3.2简单几何体的三视图2.

合集下载

九年级数学上册(浙教版)课件 3.2 简单几何体的三视图

九年级数学上册(浙教版)课件 3.2 简单几何体的三视图
3.当线段AB倾斜于投影面时,设它的正投影为线段A1B1,则线段与它的 投影的大小关系为AB____>____A1B1.
知识点二:三视图 4.如图,几何体的主视图是( C )
5.下面简单几何体的左视图是( A )
6.如图,由三个小立方块搭成几何体的俯视图是( A )
7.下图是由D6个同样大小的正方体摆成的几何体,将正方体①移走后,
(2)猜想并写出第n个图形中看不见的小立方体的个数. 解:(n-1)3
第3章 三视图与表面展开图
3.2 简单几垂直于投影面
1.正投影:在平行投影中,______________________________,那么这
种投影就称为正投影.
正投影面上的正投影
2.物体的三视图:物体在___________________________叫做主视图, 在__水__平__投__影__面__上__的__正__投__影___叫做俯视图,在___侧__投__影__面__上__的__正__投__影____叫 做左视图.主视图、左视图和俯视图合称___三__视__图_____.产生主视图的投
射线方向也叫做___主__视__方__向_____. 3.“____长__对__正____、____高__平__齐_____、____宽__相__等_____”是画三视图必须
遵循的法则.
知识点一:正投影 1.下列图形中的投影是正投影的是( D )
线段 2.当正方形纸板P垂直于投影面时,P的正投影成为一条__________.
所得几何体(
)
A.主视图改变,左视图改变
B.俯视图不变,左视图不变
C.俯视图改变,左视图改变
D.主视图改变,左视图不变
8.画出如图所示的物体的三视图. 解:略

公开课教案《简单几何体的三视图》精品教案(市一等奖)(市优)

公开课教案《简单几何体的三视图》精品教案(市一等奖)(市优)

按照新课程标准要求,学科核心素养作为现代教育体系的核心理论,提高学生的兴趣、学习的主动性,是当前教育教学研究所注重的重要环节之一。

2021年4月,教育部发布文件,对教育机构改革进行了深入和细致的解读。

从中我们不难看出,作为一线教师,教育教学手段和理论知识水平是下一步需要进一步提高的重要能力。

本课作为课本中比较重要的一环,对核心素养进行了贯彻,将课堂环节设计进行了细致剖析,力求达到学生乐学,教师乐教的理想状态。

3.2简单几何体的三视图教学目标:1、知识目标进一步明确正投影与三视图的关系2、能力目标经历探索简单立体图形的三视图的画法,能识别物体的三视图;培养动手实践能力,发展空间想象能力。

3、情感目标使学生学会关注生活中有关投影的数学问题,提高数学的应用意识。

重点:简单立体图形的三视图的画法难点:三视图中三个位置关系的理解教学过程:一、复习引入1、画一个立体图形的三视图时要注意什么?(上节课中的小结内容)2、说一说:直三棱柱、圆柱、圆锥、球的三视图3、做一做:画出下列几何体的三视图4、讲一讲:你知道正投影与三视图的关系获二、讲解例题例2画出如图所示的支架(一种小零件)的三视图.分析:支架的形状,由两个大小不等的长方体构成的组合体.画三视四时要注意这两个长方体的上下、前后位置关系.解:如图是支架的三视图例3右图是一根钢管的直观图,画出它的三视图分析.钢管有内外壁,从一定角度看它时,看不见内壁.为全面地反映立体图形的形状,画图时规定;看得见部分的轮廓线画成实线.因被其他那分遮挡而看不见部分的轮廓线画成虚线.解.图如图29.2-7是钢管的三视图,其中的虚线表示钢管的内壁.三、巩固再现一个六角螺帽的毛坯如图,底面正六边形的边长为250mm,高为 200mm,内孔直径为200mm.请画出六角螺帽毛坯的三视图.四、作业课本习题本节课仍存在着一些不足:学生对展开图通过各种途径有了一些了解,但仍不能把平面与立体很好的结合;在遇到问题时,多数学生不愿意自己探索,都要寻求帮助。

长沙市初中数学考点大全

长沙市初中数学考点大全

长沙市初中数学考点大全古时,数学是为了了解数字间的关系,为了测量土地,以及为了猜测天文事件而形成的。

这些需要可以简单地被概括为数学对数量、结构、空间及时间方面的研究。

今天作者在这给大家整理了一些长沙市初中数学考点大全,我们一起来看看吧!长沙市初中数学考点大全一、圆的基本性质1.圆的定义(两种)2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。

3.“三点定圆”定理4.垂径定理及其推论5.“等对等”定理及其推论6.与圆有关的角:⑴圆心角定义(等对等定理)⑵圆周角定义(圆周角定理,与圆心角的关系)⑶弦切角定义(弦切角定理)二、直线和圆的位置关系1.切线的性质(重点)2.切线的判定定理(重点)3.切线长定理三、圆换圆的位置关系1.五种位置关系及判定与性质:(重点:相切)2.相切(交)两圆连心线的性质定理3.两圆的公切线:⑴定义⑵性质四、与圆有关的比例线段1.相交弦定理2.切割线定理五、与和正多边形1.圆的内接、外切多边形(三角形、四边形)2.三角形的外接圆、内切圆及性质3.圆的外切四边形、内接四边形的性质4.正多边形及运算中心角:初中数学复习提纲内角的一半:初中数学复习提纲(右图)(解Rt△OAM可求出相干元素,初中数学复习提纲、初中数学复习提纲等)六、一组运算公式1.圆周长公式2.圆面积公式3.扇形面积公式4.弧长公式5.弓形面积的运算方法6.圆柱、圆锥的侧面展开图及相干运算七、点的轨迹六条基本轨迹八、有关作图1.作三角形的外接圆、内切圆2.平分已知弧3.作已知两线段的比例中项4.等分圆周:4、8;6、3等分九、重要辅助线1.作半径2.见弦常常作弦心距3.见直径常常作直径上的圆周角4.切点圆心莫忘连5.两圆相切公切线(连心线)6.两圆相交公共弦长沙市初中数学考点知识点1.概念把形状相同的图形叫做类似图形。

(即对应角相等、对应边的比也相等的图形) 解读:(1)两个图形类似,其中一个图形可以看做由另一个图形放大或缩小得到.(2)全等形可以看成是一种特别的类似,即不仅形状相同,大小也相同.(3)判定两个图形是否类似,就是看这两个图形是不是形状相同,与其他因素无关.知识点2.比例线段对于四条线段a,b,c,d,如果其中两条线段的长度的比与另两条线段的长度的比相等,即(或a:b=c:d)那么这四条线段叫做成比例线段,简称比例线段.知识点3.类似多边形的性质类似多边形的性质:类似多边形的对应角相等,对应边的比相等.解读:(1)正确知道类似多边形的定义,明确“对应”关系.(2)明确类似多边形的“对应”来自于书写,且要明确类似比具有顺序性.知识点4.类似三角形的概念对应角相等,对应边之比相等的三角形叫做类似三角形.解读:(1)类似三角形是类似多边形中的一种;(2)应结合类似多边形的性质来知道类似三角形;(3)类似三角形应满足形状一样,但大小可以不同;(4)类似用“∽”表示,读作“类似于”;(5)类似三角形的对应边之比叫做类似比.知识点5.类似三角的判定方法(1)定义:对应角相等,对应边成比例的两个三角形类似;(2)平行于三角形一边的直线截其他两边(或其他两边的延长线)所构成的三角形与原三角形类似.(3)如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形类似.(4)如果一个三角的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形类似.(5)如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两个三角形类似.(6)直角三角形被斜边上的高分成的两个直角三角形与原三角形都类似.知识点6.类似三角形的性质(1)对应角相等,对应边的比相等;(2)对应高的比,对应中线的比,对应角平分线的比都等于类似比;(3)类似三角形周长之比等于类似比;面积之比等于类似比的平方.(4)射影定理初中数学考点1.解直角三角形1.1.锐角三角函数锐角a的正弦、余弦和正切统称∠a的三角函数。

工程制图_三视图

工程制图_三视图

圆柱面轮廓素线
交线
平面
⒉ 利用线框,分析体表面的相对位置关系。
视图中一个封闭线框一般情况下表示一个面的 投影,线框套线框,通常是两个面凹凸不平或者是 具有打通的孔。
两个线框相邻,表示两个面高低不平或相交。
⒊ 利用虚、实线区分各部分的相对位置关系。
⒋ 几个视图对照分析以确定物体的形状
例:已知物体的主视图和俯视图,画出左视图。
3.2
基本体的三视图
常见的基本几何体 平面基本体 曲面基本体
一、平面基本体
1.棱柱 ⑴ 棱柱的组成
由两个底面和若干侧棱面 组成。侧棱面与侧棱面的交线 叫侧棱线,侧棱线相互平行。
的两底面为水平面,在俯视 点的可见性规定: 图中反映实形。前后两侧棱 由于棱柱的表面都 若点所在的平面的投 面是正平面,其余四个侧棱 是平面,所以在棱柱的 影可见,点的投影也可见; 面是铅垂面,它们的水平投 表面上取点与在平面上 若平面的投影积聚成直线, 影都积聚成直线,与六边形 取点的方法相同。 点的投影也可见。 的边重合。
k n (n) b c a(c) b c s k n
b
二、回转体
1.圆柱体
⑴ 圆柱体的组成 由圆柱面和两个底面组成。 圆柱面是由直线AA1绕与 它平行的轴线OO1旋转而成。 3′ 1 ′ 直线AA1称为母线。 圆柱面上与轴线平行的任 a 一直线称为圆柱面的素线。
体3 体1 体2

分析投影,想象出物体的形状。 ⑴ 对线框,分解形体。 ⑵ 综合起来,想象整体。
⒉ 根据投影规律及“三等”关系,画出第三视图。
注意:要逐个形体画

重点掌握:


一、基本体的三视图画法及面上找点的方法。

浙教版九年级数学下册培优练习附答案:3.2简单几何体的三视图

浙教版九年级数学下册培优练习附答案:3.2简单几何体的三视图

3.2简单几何体的三视图一、选择题(共15小题)A.正方体B.圆锥C.球D.圆柱1.下列四个几何体中,主视图、左视图、俯视图都是圆的几何体是2.如图,桌面上有一个一次性纸杯,它的主视图应是3. 下列水平放置的四个几何体中,主视图与其它三个不相同的是4. 下面简单几何体的左视图是! AA. Eb C. nnd5. 有。

个相同的立方体搭成的几何体如图所示,则它的主视图是6.下列四个立体图形中,主视图为圆的是.:■B. pp D. FPnD.B. D.A.B.C.B.8. 如图是一个由若干个棱长为|的正方体构成的几何体的三视图,则构成这个几何体的体积为■'.9. 如图几何体的主视图是A.C. Em10. 如图,由三个小立方体搭成的几何体的俯视图是11.如图所示的支架是由两个长方形构成的组合体,则它的主视图是主视圏 左视囹俯视囹A.C.B.正面A. I —D.C. D.A. B.12.由、个相同的立方体搭成的几何体如图,则它的主视图是A.C.13. 有一篮球如图放置,其主视图为14. 由:个相同小立方体搭成的几何体如图所示,则它的主视图是兔视方向A.D.D.C.D.4觇力向B.A.C. D.15. 若干桶方便面摆放在桌子上,实物图片左边所给的是它的三视图,则这 一堆方便面共有■:.A. •-桶B.桶C 」桶 D. |】桶二、填空题(共15小题)16. _________________________________ 如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是 •,则该几何体俯视图的面积是 .17. 一个几何体,是由许多规格相同的小正方体堆积而成的,其主视图、左视图如图所示,要摆成这样的图形,至少需用 __________________________ 块小正方 体.主视图18. 一个几何体的三视图如图所示(其中标注的 长),则这个几何体的体积是 _______________ .ab—厂。

2020最新浙教版九年级数学下册电子课本课件【全册】

2020最新浙教版九年级数学下册电子课本课件【全册】

1.3解直角三角形
2020最新浙教版九年级数学下册电 子课本课件【全册】
第2章 直线与圆的位置关系
2020最新浙教版九年级数学下册电 子课本课件【全册】
2.1直线与圆的位置关系
2020最新浙教版九年级数学下册电 子课本课件【全册】
第1章 解直角三角形
2020最新浙教版九年级数学下册电 子课本课件【全册】
1.1锐角三角函数
2020最新浙教版九年级数学下册电 子课本课件【全册】
1.2锐角三角函数的计算
2020最新浙教版九年级数学下定理
2020最新浙教版九年级数学下册电 子课本课件【全册】
2.3三角形的内切圆
2020最新浙教版九年级数学下册电 子课本课件【全册】
第3章 投影与三视图
2020最新浙教版九年级数学下册 电子课本课件【全册】目录
0002页 0052页 0088页 0129页 0181页 0247页 0290页
第1章 解直角三角形 1.2锐角三角函数的计算 第2章 直线与圆的位置关系 2.2切线长定理 第3章 投影与三视图 3.2简单几何体的三视图 3.4简单几何体的表面展开图
2020最新浙教版九年级数学下册电 子课本课件【全册】
3.1投影
2020最新浙教版九年级数学下册电 子课本课件【全册】
3.2简单几何体的三视图
2020最新浙教版九年级数学下册电 子课本课件【全册】
3.3由三视图描述几何体
2020最新浙教版九年级数学下册电 子课本课件【全册】

浙教版 九年级数学 下册 第三章 3.2 简单几何体的三视图 课件(共18张PPT)

浙教版 九年级数学 下册 第三章 3.2 简单几何体的三视图 课件(共18张PPT)
请观察下面三个投影,它们有什么 相同与不同的地方?你能试着给正投
影下定义吗?
中心投影 投影
斜投影
正投影
平行投影
简单几何体的三视图(1)
看一看
从左面看到的图形: 左视图
从正面看到的图形: 主视图 从正上方往下看到的 图形:俯视图
主视图、左视图、俯视图合称三视图。
从上面看
主视图
左视图
从左面看
从正面看


2、小明的爸爸送给小明一个礼物,小明打开包装后画出它 的主视图与俯视图如图所示,根据小明画的视图,请你猜礼
物是( B )
A、钢笔 B、生日蛋糕 C、光盘 D、一套衣服
3、一个长方体木块上的正中位置搁一个乒乓球,已知它的主视 图与俯视图,小明补画的左视图正确吗?为什么?如果错了,怎
主 视 图
5cm
高 平 齐
5cm
左 视 图
5cm
4cm 3cm
长对正
3cm
4cm
画图原则:
俯 视 图
4cm
主、俯视图长对正,主、左视图高平齐, 俯、左视图宽相等.
练一练:
课堂训练
1、图甲,乙都是由小立方体组成的几何体,则图甲,图乙的
视图一样的是( C )
A、主视图、左视图 B、主视图、俯视图 C、左视图、俯视图 D、以上都不对
• 位置:主视图 左视图

俯视图
• 大小:长对正,高平齐,宽相等.
横看成岭侧成峰,远近高低各不同。 不识庐山真面目,只缘身在此山中。
——苏轼
•不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话,另 一眼睛看到纸的背面。2022年4月11日星期一2022/4/112022/4/112022/4/11 •书籍是屹立在时间的汪洋大海中的灯塔。2022年4月2022/4/112022/4/112022/4/114/11/2022 •正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/4/112022/4/11April 11, 2022 •书籍是屹立在时间的汪洋大海中的灯塔。

浙教版九年级数学下册电子课本课件【全册】

浙教版九年级数学下册电子课本课件【全册】
浙教版九年级数学下册电子课本课 件【全册】
1.1锐角三角函数
浙教版九年级数Biblioteka 下册电子课本课 件【全册】1.2锐角三角函数的计算
浙教版九年级数学下册电子课本课 件【全册】
1.3解直角三角形
浙教版九年级数学下册电子课本课 件【全册】
第2章 直线与圆的位置关系
浙教版九年级数学下册电子课本课 件【全册】
浙教版九年级数学下册电子课本 课件【全册】目录
0002页 0042页 0118页 0137页 0213页 0258页 0324页
第1章 解直角三角形 1.2锐角三角函数的计算 第2章 直线与圆的位置关系 2.2切线长定理 第3章 投影与三视图 3.2简单几何体的三视图 3.4简单几何体的表面展开图
第1章 解直角三角形

新人教版九年级数学下册知识点总结

新人教版九年级数学下册知识点总结

新人教版九年级数学下册知识点总结人教版九年级数学下册知识点总结11.解直角三角形1.1.锐角三角函数锐角a的正弦、余弦和正切统称∠a的三角函数。

如果∠a是Rt△ABC的一个锐角,则有1.2.锐角三角函数的计算1.3.解直角三角形在直角三角形中,由已知的一些边、角,求出另一些边、角的过程,叫做解直角三角形。

2.直线与圆的位置关系2.1.直线与圆的位置关系当直线与圆有两个公共点时,叫做直线与圆相交;当直线与圆有公共点时,叫做直线与圆相切,公共点叫做切点;当直线与圆没有公共点时,叫做直线与圆相离。

直线与圆的位置关系有以下定理:直线与圆相切的判定定理:经过半径的外端并且垂直这条半径的直线是圆的切线。

圆的切线性质:经过切点的半径垂直于圆的切线。

2.2.切线长定理从圆外一点作圆的切线,通常我们把圆外这一点到切点间的线段的长叫做切线长。

切线长定理:过圆外一点所作的圆的两条切线长相等。

2.3.三角形的内切圆与三角形三边都相切的圆叫做三角形的内切圆,圆心叫做三角形的内心,三角形叫做圆的外切三角形。

三角形的内心是三角形的三条角平分线的交点。

3.三视图与表面展开图3.1.投影物体在光线的照射下,在某个平面内形成的影子叫做投影。

光线叫做投影线,投影所在的平面叫做投影面。

由平行的投射线所形成的投射叫做平行投影。

可以把太阳光线、探照灯的光线看成平行光线,它们所形成的投影就是平行投影。

3.2.简单几何体的三视图物体在正投影面上的正投影叫做主视图,在水平投影面上的正投影叫做俯视图,在侧投影面上的正投影叫做左视图。

主视图、左视图和俯视图合称三视图。

产生主视图的投影线方向也叫做主视方向。

3.3.由三视图描述几何体三视图不仅反映了物体的形状,而且反映了各个方向的尺寸大小。

3.4.简单几何体的表面展开图将几何体沿着某些棱“剪开”,并使各个面连在一起,铺平所得到的平面图形称为几何体的表面展开图。

圆柱可以看做由一个矩形ABCD绕它的一条边BC旋转一周,其余各边所成的面围成的几何体。

简单几何体的三视图-九年级数学下册尖子生同步培优题典解析版浙教版

简单几何体的三视图-九年级数学下册尖子生同步培优题典解析版浙教版

6.(2021•桂林模拟)下列几何体中,从正面观察所看到的形状为三角形的是 ( )
A.
B.
C.
D.
【分析】利用从正面看到的图叫做主视图判断即可. 【解析】 A .从正面看是一个等腰三角形,故本选项符合题意; B .从正面看是一个矩形,矩形的中间有一条纵向的实线,故本选项不符合题意; C .从正面看是一个圆,故本选项不符合题意; D .从正面看是一个矩形,故本选项不符合题意; 故选: A .
,主视图为
,左视图与主视图不同,故此选项不合题意;
4.(2021•商河县校级模拟)如图所示几何体的左视图正确的是 ( )
A.
B.
C.
D.
【分析】找到从几何体的左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.
【解析】从几何体的左面看所得到的图形是:
故选: A . 5.(2021•锡山区一模)下列四个立体图形中,从正面看到的图形与其他三个不同的是 ( )
小正方体②的正上方,下列关于移动后几何体的三视图说法正确的是 ( )

A.左视图发生改变 B.俯视图发生改变 C.主视图发生改变 D.左视图、俯视图、主视图都发生改变 【分析】根据三视图的定义求解即可. 【解析】主视图发生变化,上层的小正方体由原来位于左边变为右边; 俯视图和左视图都没有发生变化, 故选: C . 9.(2020 秋•历城区校级月考)如图所示的几何体的主视图是 ( )
D 、主视图是矩形,左视图为三角形,所以 D 选项错误.
故选: A .
2.(2021•龙门县模拟)如图所示的几何体,从上面看得到的图形是 ( )
A.
B.
C.
D.
【分析】根据从上边看得到的图形是俯视图,可得答案.

简单组合体的三视图2

简单组合体的三视图2

俯 梯 形 楔
正 视 图
侧 视 图

三 棱 柱
视图
根据三视图画出实物草图(几何体的直观图) 根据三视图画出实物草图(几何体的直观图) 根据三视图想像物体原形,并画出物体的实物草图: 根据三视图想像物体原形,并画出物体的实物草图: (1)三视图图 三视图图11.1-13(a); 三视图图 ; (2)三视图图 三视图图11.1-13(b) 三视图图
H B A G C I 侧视 B A C
【解析】解题时 解析】 在图2的右边放扇墙 在图 的右边放扇墙 (心中有墙 心中有墙), 心中有墙 可得答案A. E 可得答案
D F 图1 B
E F B B 图2
D
B
E A. .
E B. .
E C. .
E D. .
练习
P158 变式3, 变式4 变式 , 变式
(三) 画法
1. 斜二测画法的规则: 斜二测画法的规则: (1)在已知图形中取水平平面,取互相垂直的轴 )在已知图形中取水平平面,取互相垂直的轴OX、 、 OY,再取OZ轴,使 ∠XOZ = 90° ,且 ∠YOZ = 90°; ,再取 轴 (2)画直观图时,把它们画成对应的轴 O ′X ′ 、O ′Y ′ 、 )画直观图时, ( ° O ′Z ′ ,使 ∠X ′O ′Y ′ = 45° 或135°),∠X ′O ′Z ′ = 90° . 所确定的平面表示水平平面; X ′O ′Y ′ 所确定的平面表示水平平面 轴的线段, (2)已知图形中平行于 轴、Y轴、Z轴的线段,在直 )已知图形中平行于X轴 轴 轴的线段 轴的线段; 观图中分别画成平行于 X ′轴、Y ′ 轴或 Z ′ 轴的线段; 轴和Z轴的线段 (3)已知图形中平行于 轴和 轴的线段,在直观图中 )已知图形中平行于X轴和 轴的线段, 保持长度不变,平行于Y轴的线段长度为原来的一半 保持长度不变,平行于 轴的线段长度为原来的一半 ;

简单几何体的三视图教案(完美版)

简单几何体的三视图教案(完美版)

之间的关系;③会判断简单物体的三视图,发展合情推理能力和数学表达能力;④结合具体实例,初步体会视图在现实生活中的应用,感受数学与现实生活的密切联系,增强学生的数学应用意识。

三、教学过程分析第一环节:情境问题引入活动内容:1“横看成岭侧成峰,远近高低各不同。

”一句中蕴含着怎样的数学道理?2小明昨天买了一本字典,假如有一束平行光线从正面、左面、上面照射这本字典,得到正投影图形是什么?第二环节:活动探究(获取信息,体会特点)活动内容:1如图,这个物体可以看做是由什么几何体组成的?2假如一束平行光线从正面、左面、上面投射到物体上,你能想象出它的正投影吗?试着画出来。

附答案活动目的:这一部分是对情境引入的深化,让学生经历实物抽象成几何体的,在前面的基础上将长方体增加到大小不一的两个,培养培养学生的抽象能力和想象能力,并在情境引入的基础上,清楚长方体三视图的特点,灵活运用所学得到两个长方体组合的三视图,培养学生举一反三的能力。

实际效果:学生在情境引入的铺垫下,通过自己的探究,从中获取了大量的信息和体验,亲身体会和经历了两个长方体组合的三视图的抽象过程。

而且小组之间互相补充、互相竞争,气氛热烈,使三视图知识信息的获取更加全面。

事实上,通过长方体三视图特点的一个自然感知的过程,学生都能用自己的语言归纳总结出三种视图的特点,这就为下一课时画棱柱三视图打好了基础。

第三环节:合作学习参照教材提供的几何体,提出问题:下图中物体的形状分别可以看成什么样的几何体?(2)你能在下列图形中找出上面几何体对应的主视图吗?(3)你能想象出它们的左视图和俯视图吗?与同伴交流,请你试着画出来。

(4)你能说出常见几何体的三种视图的特点吗?活动目的:以问题串的形式引导学生逐步深入的思考画出三种视图的特点。

第一个问题的设置帮助学生让学生经历将实物抽象成几何体的过程,培养学生的抽象学生经过前一环节对三视图的特点有了全面的认识,通过问题串的回答,使学生经历由圆柱、圆锥和球三种视图的转化过程,发展了学生的空间观念;进一步完善了学生对三视图的把握,对三视图的学习又迈出了一大步。

简单几何体的三视图

简单几何体的三视图

俯视图
俯视图
( 4)
主视图
左视图
俯视图练习Leabharlann :(1)下列命题正确的有:

①如果一个几何体的三视图是完全相同 的,则这个几何体是正方体。
②如果一个几何体的主视图和俯视图都 是矩形,则这个几何体是长方体。 ③如果一个几何体的三视图都是矩形, 则这个几何体是长方体。 ④如果一个几何体的主视图和左视图都 是等腰梯形,则这个几何体是圆台。
视图:将物体按正投影法向投影面
投影时所得到的投影图。
概念(三视图): 主视图:光线从几何体的前面向后面 三 视 图
正投影 所得到的投影图。
左视图:光线从几何体的左面向右面
正投影所得到的投影图。
俯视图:光线从几何体的上面向下面
正投影所得到的投影图。
c
主视图
c
b 左视图
a
b
a
俯视图
c a
b
由上图我们得出:
画三视图的要求:
主视图、俯视图长对正; 主视图、左视图高平齐; 俯视图、左视图宽相等。
因此,三视图的画法规则可归结为:
长对正, 高平齐, 宽相等。
例:画出下面几何体的主视图、左视图与俯视图
从上面看 主视图 左视图
从左面看
从正面看
俯视图
宽 高

主视图 长 长 高 高 宽 左视图
俯视图

练习1:画出下面几何体的主视图、左视图与俯视图
邱兴翠
马龙县第一中学数学组
横看成岭侧成峰,远近高低各不同。 不识庐山真面目,只缘身在此山中。 ——苏轼
横看成岭侧成峰,远近高低各不同。 不识庐山真面目,只缘身在此山中。 ——苏轼
请欣赏漫画并思考 : 为什么会出现争执?

02空间几何体的三视图(二)-2019年高考数学考点讲解(三)

02空间几何体的三视图(二)-2019年高考数学考点讲解(三)

重难点展示:一.多面体1、棱柱特征:(1)有两个底面相互平行;(2)其余各面每相邻两个四边形的公共边都互相平行。

性质:(1)侧棱都相等,侧面是平行四边形;(2)两个底面与平行于底面的截面是全等的多边形;(3)过不相邻的两条侧棱的截面是平行四边形。

分类:(1)按底面多边形的边数分为:三棱柱、四棱柱等;(2)按侧棱与底面的位置关系分为:⎧⎪⎧⎨⎨⎪⎩⎩斜棱柱正棱柱直棱柱一般棱柱 说明:深刻理解棱柱的特征及性质,才能准确地应对概念题,才能准确地判断棱柱中的线线、线面、面面关系。

2、棱锥特征:(1)有一个面是多边形;(2)其余各面是有一个公共顶点的三角形。

一般棱锥的截面性质:如果棱锥被平行于底面的平面所截,那么截面和底面相似,并且它们的面积比等于截得的棱锥的高与已知棱锥的高的平方比。

如果一个棱锥的底面是正多边形,并且水平放置,它的顶点又在多边形中心的铅垂线上,则这个棱锥叫做正棱锥。

正棱锥的性质:(1)各侧棱相等,各侧面都是全等的等腰三角形;(2)棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形;(3)棱锥的高、侧棱和侧棱在底面内的射影也组成一个直角三角形。

掌握正棱锥的概念,特别是其中的几个直角三角形,可求高、斜高、侧棱长等;另外,还要熟悉一条侧棱垂直底面的棱锥,此两点是高考中常见考点。

3、棱台特征:(1)圆棱锥的底面和与其平行的截面分别叫做棱台的下底面、上底面;(2)其他各面叫做棱台的侧面;(3)相邻两侧面的公共边叫做棱台的侧棱;(4)当棱台的底面水平放置时,铅垂线与两底面交点间的线段或距离叫做棱台的高;由正棱锥截得的棱台叫做正棱台。

正棱台的性质:(1)各侧棱相等,侧面是全等的等腰梯形;(2)两底面以及平行于底面的截面是相似多边形;(3)两底面中心两线、相应的边心距和斜高组成一个直角梯形;(4)正棱台的上下底面中心的连线是棱台的高;(5)正棱台各侧面都是全等的等腰梯形,这些等腰梯形的高叫做棱台的斜高。

数学九年级下冀教版32.2 第1课时 简单几何体的三视图教学设计

数学九年级下冀教版32.2 第1课时 简单几何体的三视图教学设计

32.2 视图第1课时简单几何体的三视图1.会从投影的角度理解视图的概念;(重点)2.会画简单几何体的三视图.(难点)一、情境导入如图所示:直三棱柱的侧棱与水平投影面垂直,请与同伴一起探讨下面的问题:(1)以水平投影面为投影面,在正投影下这个直三棱柱的三条侧棱的投影是什么图形?(2)画出直三棱柱在水平投影面的正投影,得到的投影是什么图形?它与直三棱柱底面有什么关系?这个水平投影能完全反映这个物体的形状和大小吗?如不能,那么还需哪些投影面?物体的正投影从一个方向反映了物体的形状和大小,为了全面地反映一个物体的形状和大小,我们常常再选择正面和侧面两个投影面,今天我们将学习与这三个面的投影相关的知识.二、合作探究探究点一:简单几何体的三视图【类型一】判断俯视图下面的几何体中,俯视图为三角形的是()解析:选项A.长方体的俯视图是长方形,错误;选项B.圆锥的俯视图是带圆心的圆,错误;选项C.圆柱的俯视图是圆,错误;选项D.三棱柱的俯视图是三角形,正确;故选D.方法总结:在水平面内得到的由上向下观察物体的视图,即为俯视图.【类型二】判断主视图下面的几何体中,主视图为三角形的是()解析:选项A.主视图是长方形,错误;选项B.主视图是长方形,错误;选项C.主视图是三角形,正确;选项D.主视图是长方形,中间还有一条线,错误;故选C.方法总结:一个物体在三个投影面内同时进行正投影,在正面内得到的由前向后观察物体的视图,即为主视图.【类型三】判断左视图在下面的四个几何体中,左视图与主视图不相同的几何体是()解析:选项A.正方体的左视图与主视图都是正方形,不合题意;选项B.长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,符合题意;选项C.球的左视图与主视图都是圆,不合题意;选项D.圆锥的左视图与主视图都是等腰三角形,不合题意;故选B.方法总结:主视图、左视图是分别从物体正面、左面看所得到的图形.三、板书设计1.主视图、俯视图和左视图的概念;2.三视图的画法.本节课力求突出具体、生动、直观,因此,学生多以亲自操作、观察实物模型和图片等活动为主.使用多媒体教学,使学生更直观的感受知识,激发学习兴趣.在本次教学过程中,丰富了学生观察、操作、猜想、想象、交流等活动经验,培养了学生的观察能力和想象能力,提升了他们的空间观念.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档