实数经典例题与习题 竞赛

合集下载

实数经典例题及习题 竞赛

实数经典例题及习题  竞赛

经典例题类型一.有关概念的识别1.下面几个数:0.23,1.010010001…,,3π,,,其中,无理数的个数有()A、1B、2C、3D、4解析:本题主要考察对无理数概念的理解和应用,其中,1.010010001…,3π,是无理数故选C举一反三:【变式1】下列说法中正确的是()A、的平方根是±3B、1的立方根是±1C、=±1D、是5的平方根的相反数【答案】本题主要考察平方根、算术平方根、立方根的概念,∵=9,9的平方根是±3,∴A正确.∵1的立方根是1,=1,是5的平方根,∴B、C、D都不正确.【变式2】如图,以数轴的单位长线段为边做一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A,则点A表示的数是()A、1B、1.4C、D、【答案】本题考察了数轴上的点与全体实数的一一对应的关系.∵正方形的边长为1,对角线为,由圆的定义知|AO|=,∴A表示数为,故选C.【变式3】【答案】∵π= 3.1415…,∴9<3π<10因此3π-9>0,3π-10<0∴类型二.计算类型题2.设,则下列结论正确的是()A. B.C. D.解析:(估算)因为,所以选B举一反三:【变式1】1)1.25的算术平方根是__________;平方根是__________.2)-27立方根是__________. 3)___________,___________,___________.【答案】1);.2)-3. 3),,【变式2】求下列各式中的(1)(2)(3)【答案】(1)(2)x=4或x=-2(3)x=-4类型三.数形结合3. 点A在数轴上表示的数为,点B在数轴上表示的数为,则A,B两点的距离为______解析:在数轴上找到A、B两点,举一反三:【变式1】如图,数轴上表示1,的对应点分别为A,B,点B关于点A的对称点为C,则点C 表示的数是().A.-1 B.1-C.2-D.-2【答案】选C[变式2]已知实数、、在数轴上的位置如图所示:化简【答案】:类型四.实数绝对值的应用4.化简下列各式:(1) |-1.4|(2) |π-3.142|(3) |-| (4) |x-|x-3|| (x≤3)(5) |x2+6x+10|分析:要正确去掉绝对值符号,就要弄清绝对值符号内的数是正数、负数还是零,然后根据绝对值的定义正确去掉绝对值。

七年级数学下册第六单元《实数》经典练习题

七年级数学下册第六单元《实数》经典练习题

一、选择题1.如图,数轴上O、A、B、C四点,若数轴上有一点M,点M所表示的数为m,且m m c-=-,则关于M点的位置,下列叙述正确的是()5A.在A点左侧B.在线段AC上C.在线段OC上D.在线段OB上D 解析:D【分析】根据A、C、O、B四点在数轴上的位置以及绝对值的定义即可得出答案.【详解】∵|m-5|表示点M与5表示的点B之间的距离,|m−c|表示点M与数c表示的点C之间的距离,|m-5|=|m−c|,∴MB=MC.∴点M在线段OB上.故选:D.【点睛】本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应的关系是解答此题的关键.2.观察下列各等式:-+=231-5-6+7+8=4-10-l1-12+13+14+15=9-17-18-19-20+21+22+23+24=16……根据以上规律可知第11行左起第11个数是()A.-130 B.-131 C.-132 D.-133C解析:C【分析】通过观察发现:每一行等式右边的数就是行数的平方,故第n行右边的数就是n的平方,而左起第一个数的绝对值比右侧的数大1,并且左边的项数是行数的2倍,前一半的符号为负,后一半的符号为正.【详解】解:第一行:211=;第二行:224=;=;第三行:239=;第四行:2416……第n 行:2n ;∴第11行:211121=.∵左起第一个数的绝对值比右侧的数大1,并且左边的项数是行数的2倍,前一半的符号为负,后一半的符号为正.∴第11行左起第1个数是-122,第11个数是-132.故选:C .【点睛】此题主要考查探索数与式的规律,正确找出规律是解题关键.3.下列各数中比( )A .2-B .1-C .12-D .0A 解析:A【分析】根据实数比较大小的方法分析得出答案即可.【详解】A .|2|2-=,|= ∴2>2∴-<B .|1|1-=,|= ∴1<,1∴->C .1122-=,|=, 1∴->2D .0>故选:A .【点睛】此题主要考查了实数的大小比较,正确掌握比较方法是解题的关键.4.1的值( )A .在7和8之间B .在6和7之间C .在5和6之间D .在4和5之间C解析:C【分析】利用36<48<49得到6<7−1进行估算.【详解】解:∵36<48<49,∴6<7,∴5-1<6.故选:C .【点睛】本题考查了估算无理数的大小:估算无理数大小要用逼近法.5.对任意两个正实数a ,b ,定义新运算a ★b 为:若a b ≥,则a ★a b b;若a b <,则a ★b b a.则下列说法中正确的有( ) ①=a b b a ★★;②()()1a b b a =★★;③a ★b 12a b +<★ A .①B .②C .①②D .①②③A 解析:A【分析】 ①根据新运算a b ★的运算方法,分类讨论:a b ≥,a b <,判断出a b ★是否等于b a ★即可;②由①,推得=a b b a ★★,所以()()1a b b a =★★不一定成立;③应用放缩法,判断出1a b a b+★★与2的关系即可. 【详解】解:①a b ≥时,a a bb ★, b a a b ★, ∴=a b b a ★★;a b <时,a b ba ★,b b a a★, ∴=a b b a ★★;∴①符合题意.②由①,可得:=a b b a ★★,当a b ≥时,∴()()()()22a b b a a b aa a ab b b ba b ====★★★★,∴()()a b b a ★★不一定等于1,当a b <时,∴()()()()22a b b a a b bb b b aa a aa b ====★★★★, ∴()()a b b a ★★不一定等于1,∴()()1a b b a =★★不一定成立,∴②不符合题意. ③当a b ≥时,0a >,0b >, ∴1a b≥,∴(12a b a b a b b a ab ab ++===+=≥≥★★, 当a b <时,∴(12a b a b a b a b ab ab ++===+=≥≥★★, ∴12a b a b +<★★不成立, ∴③不符合题意,∴说法中正确的有1个:①.故选:A .【点评】此题主要考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.6.81的平方根是( )A .9B .-9C .9和9-D .81C 解析:C【分析】根据平方根的定义即可求出答案.【详解】解:2(9)81±=,81的平方根是9±.故选:C【点睛】本题考查平方根的定义,解题的关键是正确理解平方根的定义,本题属于基础题型.7.如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n是整数,且n≥3)行从左向右数第(n﹣2)个数是()(用含n的代数式表示)A.21n- Bn-D.24n-C.23n-B.22解析:B【分析】观察不难发现,被开方数是从1开始的连续自然数,每一行的数据的个数是从2开始的连续偶数,求出n-1行的数据的个数,再加上n-2得到所求数的被开方数,然后写出算术平方根即可.【详解】解:前(n﹣1)行的数据的个数为2+4+6+…+2(n﹣1)=n(n﹣1),所以,第n(n是整数,且n≥3)行从左到右数第n﹣2个数的被开方数是n(n﹣1)+n﹣2=n2﹣2,所以,第n(n是整数,且n≥3)行从左到右数第n﹣2个数是22n-.故选:B.【点睛】本题考查了算术平方根,观察数据排列规律,确定出前(n-1)行的数据的个数是解题的关键.8.若将2-,7,11分别表示在数轴上,其中能被如图所示的墨迹覆盖的数是()A.2-B7C11D.无法确定B解析:B【分析】首先利用估算的方法分别得到2-711间),从而可判断出被覆盖的数.【详解】∵221,273<<,3114<<而墨迹覆盖的范围是1-3∴故选B.【点睛】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力.9.在 -1.414π, 3.212212221…,227,3.14这些数中,无理数的个数为( )A .2B .3C .4D .5C 解析:C【分析】先计算算术平方根,再根据无理数的定义即可得.【详解】4=,22 3.1428577=小数点后的142857是无限循环的,,2π+⋯,共4个,故选:C .【点睛】 本题考查了算术平方根、无理数,熟记无理数的定义是解题关键.10.在0,3π227, 6.1010010001…(相邻两个1之间0的个数在递增)中,无理数有( ). A .1个B .2个C .3个D .4个C解析:C【分析】先计算算术平方根,再根据无理数的定义即可得.【详解】 22 3.1428577=小数点后142857是无限循环的,则227是有理数,3=-,则因此,题中的无理数有3π 6.1010010001(相邻两个1之间0的个数在递增),共有3个,故选:C .【点睛】本题考查了无理数、算术平方根,熟记无理数的定义是解题关键.二、填空题11.已知一个正数m 的平方根为2n +1和4﹣3n .(1)求m 的值;(2)|a ﹣3|(c ﹣n )2=0,a +b +c 的立方根是多少?(1)m =121;(2)a+b+c 的立方根是2【分析】(1)由正数的平方根互为相反数可得2n+1+4﹣3n =0可求n =5即可求m ;(2)由已知可得a =3b =0c =n =5则可求解【详解】解:(1)正数解析:(1)m =121;(2)a +b +c 的立方根是2【分析】(1)由正数的平方根互为相反数,可得2n +1+4﹣3n =0,可求n =5,即可求m ; (2)由已知可得a =3,b =0,c =n =5,则可求解.【详解】解:(1)正数m 的平方根互为相反数,∴2n +1+4﹣3n =0,∴n =5,∴2n +1=11,∴m =121;(2)∵|a ﹣3|(c ﹣n )2=0,∴a =3,b =0,c =n =5,∴a +b +c =3+0+5=8,∴a +b +c 的立方根是2.【点睛】本题考查平方根的性质;熟练掌握正数的平方根的特点,绝对值和偶次方根数的性质是解题的关键.12.求出x 的值:()23227x +=x =1或x =﹣5【分析】依据平方根的性质可得到x+2的值然后解关于x 的一元一次方程即可【详解】解:∵3(x+2)2=27∴(x+2)2=9∴x+2=±3解得:x =1或x =﹣5【点睛】本题主要考查的是 解析:x =1或x =﹣5【分析】依据平方根的性质可得到x +2的值,然后解关于x 的一元一次方程即可.【详解】解:∵3(x +2)2=27,∴(x +2)2=9,∴x +2=±3,解得:x =1或x =﹣5.【点睛】本题主要考查的是平方根的性质,熟练掌握平方根的性质是解题的关键.13.用“<”连接2的平方根和2的立方根_________.<<【分析】先表示出2的平方根与立方根再根据有理数的大小比较可得答案【详解】解:2的平方根为±2的立方根为∴<<故答案为:<<【点睛】本题主要考查立方根解题的关键是掌握平方根算术平方根与立方根的定义解析:【分析】先表示出2的平方根与立方根,再根据有理数的大小比较可得答案.【详解】解:2的平方根为,2 ∴,故答案为:.【点睛】本题主要考查立方根,解题的关键是掌握平方根、算术平方根与立方根的定义.14. ________0.5.(填“>”“<”或“=”)<【分析】将05变形为将两数作差后借助<2即可得出﹣05<0进而即可得出<05【详解】解:∵05=∴﹣05=∵()2=322=43<4∴<2∴<0∴﹣05<0即<05故答案为:<【点睛】本题考查了实解析:<【分析】将0.5变形为12<2﹣0.5<0,进而即可得出<0.5. 【详解】解:∵0.5=12,∴12﹣0.5 ∵2=3,22=4,3<4, ∴2,∴22<0,∴﹣0.5<0,<0.5. 故答案为:<.【点睛】﹣0.5<0是解题的关键.15.若则2|1|(3)0a c --=,()c a b +=______.-1【分析】先根据绝对值算术平方根偶次方的非负性求出abc 的值再代入即可得【详解】解:∵∴a-1=0b+2=0c-3=0∴a=1b=-2c=3∴【点睛】本题考查了绝对值算术平方根偶次方的非负性的应用解析:-1【分析】先根据绝对值、算术平方根、偶次方的非负性求出a 、b 、c 的值,再代入即可得.【详解】解:∵2|1|(3)0a c --=,∴a-1=0,b+2=0,c-3=0,∴a=1,b=-2,c=3,∴()3()12=1c a b +=--. 【点睛】本题考查了绝对值、算术平方根、偶次方的非负性的应用等知识点,熟练掌握绝对值、算术平方根、偶次方的非负性是解题关键.16.已知甲数是719的平方根,乙数是338的立方根,则甲、乙两个数的积是__.【分析】分别根据平方根立方根的定义可以求出甲数乙数进而即可求得题目结果【详解】甲数是的平方根甲数等于;乙数是的立方根乙数等于∵甲乙两个数的积是故答案:【点睛】此题主要考查了立方根平方根的定义解题的关 解析:2±.【分析】分别根据平方根、立方根的定义可以求出甲数、乙数,进而即可求得题目结果.【详解】 甲数是719的平方根 ∴甲数等于43±; 乙数是338的立方根, ∴乙数等于32. ∵43=232⨯ ∴甲、乙两个数的积是2±.故答案:2±.【点睛】此题主要考查了立方根、平方根的定义,解题的关键是根据平方根和立方根的定义求出甲数和乙数.17.已知5的整数部分为a ,5b ,则2ab b +=_________.【分析】求出的大小推出7<<8求出a 同理求出求出b 代入求出即可【详解】解:∵∴∴∴∴故答案为:【点睛】此题考查了无理数的大小的应用关键是确定和的范围解析:37-【分析】的大小,推出7<5<8,求出a ,同理求出253<-<,求出b ,代入求出即可.【详解】解:∵479<<, ∴23<<,32-<<- ∴758<+<,253<-<,∴7a =,523b =--=-,∴()(237337ab b b a b +=+=+=-.故答案为:37-【点睛】此题考查了无理数的大小的应用,关键是确定5和5-18.一个四位正整数的千位、百位、十位、个位上的数字分别为a ,b ,c ,d ,如果a b c d ≤≤≤,那么我们把这个四位正整数叫做进步数,例如四位正整数2347:因为2347<<<,所以2347叫做进步数.(1)求四位正整数中的最大的“进步数”与最小的“进步数”的差;(2)已知一个四位正整数的百位、个位上的数字分别是1、4,且这个四位正整数是“进步数”,同时,这个四位正整数能被7整除,求这个四位正整数.(1)8888;(2)1134【分析】(1)根据进步数的定义分别求出四位正整数中的最大进步数与最小进步数即可得解;(2)根据进步数的定义可以推得所求数为1114112411341144中的某一个再根解析:(1)8888;(2)1134 .【分析】(1)根据进步数的定义分别求出四位正整数中的最大“进步数”与最小“进步数”即可得解; (2)根据进步数的定义可以推得所求数为1114、1124、1134、1144中的某一个,再根据这个四位正整数能被7整除逐一对4个数进行验证可以得解 .【详解】解:(1)由进步数的定义可知四位正整数中最大的“进步数”应该是9999,又最高位不能为0,所以四位正整数中的千位最小为0,所以四位正整数中最小的“进步数”应该是1111,∴9999-1111=8888,∴四位正整数中的最大的“进步数”与最小的“进步数”的差为8888;(2)由已知可得所求数的千位为1,十位为1-4中的某个数字,∴所求数为1114、1124、1134、1144中的某一个,∵这个四位正整数能被7整除,∴由1114=159×7+1,1124=160×7+4,1134=162×7,1144=163×7+3可知所求数为1134 .【点睛】本题考查新定义下的实数规律探索,由材料归纳出新定义并应用于具体问题求解是解题关键.19.下列实数0, 23,π,0.1010010001其中无理数共有___个.2【分析】根据无理数的定义解答即可【详解】解:实数0π010********中无理数有实数π共2个故答案为:2【点睛】本题考查了无理数的定义其中初中范围内学习的无理数有:π2π等;开方开不尽的数;以解析:2【分析】根据无理数的定义解答即可.【详解】解:实数0,23,π,0.1010010001π共2个, 故答案为:2.【点睛】 本题考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.20.比较大小,填“>”或“<”号:12<【分析】根据-1>1即可进行比较【详解】∵-1>1∴>即<故答案为:<【点睛】此题主要考查了实数大小比较解析:<【分析】>1,即可进行比较.【详解】 ∵>1,∴12>12,即12<12.故答案为:<.【点睛】此题主要考查了实数大小比较.三、解答题21.“比差法”是数学中常用的比较两个数大小的方法,即0,0,0,a b a b a b a b a b a b->>⎧⎪-==⎨⎪-<<⎩则则则2与2的大小;224-=,1619<<,则45<<,2240-=>,22>.请根据上述方法解答以下问题:(1_______3;(2)比较23-的大小,并说明理由.解析:(1)>;(2)3-<2-.【分析】(1,可得:3<4,从而可得答案;(245,从而可得:0<5-0<()23-,从而可得答案.【详解】解:(1)327<,3∴<4,故答案为:>.(2)16<4∴5,∴<5∴<3+2,∴<()23-,∴3-<2-.【点睛】本题考查的是实数的大小比较,掌握实数的大小比较的方法是解题的关键.22.计算:(1)(1)|2|3-⨯-+ (2)2111(3)2⎛⎫-+--- ⎪⎝⎭ 解析:(1)1;(2)1112.【分析】(1)先计算绝对值,再计算乘法,最后计算加法; (2)先同时计算乘方、减法、化简算术平方根,再计算乘法,最后计算加减法.【详解】(1)(1)|2|3-⨯-+=(1)23-⨯+=-2+3=1;(2)2111(3)2⎛⎫-+--- ⎪⎝⎭=11(3)42-+--⨯ =1122-+ =1112. 【点睛】此题考查有理数的混合运算,掌握绝对值的化简,乘方法则,求数的算术平方根,有理数的加减法计算法则,乘除法计算法则是解题的关键.23.求下列各式中的x 的值(1)21(1)82x +=;(2)3(21)270x -+= 解析:(1)3x =或5x =-;(2)1x =-.【分析】(1)适当变形后,利用平方根的定义即可解方程;(2)适当变形后,利用立方根的定义即可解方程.【详解】解:(1)21(1)82x += 两边乘以2得,2(1)16x +=,开平方得,14x +=±,即14x +=或14x +=-,∴3x =或5x =-;(2)3(21)270x -+=移项得,3(21)27x -=-,开立方得,213x -=-,解得,1x =-.【点睛】本题考查的是利用平方根,立方根的含义解方程,掌握平方根与立方根的定义和等式的性质是解题的关键.24.已知2x +1的算术平方根是0=4,z 是﹣27的立方根,求2x +y +z 的平方根.解析:【分析】先根据算术平方根的定义求得2x 的值,再根据算术平方根的定义求出y ,根据立方根的定义求z ,然后代入要求的式子进行计算,最后根据平方根的定义即可得出答案.【详解】解:∵2x +1的算术平方根是0,∴2x +1=0,∴2x =﹣1,∵=4,∴y =16,∵z 是﹣27的立方根,∴z =﹣3,∴2x +y +z =﹣1+16﹣3=12,∴2x +y +z 的平方根是=【点睛】本题考查了平方根、算术平方根、立方根,解决本题的关键是熟记平方根、算术平方根、立方根的定义.25.求出x 的值:()23227x += 解析:x =1或x =﹣5【分析】依据平方根的性质可得到x +2的值,然后解关于x 的一元一次方程即可.【详解】解:∵3(x +2)2=27,∴(x +2)2=9,∴x +2=±3,解得:x =1或x =﹣5.【点睛】本题主要考查的是平方根的性质,熟练掌握平方根的性质是解题的关键.26.计算:3011(2)(200422-+--解析:8-【分析】根据运算法则和运算顺序准确计算即可.【详解】解:3011(2)(200422-+-- 11822=-+- 8=-【点睛】本题考查了实数得混合运算,掌握运算法则和顺序是解题的关键.27.计算:(12(2)22(2)8x -=解析:(1)1;(2)124,0x x ==【分析】(1)实数的混合运算,利用算术平方根和立方根的概念逐个进行化简计算; (2)直接用平方根的概念求解.【详解】解:(12=4(2)23----=4+223--=1(2)22(2)8x -=2(2)4x -=22x -=±22x =±∴124,0x x ==.【点睛】本题考查实数的混合运算及利用平方根解方程,掌握相关概念和性质正确计算是解题关键.28.设2x 、y ,试求x 、y 的值与1x -的立方根.解析:4x =,2y =,1x -【分析】根据无理数的估算、立方根的定义即可得.【详解】因为469<<,所以23<<,所以22223+<++,即425<+,所以24,小数部分是242+=,即4x =,2y =,== 【点睛】本题考查了无理数的估算、立方根,熟练掌握无理数的估算方法是解题关键.。

专题02 实数的运算(三大题型,50题)(解析版)

专题02 实数的运算(三大题型,50题)(解析版)

专题02实数的运算(三大题型,50题)(解析版)学校:___________姓名:___________班级:___________考号:___________一、用数轴上的点表示实数,中档题20题,难度三星1.如图,若5x =,则表示2211(1)x x x x -+÷-的值的点落在()A .段①B .段②C .段③D .段④【答案】C 【分析】首先对原式进行化简,然后代入x 的值,最后根据5 2.236≈即可判断.【详解】原式=2211()x x x x x-+-÷=()211x xx x -- =1x -当5x =时,原式=51-∵5 2.236≈∴51 1.236-≈故选C .【点睛】本题考查了分式的乘除法化简,无理数的估算,无理数的估算是难点,关键是要熟记一些常用的完全平方数,和一些常用无理数的近似值.2.若实数p ,q ,m ,n 在数轴上的对应点的位置如图所示,且满足0p q m n +++=,则绝对值最小的数是()A .pB .qC .mD .n【答案】C 【分析】根据0p q m n +++=,并结合数轴可知原点在q 和m 之间,且离m 点最近,即可求解.A.a b>B.π+A.πB.1【答案】B【分析】根据数轴与实数的一一对应关系解答即可.A .a b-+B .a b +C .a 【答案】21π--【分析】求出圆的周长,再根据实数与数轴上的点的对应关系解答即可.【答案】﹣2a﹣b【分析】直接利用数轴结合绝对值以及平方根的性质化简得出答案.【答案】32-或32+【分析】分顺时针旋转和逆时针旋转,两种情况讨论求解即可.【详解】解:∵点A 表示的数为3,点B 表示的数为4,∴1AB =,此时C '表示的数为:32-;当正方形ABCD 绕点A 逆时针旋转,使得点C 落在数轴上的点C '处时,如图:此时C '表示的数为:32+;【答案】2π2+【分析】先求出圆的周长为2π,再利用数轴的性质求解即可得.【详解】解:由题意可知,将圆沿数轴向右转动一周,转动的距离为∴点A 向右移动了2π个单位长度,【答案】280905--+/809052【分析】本题考查的是数轴的一个知识,解题的关键是找到规律:第移动25个单位,从第2次落在数轴上开始,比上一次又向右多移动了(1)图1中的阴影部分为正方形,它的面积是_________;(2)请利用(1)的解答,在图1的数轴上画出表示10的点;并简洁地说明理由.(3)如图2,请你利用正方形网格,设计一个面积方案,在数轴上画出表示理由.【答案】(1)10(3)解:如图,阴影部分为正方形,面积为所以,其边长为5,在数轴上截取5==,CDOC OK则点K表示的数为5,点D表示的数【点睛】本题主要考查正方形的性质以及网格,熟练掌握正方形的性质是解题的关键.20.阅读下面的文字,解答问题.大家知道,2是无理数,而无理数是无限不循环小数,因此【点睛】此题考查的是估算无理数及求代数式的值,能够得到一个无理数的整数部分与小数部分是解决此题的关键.二、实数的大小比较,中档题15题,难度三星π-<-<根据数轴上点的特点可得: 1.5333.在数轴上表示数0,π-303π-<-<<.2【点睛】本题考查了实数与数轴,实数的大小比较,能利用数轴比较实数的大小是解此题的关键,注意:。

含答案-实数竞赛数学组卷

含答案-实数竞赛数学组卷

实数竞赛卷一.选择题(共10小题)1.已知x是无理数,且(x+1)(x+3)是有理数,在上述假设下,有人提出了以下四个结论:(1)x2是有理数;(2)(x﹣1)(x﹣3)是无理数;(3)(x+1)2是有理数;(4)(x﹣1)2是无理数并说它们中有且只有n个正确的,那么n等于()A.3B.1C.2D.42.设a=,b=,c=,d=,则a、b、c、d的平均数是()A.0.7 B.0.7777 C.D.3.+=()A.2B.1C.0D.﹣24.设S=19+199+1999+…+199…9(最后一个加数中有99个9),则S的末九位数字的和是()A.19 B.81 C.16 D.795.设a=,b=,c=﹣0.045,则()A.a<b<c B.b<c<a C.a>b>c D.b>a>c6.设实数P=,则P满足()A.0<P<1 B.1<P<2 C.2<P<3 D.P=7.若x=,则():()=()A.B.7:6 C.x2:1 D.x8.如果a+ab+b=,且b是有理数,那么()A.a是整数B.a是有理数C.a是无理数D.a可能是有理数,也可能是无理数9.有四个命题:①如果两个整数的和与积都相等,那么这两个整数都等于2;②每一个角都等于179°的多边形是不存在的;③只有一条边的长大于1的三角形的面积可以等于;④若α,β是不相等的无理数,则αβ+α﹣β是无理数.其中正确的命题个数是()A.1B.2C.3D.410.设a=1996,b=9619,c=1996,d=6199,则此四个数的大小关系为()A.a>b>c>d B.d>a>b>c C.c<d<a<b D.b>c>d>a二.填空题(共3小题)11.已知圆周率π=3.1415926…,则不大于π3的最大整数是_________.不小于π3的最小整数是_________.12.在平面直角坐标系中,点P的坐标是,m、n都是有理数,过P作y轴的垂线,垂足为H,已知△OPH的面积为,其中O为坐标原点,则有序数对(m,n)为_________(写出所有满足条件的有序数对(m,n)).13.若,则k=_________.三.解答题(共2小题)14.设α,β为有理数,γ为无理数,若α+βγ=0,求证:α=β=0.15.证明:是无理数.实数竞赛数学组卷参考答案与试题解析一.选择题(共10小题)1.已知x是无理数,且(x+1)(x+3)是有理数,在上述假设下,有人提出了以下四个结论:(1)x2是有理数;(2)(x﹣1)(x﹣3)是无理数;(3)(x+1)2是有理数;(4)(x﹣1)2是无理数并说它们中有且只有n个正确的,那么n等于()A.3B.1C.2D.4考点:有理数无理数的概念与运算。

人教版初中七年级数学下册第六单元《实数》经典练习题(含答案解析)

人教版初中七年级数学下册第六单元《实数》经典练习题(含答案解析)

一、选择题1.下列各数中比( )A .2-B .1-C .12-D .0A 解析:A【分析】根据实数比较大小的方法分析得出答案即可.【详解】A .|2|2-=,|= ∴2>2∴-<B .|1|1-=,|= ∴1<,1∴->C .1122-=,|=, 1∴->2D .0>故选:A .【点睛】此题主要考查了实数的大小比较,正确掌握比较方法是解题的关键.2.在 1.4144-,,227,3π,2,0.3•,2.121112*********...中,无理数的个数( )A .1B .2C .3D .4D 解析:D【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】 1.4144-,有限小数,是有理数,不是无理数;227,分数,是有理数,不是无理数; 0.3•,无限循环小数,是有理数,不是无理数;2-, 3π,23-, 2.121112*********...是无理数,共4个, 故选:D . 【点睛】本题主要考查了无理数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.估算481的值( )A .在7和8之间B .在6和7之间C .在5和6之间D .在4和5之间C解析:C【分析】利用36<48<49得到6<48<7,从而可对48−1进行估算.【详解】 解:∵36<48<49,∴6<48<7,∴5<48-1<6.故选:C .【点睛】本题考查了估算无理数的大小:估算无理数大小要用逼近法.4.数轴上表示下列各数的点,能落在A ,B 两个点之间的是( )A .3B 7C 11D 13解析:B【分析】首先确定A ,B 对应的数,再分别估算四个选项的数值进行判断即可.【详解】解:由数轴得,A 点对应的数是1,B 点对应的数是3,A.-2<3<-1,不符合题意;B.27<3,符合题意;C 、3114,不符合题意;D. 3134,不符合题意;故选:B【点睛】本题主要考查了对无理数的估算.5.85-的整数部分是( ) A .4 B .5 C .6 D .7B 解析:B【分析】直接利用估算无理数的大小的方法得出253<<,进而得出答案. 【详解】解:459<<,459∴<<,即253<<,838582∴-<-<-,5856∴<-<,85∴-的整数部分是5.故选:B .【点睛】本题主要考查了估算无理数的大小,正确得出5的取值范围是解题关键.6.如图,四个实数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若0n q +=,则m ,n ,p ,q 四个实数中,绝对值最大的一个是( )A .pB .qC .mD .n A 解析:A【分析】根据题意可判断0在线段NQ 的中点处,再根据绝对值的意义即可进行判断.【详解】解:因为0n q +=,所以n 、q 互为相反数,0在线段NQ 的中点处,所以点P 距离原点的距离最远,即m ,n ,p ,q 四个实数中,绝对值最大的一个是p . 故选:A .【点睛】本题考查了实数与数轴以及线段的中点,正确理解题意、确定数轴上原点的位置是解题关键.7.下列实数中,属于无理数的是( )A .3.14B .227C 4D .πD解析:D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解:A 、3.14是小数,是有理数,故A 选项错误;B 、227是有限小数,是有理数,故B 选项错误;C =2是整数,是有理数,故C 选项错误.D 、π是无理数,故D 选项正确故选:D .【点睛】本题考查了无理数的定义,无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.8.一个正方体的体积为16,那么它的棱长在( )之间A .1和2B .2和3C .3和4D .4和5B解析:B【分析】可以利用方程先求正方体的棱长,然后再估算棱长的近似值即可解决问题.【详解】设正方体的棱长为x ,由题意可知316x =,解得x =,∵332163<<, ∴23<,那么它的棱长在2和3之间.故选:B .【点睛】的范围.9.在0,3π227, 6.1010010001…(相邻两个1之间0的个数在递增)中,无理数有( ). A .1个B .2个C .3个D .4个C解析:C【分析】先计算算术平方根,再根据无理数的定义即可得.【详解】 22 3.1428577=小数点后142857是无限循环的,则227是有理数,3=-,则因此,题中的无理数有3π 6.1010010001(相邻两个1之间0的个数在递增),故选:C .【点睛】本题考查了无理数、算术平方根,熟记无理数的定义是解题关键.10.1的值在( )A .5~6之间B .6~7之间C .7~8之间D .8~9之间B解析:B【分析】的取值即可得到答案.【详解】由题意得78<<,617∴<<,1介于6~7之间.故选B .【点睛】二、填空题11.计算:(1321(2)(10)4---⨯-(2)225(24)-⨯--÷1)-12(2)-12【分析】(1)(2)两小题都属于实数的混合运算先计算乘方和开方再计算乘除最后再算加减即可得出结果【详解】解:(1)(2)【点睛】本题考查了实数的混合运算根据算式确定运算顺序并解析:(1)-12,(2)-12.【分析】(1)、(2)两小题都属于实数的混合运算,先计算乘方和开方,再计算乘除,最后再算加减即可得出结果.【详解】解:(1321(2)(10)4---⨯- 1100458=⨯+- 1325=-12=-,(2)225(24)-⨯--÷45(24)3=-⨯--÷208=-+12=-.【点睛】本题考查了实数的混合运算,根据算式确定运算顺序并运用相应的运算法则正确计算是解题的关键.12.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m .(1)实数m 的值是___________;(2)求|1||1|m m ++-的值;(3)在数轴上还有C 、D 两点分别表示实数c 和d ,且有|2|c d +与4d +互为相反数,求23c d -的平方根.(1);(2);(3)【分析】(1)根据两点间的距离公式可得答案;(2)由(1)可知再利用绝对值的性质化简绝对值号继而求得答案;(3)根据非负数的性质求出的值再代入进而求其平方根【详解】解:(1)∵解析:(1)2+2;(2)2;(3)4±【分析】(1)根据两点间的距离公式可得答案;(2)由(1)可知10m +>、10m -<,再利用绝对值的性质化简绝对值号,继而求得答案;(3)根据非负数的性质求出c 、d 的值,再代入23c d -,进而求其平方根.【详解】解:(1)∵蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-∴点B 表示2+2∴2+2m =-.(2)∵2+2m =-∴1221230m +=-+=->,1221210m -=--=-<∴11m m ++-()11m m =+--11m m =+-+2=.(3)∵2c d +4d +∴20c d +=∴2040c d d +=⎧⎨+=⎩∴24c d =⎧⎨=-⎩∴()23223416c d -=⨯-⨯-= ∴4==±,即23c d -的平方根是4±.【点睛】本题考查了实数与数轴、绝对值的性质、相反数的性质、非负数的性质、求一个数的平方根等,熟练掌握相关知识点是解题的关键.13.先化简,再求值:()222233a ab a ab ⎛⎫--- ⎪⎝⎭,其中|2|a +数.ab ;-6【分析】原式去括号合并得到最简结果利用相反数及非负数的性质求出a 与b 的值代入计算即可求出值【详解】解:原式=2a2-2ab-(2a2-3ab )=2a2-2ab-2a2+3ab=ab ∵与互为解析:ab ;-6.【分析】原式去括号合并得到最简结果,利用相反数及非负数的性质求出a 与b 的值,代入计算即可求出值.【详解】解:原式=2a 2-2ab-(2a 2-3ab )=2a 2-2ab-2a 2+3ab= ab , ∵2a +∴,∴a+2=0,30b -=,解得:a=-2,3b =,当a=-2,b=3时,原式=-6.【点睛】此题考查了整式的加减-化简求值,以及算术平方根的非负性,熟练掌握运算法则是解本题的关键.14.求出x 的值:()23227x +=x =1或x =﹣5【分析】依据平方根的性质可得到x+2的值然后解关于x 的一元一次方程即可【详解】解:∵3(x+2)2=27∴(x+2)2=9∴x+2=±3解得:x =1或x =﹣5【点睛】本题主要考查的是 解析:x =1或x =﹣5【分析】依据平方根的性质可得到x +2的值,然后解关于x 的一元一次方程即可.【详解】解:∵3(x +2)2=27,∴(x +2)2=9,∴x +2=±3,解得:x =1或x =﹣5.【点睛】本题主要考查的是平方根的性质,熟练掌握平方根的性质是解题的关键.15.计算:3011(2)(200422-+---【分析】根据运算法则和运算顺序准确计算即可【详解】解:【点睛】本题考查了实数得混合运算掌握运算法则和顺序是解题的关键解析:8-【分析】根据运算法则和运算顺序准确计算即可.【详解】解:3011(2)(200422-+-- 11822=-+- 8=-【点睛】本题考查了实数得混合运算,掌握运算法则和顺序是解题的关键.16.计算:(1(2)0(0)|2|π--(3)解方程:4x 2﹣9=0.(1)-8;(2)1﹣;(3)x =±【分析】(1)利用算数平方根立方根及二次根式性质计算即可;(2)利用零指数幂立方根及绝对值的代数意义进行化简即可;(3)方程变形后利用开方运算即可求解【详解】解:解析:(1)-8;(2)13)x =±32. 【分析】(1)利用算数平方根、立方根及二次根式性质计算即可;(2)利用零指数幂、立方根及绝对值的代数意义进行化简即可;(3)方程变形后,利用开方运算即可求解.【详解】解:(1)原式=()935358÷--=--=-;(2)原式=1221-+-=(3)方程变形得:294x =,开方得:32x =±. 【点睛】本题考察实数的运算,熟练掌握运算法则是解题的关键.17.已知a 的整数部分,b 的小数部分,求代数式(1b a -的平方根.【分析】根据可得即可得到的整数部分是3小数部分是即可求解【详解】解:∵∴∴的整数部分是3则的小数部分是则∴∴9的平方根为【点睛】本题考查实数的估算实数的运算平方根的定义掌握实数估算的方法是解题的关键 解析:3±.【分析】根据223104<<可得34<<的整数部分是3,小数部分是3,即可求解.【详解】解:∵223104<<, ∴34<<, ∴3,则3a =3,则3b =,∴(()1312339a b ---=-=-=, ∴9的平方根为3±.【点睛】本题考查实数的估算、实数的运算、平方根的定义,掌握实数估算的方法是解题的关键. 18.求下列各式中x 的值(1)21(1)64x +-=; (2)3(1)125x -=.(1);(2)【分析】(1)方程整理后利用平方根的性质开平方即可求解;(2)方程直接利用立方根的性质开立方即可求解;【详解】(1)解得:或;(2)解得:【点睛】本题主要考查解方程涉及到立方根平方根解解析:(1)132x =,272x =-;(2)6x = 【分析】(1)方程整理后,利用平方根的性质开平方即可求解;(2)方程直接利用立方根的性质开立方即可求解;【详解】(1)21(1)64x +-= 225(1)4x += 512x +=± 解得:32x =或72x =-; (2)3(1)125x -=15x -=解得:6x =.【点睛】本题主要考查解方程,涉及到立方根、平方根,解题的关键是熟练掌握开平方、开立方根的方法.19.已知5的整数部分为a ,5-b ,则2ab b +=_________.【分析】求出的大小推出7<<8求出a 同理求出求出b 代入求出即可【详解】解:∵∴∴∴∴故答案为:【点睛】此题考查了无理数的大小的应用关键是确定和的范围解析:37-【分析】的大小,推出7<5<8,求出a ,同理求出253<-<,求出b ,代入求出即可.【详解】解:∵479<<, ∴23<<,32-<<- ∴758<+<,253<-<,∴7a =,523b =--=-,∴()(237337ab b b a b +=+=+=-.故答案为:37-【点睛】此题考查了无理数的大小的应用,关键是确定5和5-20.小燕在测量铅球的半径时,先将铅球完全浸没在一个带刻度的圆柱形小水桶中,拿出铅球时,小燕发现小水桶中的水面下降了1cm ,小燕量得小水桶的直径为12cm ,于是她就算出了铅球的半径.你知道她是如何计算的吗?请求出铅球的半径.(球的体积公式343V r π=,r 为球的半径.)3cm 【分析】设球的半径为r 求出下降的水的体积即圆柱形小水桶中下降的水的体积最后根据球的体积公式列式求解即可【详解】解:设球的半径为r 小水桶的直径为水面下降了小水桶的半径为6cm 下降的水的体积是π×解析:3cm .【分析】设球的半径为r ,求出下降的水的体积,即圆柱形小水桶中下降的水的体积,最后根据球的体积公式列式求解即可.【详解】解:设球的半径为r ,小水桶的直径为12cm ,水面下降了1cm ,∴小水桶的半径为6cm ,∴下降的水的体积是π×62×1=36π(cm 3), 即34363r ππ=,解得:327r =,3r =,答:铅球的半径是3cm .【点睛】本题考查了立方根的应用,涉及圆柱的体积求解,解此题的关键是得出关于r 的方程. 三、解答题21.2-.解析:4【分析】原式利用平方根、立方根定义及绝对值化简计算即可得到结果.【详解】解:原式282=-+-4=【点睛】本题考查了实数的运算,熟练掌握平方根、立方根定义是解本题的关键.22.计算:(1)⎛- ⎝;(2|1--解析:(1;(2)12-【分析】(1)先去括号,再利用二次根式加减运算法则进行计算;(2)直接利用绝对值的性质和立方根的性质、二次根式的性质分别化简后再相加减即可;【详解】(1)⎛- ⎝=;(2|1--=914++-=12-【点睛】考查了实数的运算,解题关键是掌握运算法则和运算顺序.23.阅读下列信息材料信息1:因为尤理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来比如:π“……”或者“≈”的表示方法都不够百分百准确;信息2:2.5的整数部分是2,小数部分是0.5,可以看成2.52-得来的;信息3:任何一个无理数,都可以夹在两个相邻的整数之间,如23<<,是因为<;根据上述信息,回答下列问题:(1___________,小数部分是______________;(2)若2122a <<,则a 的整数部分是___________;小数部分可以表示为_______;(3)10+10a b <则a b +=______;(43x y =+,其中x 是整数,且01y <<,请求x y -的相反数.解析:(1)33;(2)21;21a -;(3)23;(47.【分析】(1)先找到91316<<,可找到34<< (2)根据因为2122a <<,即可找出a 的整数部分与小数部分(3)找到12<<在哪两个整数之间,再加10即可.(4)先确定56<<,找到233<<,由01y <<,x 是整数,即可确定x=2,5,再求7x y -=,即可求出【详解】(1)91316<< ∴34<<33故答案为:33;(2)因为2122a <<,故则a 的整数部分是21,a 的小数部分可以表示为21a -. 故答案为:21;21a -;(3)因为12<<, ∴10110102+<+<+,即111012<+<,所以=11a ,=12b ,故23a b +=,故答案为:23;(4)5306<<,23033<<,∵01y <<,x 是整数,∴x=2, ∴325-=,∴)257x y -=-=,∴x y -7.【点睛】本题考查的是无理数的整数部分与小数部分,掌握估值法确定无理数的范围,即无限不循环小数知识的拓展延伸,理解题意,按照题目所给的表示方法去解答是关键.24.若求若干个相同的不为零的有理数的除法运算叫做除方,如()()()()2223333÷÷-÷-÷-÷-,等。

(必考题)初中七年级数学下册第六单元《实数》经典习题(含答案解析)

(必考题)初中七年级数学下册第六单元《实数》经典习题(含答案解析)

一、选择题1.a,小数部分为b,则a-b的值为()A.6-B6C.8D8A解析:A【分析】先根据无理数的估算求出a、b的值,由此即可得.【详解】<<,91516<<,<<34∴==,a b3,3)∴-=-=,336a b故选:A.【点睛】本题考查了无理数的估算,熟练掌握估算方法是解题关键.2.观察下列运算:81=8,82=64,83=512,84=4 096,85=32 768,86=262 144,…,则81+82+83+84+…+82 017的和的个位数字是()A.2 B.4 C.6 D.8D解析:D【分析】根据规律可得底数为8的幂的个位数字依次为8,4,2,6,以4个为周期,个位数字相加为0. 2017除以4余数是1,故得到和的个位数字是8.【详解】解:2017÷4=504…1,循环了504次,还有1个个位数字为8,所以81+82+83+84+…+82017的和的个位数字是504×0+8=8.故选:D.【点睛】本题主要考查了数字的变化类,尾数的特征,得到底数为8的幂的个位数字的循环规律是解决本题的突破点.3.下列命题是真命题的是()A.两个无理数的和仍是无理数B.有理数与数轴上的点一一对应C.垂线段最短D.如果两个实数的绝对值相等,那么这两个实数相等C解析:C【分析】根据实数的定义和运算法则、绝对值的意义进行分析.【详解】A 、两个无理数的和可能是有理数,例如:2+(-2),故错误;B 、实数与数轴上的点一一对应,故错误;C 、垂线段最短,正确;D 、如果两个实数的绝对值相等,那么这两个实数相等或互为相反数;故选:C.【点睛】本题考查实数的定义和运算法则、绝对值的意义等,熟练掌握基础知识是关键. 4.如图,数轴上表示实数5的点可能是( )A .点PB .点QC .点RD .点S B 解析:B【分析】5【详解】∵253<<,∴5Q .故选:B .【点睛】5 5.在一列数:1a ,2a ,3a ,…,n a 中,1=7a ,2=1a 从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这列数中的第2020个数是( )A .1B .3C .7D .9C解析:C【分析】根据题意可以写出这列数的前几个数,从而可以发现数字的变化特点,进而可以得到这一列数中的第2020个数.【详解】解:由题意可得:a 1=7,a 2=1,a 3=7,a 4=7,a 5=9,a 6=3,a 7=7,a 8=1,…,∵2020÷6=336…4,∴这一列数中的第2020个数是7.故选:C .【点睛】本题考查数字的变化类、尾数特征,解答本题的关键是明确题意,发现数字的变化的特点,求出相应的数据.6.若“!”是一种运算符号,且1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1,…,则计算2015!2014!正确的是( ) A .2015B .2014C .20152014D .2015×2014A解析:A【分析】根据题意列出实数混合运算的式子,进而可得出结论;【详解】∵ 1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1⋅⋅⋅⋅⋅⋅,∴ 可得规律为:()()12!321n n n n =⨯-⨯-⨯⋅⋅⋅⨯⨯⨯, ∴2015!2014!=201520142013120152014201320121⨯⨯⨯⋅⋅⋅⨯=⨯⨯⨯⋅⋅⋅⨯ , 故选:A .【点睛】 本题考查了实数的混合运算,熟知实数混合运算的法则是解答此题的关键.7.在 1.4144-,,227,3π,2,0.3•,2.121112*********...中,无理数的个数( )A .1B .2C .3D .4D 解析:D【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】 1.4144-,有限小数,是有理数,不是无理数;227,分数,是有理数,不是无理数; 0.3•,无限循环小数,是有理数,不是无理数;2-, 3π,23-, 2.121112*********...是无理数,共4个, 故选:D .【点睛】本题主要考查了无理数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.8.在下列实数3,0.31,3π,27-,9,12-,38,1.212212221…(每两个1之间依次多一个2)中,无理数的个数为( ) A .1B .2C .3D .4C 解析:C【分析】无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,据此逐一判断即可得.【详解】解∵93=,382=,∴在所列的8个数中,无理数有3,3π,1.212 212 221…(每两个1之间依次多一个2)这3个,故选:C .【点睛】 本题主要考查的是无理数的概念,熟练掌握无理数的三种类型是解题的关键. 9.如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n (n 是整数,且n ≥3)行从左向右数第(n ﹣2)个数是( )(用含n 的代数式表示)A 21n -B 22n -C 23n -D 24n - B解析:B【分析】 观察不难发现,被开方数是从1开始的连续自然数,每一行的数据的个数是从2开始的连续偶数,求出n-1行的数据的个数,再加上n-2得到所求数的被开方数,然后写出算术平方根即可.【详解】解:前(n ﹣1)行的数据的个数为2+4+6+…+2(n ﹣1)=n (n ﹣1),所以,第n (n 是整数,且n ≥3)行从左到右数第n ﹣2个数的被开方数是n (n ﹣1)+n ﹣2=n 2﹣2,所以,第n (n 是整数,且n ≥3)行从左到右数第n ﹣2.故选:B .【点睛】本题考查了算术平方根,观察数据排列规律,确定出前(n-1)行的数据的个数是解题的关键.10.下列计算正确的是( )A .21155⎛⎫-= ⎪⎝⎭ B .()239-= C 2=± D .()515-=- B 解析:B【分析】 根据有理数的乘方以及算术平方根的意义即可求出答案.【详解】解:A.211525⎛⎫-= ⎪⎝⎭,所以,选项A 运算错误,不符合题意; B.()239-=,正确,符合题意;2=,所以,选项C 运算错误,不符合题意;D.()511-=-,所以,选项D 运算错误,不符合题意;故选:B .【点睛】本题考查了有理数的运算以及求一个数的算术平方根,解题的关键是熟练掌握相关的运算法则. 二、填空题11.已知(2m ﹣1)2=9,(n+1)3=27.求出2m+n 的算术平方根.0或【分析】第一个方程依据平方根的定义求解即可;第二个方程依据立方根的定义可求得n+1=3然后再解方程即可;最后分别代入计算即可【详解】解:(2m-1)2=92m-1=±=±32m-1=3或2m-1解析:0.【分析】第一个方程依据平方根的定义求解即可;第二个方程依据立方根的定义可求得n+1=3,然后再解方程即可;最后分别代入计算即可.【详解】解:(2m-1)2=9,,2m-1=3或2m-1=-3,∴m=-1或m=2,(n+1)3=27,n+1=3,∴n=2,当m=-1,n=2时,2m+n=-2+2=0,∴2m+n 的算术平方根是0;当m=2,n=2时,2m+n=4+2=6,∴2m+n ;故2m+n 的算术平方根是0.【点睛】此题考查了立方根与平方根的定义,此题难度不大,注意掌握方程思想的应用,不要丢解.12.定义一种新运算,观察下列式子:212122128=⨯+⨯⨯=★;2232322330=⨯+⨯⨯=★;()()()221212212-=⨯-+⨯⨯-=-★; ()()213132133-=-⨯+⨯-⨯=★;;(1)计算:()32-★的值;(2)猜想:a b =★________;(3)若12162a +=-★,求a 的值.(1);(2);(3)【分析】(1)利用规定的运算方法直接代入计算即可;(2)利用规定的运算方法求解即可;(3)利用规定的运算方法得到方程再进一步解方程即可【详解】解:(1)∵;;;;;∴;(2)由解析:(1)0;(2)22ab ab +;(3)5a =-【分析】(1)利用规定的运算方法直接代入计算即可;(2)利用规定的运算方法求解即可;(3)利用规定的运算方法得到方程,再进一步解方程即可.【详解】解:(1)∵212122128=⨯+⨯⨯=★;2232322330=⨯+⨯⨯=★;()()()221212212-=⨯-+⨯⨯-=-★; ()()213132133-=-⨯+⨯-⨯=★;;∴()()()232322320-=⨯-+⨯⨯-=★;(2)由(1)可得:22a b ab ab =+★.故答案为:22ab ab +.(3)2111222216222a a a +++=⨯+⨯⨯=-★, 解得:5a =-.【点睛】此题考查有理数的混合运算以及解一元一次方程,理解运算方法是解决问题的关键. 13.求下列各式中x 的值(1)()328x -=(2)21(3)753x -=(1);(2)或【分析】(1)利用立方根的定义得到然后解一次方程即可;(2)先变形为然后利用平方根的定义得到的值【详解】(1)∵∴∴;(2)整理得:∴或∴或【点睛】本题考查了解一元一次方程平方根和立解析:(1)4x =;(2)18x =或12x =-.【分析】(1)利用立方根的定义得到22x -=,然后解一次方程即可;(2)先变形为()23225x -=,然后利用平方根的定义得到x 的值.【详解】(1)∵()328x -=,∴22x -=,∴4x =;(2)21(3)753x -=,整理得:()23225x -=,∴315x -=或315x -=-,∴18x =或12x =-.【点睛】本题考查了解一元一次方程,平方根和立方根,熟练掌握各自的定义是解本题的关键. 14.对于有理数a ,b ,定义一种新运算“”,规定a b a b a b =++-.(1)计算()23-的值;(2)①当a ,b 在数轴上的位置如图所示时,化简ab ; ②当a b ac =时,是否一定有b c =或者b c =-?若是,则说明理由;若不是,则举例说明.(1)6;(2)①;②不一定理由见解析【分析】(1)根据新定义可得然后按有理数的运算法则计算即可;(2)①首先根据数轴可得 然后根据新定义可得去掉绝对值符号之后按整式加减运算法则化简即可;②举反例:解析:(1)6;(2)①2b -;②不一定,理由见解析.【分析】(1)根据新定义可得()()()232323-=+-+--☉,然后按有理数的运算法则计算即可;(2)①首先根据数轴可得0a b +<,0a b -> ,然后根据新定义可得a b a b a b =++-☉,去掉绝对值符号之后按整式加减运算法则化简即可;②举反例:当5a =-,4b =,3c =时,a b a c =☉☉成立;【详解】(1)()23-☉()()2323=+-+--15=-+15=+6=; (2)①从a ,b 在数轴上的位置可得0a b +<,0a b -> ,()()2a b a b a b a b a b a b b ∴==++-=-++-=-;②不一定有b c =或者b c =-,举反例如下,当5a =-,4b =,3c =时,10ab a b a b =++-=☉,10ac a c a c =++-=☉, 此时a b a c =☉☉成立,但b c ≠且b c ≠-.【点睛】本题考查新定义运算,解答的关键是根据新定义,转化成有理数的运算,整式的运算. 15.对两数a ,b 规定一种新运算:2a b ab ⊗=,例如:2422416⊗=⨯⨯=,若不论x 取何值时,总有a x x ⊗=,则a =______.【分析】将转化为2ax=x 来解答【详解】解:∵可转化为:2ax=x 即∵不论x 取何值都成立∴解得:故答案为:【点睛】本题考查实数的运算正确理解题目中的新运算是解题的关键解析:12【分析】将a x x ⊗=,转化为2ax=x 来解答.【详解】解:∵a x x ⊗=可转化为:2ax=x ,即()210a x -=,∵不论x 取何值,()210a x -=都成立,∴210a -=,解得:12a =, 故答案为:12. 【点睛】 本题考查实数的运算,正确理解题目中的新运算是解题的关键.16.比较3、4 _______________.(用“<”连接)3<<4;【分析】先估算出的范围即可求出答案【详解】∵∴故答案为:【点睛】本题考查了估算无理数的大小能估算出的大小是解此题的关键解析:34;【分析】【详解】 ∵3=4= ∴34<<.故答案为:34<<.【点睛】17.下列实数0, 23,,π,0.1010010001其中无理数共有___个.2【分析】根据无理数的定义解答即可【详解】解:实数中无理数有实数π共2个故答案为:2【点睛】本题考查了无理数的定义其中初中范围内学习的无理数有:π2π等;开方开不尽的数;以解析:2【分析】根据无理数的定义解答即可.【详解】解:实数0,23,π,0.1010010001π共2个, 故答案为:2.【点睛】 本题考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.18.设a ,b a b <<,是,则a b =____.9【分析】求出的范围求出ab 的值代入求出即可【详解】∵2<<3∴a =2b =3∴ba =32=9故答案为:9【点睛】本题考查了估算无理数的大小的应用关键是求出ab 的值解析:9【分析】a 、b 的值,代入求出即可.【详解】∵23,∴a =2,b =3,∴b a =32=9.故答案为:9.【点睛】本题考查了估算无理数的大小的应用,关键是求出a 、b 的值.19.已知有理数1a ≠,我们把11a -称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--,如果13a =-,2a 是1a 的差倒数,4a 是3a 的差倒数,4a 是5a 的差倒数…依此类推,那么的12342017201820192020a a a a a a a a -+-⋅⋅⋅+-+-值是______.【分析】根据题意可以写出这列数的前几项从而可以发现数字的变化规律从而可以求得所求式子的值【详解】∵∴……∴每三个数一个循环∵∴则+--3-3-++3=-3-++3故答案为:【点晴】本题考查数字的变化 解析:1312. 【分析】 根据题意,可以写出这列数的前几项,从而可以发现数字的变化规律,从而可以求得所求式子的值.【详解】∵13a =-,∴()211134a ==--,3441131a ,443131a ,()511134a ==--, …… ∴1a ,2n a a ⋅⋅⋅每三个数一个循环,∵202036731÷=⋅⋅⋅,∴202013a a ==-,则12342017201820192020a a a a a a a a -+-⋅⋅⋅+-+-143343=--+++14-43-3 -3-14+43+3 =-3-14+43+3 1312=. 故答案为:1312. 【点晴】本题考查数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出所求式子的值.20.若30a +=,则+a b 的立方根是______.-1【分析】根据绝对值和二次根式的非负性求出ab 的值计算即可;【详解】∵∴∴∴∴的立方根-1故答案是-1【点睛】本题主要考查了代数式求值结合绝对值二次根式的非负性立方根的性质计算是解题的关键解析:-1【分析】根据绝对值和二次根式的非负性求出a ,b 的值计算即可;【详解】∵30a ++=,∴30a +=,20b -=,∴3a =-,2b =, ∴321a b +=-+=-, ∴+a b 的立方根-1.故答案是-1.【点睛】本题主要考查了代数式求值,结合绝对值、二次根式的非负性、立方根的性质计算是解题的关键.三、解答题21.阅读下列信息材料信息1:因为尤理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来比如:π“……”或者“≈”的表示方法都不够百分百准确;信息2:2.5的整数部分是2,小数部分是0.5,可以看成2.52-得来的;信息3:任何一个无理数,都可以夹在两个相邻的整数之间,如23<<,是因为<;根据上述信息,回答下列问题:(1___________,小数部分是______________;(2)若2122a <<,则a 的整数部分是___________;小数部分可以表示为_______;(3)10+10a b <则a b +=______;(43x y =+,其中x 是整数,且01y <<,请求x y -的相反数.解析:(1)33;(2)21;21a -;(3)23;(47.【分析】(1)先找到91316<<,可找到34<< (2)根据因为2122a <<,即可找出a 的整数部分与小数部分(3)找到12<<在哪两个整数之间,再加10即可.(4)先确定56<<,找到233<<,由01y <<,x 是整数,即可确定x=2,5,再求7x y -=,即可求出【详解】(1)91316<< ∴34<<33故答案为:33;(2)因为2122a <<,故则a 的整数部分是21,a 的小数部分可以表示为21a -. 故答案为:21;21a -;(3)因为12<<, ∴10110102+<+<+,即111012<+<,所以=11a ,=12b ,故23a b +=,故答案为:23;(4)5306<<,23033<<,∵01y <<,x 是整数,∴x=2, ∴325-=,∴)257x y -=-=,∴x y -7.【点睛】本题考查的是无理数的整数部分与小数部分,掌握估值法确定无理数的范围,即无限不循环小数知识的拓展延伸,理解题意,按照题目所给的表示方法去解答是关键.22.进位数是一种计数方法,可以用有限的数学符号代表所有的数值,使用数字符号的数目称为基数,基数为n 个则称为n 进制,现在最常用的是十进制,通常使用10个阿拉伯数字0—9作为基数,特点是满十进1,对于任意一个(210)n n ≤≤进制表示的数通常使用n 个阿拉伯数字()01--n 作为基数,特点是逢n 进一,我们可以通过下列方式把它转化为十进制.例如:五进制数 ()252342535469=⨯+⨯+=,则()523469=,七进制数()271361737676=⨯+⨯+=(1)请将以下两个数转化为十进制:()5333= ,(746)= .(2)若一个正数可以用7进制表示为()7abc ,也可用五进制表示为()5cba ,求出这个数并用十进制表示.解析:(1)93,34;(2)这个数用十进制表示为51或102.【分析】(1)根据进制的规则列式计算即可;(2)根据题意列得227755a b c c b a ++=++,化简成24a+b=12c ,根据a 、b 、c 的取值范围分别将a 从1开始取值验证,即可得到答案.【详解】(1)()253333535393=⨯+⨯+=,7(46)47634=⨯+=,故答案为:93,34;(2)根据题意得:227755a b c c b a ++=++,∴24a+b=12c , ∴212b c a =+, ∵a 、b 、c 均为整数,且04b ≤≤,∴b=0,c=2a ,∵04a <≤,04c <≤,∴12a c =⎧⎨=⎩或24a c =⎧⎨=⎩, ∵27(102)170251=⨯++=,27(204)2704102=⨯++=.∴这个数用十进制表示为51或102.【点睛】此题考查新定义运算,有理数的混合运算,列代数式,正确理解题意是解题的关键. 23.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).(1)阅读理解:图1中大正方形的边长为________,图2中点A 表示的数为________; (2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及 35-的点,并比较它们的大小.解析:(1)2,2-;(2)①见解析;②见解析, 350.5-+<-【分析】(1)设正方形边长为a ,根据正方形面积公式,结合平方根的运算求出a 值,则知结果; (2) ① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②由题(1)的原理得出大正方形的边长为5,然后在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M ,再把N 点表示出来,即可比较它们的大小.【详解】解:设正方形边长为a ,∵a 2=2,∴a=2±,故答案为:2,2-;(2)解:①裁剪后拼得的大正方形如图所示:②设拼成的大正方形的边长为b ,∴b 2=5,∴b=±5,在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M ,则M 表示的数为-3+5,看图可知,表示-0.5的N 点在M 点的右方,∴比较大小:350.5-+<-.【点睛】本题主要考查平方根与算术平方根的应用及实数的大小比较,熟练掌握平方根与算术平方根的意义及实数的大小比较是解题的关键.24.定义一种新运算,观察下列式子:212122128=⨯+⨯⨯=★;2232322330=⨯+⨯⨯=★;()()()221212212-=⨯-+⨯⨯-=-★; ()()213132133-=-⨯+⨯-⨯=★;;(1)计算:()32-★的值;(2)猜想:a b =★________;(3)若12162a +=-★,求a 的值. 解析:(1)0;(2)22ab ab +;(3)5a =-【分析】(1)利用规定的运算方法直接代入计算即可;(2)利用规定的运算方法求解即可;(3)利用规定的运算方法得到方程,再进一步解方程即可.【详解】解:(1)∵212122128=⨯+⨯⨯=★;2232322330=⨯+⨯⨯=★;()()()221212212-=⨯-+⨯⨯-=-★; ()()213132133-=-⨯+⨯-⨯=★;;∴()()()232322320-=⨯-+⨯⨯-=★;(2)由(1)可得:22a b ab ab =+★.故答案为:22ab ab +.(3)2111222216222a a a +++=⨯+⨯⨯=-★, 解得:5a =-.【点睛】此题考查有理数的混合运算以及解一元一次方程,理解运算方法是解决问题的关键. 25.求下列x 的值.(1) 27x 3=-8 (2) (3x -1)2=9解析:(1)x =23-;(2)x =43或x =23- 【分析】(1)利用立方根的定义求解;(2)利用平方根的定义求解.【详解】(1)解:3827x =,23x =; (2)解:313x -=±,34x =或32x =-, 43x =或23x =-. 【点睛】本题考查解方程,熟练掌握立方根、平方根的定义是关键.26.对于有理数a ,b ,定义一种新运算“”,规定a b a b a b =++-.(1)计算()23-的值;(2)①当a ,b 在数轴上的位置如图所示时,化简ab ; ②当ab ac =时,是否一定有b c =或者b c =-?若是,则说明理由;若不是,则举例说明. 解析:(1)6;(2)①2b -;②不一定,理由见解析.【分析】(1)根据新定义可得()()()232323-=+-+--☉,然后按有理数的运算法则计算即可; (2)①首先根据数轴可得0a b +<,0a b -> ,然后根据新定义可得a b a b a b =++-☉,去掉绝对值符号之后按整式加减运算法则化简即可; ②举反例:当5a =-,4b =,3c =时,a b a c =☉☉成立;【详解】(1)()23-☉()()2323=+-+--15=-+15=+6=; (2)①从a ,b 在数轴上的位置可得0a b +<,0a b -> ,()()2a b a b a b a b a b a b b ∴==++-=-++-=-;②不一定有b c =或者b c =-,举反例如下,当5a =-,4b =,3c =时,10ab a b a b =++-=☉,10ac a c a c =++-=☉, 此时a b a c =☉☉成立,但b c ≠且b c ≠-.【点睛】本题考查新定义运算,解答的关键是根据新定义,转化成有理数的运算,整式的运算. 27.计算:(1238127(5)--(2)03(0)8|32|π--+(3)解方程:4x 2﹣9=0.解析:(1)-8;(2)13)x =±32. 【分析】 (1)利用算数平方根、立方根及二次根式性质计算即可;(2)利用零指数幂、立方根及绝对值的代数意义进行化简即可; (3)方程变形后,利用开方运算即可求解.【详解】解:(1)原式=()935358÷--=--=-;(2)原式=1221-+-=(3)方程变形得:294x =,开方得:32x =±. 【点睛】本题考察实数的运算,熟练掌握运算法则是解题的关键. 28.求满足下列条件的x 的值:(1)3(3)27x +=-; (2)2(1)218x -+=.解析:(1)6x =-;(2)3x =-或5【分析】(1)根据立方根,即可解答;(2)根据平方根,即可解答.【详解】解:(1)3(3)27x +=-33x +=-6x =-;(2)2(1)218x -+=2(1)16x -=14x -=±∴3x =-或5.【点睛】本题考查了平方根、立方根,解决本题的关键是熟记平方根、立方根的定义.。

实数难题汇编及解析

实数难题汇编及解析

实数难题汇编及解析一、选择题1.+1的值应在( )A .3和4之间B .4和5之间C .5和6之间D .6和7之间 【答案】B【解析】解:∵34<<,∴415<<.故选B .的取值范围是解题关键.2 )A .±2B .±4C .4D .2【答案】D【解析】【分析】如果一个数x 的立方等于a ,那么x 是a 的立方根,根据此定义求解即可.根据算术平方根的定义可知64的算术平方根是8,而8的立方根是2,由此就求出了这个数的立方根.【详解】∵64的算术平方根是8,8的立方根是2,∴这个数的立方根是2.故选D.【点睛】本题考查了立方根与算术平方根的相关知识点,解题的关键是熟练的掌握立方根与算术平方根的定义.3.在整数范围内,有被除数=除数⨯商+余数,即a bq r a b =+≥(且)00b r b ≠≤<,,若被除数a 和除数b 确定,则商q 和余数r 也唯一确定,如:11,2a b ==,则11251=⨯+此时51q r ==,.在实数范围中,也有 (a bq r a b =+≥且0b ≠,商q 为整数,余数r 满足:0)r b ≤<,若被除数是,除数是2,则q 与r 的和( )A .4B .6C .4D .4 【答案】A【解析】【分析】根据2=q 即可先求出q 的值,再将a 、q 、b 的值代入a =bq +r 中即可求出r 的值,从而作答.【详解】∵2=7=45,的整数部分是4,∴商q=4,∴余数r=a﹣bq=2×4=8,∴q+r=4+8=4.故选:A.【点睛】的整数部本题考查了整式的除法、估算无理数的大小,解答本题的关键理解q即2分.4.下列各数中最小的数是( )A.1-B.0 C.D.2-【答案】D【解析】【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】根据实数比较大小的方法,可得-2<-1<0,∴各数中,最小的数是-2.故选D.【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.5.把-( )A B.C.D【答案】A【解析】【分析】由二次根式-a是负数,根据平方根的定义将a移到根号内是2a,再化简根号内的因式即可.【详解】∵1a-≥,且0a≠,∴a<0,∴1aa-->0,∴1aa--=22)11(a aa a-⋅-=-⋅=a-,故选:A.【点睛】此题考查平方根的定义,二次根式的化简,正确理解二次根式的被开方数大于等于0得到a的取值范围是解题的关键.6.在3.14,237,2-,327,π这几个数中,无理数有()A.1个B.2个C.3个D.4个【答案】B【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】3.14,237,2-,327,π中无理数有:2-,π,共计2个.故选:B.【点睛】考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.7.估计的值在()A.0到1之间B.1到2之间C.2到3之间D.3到4之间【答案】B【解析】【分析】利用“夹逼法”估算无理数的大小.【详解】=﹣2.因为9<11<16,所以3<<4.所以1<﹣2<2.所以估计的值在1到2之间.故选:B.【点睛】本题考查估算无理数的大小.估算无理数大小要用逼近法.8.实数a、b在数轴上的位置如图所示,且|a|>|b|,则化简2a a b-+的结果为()A.2a+b B.-2a+b C.b D.2a-b【答案】C【解析】试题分析:利用数轴得出a+b的符号,进而利用绝对值和二次根式的性质得出即可:∵由数轴可知,b>0>a,且 |a|>|b|,()2a ab a a b b+=-++=.故选C.考点:1.绝对值;2.二次根式的性质与化简;3.实数与数轴.9.下列说法正确的是()A.﹣81的平方根是±9 B.77C.127的立方根是±13D.(﹣1)2的立方根是﹣1【答案】B【解析】【分析】由平方根、算术平方根及立方根的定义依次判定各项即可解答.【详解】选项A,﹣81没有平方根,选项A错误;选项B,77B,选项正确;选项C,127的立方根是13,选项C错误;选项D,(﹣1)2的立方根是1,选项D错误.故选B.【点睛】本题考查了平方根、算术平方根及立方根的应用,熟知平方根、算术平方根及立方根的定义是解决问题的关键.10.4的算术平方根为()A.2±B.2C.2±D.2【答案】B【解析】分析:先求得4的值,再继续求所求数的算术平方根即可.详解:∵4=2,而2的算术平方根是2,∴4的算术平方根是2,故选B.点睛:此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A的错误.11.如图,表示8的点在数轴上表示时,所在哪两个字母之间()A.C与D B.A与B C.A与C D.B与C【答案】A【解析】【分析】确定出8的范围,利用算术平方根求出8的范围,即可得到结果.【详解】解:∵6.25<8<9,<<∴2.583则表示8的点在数轴上表示时,所在C和D两个字母之间.故选:A.【点睛】此题考查了估算无理数的大小,以及实数与数轴,解题关键是确定无理数的整数部分即可解决问题.12.如图,数轴上A,B两点表示的数分别为-1和3,点B关于点A的对称点为C,则点C所表示的数为()A.3B.3C.3D.3【答案】A【解析】【分析】由于A,B两点表示的数分别为-1OC的长度,根据C在原点的左侧,进而可求出C的坐标.【详解】∵对称的两点到对称中心的距离相等,∴CA=AB,,∴C点在原点左侧,∴C表示的数为:故选A.【点睛】本题主要考查了求数轴上两点之间的距离,同时也利用对称点的性质及利用数形结合思想解决问题.13.下列运算正确的是()A =-2 B.|﹣3|=3 C=± 2 D【答案】B【解析】【分析】A、根据算术平方根的定义即可判定;B、根据绝对值的定义即可判定;C、根据算术平方根的定义即可判定;D、根据立方根的定义即可判定.【详解】解:A、C2=,故选项错误;B、|﹣3|=3,故选项正确;D、9开三次方不等于3,故选项错误.故选B.【点睛】此题主要考查了实数的运算,注意,正数的算术平方根是正数.14.已知点P的坐标为(a,b)(a>0),点Q的坐标为(c,3),且|a﹣,将线段PQ向右平移a个单位长度,其扫过的面积为20,那么a+b+c的值为()A.12 B.15 C.17 D.20【答案】C【解析】【分析】由非负数的性质得到a=c,b=7,P(a,7),故有PQ∥y轴,PQ=7-3=4,由于其扫过的图形是矩形可求得a ,代入即可求得结论.【详解】∵且|a -c =0,∴a =c ,b =7,∴P (a ,7),PQ ∥y 轴,∴PQ =7-3=4,∴将线段PQ 向右平移a 个单位长度,其扫过的图形是边长为a 和4的矩形, ∴4a =20,∴a=5,∴c =5,∴a +b +c =5+7+5=17,故选C.【点睛】本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ ∥y 轴,进而求得PQ 是解题的关键.15.下列说法中,正确的是( )A .-2是-4的平方根B .1的立方根是1和-1C .-2是(-2)2的算术平方根D .2是(-2)2的算术平方根【答案】D【解析】【分析】根据平方根、算术平方根、立方根的定义进行解答即可.【详解】A . -4没有平方根,故A 错误;B . 1的立方根是1,故B 错误;C . (-2)2的算术平方根是2,故C 错误;D . 2是(-2)2的算术平方根,故D 正确故选:D【点睛】本题主要考查的是算术平方根与平方根\立方根,掌握算术平方根与平方根\立方根的定义是解题的关键.16.已知3y =,则y x 的值为()n n A .43 B .43- C .34 D .34- 【答案】C【解析】由题意得,4−x ⩾0,x−4⩾0,解得x=4,则y=3,则y x =34, 故选:C.17.计算2|=( )A . 1B .1﹣C .﹣1D .3【答案】D【解析】【分析】根据绝对值的性质去掉绝对值的符号后进行合并即可.【详解】原式=+2=3,故选D .【点睛】本题考查了实数的运算,熟练掌握绝对值的性质是解本题的关键.18.已知甲、乙、丙三个数,甲2=,乙3=,丙2=,则甲、乙、丙之间的大小关系,下列表示正确的是( ). A .甲<乙<丙B .丙<甲<乙C .乙<甲<丙D .甲<丙<乙 【答案】C【解析】【分析】由无理数的估算,得到324<<,132<<,425<<,然后进行判断,即可得到答案.【详解】解:∵12<,∴324<<,即3<甲<4,∵45<<,∴132<<,即1<乙<2,∵67<<,∴425<<,即4<丙<5,∴乙<甲<丙;故选:C.【点睛】本题考查了实数比较大小,以及无理数的估算,解题的关键是熟练掌握无理数的估算,以及比较大小的法则.19.估计226⨯值应在()A.3到4之间B.4到5之间C.5到6之间D.6到7之间【答案】A【解析】【分析】先根据二次根式乘法法则进行计算,得到一个二次根式后再利用夹逼法对二次根式进行估算即可得解.【详解】解:22612⨯=∵91216<<∴91216<<∴3124<<∴估计226⨯值应在3到4之间.故选:A【点睛】本题考查了二次根式的乘法、无理数的估算,熟练掌握相关知识点是解决问题的关键.20.如图,数轴上的点P表示的数可能是()A5B.5C.-3.8 D.10-【答案】B【解析】【分析】【详解】5 2.2≈,所以P点表示的数是5-。

实数部分测试题及答案

实数部分测试题及答案

实数部分测试题及答案一、选择题1. 下列哪个数是实数?A. √2B. -πC. √-1D. i答案:A2. 实数集R中的元素包括:A. 有理数B. 无理数C. 有理数和无理数D. 只有整数答案:C二、填空题1. 一个数的平方是16,这个数是______。

答案:±42. 一个数的立方是-8,这个数是______。

答案:-2三、解答题1. 证明:√2是一个无理数。

答案:假设√2是有理数,那么可以表示为√2 = a/b,其中a和b是互质的整数。

两边平方得到2 = a²/b²,从而a² = 2b²。

这意味着a²是偶数,所以a也是偶数,设a = 2k。

代入得到4k² = 2b²,即b²= 2k²,所以b也是偶数。

但这与a和b互质的假设矛盾。

因此,√2不能表示为两个整数的比,所以√2是一个无理数。

2. 计算下列表达式的值:(1) (-3)²(2) √25 - √1答案:(1) (-3)² = 9(2) √25 - √1 = 5 - 1 = 4四、应用题1. 一个直角三角形的两条直角边分别为3和4,求斜边的长度。

答案:根据勾股定理,斜边长度c = √(a² + b²),其中a和b是直角边的长度。

代入数值得到c = √(3² + 4²) = √(9 + 16) = √25 = 5。

2. 一个无理数的平方根是3,求这个无理数。

答案:设这个无理数为x,根据题意,√x = 3。

两边平方得到x = 3² = 9。

但题目要求无理数,所以这个数应该是9的平方根,即x = √9 =3(这里实际上3是一个有理数,但根据题目要求,我们可以认为这是一个无理数的特殊情况)。

实数的复习题及答案

实数的复习题及答案

实数的复习题及答案
1. 判断题:实数包括有理数和无理数。

答案:正确。

2. 选择题:以下哪个数是有理数?
A. π
B. √2
C. 0.33333...
D. 1/3
答案:D。

3. 填空题:实数a和b的和记作______。

答案:a+b。

4. 计算题:计算下列各题。

(1) 3 + 4i - 5i
(2) (2/3) + (-1/2)
答案:
(1) 3 - i
(2) 1/6
5. 应用题:一个数的平方根是它本身的数有几个?
答案:有两个,分别是0和1。

6. 证明题:证明实数集是完备的。

答案:实数集的完备性可以通过戴德金分割来证明。

戴德金分割是将
实数集分为两个非空子集A和B,使得A中的每一个元素都小于B中的每一个元素,且A没有最大元素。

这样的分割可以唯一确定一个实数,
从而证明了实数集的完备性。

7. 简答题:实数和复数的主要区别是什么?
答案:实数是复数的一个子集,复数包括实数和虚数。

实数可以表示为a+0i的形式,其中a是实数,而复数可以表示为a+bi的形式,其中a和b是实数,i是虚数单位。

8. 论述题:试述实数的连续性。

答案:实数的连续性是指在实数线上,任意两个实数之间都存在另一个实数。

这一性质可以通过实数的完备性来证明,即任意两个实数之间都存在一个实数的分割,这个分割可以确定一个唯一的实数,从而保证了实数的连续性。

(必考题)初中七年级数学下册第六单元《实数》经典习题

(必考题)初中七年级数学下册第六单元《实数》经典习题

一、选择题1)A .8B .±8C .D . C解析:C【分析】【详解】,8的算术平方根是,.故选择:C .【点睛】本题考查一个数的算术平方根的算术平方根,掌握求算式的平方根,一定要把算式化简得到结果后再求是解题关键.2.下列说法中,正确的是( )A .正数的算术平方根一定是正数B .如果a 表示一个实数,那么-a 一定是负数C .和数轴上的点一一对应的数是有理数D .1的平方根是1A 解析:A【分析】根据算术平方根、实数与数轴上的点是一一对应关系、实数、平方根,即可解答.【详解】A 、正数的算术平方根一定是正数,故选项正确;B 、如果a 表示一个实数,那么-a 不一定是负数,例如a=0,故选项错误;C 、和数轴上的点一一对应的数是实数,故选项错误;D 、1的平方根是±1,故选项错误;故选:A .【点睛】本题主要考查了实数,实数与数轴,解决本题的关键是熟记实数的有关性质. 3.在一列数:1a ,2a ,3a ,…,n a 中,1=7a ,2=1a 从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这列数中的第2020个数是( )A .1B .3C .7D .9C 解析:C【分析】根据题意可以写出这列数的前几个数,从而可以发现数字的变化特点,进而可以得到这一列数中的第2020个数.解:由题意可得:a1=7,a2=1,a3=7,a4=7,a5=9,a6=3,a7=7,a8=1,…,∵2020÷6=336…4,∴这一列数中的第2020个数是7.故选:C.【点睛】本题考查数字的变化类、尾数特征,解答本题的关键是明确题意,发现数字的变化的特点,求出相应的数据.4.已知n是正整数,并且n-1<3+<n,则n的值为()A.7 B.8 C.9 D.10C解析:C【分析】根据实数的大小关系比较,得到5<6,从而得到n的值.【详解】解:∵<5<6,∴8<<9,∴n=9.故选:C.【点睛】5.下列说法中,错误的是()π+是无理数A.实数与数轴上的点一一对应B.1C D C解析:C【分析】根根据有理数和无理数的定义可对C、B、D进行判断;根据实数与数轴上点的关系可对A 进行判断.解:A. 实数与数轴上的点是一一对应的,此说法正确,不符合题意;π+是无理数,此说法正确,不符合题意;B.1是无限不循环小数,此说法正确,不符合题意.故选:C.【点睛】本题考查了实数的有关概念:有理数和无理数统称为实数;整数和分数统称为有理数;无限不循环小数叫无理数;实数与数轴上的点是一一对应的.6.若3a=,则a在()A.3-和2-之间B.2-和1-之间C.1-和0之间D.0和1之间C解析:C【分析】案.【详解】解:∵4<5<9,∴23.∴-1<0.故选:C.【点睛】7.估计50的立方根在哪两个整数之间()A.2与3B.3与4C.4与5D.5与6B解析:B【分析】,可得答案.【详解】,得34,所以,50的立方根在3与4之间故选:B.【点睛】本题考查了估算无理数的大小,利用了正数的被开方数越大立方根越大的关系.8.下列有关叙述错误的是()AB 是2的平方根C .12<<D .2是分数D 解析:D【分析】 根据正数、平方根、无理数的估算与定义逐项判断即可得.【详解】AB 是2的平方根,此项叙述正确;C 、12<<,此项叙述正确;D 、2是无理数,不是分数,此项叙述错误; 故选:D .【点睛】本题考查了正数、平方根、无理数的估算与定义,熟练掌握各定义是解题关键. 9.下列各数中是无理数的是( )A .227B .1.2012001C .2πD 解析:C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A 、227分数,是有理数,选项不符合题意; B 、1.2012001是有理数,选项不符合题意; C 、2π是无理数,选项符合题意;D ,9是整数是有理数,,选项不符合题意.故选:C .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.10.在 -1.414π, 3.212212221…,227,3.14这些数中,无理数的个数为( )A .2B .3C .4D .5C 解析:C【分析】先计算算术平方根,再根据无理数的定义即可得.【详解】4=,22 3.1428577=小数点后的142857是无限循环的,,2π+⋯,共4个,故选:C .【点睛】 本题考查了算术平方根、无理数,熟记无理数的定义是解题关键.二、填空题11.计算:(1)132322⎛⎫⨯-⨯- ⎪⎝⎭(2)2291|11232⎛⎫-+-⨯- ⎪⎝⎭(1);(2)-7+【分析】(1)直接利用有理数混合运算法则计算得出答案;(2)原式先计算乘方再计算乘法运算进而算加减运算即可求出值【详解】(1)原式=6-3×=6-=;(2)原式=-1+-1-×=解析:(1)32;(2). 【分析】(1)直接利用有理数混合运算法则计算得出答案;(2)原式先计算乘方,再计算乘法运算,进而算加减运算即可求出值.【详解】(1)原式=6-3×32=6-92=32;(2)原式=-1-23×152. 【点睛】本题主要考查了有理数和实数的混合运算,正确掌握运算法则是解题关键.12.已知2x +1的算术平方根是0=4,z 是﹣27的立方根,求2x +y +z 的平方根.±2【分析】先根据算术平方根的定义求得2x 的值再根据算术平方根的定义求出y 根据立方根的定义求z 然后代入要求的式子进行计算最后根据平方根的定义即可得出答案【详解】解:∵2x+1的算术平方根是0∴2x+解析:【分析】先根据算术平方根的定义求得2x 的值,再根据算术平方根的定义求出y ,根据立方根的定义求z ,然后代入要求的式子进行计算,最后根据平方根的定义即可得出答案.【详解】解:∵2x+1的算术平方根是0,∴2x+1=0,∴2x=﹣1,∵=4,∴y=16,∵z是﹣27的立方根,∴z=﹣3,∴2x+y+z=﹣1+16﹣3=12,∴2x+y+z的平方根是=【点睛】本题考查了平方根、算术平方根、立方根,解决本题的关键是熟记平方根、算术平方根、立方根的定义.13)1152-⎛⎫-+︒⎪⎝⎭【分析】根据平方根定义负指数幂零指数幂特殊角的三角函数值计算即可;【详解】解:原式【点睛】本题主要考查了实数的运算结合负整数指数幂零指数幂特殊角的三角函数值计算是解题的关键解析:3 2【分析】根据平方根定义、负指数幂、零指数幂、特殊角的三角函数值计算即可;【详解】解:原式33421421222=-+-=-+-=.【点睛】本题主要考查了实数的运算,结合负整数指数幂、零指数幂、特殊角的三角函数值计算是解题的关键.14.比较大小:12π-________1【分析】利用估值比较法再利用不等式的性质3不等式两边都乘以-1不等式方向改变最后利用不等式性质1不等式两边都加1不等号方向不变即可确定大小【详解】∵∴∴∴故答案为:【点睛】本题考查无理数的比较大小问解析:<【分析】利用估值比较法322π>>,再利用不等式的性质3,不等式两边都乘以-1,不等式方向改变2π-<,最后利用不等式性质1,不等式两边都加1,不等号方向不变即可确定大小. 【详解】∵322π>3=222<,∴2π>,∴2π-<, ∴12π-<1. 故答案为:<.【点睛】本题考查无理数的比较大小问题,掌握不等式的性质,会用不等式的性质比较大小,用估值法比较大小是解题关键.15.在实数π,87,0中,无理数的个数是________个.【分析】无理数就是无限不循环小数理解无理数的概念一定要同时理解有理数的概念有理数是整数与分数的统称即有限小数和无限循环小数是有理数而无限不循环小数是无理数由此即可判定选择项【详解】由无理数的定义可知解析:2【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】由无理数的定义可知,π故答案为:2.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.16.0.5325===的值是______________________.【分析】根据立方根的性质即可求解【详解】已知故答案为:【点睛】此题主要考查立方根的求解解题的关键是熟知实数的性质变形求解解析:11.47【分析】根据立方根的性质即可求解.【详解】=,1.147===⨯=1.1471011.47故答案为: 11.47.【点睛】此题主要考查立方根的求解,解题的关键是熟知实数的性质变形求解.17.一个四位正整数的千位、百位、十位、个位上的数字分别为a,b,c,d,如果≤≤≤,那么我们把这个四位正整数叫做进步数,例如四位正整数2347:因为a b c d<<<,所以2347叫做进步数.2347(1)求四位正整数中的最大的“进步数”与最小的“进步数”的差;(2)已知一个四位正整数的百位、个位上的数字分别是1、4,且这个四位正整数是“进步数”,同时,这个四位正整数能被7整除,求这个四位正整数.(1)8888;(2)1134【分析】(1)根据进步数的定义分别求出四位正整数中的最大进步数与最小进步数即可得解;(2)根据进步数的定义可以推得所求数为1114112411341144中的某一个再根解析:(1)8888;(2)1134 .【分析】(1)根据进步数的定义分别求出四位正整数中的最大“进步数”与最小“进步数”即可得解;(2)根据进步数的定义可以推得所求数为1114、1124、1134、1144中的某一个,再根据这个四位正整数能被7整除逐一对4个数进行验证可以得解.【详解】解:(1)由进步数的定义可知四位正整数中最大的“进步数”应该是9999,又最高位不能为0,所以四位正整数中的千位最小为0,所以四位正整数中最小的“进步数”应该是1111,∴9999-1111=8888,∴四位正整数中的最大的“进步数”与最小的“进步数”的差为8888;(2)由已知可得所求数的千位为1,十位为1-4中的某个数字,∴所求数为1114、1124、1134、1144中的某一个,∵这个四位正整数能被7整除,∴由1114=159×7+1,1124=160×7+4,1134=162×7,1144=163×7+3可知所求数为1134 .【点睛】本题考查新定义下的实数规律探索,由材料归纳出新定义并应用于具体问题求解是解题关键.18. 1.414≈,于是我们说:的整数部分为1,小数部分则可记为1”.则:(11的整数部分是__________,小数部分可以表示为__________;(22的小数部分是a ,7-b ,那么a b +=__________;(3x 的小数部分为y ,求1(x y --的平方根.(1)2;(2)1;(3)【分析】(1)先估算出的取值范围再确定的整数部分和小数部分;(2)先估算出和的取值范围再确定a 与b 的值最后代入代数式计算即可;(3)先估算出的取值范围再确定xy 的值最后代入解析:(1)21;(2)1;(3)3±.【分析】(11的整数部分和小数部分;(22和7-a 与b 的值,最后代入代数式计算即可;(3的取值范围,再确定x 、y 的值,最后代入代数式计算即可.【详解】解:(1)∵1<2<4∴1<2 ∴1, ∴1的整数部分为212+-1故答案为21;(2)∵1<3<4∴12 ∴1,∴2的整数部分为3,小数部分为21-;7-的整数部分为5,小数部分为b=75--=2∴1+2=1故答案为1;(3)∵9<11<16∴3<4 ∴x=3,小数部分为-3∴()3211(3==3=9x y --- ∵3±.故答案为3±.【点睛】本题主要考查了估算无理数的大小,掌握运用逼近法比较无理数的大小成为解答本题的关键.19.已知a b 、是有理数,若2364,64a b ==,则+a b 的所有值为____________.12或【分析】根据平方和立方的意义求出a 与b 的值然后代入原式即可求出答案【详解】解:∵a2=64b3=64∴a=±8b=4∴当a=8b=4时∴a+b=8+4=12当a=-8b=4时∴a+b=-8+4解析:12或4-【分析】根据平方和立方的意义求出a 与b 的值,然后代入原式即可求出答案.【详解】解:∵a 2=64,b 3=64,∴a=±8,b=4,∴当a=8,b=4时,∴a+b=8+4=12,当a=-8,b=4时,∴a+b=-8+4=-4,故答案为:12或-4【点睛】本题考查有理数,解题的关键是熟练运用有理数的运算法则,本题属于基础题型.20.若30a +=,则+a b 的立方根是______.-1【分析】根据绝对值和二次根式的非负性求出ab 的值计算即可;【详解】∵∴∴∴∴的立方根-1故答案是-1【点睛】本题主要考查了代数式求值结合绝对值二次根式的非负性立方根的性质计算是解题的关键解析:-1【分析】根据绝对值和二次根式的非负性求出a ,b 的值计算即可;【详解】∵30a ++=,∴30a +=,20b -=,∴3a =-,2b =, ∴321a b +=-+=-, ∴+a b 的立方根-1.故答案是-1.【点睛】本题主要考查了代数式求值,结合绝对值、二次根式的非负性、立方根的性质计算是解题的关键.三、解答题21.求下列各式中的x :(1)2940x -=;(2)3(1)8x -=解析:1)23x =±;(2)3 【分析】(1)先将原方程移项、系数化为1后,再利用平方根的定义求解即可;(2)先利用立方根的定义求得12x -=,解此方程即可.【详解】解:(1)2940x -= 294x =249x = 23x =±; (2)3(1)8x -=12x -=3x =.【点睛】此题考查了利用平方根、立方根解方程,解答此题的关键是掌握平方根与立方根的定义并能准确理解题意.22.“比差法”是数学中常用的比较两个数大小的方法,即0,0,0,a b a b a b a b a b a b ->>⎧⎪-==⎨⎪-<<⎩则则则2与2的大小;224-=,1619<<,则45<<,2240-=>,22>.请根据上述方法解答以下问题:(1_______3;(2)比较23-的大小,并说明理由.解析:(1)>;(2)3-<2-.【分析】(1,可得:3<4,从而可得答案;(245,从而可得:0<5-0<()23-,从而可得答案.【详解】解:(1)327<,3∴<4,故答案为:>.(2)16<4∴5,0∴<50∴<3+2,0∴<()23-,∴ 3-<2-.【点睛】本题考查的是实数的大小比较,掌握实数的大小比较的方法是解题的关键.23.定义一种新运算;观察下列各式;131437=⨯+=()3134111-=⨯-=5454424=⨯+= ()4344313-=⨯-=(1)请你想一想:a b = ;(2)若a b ,那么a b b a (填“=”或“≠” );(3)先化简,再求值:()()2a b a b -+,其中1a =-,2b =. 解析:(1)4a+b ;(2)≠;(3)6a-3b ,-12【分析】 (1)观察得到新运算等于第一个数乘以4,加上第二个数,据此列式即可; (2)根据新运算分别计算出ab 与b a 即可得到答案; (3)根据新运算分别化简再将a 、b 的值代入计算. 【详解】(1)a b =4a+b , 故答案为:4a+b ; (2)ab =4a+b ,b a =4b+a , ∵ab , ∴a b ≠b a ,故答案为:≠;(3)()()2a b a b -+=4(a-b )+(2a+b )=4a-4b+2a+b=6a-3b ,当1a =-,2b =时,原式=-6-6=-12.【点睛】此题考查新定义运算,整式的加减混合运算,正确理解新定义的运算规律并解决问题是解题的关键.24.计算:(1)82(22)-+ (2)()238272+--解析:(1)-2;(2)33【分析】 (1)原式去括号合并即可得到结果;(2)首先计算开方,然后从左向右依次计算,求出算式的值是多少即可.【详解】解:(1)原式=22222--2=-(2)原式2332=+-33=【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.25.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).(1)阅读理解:图1中大正方形的边长为________,图2中点A 表示的数为________; (2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及 35-的点,并比较它们的大小.解析:(1)2,2-;(2)①见解析;②见解析, 350.5-+<-【分析】(1)设正方形边长为a ,根据正方形面积公式,结合平方根的运算求出a 值,则知结果; (2) ① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②由题(1)的原理得出大正方形的边长为5,然后在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M ,再把N 点表示出来,即可比较它们的大小.【详解】解:设正方形边长为a ,∵a 2=2,∴a=2±,故答案为:2,2-;(2)解:①裁剪后拼得的大正方形如图所示:②设拼成的大正方形的边长为b ,∴b 2=5,∴b=±5,在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M ,则M 表示的数为-3+5,看图可知,表示-0.5的N 点在M 点的右方,∴比较大小:350.5-+<-.【点睛】本题主要考查平方根与算术平方根的应用及实数的大小比较,熟练掌握平方根与算术平方根的意义及实数的大小比较是解题的关键.26.对于结论:当a +b =0时,a 3+b 3=0也成立.若将a 看成a 3的立方根,b 看成是b 3的立方根,由此得出这样的结论:“如果两数的立方根互为相反数,那么这两数也互为相反数”.(1)试举一个例子来判断上述结论的猜测是否成立?(21-的值.解析:(1)见解析;(2)13=-【分析】(10=,则2与﹣2互为相反数进行说明.(2)利用(1)的结论,列出方程(3﹣2x )+(x +5)=0,从而解出x 的值,代入可得出答案.【详解】解:(10=,则2与﹣2互为相反数;(2)由已知,得(3﹣2x )+(x +5)=0,解得x =8,∴1=1=1﹣4=﹣3.【点睛】本题考查立方根的知识,难度一般,注意一个数的立方根有一个,它和这个数正负一致,本题的结论同学们可以记住,以后可直接运用.27.把下列各数的序号填入相应的括号内①-3,②π,,④-3.14,,⑥0,⑦227,⑧-1,⑨1.3,⑩1.8080080008…(两个“8”之间依次多一个“0”). 整数集合{ …},负分数集合{ …},正有理数集合{ …},无理数集合{ …}.解析:见解析.【分析】先求出立方根,再根据整数、负分数、正有理数、无理数的定义即可得.【详解】3=-,28.已知52a +的立方根是3,31a b +-的算术平方根是4,c 的整数部分. (1)求a ,b ,c 的值;(2)求3a b c -+的平方根.解析:(1)5a =,2b =,3c =;(3)4±【分析】(1)利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a 、b 、c 的值.(2)将a 、b 、c 的值代数式求出值后,进一步求得平方根即可.【详解】解:(1)∵52a +的立方根是3,31a b +-的算术平方根是4,∴5227a +=,3116a b +-=,∴5a =,2b =; ∵34<<,c 的整数部分,∴3c =;(2)当5a =,2b =,3c =时,3152316a b c -+=-+=,16的平方根是4±∴3a b c -+的平方根是4±.【点睛】本题考查立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值等知识点,读懂题意,掌握解答顺序,正确计算即可.。

奥林匹克竞赛训练(五)实数与代数式汇总

奥林匹克竞赛训练(五)实数与代数式汇总

实数、代数式综合测试题一、选择题(每小题1分,30分)1、下面四个命题中错误的是__。

A 相反数等于它本身的数只有零;B ±1的倒数等于它本身;C 若a为任意实数,则它的倒数是a-1;D 绝对值最小的整数是02、-24÷(-2)2=___. A 4 B -4 C -2 D 23、的平方根是___。

A 3 B ±3 C 3 D ±4、样本8,8,9,10,12,12,13的中位数和众数分别是___。

A 12、12B 11、13C 10、12D 11、12200220035、若的值是__。

A0 B2C-1 D-2 互为相反数,则a+b6、当a<-4时,那么|2-a+2)2|等于___。

A 4+aB -aC -4-aD a7、下列运算中正确的是__。

A 3x3-2x3=-xB -a²(-a)2=a3 C(π-3.14)0 =1 D 1÷(2-28、若|m|=-m,则m是__。

A 正数 B 负数 C 非正数 D非负数 9、43100000用科学记数法可表示为__。

A 4.31³105B 43.1³106C 4.31³107D 0.431³10810、在(-2)0,sin45°,0,0.010010001,221,这六个数中,无理数有__。

272A 2个B 3个C 4个D 5个211、已知0<x<3,化简2x+的结果是__。

1)-|x-5|A 3x-4B x-4C 3x+6D -x-612、已知a<b<0,那么|a|、-b、a-b的大小关系是__。

A -b>|a|>a-bB a-b>|a|>-bC |a|>-b>a-bD |a|>a-b>-b|-2|-(-5)0⨯(-1)2002的结果是__。

13、计算:12³()+()-2÷131412A 4B 3C 2D 114、化简(-a5)2+(-a2)5的结果是__。

实数竞赛试题及答案

实数竞赛试题及答案

实数竞赛试题及答案1. 计算下列表达式的值:(a) \( \sqrt{49} \)(b) \( \sqrt[3]{-27} \)(c) \( \sqrt{2} + \sqrt{3} \)答案:(a) \( \sqrt{49} = 7 \)(b) \( \sqrt[3]{-27} = -3 \)(c) \( \sqrt{2} + \sqrt{3} \) 不能进一步简化,保留根式形式。

2. 判断下列命题的真假,并给出理由:(a) 所有的实数都可以表示为两个整数的比。

(b) 无理数是无限不循环小数。

答案:(a) 假。

例如,\( \sqrt{2} \) 不能表示为两个整数的比。

(b) 真。

无理数的定义就是无限不循环小数。

3. 解下列方程:(a) \( 2x - 5 = 9 \)(b) \( x^2 - 4x + 4 = 0 \)答案:(a) 将方程两边同时加5,得到 \( 2x = 14 \),再除以2,得到\( x = 7 \)。

(b) 该方程可以因式分解为 \( (x - 2)^2 = 0 \),因此 \( x =2 \)。

4. 计算下列极限:(a) \( \lim_{x \to 0} \frac{\sin x}{x} \)(b) \( \lim_{x \to 0} (1 + x)^{\frac{1}{x}} \)答案:(a) 根据洛必达法则,当 \( x \to 0 \) 时,\( \frac{\sinx}{x} \) 的极限为1。

(b) 根据指数函数的性质,当 \( x \to 0 \) 时,\( (1 +x)^{\frac{1}{x}} \) 的极限为 \( e \)。

5. 证明:\( \sqrt{a} + \sqrt{b} \) 是无理数,当且仅当 \( a \) 和 \( b \) 都是无理数。

答案:证明:(1) 假设 \( a \) 和 \( b \) 都是无理数,那么 \( \sqrt{a} \) 和 \( \sqrt{b} \) 也是无理数。

实数联赛试题及答案

实数联赛试题及答案

实数联赛试题及答案1. 已知函数 \( f(x) = ax^2 + bx + c \),其中 \( a \),\( b \),\( c \) 是实数,且 \( a \neq 0 \)。

若 \( f(1) = 3 \),\( f(-1) = 1 \),\( f(2) = 8 \),求 \( a \),\( b \),\( c \) 的值。

解答:根据题意,我们可以得到以下方程组:\[\begin{cases}a +b +c = 3 \\a -b +c = 1 \\4a + 2b + c = 8\end{cases}\]解这个方程组,我们可以得到 \( a = 2 \),\( b = 1 \),\( c= 0 \)。

2. 计算 \( \sqrt{3} \) 的近似值。

解答:我们知道 \( 1^2 < 3 < 2^2 \),因此 \( 1 < \sqrt{3} < 2 \)。

通过计算 \( 1.7^2 \) 和 \( 1.8^2 \),我们发现 \( 1.7^2 = 2.89 \) 和 \( 1.8^2 = 3.24 \)。

因此,\( \sqrt{3} \) 的近似值为\( 1.732 \)。

3. 求证:若 \( a \),\( b \),\( c \) 为实数,且 \( a^2 + b^2 + c^2 = 1 \),则 \( a^3 + b^3 + c^3 \geq a + b + c \)。

证明:我们可以使用柯西-施瓦茨不等式来证明这个不等式。

根据柯西-施瓦茨不等式,我们有:\[(a^2 + b^2 + c^2)(1^2 + 1^2 + 1^2) \geq (a \cdot 1 + b\cdot 1 + c \cdot 1)^2\]因为 \( a^2 + b^2 + c^2 = 1 \),所以:\[1 \cdot 3 \geq (a + b + c)^2\]因此:\[a +b +c \leq \sqrt{3} \leq a^3 + b^3 + c^3\]所以,\( a^3 + b^3 + c^3 \geq a + b + c \)。

七下数学竞赛实数

七下数学竞赛实数

七下数学《实数》基础知识竞赛组长 姓名一、选择题(每小题2分,共30分)1. 有下列说法中(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数;(3)无理数包括正无理数、零、负无理数;(4)无理数都可以用数轴上的点来表示。

其中正确的说法的个数是( )A .1B .2C .3D .42.能与数轴上的点一一对应的是( )A 整数B 有理数C 无理数D 实数 3.91的平方根是( ) A. 31 B. 31- C. 31± D. 811± 4.如果一个实数的平方根与它的立方根相等,则这个数是( )A. 0B. 正整数C. 0和1D. 15.下列说法正确是( )A. 25的平方根是5B. 一22的算术平方根是2C. 0.8的立方根是0.2D. 65是3625的一个平方根 6 . 下列关于24说法错误的是( ) A . 24是无理数 B. 24 是24的算术平方根 C.4 <24< 5 D.24的平方根是 247. 下列说法正确的是( )A. 0.25是0.5 的一个平方根 B 、正数有两个平方根,且这两个平方根之和等于0C . 7 2 的平方根是7D 、 负数有一个平方根8、9的平方根是 ( )A .3 B.-3 C. 3 D. 819. 下列各数中,不是无理数的是 ( )A、 B 、0.5 C 、2D 、0.151151115…10. 下列说法错误的是( ) A. 364 的平方根是±2 B. 327-是有理数 C. 3是无理数 D.26 是分数。

11.=( ) A .2 B .-2 C .±2 D .不存在12、在实数0、3-、2-、-2中,最小的是( )A .-2B .3-C .0D .2-13、数a 、b 在数轴上的位置如图所示,下列各式有意义的是( )A 、b a +B 、3b a +C 、b a -D 、22b a -14、若一个正方体的水晶砖的体积为100cm 3,则它的棱长大约在( )。

八年级数学上册实数经典例题及习题试题

八年级数学上册实数经典例题及习题试题

卜人入州八九几市潮王学校实数经典例题及习题类型一.有关概念的识别1.下面几个数:0.23…,,3π,,,其中,无理数的个数有〔〕A、1B、2C、3D、4举一反三:【变式1】以下说法中正确的选项是〔〕A、的平方根是±3B、1的立方根是±1C、=±1D、是5的平方根的相反数【变式2】如图,以数轴的单位长线段为边做一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A,那么点A表示的数是〔〕A、1B、1.4C、D、【变式3】类型二.计算类型题2.设,那么以下结论正确的选项是〔〕A. B.C. D.举一反三:【变式1】1〕5的算术平方根是__________;平方根是__________.2〕-27立方根是__________.3〕___________,___________,___________.【变式2】求以下各式中的〔1〕〔2〕〔3〕类型三.数形结合3.点A在数轴上表示的数为,点B在数轴上表示的数为,那么A,B两点的间隔为______ [变式2]实数、、在数轴上的位置如下列图:化简类型四.实数绝对值的应用4.化简以下各式:(1)||(2)|π-42|(3)|-|(4)|x-|x-3||(x≤3)(5)|x2+6x+10|举一反三:【变式1】化简:类型五.实数非负性的应用5.:=0,务实数a,b的值。

举一反三:【变式1】(x-6)2++|y+2z|=0,求(x-y)3-z3的值。

【变式2】那么a+b-c的值是___________类型六.实数应用题6.有一个边长为11cm的正方形和一个长为13cm,宽为8cm的矩形,要作一个面积为这两个图形的面积之和的正方形,问边长应为多少cm。

举一反三:【变式1】拼一拼,画一画:请你用4个长为a,宽为b的矩形拼成一个大正方形,并且正中间留下的空白区域恰好是一个小正方形。

〔4个长方形拼图时不重叠〕〔1〕计算中间的小正方形的面积,聪明的你能发现什么?〔2〕当拼成的这个大正方形边长比中间小正方形边长多3cm时,大正方形的面积就比小正方形的面积多24cm2,求中间小正方形的边长.类型七.易错题7.判断以下说法是否正确〔1〕的算术平方根是-3;〔2〕的平方根是±15.〔3〕当x=0或者2时,〔4〕是分数类型八.引申进步8.〔1〕的整数局部为a,小数局部为b,求a2-b2的值.〔2〕把以下无限循环小数化成分数:①②③学习成果测评:A组〔根底〕一、细心选一选1.以下各式中正确的选项是〔〕A. B. C. D.2.的平方根是()A.4B. C.2D.3.以下说法中①无限小数都是无理数②无理数都是无限小数③-2是4的平方根④带根号的数都是无理数。

专题01实数竞赛综合-50题真题专项训练(全国竞赛专用)原卷版

专题01实数竞赛综合-50题真题专项训练(全国竞赛专用)原卷版

【初中数学竞赛】专题01 实数竞赛综合50题真题专项训练(全国竞赛专用)一、单选题1.(2021·全国·九年级竞赛)已知n 是正整数,n 有18个正约数,500n ≤,设符合条件的n 恰有x 个,那么( ).A .34x ≤≤B .56x ≤≤C .7x ≥D .2x ≤2.(2021·全国·九年级竞赛)若p 为质数,33p +仍为质数,则3333p +的末位数字是( ). A .5 B .7 C .9 D .不能确定3.(2021·全国·九年级竞赛)已知a 为整数,241227a a --是质数,则a 的所有可能值的和为( ).A .3B .4C .5D .6二、填空题4.(2021·全国·九年级竞赛)大约1500年前,我国伟大的数学家祖冲之,计算出π的值在3.1415926和3.1415927之间,成为世界上第一个把π的值精确到7位小数的人,现代人利用计算机已经将π的值计算到了小数点后515亿位以上.这些数排列既无序又无规律,但是细心的同学发现:由左起的第一位3是质数,31也是质数,但314不是质数,那么在3141,31415,314159,3141592,31415926,31415927中,质数是______.5.(2021·全国·九年级竞赛)在算式()110A B C C ⨯+=+中,A ,B ,C 是三个互不相等的质数,那么B =_____.6.(2021·全国·九年级竞赛)立方体的每一个面都写着一个自然数,并且相对两个面所写两个数之和相等,10,12,15是相邻三面上的数,若10的对面写的是质数a ,12的对面写的是质数b ,15的对面写的是质数c ,则222a b c ab bc ca ++---的值等于_________.7.(2021·全国·九年级竞赛)已知,,1p q pq +都是质数,且40p q ->,那么满足上述条件的最小质数p =______,q =______.8.(2021·全国·九年级竞赛)若a ,b ,c 是1998的三个不同的质因数,且a b c <<,则()a b c +=______. 9.(2021·全国·九年级竞赛)已知a 是质数,b 是奇数,且22001a b +=,则a b +=_________. 10.(2021·全国·九年级竞赛)若p 和q 为质数,且5391p q +=,则p =_____,q =______.11.(2021·全国·九年级竞赛)若y ,z 均为质数,x yz =,且x ,y ,z 满足113x y z+=,则199853x y z ++的值为______.12.(2021·全国·九年级竞赛)如果A ,B ,C 是三个质数,而且14A B B C -=-=,那么A ,B ,C 组成的数组(,,)A B C 共有________组.13.(2021·全国·九年级竞赛)若正整数x ,y 满足200415x y =,则x y +的最小值是________. 14.(2021·全国·九年级竞赛)设m 是不能表示为三个互不相等的合数之和的最大整数,则m =______. 15.(2021·全国·九年级竞赛)若两个质数p ,q 满足235517p q +=,则p q +=__________.16.(2021·全国·九年级竞赛)已知x ,m ,n 为正整数,25,m n x m +=+与2x n -均为质数,则x 的可能取值的个数是________.17.(2021·全国·九年级竞赛)王老师在黑板上写了若干个连续自然数1,2,3……,然后擦去其中的三个数,已知擦去的三个数中有两个质数,如果剩下数的平均数是8199,那么王老师在黑板上共写了______个数,擦去的两个质数的和最大是________.18.(2021·全国·九年级竞赛)万尼亚想了一个三位质数,各位数字都不相同.如果个位数字等于前两个数字的和,那么这个数是___________.19.(2021·全国·九年级竞赛)某个质数,当它分别加上6,8,12,14之后还是质数,那么这个质数是_____.20.(2021·全国·九年级竞赛)将99分拆成19个质数之和,要求最大的质数尽可能大,那么这个最大质数是________.21.(2021·全国·九年级竞赛)小晶最近迁居了,小晶惊奇地发现他们新居的门牌号码有四位数字,同时,她感到这个号码很容易记住,因为它的形式为abba ,其中a b ,而且ab 和ba 都是质数,具有这种形式的数共有______个.22.(2021·全国·九年级竞赛)有1997个奇数,它们的和等于它们的乘积,其中只有三个数不是1,而是三个不同的质数,那么,这样的三个质数可以是____,_________,__________.23.(2021·全国·九年级竞赛)a ,b ,c 都是质数,并且33,44,66a b b c c d +=+=+=,那么d =______. 24.(2021·全国·九年级竞赛)试将20表示成一些合数的和,这些合数的积最大是_____.25.(2021·全国·九年级竞赛)有一个自然数,它有4个不同的质因数,且有32个约数,其中一个质因数是两位数,当这个质因数尽可能大时,这个自然数最小是_________.26.(2021·全国·九年级竞赛)有10个质数17,19,31,41,53,71,73,79,101,103,其中任意两个质数都能组成一个真分数,这些真分数中,最小的是_____,最大的是_______.27.(2021·全国·九年级竞赛)a ,b ,c 都是质数,如果()()342a b b c +⨯+=,那么b =_____.28.(2021·全国·九年级竞赛)所有分母小于30并且分母是质数的真分数相加,和是______.29.(2021·全国·九年级竞赛)甲、乙两人岁数之和是一个两位数,这个两位数是一个质数,这个质数的数字之和是13,甲比乙也刚好大13岁,那么甲______岁,乙_____岁.三、解答题30.(2021·全国·九年级竞赛)有三个连续的自然数,它们的平均数分别能被三个不同的质数整除,要使它们的和最小,这三个自然数分别是多少?31.(2021·全国·九年级竞赛)一个数是5个2,3个3,2个5,1个7的连乘积,这个数有许多约数是两位数,则这些两位的约数中,最大的是几32.(2021·全国·九年级竞赛)一个六位数3434ab 能同时被8和9整除已知a b c +=,求c 的最小值. 33.(2021·全国·九年级竞赛)能同时被6,7,8,9整除的五位数有多少个?34.(2021·全国·九年级竞赛)已知正整数p ,q 都是质数,并且7p q +与11pq +也都是质数,试求q p p q +的值.35.(2021·全国·九年级竞赛)p 是质数,设444p q p =++也是质数,试确定q 的值.36.(2021·全国·九年级竞赛)把20以内的质数分别填入口中(每个质数只用一次):A ++++++=,使A 是整数,则A 最大是多少?37.(2021·全国·九年级竞赛)将1999表示为两个质数之和:1999=+,在□中填入质数,共有多少种表示法? 38.(2021·全国·九年级竞赛)(1)如果a 是小于20的质数,且1a可化为一个循环小数,那么a 的取值有哪几个?(2)如果a 是小于20的合数,且1a 可化为一个循环小数,那么a 的取值有哪几个?39.(2021·全国·九年级竞赛)哥德巴赫猜想是说:每个大于2的偶数都可以表示为两个质数之和,问:168是哪两个两位数的质数之和,并且其中一个的个位数字是1?40.(2021·全国·九年级竞赛)将两个不同的两位数的质数接起来可以得到一个四位数,比如由17,19可得到一个四位数1719;由19,17也可得到一个四位数1917.已知这样的四位数能被这两个两位数的质数的平均数所整除,试写出所有这样的四位数.41.(2021·全国·九年级竞赛)4只同样的瓶子内分别装有一定数量的油,每瓶和其他各瓶分别合称一次,记录千克数如下:8,9,10,11,12,13.已知4只空瓶的重量之和以及油的重量之和均为质数,求最重的两瓶内有多少油.42.(2021·全国·九年级竞赛)在1,0交替出现且以1打头和结尾的所有整数(即101,10101,1010101,…)中有多少个质数?43.(2021·全国·九年级竞赛)设a ,b ,c ,d 是自然数,并且2222+=+a b c d ,证明:+++a b c d 一定是合数. 44.(2021·全国·九年级竞赛)正整数a ,b ,c ,d 满足等式ab cd =,求证:1998199819981998k a b c d =+++是合数. 45.(2021·全国·九年级竞赛)若a 为自然数,则4239a a -+是质数还是合数?给出你的证明. 46.(2021·全国·九年级竞赛)请你找出6个互异的自然数,使得它们同时满足:(1)6个数中任两个都互质;(2)6个数任取2个,3个,4个,5个,6个数之和都是合数.并简述你选择的数合乎条件的理由.47.(2021·全国·九年级竞赛)自然数n 使得数21n 与31n +均为平方数,能否同时使得数53n +是质数? 48.(2021·全国·九年级竞赛)已知p 为大于3的质数.证明:p 的平方被24除的余数为1.49.(2021·全国·九年级竞赛)写出10个连续自然数,它们个个都是合数,求这10个数.50.(2021·全国·九年级竞赛)有2,3,4,5,6,7,8,9,10和11共10个自然数:(1)从这10个数中选出7个数,使这7个数中的任何3个数都不会两两互质;(2)从这10个数中最多可以选出多少个两两互质的数?。

实数典型例题(含答案)

实数典型例题(含答案)

(3)注意到,当 x=0 时, 0,所以当 x=2 时,x
,显然此式无意义,发生错误的原因是忽视了“负数没有平方根”,故 x≠
深于专业 ● 信于人
(4)错在对实数的概念理解不清. 11、(1)已知
形如分数,但不是分数,它是无理数.
的整数部分为 a,小数部分为 b,求 a2-b2 的值. ② 得 ③ 的小数部分 , ∴
2
(1)当 a、b、m、n 均为正整数时,若 a b 3 b=_______;
(m n 3 )
2
,用含 m、n 的式子分别表示 a、b,得:a=______,
(2)利用所探索的结论,找一组正整数 a、b、m、n 填空:___+___ 3 =(___+___ 3 )2; (3)若 a+ 4 3 =
(1+
2 )2.善于思考的小明进行了以下探索:设 a+b 2 =(m+n 2 )2(其中 a、b、m、n 均为整数),则有
a+b 2 =
请你仿照小明的方法探索并解决下列问题:
m
2
2 n 2mn 2 。∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似 a+b 2 的式子化为平方式的方法.
(m n 3 )
Байду номын сангаас
2
,且 a、m、n 均为正整数,求 a 的值?
第 2 页 共 3 页
深于专业 ● 信于人
答案:(1)a=m2+3n2 b=2mn (2) 4;2;1;1 (3)由题意,得:a=m2+3n2,b=2mn ∵4=2mn,且 m、n 为正整数,∴m=2,n=1 或者 m=1,n=2,∴a=22+3×12=7,或 a=12+3×22=13.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

经典例题类型一.有关概念的识别1.下面几个数:0.23,1.010010001…,,3π,,,其中,无理数的个数有()A、1B、2C、3D、4解析:本题主要考察对无理数概念的理解和应用,其中,1.010010001…,3π,是无理数故选C举一反三:【变式1】下列说法中正确的是()A、的平方根是±3B、1的立方根是±1C、=±1D、是5的平方根的相反数【答案】本题主要考察平方根、算术平方根、立方根的概念,∵=9,9的平方根是±3,∴A正确.∵1的立方根是1,=1,是5的平方根,∴B、C、D都不正确.【变式2】如图,以数轴的单位长线段为边做一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A,则点A表示的数是()A、1B、1.4C、D、【答案】本题考察了数轴上的点与全体实数的一一对应的关系.∵正方形的边长为1,对角线为,由圆的定义知|AO|=,∴A表示数为,故选C.【变式3】【答案】∵π= 3.1415…,∴9<3π<10因此3π-9>0,3π-10<0∴类型二.计算类型题2.设,则下列结论正确的是()A. B.C. D.解析:(估算)因为,所以选B举一反三:【变式1】1)1.25的算术平方根是__________;平方根是__________.2) -27立方根是__________.3)___________,___________,___________.【答案】1);.2)-3. 3),,【变式2】求下列各式中的(1)(2)(3)【答案】(1)(2)x=4或x=-2(3)x=-4类型三.数形结合3. 点A在数轴上表示的数为,点B在数轴上表示的数为,则A,B两点的距离为______解析:在数轴上找到A、B两点,举一反三:【变式1】如图,数轴上表示1,的对应点分别为A,B,点B关于点A的对称点为C,则点C表示的数是().A.-1 B.1- C.2- D.-2【答案】选C[变式2]已知实数、、在数轴上的位置如图所示:化简【答案】:类型四.实数绝对值的应用4.化简下列各式:(1) |-1.4| (2) |π-3.142|(3) |-| (4) |x-|x-3|| (x≤3)(5) |x2+6x+10|分析:要正确去掉绝对值符号,就要弄清绝对值符号内的数是正数、负数还是零,然后根据绝对值的定义正确去掉绝对值。

解:(1) ∵=1.414…<1.4∴|-1.4|=1.4-(2) ∵π=3.14159…<3.142∴|π-3.142|=3.142-π(3) ∵<, ∴|-|=-(4) ∵x≤3, ∴x-3≤0,∴|x-|x-3||=|x-(3-x)|=|2x-3| =说明:这里对|2x-3|的结果采取了分类讨论的方法,我们对这个绝对值的基本概念要有清楚的认识,并能灵活运用。

(5) |x2+6x+10|=|x2+6x+9+1|=|(x+3)2+1|∵(x+3)2≥0, ∴(x+3)2+1>0∴|x2+6x+10|= x2+6x+10举一反三:【变式1】化简:【答案】=+-=类型五.实数非负性的应用5.已知:=0,求实数a, b的值。

分析:已知等式左边分母不能为0,只能有>0,则要求a+7>0,分子+|a2-49|=0,由非负数的和的性质知:3a-b=0且a2-49=0,由此得不等式组从而求出a, b的值。

解:由题意得由(2)得 a2=49 ∴a=±7由(3)得 a>-7,∴a=-7不合题意舍去。

∴只取a=7把a=7代入(1)得b=3a=21∴a=7, b=21为所求。

举一反三:【变式1】已知(x-6)2++|y+2z|=0,求(x-y)3-z3的值。

解:∵(x-6)2++|y+2z|=0且(x-6)2≥0, ≥0, |y+2z|≥0,几个非负数的和等于零,则必有每个加数都为0。

∴解这个方程组得∴(x-y)3-z3=(6-2)3-(-1)3=64+1=65【变式2】已知那么a+b-c的值为___________【答案】初中阶段的三个非负数:,a=2,b=-5,c=-1; a+b-c=-2类型六.实数应用题6.有一个边长为11cm的正方形和一个长为13cm,宽为8cm的矩形,要作一个面积为这两个图形的面积之和的正方形,问边长应为多少cm。

解:设新正方形边长为xcm,根据题意得 x2=112+13×8∴x2=225∴x=±15∵边长为正,∴x=-15不合题意舍去,∴只取x=15(cm)答:新的正方形边长应取15cm。

举一反三:【变式1】拼一拼,画一画:请你用4个长为a,宽为b的矩形拼成一个大正方形,并且正中间留下的空白区域恰好是一个小正方形。

(4个长方形拼图时不重叠)(1)计算中间的小正方形的面积,聪明的你能发现什么?(2)当拼成的这个大正方形边长比中间小正方形边长多3cm时,大正方形的面积就比小正方形的面积多24cm2,求中间小正方形的边长.解析:(1)如图,中间小正方形的边长是:,所以面积为=大正方形的面积=,一个长方形的面积=。

所以,答:中间的小正方形的面积,发现的规律是:(或)(2) 大正方形的边长:,小正方形的边长:,即,又大正方形的面积比小正方形的面积多24 cm2所以有,化简得:将代入,得:cm答:中间小正方形的边长2.5 cm。

类型七.易错题7.判断下列说法是否正确(1)的算术平方根是-3;(2)的平方根是±15.(3)当x=0或2时,(4)是分数解析:(1)错在对算术平方根的理解有误,算术平方根是非负数.故(2)表示225的算术平方根,即=15.实际上,本题是求15的平方根,故的平方根是.(3)注意到,当x=0时,=,显然此式无意义,发生错误的原因是忽视了“负数没有平方根”,故x≠0,所以当x=2时,x=0.(4)错在对实数的概念理解不清. 形如分数,但不是分数,它是无理数.类型八.引申提高8.(1)已知的整数部分为a,小数部分为b,求a2-b2的值.(2)把下列无限循环小数化成分数:①②③(1)分析:确定算术平方根的整数部分与小数部分,首先判断这个算术平方根在哪两个整数之间,那么较小的整数即为算术平方根的整数部分,算术平方根减去整数部分的差即为小数部分.解:由得的整数部分a=5, 的小数部分,∴(2)解:(1) 设x=①则②②-①得9x=6∴.(2) 设①则②②-①,得99x=23∴. (3) 设①则②②-①,得999x=107,∴.学习成果测评:A组(基础)一、细心选一选1.下列各式中正确的是()A. B. C. D.2. 的平方根是( )A.4 B. C. 2 D.3. 下列说法中①无限小数都是无理数②无理数都是无限小数③-2是4的平方根④带根号的数都是无理数。

其中正确的说法有()A.3个 B. 2个 C. 1个 D. 0个4.和数轴上的点一一对应的是()A.整数 B.有理数 C. 无理数 D. 实数5.对于来说()A.有平方根 B.只有算术平方根 C. 没有平方根 D. 不能确定6.在(两个“1”之间依次多1个“0”)中,无理数的个数有()A.3个 B. 4个 C. 5个 D. 6个7.面积为11的正方形边长为x,则x的范围是()A. B. C. D.8.下列各组数中,互为相反数的是()A.-2与 B.∣-∣与 C. 与 D. 与9.-8的立方根与4的平方根之和是()A.0 B. 4 C. 0或-4 D. 0或410.已知一个自然数的算术平方根是a ,则该自然数的下一个自然数的算术平方根是()A. B. C. D.二、耐心填一填11.的相反数是________,绝对值等于的数是________,∣∣=_______。

12.的算术平方根是_______,=______。

13.____的平方根等于它本身,____的立方根等于它本身,____的算术平方根等于它本身。

14.已知∣x∣的算术平方根是8,那么x的立方根是_____。

15.填入两个和为6的无理数,使等式成立: ___+___=6。

16.大于,小于的整数有______个。

17.若∣2a-5∣与互为相反数,则a=______,b=_____。

18.若∣a∣=6,=3,且ab0,则a-b=______。

19.数轴上点A,点B分别表示实数则A、B两点间的距离为______。

20.一个正数x的两个平方根分别是a+2和a-4,则a=_____,x=_____。

三、认真解一解21.计算⑴⑵⑶⑷∣∣+∣∣⑸×+×⑹ 4×[ 9 + 2×()] (结果保留3个有效数字)22.在数轴上表示下列各数和它们的相反数,并把这些数和它们的相反数按从小到大的顺序排列,用“”号连接:参考答案:一: 1、B 2、D 3、B 4、D 5、C 6、A 7、B 8、C 9、C 10、D二:11、,π-3 12、3,13、0;0,;0,1 14、15、答案不唯一如:16、517、18、-15 19、2 20、1,9三:21、⑴⑵-17 ⑶-9 ⑷2 ⑸-36 ⑹37.922、B组(提高)一、选择题:1.的算术平方根是()A.0.14 B.0.014 C.D.2.的平方根是()A.-6 B.36 C.±6 D.±3.下列计算或判断:①±3都是27的立方根;②;③的立方根是2;④,其中正确的个数有()A.1个B.2个 C.3个D.4个4.在下列各式中,正确的是()A.; B.; C.; D.5.下列说法正确的是()A.有理数只是有限小数B.无理数是无限小数 C.无限小数是无理数D.是分数6.下列说法错误的是()A.B.C.2的平方根是D.7.若,且,则的值为()A. B.C.D.8.下列结论中正确的是()A.数轴上任一点都表示唯一的有理数; B.数轴上任一点都表示唯一的无理数;C. 两个无理数之和一定是无理数;D. 数轴上任意两点之间还有无数个点9.-27 的立方根与的平方根之和是()A.0 B.6 C.0或-6 D.-12或610.下列计算结果正确的是()A. B. C. D.二.填空题:11.下列各数:①3.141、②0.33333……、③、④π、⑤、⑥、⑦0.3030003000003……(相邻两个3之间0的个数逐次增加2)、⑧0中,其中是有理数的有__________;无理数的有__________.(填序号)12.的平方根是__________;0.216的立方根是__________.13.算术平方根等于它本身的数是__________;立方根等于它本身的数是__________.14. 的相反数是__________;绝对值等于的数是__________.15.一个正方体的体积变为原来的27倍,则它的棱长变为原来的__________倍.三、解答题:16.计算或化简:(1) (2) (3)(4) (5)(6)17.已知,且x是正数,求代数式的值。

相关文档
最新文档