x﹣1|=,所以f(x)在(﹣∞,)上单调递增,在(,1)上单调递减,在(1,+∞)上单调递增,因为f(x)在(m,m+1)上不单调,所以,解得﹣<m<1.即实数m的取值范围是(﹣,1).(Ⅱ)因为g(t)==,所以g(t)在t∈〖1,2〗上单调递减,所以g(t)∈〖.2〗,而f(x)=x|x﹣a|=,当a≤0时,f(x)=x2﹣ax在〖1,2〗上单调递增,所以方程f(x)=g(t)至多有一个根,不符合题意;当a>0时,f(x)在(﹣∞,〗单调递增,在(,a)单调递减,在(a,+∞)单调递增,所以符合题意的a必须满足1<<2或1<a<2.即2<a<4或1<a<2,①当2<a<4时,函数(f(x)在〖1,〗单调递增,在(,2〗单调递减,由题意,对任意的g(t)∈〖,2〗,方程f(x)=g(t)在〖1,2〗上至少有两个不同的解,等价于〖,2〗⊆〖max{f(1),f(2)},f()〗,则,即,解得2≤a≤;②当1<a<2时,函数f(x)在〖1,a〗单调递减,在(a,2〗单调递增,所以〖,2〗⊆〖0,min{f(1),f(2)}〗,则,所以,即,解得a∈∅.综上所述,实数a的取值范围是〖2,〗.。

2018-2019学年高一上学期期末考试数学试题(答案+解析)(4)

2018-2019学年高一上学期期末考试数学试题(答案+解析)(4)

2018-2019学年高一上学期期末考试数学试卷一、选择题1.(5分)已知全集U={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7},则A∩(∁U B)=()A.{5} B.{2,4} C.{2,4,5,6} D.{1,2,3,4,5,7}2.(5分)下列函数中,既是奇函数又是周期函数的是()A.y=sin x B.y=cos x C.y=ln x D.y=x33.(5分)已知平面向量=(1,﹣2),=(2,m),且∥,则m=()A.1 B.﹣1 C.4 D.﹣44.(5分)函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象如图所示,则ω,φ的值分别是()A. B. C. D.5.(5分)下列各组向量中,可以作为基底的是()A., B.,C.,D.,6.(5分)已知a=sin80°,,,则()A.a>b>c B.b>a>c C.c>a>b D.b>c>a7.(5分)已知cosα+cosβ=,则cos(α﹣β)=()A.B.﹣C.D.18.(5分)已知非零向量,满足||=4||,且⊥(2+),则与的夹角为()A.B.C.D.9.(5分)函数y=log0.4(﹣x2+3x+4)的值域是()A.(0,﹣2] B.[﹣2,+∞)C.(﹣∞,﹣2] D.[2,+∞)10.(5分)把函数y=sin(x+)图象上各点的横坐标缩短到原来的倍(纵坐标不变),再将图象向右平移个单位,那么所得图象的一条对称轴方程为()A.B.C.D.11.(5分)已知函数f(x)和g(x)均为奇函数,h(x)=af(x)+bg(x)+2在区间(0,+∞)上有最大值5,那么h(x)在(﹣∞,0)上的最小值为()A.﹣5 B.﹣1 C.﹣3 D.512.(5分)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则a+b+c的取值范围是()A.(1,2017)B.(1,2018)C.[2,2018] D.(2,2018)二、填空题13.(5分)已知tanα=3,则的值.14.(5分)已知,则的值为.15.(5分)已知将函数的图象向左平移个单位长度后得到y=g(x)的图象,则g(x)在上的值域为.16.(5分)下列命题中,正确的是.①已知,,是平面内三个非零向量,则()=();②已知=(sin),=(1,),其中,则;③若,则(1﹣tanα)(1﹣tanβ)的值为2;④O是△ABC所在平面上一定点,动点P满足:,λ∈(0,+∞),则直线AP一定通过△ABC的内心.三、解答题17.(10分)已知=(4,3),=(5,﹣12).(Ⅰ)求||的值;(Ⅱ)求与的夹角的余弦值.18.(12分)已知α,β都是锐角,,.(Ⅰ)求sinβ的值;(Ⅱ)求的值.19.(12分)已知函数f(x)=cos4x﹣2sin x cos x﹣sin4x.(1)求f(x)的最小正周期;(2)当时,求f(x)的最小值以及取得最小值时x的集合.20.(12分)定义在R上的函数f(x)满足f(x)+f(﹣x)=0.当x>0时,f(x)=﹣4x+8×2x+1.(Ⅰ)求f(x)的解析式;(Ⅱ)当x∈[﹣3,﹣1]时,求f(x)的最大值和最小值.21.(12分)已知向量=(),=(cos),记f(x)=.(Ⅰ)求f(x)的单调递减区间;(Ⅱ)若,求的值;(Ⅲ)将函数y=f(x)的图象向右平移个单位得到y=g(x)的图象,若函数y=g(x)﹣k在上有零点,求实数k的取值范围.22.(12分)已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)+f(y).当x>0时,f(x)>0(1)求证:f(x)是奇函数;(2)若,试求f(x)在区间[﹣2,6]上的最值;(3)是否存在m,使f(2()2﹣4)+f(4m﹣2())>0对任意x∈[1,2]恒成立?若存在,求出实数m的取值范围;若不存在,说明理由.【参考答案】一、选择题1.B【解析】∵全集U={1,2,3,4,5,6,7},B={1,3,5,7},∴C U B={2,4,6},又A={2,4,5},则A∩(C U B)={2,4}.故选B.2.A【解析】y=sin x为奇函数,且以2π为最小正周期的函数;y=cos x为偶函数,且以2π为最小正周期的函数;y=ln x的定义域为(0,+∞),不关于原点对称,没有奇偶性;y=x3为奇函数,不为周期函数.故选A.3.D【解析】∵∥,∴m+4=0,解得m=﹣4.故选:D.4.A【解析】∵在同一周期内,函数在x=时取得最大值,x=时取得最小值,∴函数的周期T满足=﹣=,由此可得T==π,解得ω=2,得函数表达式为f(x)=2sin(2x+φ),又∵当x=时取得最大值2,∴2sin(2•+φ)=2,可得+φ=+2kπ(k∈Z),∵,∴取k=0,得φ=﹣,故选:A.5.B【解析】对于A,,,是两个共线向量,故不可作为基底.对于B,,是两个不共线向量,故可作为基底.对于C,,,是两个共线向量,故不可作为基底..对于D,,,是两个共线向量,故不可作为基底.故选:B.6.B【解析】a=sin80°∈(0,1),=2,<0,则b>a>c.故选:B.7.B【解析】已知两等式平方得:(cosα+cosβ)2=cos2α+cos2β+2cosαcosβ=,(sinα+sinβ)2=sin2α+sin2β+2sinαsinβ=,∴2+2(cosαcosβ+sinαsinβ)=,即cosαcosβ+sinαsinβ=﹣,则cos(α﹣β)=cosαcosβ+sinαsinβ=﹣.故选B.8.C【解析】由已知非零向量,满足||=4||,且⊥(2+),可得•(2+)=2+=0,设与的夹角为θ,则有2+||•4||•cosθ=0,即cosθ=﹣,又因为θ∈[0,π],所以θ=,故选:C.9.B【解析】;∴有;所以根据对数函数log0.4x的图象即可得到:=﹣2;∴原函数的值域为[﹣2,+∞).故选B.10.A【解析】图象上各点的横坐标缩短到原来的倍(纵坐标不变),得到函数;再将图象向右平移个单位,得函数,根据对称轴处一定取得最大值或最小值可知是其图象的一条对称轴方程.故选A.11.B【解析】令F(x)=h(x)﹣2=af(x)+bg(x),则F(x)为奇函数.∵x∈(0,+∞)时,h(x)≤5,∴x∈(0,+∞)时,F(x)=h(x)﹣2≤3.又x∈(﹣∞,0)时,﹣x∈(0,+∞),∴F(﹣x)≤3⇔﹣F(x)≤3⇔F(x)≥﹣3.∴h(x)≥﹣3+2=﹣1,故选B.12.D【解析】作出函数的图象,直线y=m交函数图象于如图,不妨设a<b<c,由正弦曲线的对称性,可得(a,m)与(b,m)关于直线x=对称,因此a+b=1,当直线y=m=1时,由log2017x=1,解得x=2017,即x=2017,∴若满足f(a)=f(b)=f(c),(a、b、c互不相等),由a<b<c可得1<c<2017,因此可得2<a+b+c<2018,即a+b+c∈(2,2018).故选:D.二、填空题13.【解析】===,故答案为:.14.﹣1【解析】∵,∴f()==,f()=f()﹣1=cos﹣1=﹣=﹣,∴==﹣1.故答案为:﹣1.15.[﹣1,]【解析】将函数=sin2x+﹣=sin(2x+)的图象,向左平移个单位长度后得到y=g(x)=sin(2x++)=﹣sin2x的图象,在上,2x∈[﹣],sin2x∈[﹣,1],∴﹣sin(2x)∈[﹣1,],故g(x)在上的值域为[﹣1,],故答案为:[﹣1,].16.②③④【解析】①已知,,是平面内三个非零向量,则()•=•()不正确,由于()•与共线,•()与共线,而,不一定共线,故①不正确;②已知=(sin),=(1,),其中,则•=sinθ+=sinθ+|sinθ|=sinθ﹣sinθ=0,则,故②正确;③若,则(1﹣tanα)(1﹣tanβ)=1﹣tanα﹣tanβ+tanαtanβ=1﹣tan(α+β)(1﹣tanαtanβ)+tanαtanβ=1﹣(﹣1)(1﹣tanαtanβ)+tanαtanβ=2,故③正确;④∵,λ∈(0,+∞),设=,=,=+λ(+),﹣=λ(+),∴=λ(+),由向量加法的平行四边形法则可知,以,为邻边的平行四边形为菱形,而菱形的对角线平分对角∴直线AP即为A的平分线所在的直线,即一定通过△ABC的内心,故④正确.故答案为:②③④.三、解答题17.解:(Ⅰ)根据题意,=(4,3),=(5,﹣12).则+=(9,﹣9),则|+|==9,(Ⅱ)=(4,3),=(5,﹣12).则•=4×5+3×(﹣12)=﹣16,||=5,||=13,则cosθ==﹣.18.解:(Ⅰ)∵α,β都是锐角,且,.∴cos,sin(α+β)=,∴sinβ=sin[(α+β)﹣α]=sin(α+β)cosα﹣cos(α+β)sinα=;(Ⅱ)=cos2β=1﹣2sin2β=1﹣2×.19.解:f(x)=cos2x﹣2sin x cos x﹣sin2x=cos2x﹣sin2x=cos(2x+)(1)T=π(2)∵∴20.解:由f(x)+f(﹣x)=0.当,则函数f(x)是奇函数,且f(0)=0,当x>0时,f(x)=﹣4x+8×2x+1.当x<0时,﹣x>0,则f(﹣x)=﹣4﹣x+8×2﹣x+1.由f(x)=﹣f(﹣x)所以:f(x)=4﹣x﹣8×2﹣x﹣1.故得f(x)的解析式;f(x)=(Ⅱ)x∈[﹣3,﹣1]时,令,t∈[2,8],则y=t2﹣8t﹣1,其对称轴t=4∈[2,8],当t=4,即x=﹣2时,f(x)min=﹣17.当t=8,即x=﹣3时,f(x)max=﹣1.21.解:(Ⅰ)f(x)==sin cos+=sin+=sin(+)+,由2kπ+≤+≤2kπ+,求得4kπ+≤x≤4kπ+,所以f(x)的单调递减区间是[4kπ+,4kπ+].(Ⅱ)由已知f(a)=得sin(+)=,则a=4kπ+,k∈Z.∴cos(﹣a)=cos(﹣4kπ﹣)=1.(Ⅲ)将函数y=f(x)的图象向右平移个单位得到g(x)=sin(﹣)+的图象,则函数y=g(x)﹣k=sin(﹣)+﹣k.∵﹣≤﹣≤π,所以﹣sin(﹣)≤1,∴0≤﹣sin(﹣)+≤.若函数y=g(x)﹣k在上有零点,则函数y=g(x)的图象与直线y=k在[0,]上有交点,所以实数k的取值范围为[0,].22.(1)证明:令x=0,y=0,则f(0)=2f(0),∴f(0)=0.令y=﹣x,则f(0)=f(x)+f(﹣x),∴﹣f(x)=f(﹣x),即f(x)为奇函数;(2)解:任取x1,x2∈R,且x1<x2,∵f(x+y)=f(x)+f(y),∴f(x2)﹣f(x1)=f(x2﹣x1),∵当x>0时,f(x)>0,且x1<x2,∴f(x2﹣x1)>0,即f(x2)>f(x1),∴f(x)为增函数,∴当x=﹣2时,函数有最小值,f(x)min=f(﹣2)=﹣f(2)=﹣2f(1)=﹣1.当x=6时,函数有最大值,f(x)max=f(6)=6f(1)=3;(3)解:∵函数f(x)为奇函数,∴不等式可化为,又∵f(x)为增函数,∴,令t=log2x,则0≤t≤1,问题就转化为2t2﹣4>2t﹣4m在t∈[0,1]上恒成立,即4m>﹣2t2+2t+4对任意t∈[0,1]恒成立,令y=﹣2t2+2t+4,只需4m>y max,而(0≤t≤1),∴当时,,则.∴m的取值范围就为.。

2018-2019学年第一学期(期末)数学学科试题

2018-2019学年第一学期(期末)数学学科试题

湖北省麻城市(思源实验学校)2018-2019学年第一学期(期末)数学学科试题1.已知抛物线y=x2+bx+c的部分图象如图所示,若y<0,则x的取值范围是()A.﹣1<x<4 B.﹣1<x<3 C.x<﹣1或x>4 D.x<﹣1或x>32.如图,将等腰直角三角形ABC绕点A逆时针旋转15°后得到△AB′C′,若AC=1,则图中阴影部分的面积为()A .B .C .D .3.如图,直线AB、AD与⊙O相切于点B、D,C为⊙O上一点,且∠BCD=140°,则∠A的度数是()A.70°B.105°C.100°D.110°4.关于x的方程(a﹣1)x2+x+1=0是一元二次方程,则a的取值范围是()A.a≠1 B.a>﹣1且a≠1 C.a≥﹣1且a≠1 D.a为任意实数5.已知⊙O的直径为8cm,P为直线l上一点,OP=4cm,那么直线l与⊙O的公共点有()A.0个B.1个C.2个D.1个或2个6.若一个直角三角形的两边分别为6和8,则这个直角三角形外接圆直径是()A.8 B.10 C.5或4 D.10或87.已知x1,x2是方程x2﹣x+1=0的两根,则x12+x22的值为()A.3 B.5 C.7 D.48.如图,在⊙O内有折线OABC,点B、C在圆上,点A在⊙O内,其中OA=4cm,BC=10cm,∠A=∠B=60°,则AB的长为()A.5cm B.6cm C.7cm D.8cm9.已知二次函数y=ax2+bx+c的图象如图,其对称轴x=﹣1,给出下列结果:①b2>4ac;②abc>0;③2a+b=0;④a﹣b+c<0;⑤3a+c>0;则正确的结论是()A.①②⑤ B.③④⑤ C.②③④ D.①④⑤10.如图,已知△ABC,AB=BC,以AB为直径的圆交AC于点D,过点D的⊙O的切线交BC于点E.若CD=5,CE=4,则⊙O的半径是()A.3 B.4 C .D .③若(x1,y1)、(x2,y2)在函数图象上,当x1<x2时,y1<y2④9a+3b+c=0其中正确的是()A.①②④B.①④C.①②③D.③④12.二次函数y=x2+bx+c的图象向左平移2个单位,再向上平移3个单位,得到函数解析y=x2﹣2x+1则b与c分别等于()A.2,﹣2 B.﹣8,14 C.﹣6,6 D.﹣8,1813.关于二次函数y=ax2+bx+c的图象有下列命题:①当c=0时,函数的图象经过原点;②当c>0,且函数的图象开口向下时,方程ax2+bx+c=0必有两个不相等的实根;③函数图象最高点的纵坐标是;④当b=0时,函数的图象关于y轴对称.其中正确命题的个数是()A.1个B.2个C.3个D.4个14.若A(﹣4,y l),B(﹣3,y2),C(1,y3)为二次函数y=x2+4x﹣5的图象上的三点,则y l,y2,y3的大小关系是.(用<号连接)15.抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3),若平移该抛物线使其顶点移动到点P1(2,﹣2),那么得到的新抛物线的一般式是.16.抛物线y=2x2+3上有两点A(x1,y1)、B(x2,y2),且x1≠x2,y1=y2,当x=x1+x2时,y=.17.若关于x的方程x2+(k﹣2)x+k2=0的两根互为倒数,则k=.18.如图,矩形纸片ABCD,BC=2,∠ABD=30度.将该纸片沿对角线BD翻折,点A落在点E处,EB交DC于点F,则点F到直线DB的距离为.19.已知二次函数y=(x﹣1)2+4,若y随x的增大而减小,则x的取值范围是.20.如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x﹣m)2+n的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为﹣3,则点D的横坐标最大值为.21.水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.(1)若将这种水果每斤的售价降低x元,则每天的销售量是斤(用含x的代数式表示);(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?22.小李从西安通过某快递公司给在南昌的外婆寄一盒樱桃,快递时,他了解到这个公司除收取每次6元的包装费外,樱桃不超过1kg收费22元,超过1kg,则超出部分按每千克10元加收费用.设该公司从西安到南昌快递樱桃的费用为y(元),所寄樱桃为x(kg).(1)求y与x之间的函数关系式;(2)已知小李给外婆快寄了2.5kg樱桃,请你求出这次快寄的费用是多少元?23.某加油站销售一批柴油,平均每天可售出20桶,每桶盈利40元,为了支援我市抗旱救灾,加油站决定采取降价措施.经市场调研发现:如果每桶柴油降价1元,加油站平均每天可多售出2桶.(1)假设每桶柴油降价x 元,每天销售这种柴油所获利润为y 元,求y 与x 之间的函数关系式;(2)每桶柴油降价多少元后出售,农机服务站每天销售这种柴油可获得最大利润?此时,与降价前比较,每天销售这种柴油可多获利多少元?(3)请分析并回答该种柴油降价在什么范围内,加油站每天的销售利润不低于1200元?24.如图,在△ABC 中,AB=AC ,以AB 为半径的⊙O 交AC 于点E ,交BC 于点D ,过点D 作⊙O的切线DF ,交AC 于点F .(1)求证:DF ⊥AC ;(2)若CE=2,CD=3,求AB 的长;(3)若⊙O 的半径为4,∠CDF=22.5°,求阴影部分的面积.25.如图,以等腰△ABC 的一腰AB 上的点O 为圆心,以OB 为半径作圆,⊙O 交底边BC 于点D .过D 作⊙O 的切线DE ,交AC 于点E .(1)求证:DE ⊥AC ;(2)若AB=BC=CA=2,问圆心O 与点A 的距离为多少时,⊙O 与AC 相切?26.某工厂生产一种合金薄板(其厚度忽略不计),这些薄板的形状均为正方形,边长(单位:cm )在5~50之间,每张薄板的成本价(单位:元)与它的面积(单位:cm 2)成正比例,每张薄板的出厂价(单位:元)由基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的,浮动价(1)(2)40cm 的薄板,获得的利润是26元(利润=出厂价﹣成本价). ①求一张薄板的利润与边长之间满足的函数关系式; ②当边长为多少时,出厂一张薄板获得的利润最大?最大利润是多少? 27.如图,在平面直角坐标系中,二次函数y=x 2+bx+c 的图象与x 轴交于A 、B 两点,A 点在原点的左侧,B 点的坐标为(3,0),与y 轴交于C (0,﹣3)点,点P是直线BC 下方的抛物线上一动点. (1)求这个二次函数的表达式. (2)连接PO 、PC ,并把△POC 沿CO 翻折,得到四边形POP ′C ,那么是否存在点P ,使四边形POP ′C 为菱形?若存在,请求出此时点P 的坐标;若不存在,请说明理由. (3)当点P 运动到什么位置时,四边形ABPC 的面积最大?求出此时P 点的坐标和四边形ABPC 的最大面积. 28.如图,已知抛物线经过点A(-1,0),B(3,0),C(0,3)三点. (1)求抛物线的解析式; (2)点M 是线段BC 上的点(不与B ,C 重合),过M 作NM∥y 轴交抛物线于N ,若点M 的横坐标为m ,请用含m 的代数式表示MN 的长; (3)在(2)的条件下,连接NB ,NC ,是否存在点m ,使△BNC 的面积最大?若存在,求m 的值;若不存在,说明理由.29.如图,∠ABM为直角,点C为线段BA的中点,点D是射线BM上的一个动点(不与点B重合),连结AD,作BE⊥AD,垂足为E,连结CE,过点E作EF⊥CE,交BD于F.(1)求证:BF=FD;(2)若∠A=45°,试判断四边形ACFE的形状,并说明理由;(3)当∠A在什么范围取值时,线段DE上存在点G,满足条件DG=DA.30.如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.以AB上某一点O为圆心作⊙O,使⊙O经过点A和点D.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若AC=3,∠B=30°.①求⊙O的半径;②设⊙O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分的图形面积.(结果保留根号和π)31.某商业公司为指导某种应季商品的生产和销售,对三月份至七月份该商品的销售和生产进行了调研,结果如下:一件商品的售价M(元)与时间t(月)的关系可用一条线段上的点来表示(如图1);一件商品的成本Q(元)与时间t (月)的关系可用一条抛物线上的点来表示,其中6月份成本最高(如图2).(1)一件商品在3月份出售时的利润是多少元?(利润=售价﹣成本)(2)求图2中表示一件商品的成本Q(元)与时间t(月)之间的函数关系式;(3)你能求出3月份至7月份一件商品的利润W(元)与时间t(月)之间的函数关系式吗?若该公司能在一个月内售出此种商品30 000件,请你计算一下该公司在一个月内最少获利多少元?32.如图,已知抛物线y=﹣x2+bx+c与坐标轴分别交于点点A(0,8)、B(8,0)和点E,动点C从原点O开始沿OA方向以每秒1个单位长度移动,动点D从点B开始沿BO方向以每秒1个单位长度移动,动点C、D同时出发,当动点D到达原点O时,点C、D停止运动.(1)求该抛物线的解析式及点E的坐标;(2)若D点运动的时间为t,△CED的面积为S,求S关于t的函数关系式,并求出△CED的面积的最大值.。

(完整word版)【市级联考】浙江省宁波市2018-2019学年高一第一学期期末考试数学试题

(完整word版)【市级联考】浙江省宁波市2018-2019学年高一第一学期期末考试数学试题
在 上为增函数,
且 , , ,

的零点所在区间为 .
故选:C.
【点睛】
本题考查了函数零点的存在性定理,对数运算,属于基础题.
5.D
【解析】
【分析】
利用诱导公式变形,结合平方关系把根式内部的代数式化为完全平方式,开方得答案.
【详解】
为锐角,


故选:D.
【点睛】
本题考查三角函数的化简求值,考查同角三角函数基本关系式及诱导公式的应用,是基础题.
【详解】
由图象知 ,
则周期 ,
即 ,即 ,
即 ,
由五点对应法得 ,即 ,
则 ,
由 , ,
得 , ,
即函数的单调递增区间为 , ,
故答案为: , .
【点睛】
本题主要考查三角函数的图象和性质,根据条件求出的解析式是解决本题的关键.
【详解】




故答案为: .
【点睛】
考查分数指数幂的运算,以及对数的定义,对数的运算性质.
12.
【解析】
【分析】
由已知展开两角和的正切求 ,由同角三角函数基本关系式化弦为切求 .
【详解】
由 ,
得 ,

故答案为: ; .
【点睛】
本题考查三角函数的化简求值,考查同角三角函数基本关系式的应用及两角和的正切,是基础题.
10.D
【解析】
【分析】
根据条件判断函数的奇偶性,利用奇偶性的性质结合值域得到 ,即可得到结论.
【详解】

即函数 是奇函数,得图象关于原点对称,
函数 的值城是 ,

则 ,
故选:D.
【点睛】
本题主要考查函数值的计算,根据条件判断函数的奇偶性是解决本题的关键.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 求 的值;
2 求 最小值,并求出此时t的值.
21.如图,在平面直角坐标系中,角 , 的顶点与原点重合,始边与x轴非负半轴重合,角 , 的终边与单位圆分别交 、 两点.
1 求 值;
2 若 , ,求 的值.
22.设 ,其中 .
1 当 时,分别求 及 的值域;
2 记 , ,若 ,求实数t的值.
9.设函数 的定义域为A,且满足任意 恒有 的函数是
A. B. C. D.
10.已知函数 , 的值城是 ,则
A. B. C.2D.0
二、填空题(本大题共7小题,共36.0分)
11.已知 ,则 ______, ______.
12.设 ,则 ______, ______.
13.已知向量 , ,则 ______;若 ,则 ______.
4.函数 的零点所在区间是
A. B. C. D.
5.已知 为锐角,则
A. B. C. D.
6.函数 图象可能是
A. B.
C. D.
7.以下关于函数 的说法中,正确的是
A.最小正周期 B.在 上单调递增
C.图象关于点 对称D.图象关于直线 对称
8.若向量 , 满足 , ,且 ,则 , 的夹角为
A B. C. D.
三、解答题(本大题共5小题,共74.0分)
18.已知集合 , .
1 求 ;
2 已知 ,若 ,求实数a的取值范围.
19.已知函数
1 求函数 的最小正周期;
2 现将函数 图象上所有的点的横坐标伸长到原来的2倍 纵坐标不变 ,得到函数 的图象,求 在区间 上的值域.
20.如图所示,在等腰梯形ABCD中,已知 , , , ,动点E和F分别在线段BC和DC上,且 , .
浙江省宁波市2018学年第一学期期末考试高一数学试卷(解析版)
一、选择题(本大题共10小题,共40.0分)
1.已知集合 , , ,则 ()
A. B. C. D.
2.若幂函数 在区间 上单调递减,则实数m 值可能为
A.1B. C. D.2
3. 是 边AB上的中点,记 , ,则向量 ( )
A. B.
C. D.
14.已知函数 一部分图象如图所示,则 ______,函数 的单调递增区间为______.
15.已知一个扇形的弧长为 ,其圆心角为 ,则这扇形的面积为______ .
16.已知 且 ,函数 ,满足对任意实数 , ,都有 成立,则实数a的取值范围为______.
17.已知单位向量 , ,满足 ,向量 满足 ,则 的取值范围是______.
相关文档
最新文档