导数与不等式常考题型
不等式常见考试题型总结
《不等式》常见考试题型总结一、高考与不等式高考试题,有关不等式的试题约占总分的12% 左右,主要考查不等式的基本知识,基本技能,以及学生的运算能力,逻辑思维能力,分析问题和解决问题的能力.选择题和填空题主要考查不等式的性质、比较大小和解简单不等式,还可能与函数、方程等内容相结合的小综合.解答题主要是解不等式或证明不等式或以其他知识为载体的综合题。
不等式常与下列知识相结合考查:①不等式的性质的考查常与指数函数、对数函数、三角函数的性质的考查相结合,一般多以选择题的形式出现,有时也与充要条件、函数单调性等知识结合,且试题难度不大;②解不等式的试题主要在解答中出现,常常是解含参不等式较多,且多与二次函数、指数、对数、可能还会出现导数相结合命题;③证明不等式是理科考查的重点,经常同一次函数、二次函数、数列、解析几何,甚至还可能与平面向量等结合起来考查.二、常见考试题型(1)求解不等式解集的题型(分式不等式的解法,根式不等式的解法,绝对值不等式的解法,含参不等式的解法,简单的一元高次不等式的解法)(2)不等式的恒成立问题(不等式恒成立问题的常规处理方式常应用函数方程思想,分离变量法,数形结合法)(3)不等式大小比较常用方法:1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果;2.作商(常用于分数指数幂的代数式);3.分析法;4.平方法;5.分子(或分母)有理化;6.利用函数的单调性;7.寻找中间量或放缩法 ;8.图象法。
(4)不等式求函数最值技巧一:凑项例:已知,求函数的最大值。
54x <14245y x x =-+-技巧二:凑系数例. 当时,求的最大值。
(82)y x x =-技巧三: 分离例. 求的值域。
2710(1)1x x y x x ++=>-+技巧四:换元例. 求的值域。
2710(1)1x x y x x ++=>-+技巧五:函数的单调性(注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数的单调性。
专题3-6 导数综合大题:零点与不等式证明2023年高考数学一轮复习热点题型归纳与变式演练(原卷版)
2.(2022·全国·高三专题练习)已知函数
f
x
3x x3
, g x
bsin
x ,曲线
y
f
x 和
y
g x 在原点处有
相同的切线 l.(1)求 b 的值以及 l 的方程;
(2)判断函数 h x f x g x 在 0, 上零点的个数,并说明理由.
【题型五】讨论零点个数 2:有参讨论型
将函数 f x 拆成函数 h x 和 g x 的差的形式, f x 0 h x g x,则函数 f x 的零点个数就 是函数 y h x 和 y g x 的图象的交点个数. (3)函数零点存在定理,利用函数零点存在定理时,不仅要求函数图象在区间a,b 上是连续不断的 曲线, f a f b 0 ,还需要结合函数的图象与性质(如单调性、 奇偶性)才能确定函数有多少个
(2)讨论函数 f (x) 零点的个数.
【题型六】讨论零点个数 3:给参数范围证明型
【典例分析】
(2022·河南·高三开学考试(理))已知函数 f x x2 a ex .
(1)若
f
x
存在两个极值点
x 1
,
x
2
,求
x12
x22 的取值范围;
(2)若 2e0.92
0.923,证明:当 0.25
(2)若 a 3且 a2 a 1 b 2a2 2a 2,证明: f (x) 恰好有三个零点.
高中数学:利用导数证明不等式的常见题型
利用导数证明不等式的常见题型题型一构造函数法把不等式的证明转化为利用导数研究函数的单调性或求最值的问题,从而证明不等式,而如何根据不等式的结构特征构造一个可导函数是利用导数证明不等式的关键.这四道题比较简单,证明过程略.概括而言,这四道题证明的过程分三个步骤:一是构造函数;二是对函数求导,判断函数的单调性;三是求此函数的最值,得出结论.【启示】证明分三个步骤:一是构造函数;二是对函数求导,判断函数的单调性;三是求此函数的最值,得出结论。
题型二通过对函数的变形,利用分析法,证明不等式【启示】解答第一问用的是分离参数法,解答第二问用的是分析法、构造函数,对函数的变形能力要求较高,大家应记住下面的变形:题型三求最值解决任意、存在性变量问题解决此类问题,关键是将问题转化为求函数的最值问题,常见的有下面四种形式:题型四分拆成两个函数研究【注意】(2)如果按题型一的方法构造函数求导,会发现做不下去,只好半途而废,所以我们在做题时需要及时调整思路,改变思考方向.【启示】掌握下列八个函数的图像和性质,对我们解决不等式的证明问题很有帮助,这八个函数分别为要求会画它们的图像,以后见到这种类型的函数,就能想到它们的性质题型五设而不求当函数的极值点(最值点)不确定时,可以先设出来,只设不解,把极值点代入,求出最值的表达式而证明.【启示】设而不求,整体代换是一种常用的方法,在解析几何中体现很多.在本例第(2)问中,只设出了零点而没有求出零点,这是一种非常好的方法,同学们一定要认真体会,灵活应用.题型六估值法题型七利用图象的特点,证明不等式题型八证明数列不等式题型九利用放缩法证明不等式【注意】在解决第(2)问时,用构造函数法证不出来,又试着分开两个函数仍然不行,正当我一筹莫展时,忽然想到与第一问题的切线联系,如果左边的函数的图像在切线的上方,右边函数的图像在切线的下方,这样问题不就得证了吗?心里非常高兴,马上付诸行动。
利用导数解不等式考点与题型归纳
利用导数解不等式考点与题型归纳考点一 f (x )与f ′(x )共存的不等式问题[典例] (1)定义在R 上的函数f (x ),满足f (1)=1,且对任意x ∈R 都有f ′(x )<12,则不等式f (lg x )>lg x +12的解集为__________.(2)设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集为__________________.[解析] (1)由题意构造函数g (x )=f (x )-12x ,则g ′(x )=f ′(x )-12<0,所以g (x )在定义域内是减函数. 因为f (1)=1,所以g (1)=f (1)-12=12,由f (lg x )>lg x +12,得f (lg x )-12lg x >12.即g (lg x )=f (lg x )-12lg x >12=g (1),所以lg x <1,解得0<x <10. 所以原不等式的解集为(0,10).(2)借助导数的运算法则,f ′(x )g (x )+f (x )g ′(x )>0⇔[f (x )g (x )]′>0,所以函数y =f (x )g (x )在(-∞,0)上单调递增.又由题意知函数y =f (x )g (x )为奇函数,所以其图象关于原点对称,且过点(-3,0),(3,0).数形结合可求得不等式f (x )g (x )<0的解集为(-∞,-3)∪(0,3).[答案] (1)(0,10) (2)(-∞,-3)∪(0,3)[解题技法](1)对于不等式f ′(x )+g ′(x )>0(或<0) ,构造函数F (x )=f (x )+g (x ). (2)对于不等式f ′(x )-g ′(x )>0(或<0) ,构造函数F (x )=f (x )-g (x ). 特别地,对于不等式f ′(x )>k (或<k )(k ≠0),构造函数F (x )=f (x )-kx . (3)对于不等式f ′(x )g (x )+f (x )g ′(x )>0(或<0),构造函数F (x )=f (x )g (x ).(4)对于不等式f ′(x )g (x )-f (x )g ′(x )>0(或<0),构造函数F (x )=f (x )g (x )(g (x )≠0).[典例] (1)设f ′(x )是奇函数f (x )(x ∈R)的导函数,f (-1)=0, 当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A .(-∞,-1)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(-1,0)D .(0,1)∪(1,+∞)(2)设函数f (x )在R 上的导函数为f ′(x ),且2f (x )+xf ′(x )>x 2,则下列不等式在R 上恒成立的是( )A .f (x )>0B .f (x )<0C .f (x )>xD .f (x )<x[解析] (1)令g (x )=f (x )x ,则g ′(x )=xf ′(x )-f (x )x 2.由题意知,当x >0时,g ′(x )<0, ∴g (x )在(0,+∞)上是减函数. ∵f (x )是奇函数,f (-1)=0, ∴f (1)=-f (-1)=0, ∴g (1)=f (1)=0,∴当x ∈(0,1)时,g (x )>0,从而f (x )>0; 当x ∈(1,+∞)时,g (x )<0,从而f (x )<0. 又∵f (x )是奇函数,∴当x ∈(-∞,-1)时,f (x )>0; 当x ∈(-1,0)时,f (x )<0.综上,所求x 的取值范围是(-∞,-1)∪(0,1).(2)令g (x )=x 2f (x )-14x 4,则g ′(x )=2xf (x )+x 2f ′(x )-x 3=x [2f (x )+xf ′(x )-x 2].当x >0时,g ′(x )>0,∴g (x )>g (0), 即x 2f (x )-14x 4>0,从而f (x )>14x 2>0;当x <0时,g ′(x )<0,∴g (x )>g (0), 即x 2f (x )-14x 4>0,从而f (x )>14x 2>0;当x =0时,由题意可得2f (0)>0,∴f (0)>0.综上可知,f (x )>0. [答案] (1)A (2)A [解题技法](1)对于xf ′(x )+nf (x )>0型,构造F (x )=x n f (x ),则F ′(x )=x n -1[xf ′(x )+nf (x )](注意对x n-1的符号进行讨论),特别地,当n =1时,xf ′(x )+f (x )>0,构造F (x )=xf (x ),则F ′(x )=xf ′(x )+f (x )>0.(2)对于xf ′(x )-nf (x )>0(x ≠0)型,构造F (x )=f (x )x n ,则F ′(x )=xf ′(x )-nf (x )xn +1(注意对x n +1的符号进行讨论),特别地,当n =1时,xf ′(x )-f (x )>0,构造F (x )=f (x )x,则F ′(x )=xf ′(x )-f (x )x 2>0. [典例] (1)已知f (x )为R 上的可导函数,且∀x ∈R ,均有f (x )>f ′(x ),则有( ) A .e 2 019f (-2 019)<f (0),f (2 019)>e 2 019f (0) B .e 2 019f (-2 019)<f (0),f (2 019)<e 2 019f (0) C .e 2 019f (-2 019)>f (0),f (2 019)>e 2 019f (0) D .e 2 019f (-2 019)>f (0),f (2 019)<e 2 019f (0)(2)已知定义在R 上的函数f (x )满足f (x )+2f ′(x )>0恒成立,且f (2)=1e (e 为自然对数的底数),则不等式e xf (x )-e 2x >0的解集为________.[解析] (1)构造函数h (x )=f (x )e x ,则h ′(x )=f ′(x )-f (x )e x<0,即h (x )在R 上单调递减,故h (-2 019)>h (0),即f (-2 019)e -2 019>f (0)e 0⇒e 2 019f (-2 019)>f (0);同理,h (2 019)<h (0),即f (2 019)<e 2 019f (0),故选D.(2)由f (x )+2f ′(x )>0得2⎣⎡⎦⎤12f (x )+f ′(x )>0,可构造函数h (x )=e 2xf (x ),则h ′(x )=12e 2x[f (x )+2f ′(x )]>0,所以函数h (x )=e 2x f (x )在R 上单调递增,且h (2)=e f (2)=1.不等式e x f (x )-e 2x >0等价于e 2x f (x )>1,即h (x )>h (2)⇒x >2,所以不等式e x f (x )-e 2x >0的解集为(2,+∞).[答案] (1)D (2)(2,+∞) [解题技法](1)对于不等式f ′(x )+f (x )>0(或<0),构造函数F (x )=e x f (x ).(2)对于不等式f′(x)-f(x)>0(或<0),构造函数F(x)=f(x) e x.考点二不等式恒成立问题不等式恒成立问题的基本类型类型1:任意x,使得f(x)>0,只需f(x)min>0.类型2:任意x,使得f(x)<0,只需f(x)max<0.类型3:任意x,使得f(x)>k,只需f(x)min>k.类型4:任意x,使得f(x)<k,只需f(x)max<k.类型5:任意x,使得f(x)>g(x),只需h(x)min=[f(x)-g(x)]min>0.类型6:任意x,使得f(x)<g(x),只需h(x)max=[f(x)-g(x)]max<0.[典例]已知函数f(x)=ax+ln x+1,若对任意的x>0,f(x)≤x e2x恒成立,求实数a的取值范围.[解]法一:构造函数法设g(x)=x e2x-ax-ln x-1(x>0),对任意的x>0,f(x)≤x e2x恒成立,等价于g(x)≥0在(0,+∞)上恒成立,则只需g(x)min≥0即可.因为g′(x)=(2x+1)e2x-a-1x,令h(x)=(2x+1)e2x-a-1x(x>0),则h′(x)=4(x+1)e2x+1x2>0,所以h(x)=g′(x)在(0,+∞)上单调递增,因为当x―→0时,h(x)―→-∞,当x―→+∞时,h(x)―→+∞,所以h(x)=g′(x)在(0,+∞)上存在唯一的零点x0,满足(2x0+1)e2x0-a-1x0=0,所以a=(2x0+1)e2x0-1x0,且g(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增,所以g(x)min=g(x0)=x0e2x0-ax0-ln x0-1=-2x20e2x0-ln x0,则由g(x)min≥0,得2x20e2x0+ln x0≤0,此时0<x0<1,e2x0≤-ln x02x20,所以2x0+ln(2x0)≤ln(-ln x0)+(-ln x0),设S (x )=x +ln x (x >0),则S ′(x )=1+1x >0,所以函数S (x )在(0,+∞)上单调递增, 因为S (2x 0)≤S (-ln x 0), 所以2x 0≤-ln x 0即e2x 0≤1x 0,所以a =(2x 0+1)e2x 0-1x 0≤(2x 0+1)·1x 0-1x 0=2,所以实数a 的取值范围为(-∞,2]. 法二:分离参数法因为f (x )=ax +ln x +1,所以对任意的x >0,f (x )≤x e 2x 恒成立,等价于a ≤e 2x -ln x +1x 在(0,+∞)上恒成立.令m (x )=e 2x -ln x +1x (x >0),则只需a ≤m (x )min 即可,则m ′(x )=2x 2e 2x +ln xx 2, 再令g (x )=2x 2e 2x +ln x (x >0),则g ′(x )=4(x 2+x )e 2x +1x >0,所以g (x )在(0,+∞)上单调递增,因为g ⎝⎛⎭⎫14=e 8-2ln 2<0,g (1)=2e 2>0, 所以g (x )有唯一的零点x 0,且14<x 0<1,所以当0<x <x 0时,m ′(x )<0,当x >x 0时,m ′(x )>0, 所以m (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,因为2x 20e2x 0+ln x 0=0, 所以ln 2+2ln x 0+2x 0=ln(-ln x 0), 即ln(2x 0)+2x 0=ln(-ln x 0)+(-ln x 0), 设s (x )=ln x +x (x >0),则s ′(x )=1x +1>0,所以函数s (x )在(0,+∞)上单调递增, 因为s (2x 0)=s (-ln x 0), 所以2x 0=-ln x 0,即e2x 0=1x 0,所以m (x )≥m (x 0)=e2x 0-ln x 0+1x 0=1x 0-ln x 0x 0-1x 0=2,则有a ≤2,所以实数a 的取值范围为(-∞,2]. [解题技法]求解不等式恒成立问题的方法(1)构造函数分类讨论:遇到f (x )≥g (x )型的不等式恒成立问题时,一般采用作差法,构造“左减右”的函数h (x )=f (x )-g (x ) 或“右减左”的函数u (x )=g (x )-f (x ),进而只需满足h (x )min ≥0或u (x )max ≤0,将比较法的思想融入函数中,转化为求解函数最值的问题,适用范围较广,但是往往需要对参数进行分类讨论.(2)分离函数法:分离参数法的主要思想是将不等式变形成一个一端是参数a ,另一端是变量表达式v (x )的不等式后,应用数形结合思想把不等式恒成立问题转化为水平直线y =a 与函数y =v (x )图象的交点个数问题来解决.[题组训练](2019·陕西教学质量检测)设函数f (x )=ln x +kx,k ∈R.(1)若曲线y =f (x )在点(e ,f (e))处的切线与直线x -2=0垂直,求f (x )的单调性和极小值(其中e 为自然对数的底数);(2)若对任意的x 1>x 2>0,f (x 1)-f (x 2)<x 1-x 2恒成立,求k 的取值范围. 解:(1)由条件得f ′(x )=1x -kx2(x >0),∵曲线y =f (x )在点(e ,f (e))处的切线与直线x -2=0垂直, ∴f ′(e)=0,即1e -ke 2=0,得k =e ,∴f ′(x )=1x -e x 2=x -ex2(x >0),由f ′(x )<0得0<x <e ,由f ′(x )>0得x >e , ∴f (x )在(0,e)上单调递减,在(e ,+∞)上单调递增. 当x =e 时,f (x )取得极小值,且f (e)=ln e +ee =2.∴f (x )的极小值为2.(2)由题意知,对任意的x 1>x 2>0,f (x 1)-x 1<f (x 2)-x 2恒成立, 设h (x )=f (x )-x =ln x +kx -x (x >0),则h (x )在(0,+∞)上单调递减,∴h ′(x )=1x -kx 2-1≤0在(0,+∞)上恒成立,即当x >0时,k ≥-x 2+x =-⎝⎛⎭⎫x -122+14恒成立, ∴k ≥14.故k 的取值范围是⎣⎡⎭⎫14,+∞. 考点三 可化为不等式恒成立问题可化为不等式恒成立问题的基本类型类型1:函数f (x )在区间D 上单调递增,只需f ′(x )≥0.类型2:函数f (x )在区间D 上单调递减,只需f ′(x )≤0.类型3:∀x 1,x 2∈D ,f (x 1)>g (x 2),只需f (x )min >g (x )max .类型4:∀x 1∈D 1,∃x 2∈D 2,f (x 1)>g (x 2),只需f (x )min >g (x )min .类型5:∀x 1∈D 1,∃x 2∈D 2,f (x 1)<g (x 2),只需f (x )max <g (x )max .[典例] 已知函数f (x )=13x 3+x 2+ax .(1)若函数f (x )在区间[1,+∞)上单调递增,求实数a 的最小值;(2)若函数g (x )=xe x ,对∀x 1∈⎣⎡⎦⎤12,2,∃x 2∈⎣⎡⎦⎤12,2,使f ′(x 1)≤g (x 2)成立,求实数a 的取值范围.[解] (1)由题设知f ′(x )=x 2+2x +a ≥0在[1,+∞)上恒成立,即a ≥-(x +1)2+1在[1,+∞)上恒成立,而函数y =-(x +1)2+1在[1,+∞)单调递减,则y max =-3,∴a ≥-3,∴a 的最小值为-3.(2)“对∀x 1∈⎣⎡⎦⎤12,2,∃x 2∈⎣⎡⎦⎤12,2,使f ′(x 1)≤g (x 2)成立”等价于“当x ∈⎣⎡⎦⎤12,2时,f ′(x )max ≤g (x )max ”.∵f ′(x )=x 2+2x +a =(x +1)2+a -1在⎣⎡⎦⎤12,2上单调递增, ∴f ′(x )max =f ′(2)=8+a .而g ′(x )=1-xe x ,由g ′(x )>0,得x <1,由g ′(x )<0,得x >1,∴g (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减.∴当x ∈⎣⎡⎦⎤12,2时,g (x )max =g (1)=1e . 由8+a ≤1e ,得a ≤1e-8,∴实数a 的取值范围为⎝⎛⎦⎤-∞,1e -8. [解题技法](1)∀x 1∈D 1,∃x 2∈D 2,f (x 1)>g (x 2),等价于函数f (x )在D 1上的最小值大于g (x )在D 2上的最小值即f (x )min >g (x )min (这里假设f (x )min ,g (x )min 存在).其等价转化的基本思想是:函数y =f (x )的任意一个函数值大于函数y =g (x )的某一个函数值,但并不要求大于函数y =g (x )的所有函数值.(2)∀x 1∈D 1,∃x 2∈D 2,f (x 1)<g (x 2),等价于函数f (x )在D 1上的最大值小于函数g (x )在D 2上的最大值(这里假设f (x )max ,g (x )max 存在).其等价转化的基本思想是:函数y =f (x )的任意一个函数值小于函数y =g (x )的某一个函数值,但并不要求小于函数y =g (x )的所有函数值.[题组训练]已知函数f (x )=3x -3x +1,g (x )=-x 3+32(a +1)x 2-3ax -1,其中a 为常数.(1)当a =1时,求曲线g (x )在x =0处的切线方程;(2)若a <0,对于任意的x 1∈[1,2],总存在x 2∈[1,2],使得f (x 1)=g (x 2),求实数a 的取值范围.解:(1)当a =1时,g (x )=-x 3+3x 2-3x -1,所以g ′(x )=-3x 2+6x -3,g ′(0)=-3,又因为g (0)=-1, 所以曲线g (x )在x =0处的切线方程为y +1=-3x ,即3x +y +1=0. (2)f (x )=3x -3x +1=3(x +1)-6x +1=3-6x +1,当x ∈[1,2]时,1x +1∈⎣⎡⎦⎤13,12, 所以-6x +1∈[-3,-2], 所以3-6x +1∈[0,1],故f (x )在[1,2]上的值域为[0,1].由g (x )=-x 3+32(a +1)x 2-3ax -1,可得g ′(x )=-3x 2+3(a +1)x -3a =-3(x -1)(x -a ). 因为a <0,所以当x ∈[1,2]时,g ′(x )<0, 所以g (x )在[1,2]上单调递减, 故当x ∈[1,2]时,g (x )max =g (1)=-1+32(a +1)-3a -1=-32a -12,g (x )min =g (2)=-8+6(a +1)-6a -1=-3, 即g (x )在[1,2]上的值域为⎣⎡⎦⎤-3,-32a -12. 因为对于任意的x 1∈[1,2] ,总存在x 2∈[1,2], 使得f (x 1)=g (x 2),所以[0,1]⊆⎣⎡⎦⎤-3,-32a -12, 所以-32a -12≥1,解得a ≤-1,故a 的取值范围为(-∞,-1].[课时跟踪检测]1.(2019·南昌调研)已知函数f (x )是定义在R 上的偶函数,设函数f (x )的导函数为f ′(x ),若对任意的x >0都有2f (x )+xf ′(x )>0成立,则( )A .4f (-2)<9f (3)B .4f (-2)>9f (3)C .2f (3)>3f (-2)D .3f (-3)<2f (-2)解析:选A 根据题意,令g (x )=x 2f (x ),其导函数g ′(x )=2xf (x )+x 2f ′(x ),又对任意的x >0都有2f (x )+xf ′(x )>0成立,则当x >0时,有g ′(x )=x [2f (x )+xf ′(x )]>0恒成立,即函数g (x )在(0,+∞)上为增函数,又由函数f (x )是定义在R 上的偶函数,则f (-x )=f (x ),则有g (-x )=(-x )2f (-x )=x 2f (x )=g (x ),即函数g (x )也为偶函数,则有g (-2)=g (2),且g (2)<g (3),则有g (-2)<g (3),即有4f (-2)<9f (3).2.f (x )在(0,+∞)上的导函数为f ′(x ),xf ′(x )>2f (x ),则下列不等式成立的是( ) A .2 0182f (2 019)>2 0192f (2 018) B .2 0182f (2 019)<2 0192f (2 018)C .2 018f (2 019)>2 019f (2 018)D .2 018f (2 019)<2 019f (2 018)解析:选A 令g (x )=f (x )x 2,x ∈(0,+∞),则g ′(x )=x 2f ′(x )-2xf (x )x 4=xf ′(x )-2f (x )x 3>0,则g (x )在(0,+∞)上为增函数, 即f (2 019)2 0192>f (2 018)2 0182, ∴2 0182f (2 019)>2 0192f (2 018).3.(2019·郑州质检)若对于任意的正实数x ,y 都有⎝⎛⎭⎫2x -y e ln y x ≤xm e 成立,则实数m 的取值范围为( )A.⎝⎛⎭⎫1e ,1 B.⎝⎛⎦⎤1e 2,1 C.⎝⎛⎦⎤1e 2,eD.⎝⎛⎦⎤0,1e 解析:选D 由⎝⎛⎭⎫2x -y e ln y x ≤xm e , 可得⎝⎛⎭⎫2e -y x ln y x ≤1m . 设yx=t ,令f (t )=(2e -t )·ln t ,t >0, 则f ′(t )=-ln t +2e t -1,令g (t )=-ln t +2e t -1,t >0,则g ′(t )=-1t -2et 2<0,∴g (t )在(0,+∞)上单调递减,即f ′(t )在(0,+∞)上单调递减. ∵f ′(e)=0,∴f (t )在(0,e)上单调递增,在(e ,+∞)上单调递减, ∴f (t )max =f (e)=e ,∴e ≤1m ,∴实数m 的取值范围为⎝⎛⎦⎤0,1e . 4.设函数f (x )=e x ⎝⎛⎭⎫x +3x -3-ax (e 为自然对数的底数),若不等式f (x )≤0有正实数解,则实数a 的最小值为________.解析:原问题等价于存在x ∈(0,+∞),使得a ≥e x (x 2-3x +3),令g (x )=e x (x 2-3x +3),x ∈(0,+∞),则a ≥g (x )min .而g ′(x )=e x (x 2-x ),由g ′(x )>0可得 x ∈(1,+∞),由g ′(x )<0可得x ∈(0,1),∴函数g (x )在区间(0,+∞)上的最小值为g (1)=e.综上可得,实数a 的最小值为e.答案:e5.(2018·武汉质检)已知f (x )=x ln x ,g (x )=x 3+ax 2-x +2.(1)求函数f (x )的单调区间;(2)若对任意x ∈(0,+∞),2f (x )≤g ′(x )+2恒成立,求实数a 的取值范围.解:(1)∵函数f (x )=x ln x 的定义域是(0,+∞),∴f ′(x )=ln x +1.令f ′(x )<0,得ln x +1<0,解得0<x <1e, ∴f (x )的单调递减区间是⎝⎛⎭⎫0,1e . 令f ′(x )>0,得ln x +1>0,解得x >1e, ∴f (x )的单调递增区间是⎝⎛⎭⎫1e ,+∞. 综上,f (x )的单调递减区间是⎝⎛⎭⎫0,1e ,单调递增区间是⎝⎛⎭⎫1e ,+∞. (2)∵g ′(x )=3x 2+2ax -1,2f (x )≤g ′(x )+2恒成立,∴2x ln x ≤3x 2+2ax +1恒成立.∵x >0,∴a ≥ln x -32x -12x 在x ∈(0,+∞)上恒成立.设h (x )=ln x -32x -12x (x >0),则h ′(x )=1x-32+12x 2=-(x -1)(3x +1)2x 2.令h ′(x )=0,得x 1=1,x 2=-13(舍去). 当x 变化时,h ′(x ),h (x )的变化情况如下表:∴当x =1时,h (x )取得极大值,也是最大值,且h (x )max =h (1)=-2,∴若a ≥h (x )在x ∈(0,+∞)上恒成立,则a ≥h (x )max =-2,故实数a 的取值范围是[-2,+∞).6.(2019·郑州质检)已知函数f (x )=ln x -a (x +1),a ∈R ,在点(1,f (1))处的切线与x 轴平行.(1)求f (x )的单调区间;(2)若存在x 0>1,当x ∈(1,x 0)时,恒有f (x )-x 22+2x +12>k (x -1)成立,求k 的取值范围.解:(1)由已知可得f (x )的定义域为(0,+∞).∵f ′(x )=1x-a ,∴f ′(1)=1-a =0,∴a =1, ∴f ′(x )=1x -1=1-x x, 令f ′(x )>0,得0<x <1,令f ′(x )<0,得x >1,∴f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞).(2)不等式f (x )-x 22+2x +12>k (x -1)可化为ln x -x 22+x -12>k (x -1). 令g (x )=ln x -x 22+x -12-k (x -1)(x >1), 则g ′(x )=1x -x +1-k =-x 2+(1-k )x +1x, 令h (x )=-x 2+(1-k )x +1(x >1),则h (x )的对称轴为x =1-k 2. ①当1-k 2≤1,即k ≥-1时,易知h (x )在(1,x 0)上单调递减, ∴h (x )<h (1)=1-k .若k ≥1,则h (x )<0,∴g ′(x )<0,∴g (x )在(1,x 0)上单调递减,∴g (x )<g (1)=0,不合题意;若-1≤k <1,则h (1)>0,∴必存在x 0使得x ∈(1,x 0)时g ′(x )>0,∴g (x )在(1,x 0)上单调递增,∴g (x )>g (1)=0恒成立,符合题意.②当1-k 2>1,即k <-1时,易知必存在x ,使得h (x )在(1,x 0)上单调递增.∴h (x )>h (1)=1-k >0,∴g ′(x )>0,∴g (x )在(1,x 0)上单调递增.∴g (x )>g (1)=0恒成立,符合题意.综上,k 的取值范围为(-∞,1).7.已知函数f (x )=x e x +ln x x(e 为自然对数的底数). (1)求证:函数f (x )有唯一零点;(2)若对任意x ∈(0,+∞),x e x -ln x ≥1+kx 恒成立,求实数k 的取值范围.解:(1)证明:f ′(x )=(x +1)e x+1-ln x x 2,x ∈(0,+∞), 易知当0<x <1时,f ′(x )>0,所以f (x )在区间(0,1)上为增函数,又因为f ⎝⎛⎭⎫1e =e 1e -e 2e <0,f (1)=e >0,所以f ⎝⎛⎭⎫1e f (1)<0,即f (x )在区间(0,1)上恰有一个零点,由题可知f (x )>0在(1,+∞)上恒成立,即在(1,+∞)上无零点, 所以f (x )在(0,+∞)上有唯一零点.(2)设f (x )的零点为x 0,即x 0e x 0+ln x 0x 0=0. 原不等式可化为x e x -ln x -1x≥k , 令g (x )=x e x-ln x -1x ,则g ′(x )=x e x +ln x x x , 由(1)可知g (x )在(0,x 0) 上单调递减,在(x 0,+∞)上单调递增, 故g (x 0) 为g (x )的最小值.下面分析x 0e x 0+ln x 0x 0=0, 设x 0e x 0=t ,则ln x 0x 0=-t , 可得⎩⎪⎨⎪⎧ ln x 0=-tx 0,ln x 0+x 0=ln t ,即x 0(1-t )=ln t , 若t >1,等式左负右正不相等;若t <1,等式左正右负不相等,只能t =1.因此g (x 0)=x 0e x 0-ln x 0-1x 0=-ln x 0x 0=1,所以k ≤1. 即实数k 的取值范围为(-∞,1].。
高中数学导数大题八类题型总结
导数-大题导数在大题中一般作为压轴题出现,其复杂的原因就在于对函数的综合运用:1.求导,特别是复杂函数的求导2.二次函数(求根公式的运用)3.不等式:基本不等式、均值不等式等4.基本初等函数的性质:周期函数、对数函数、三角函数、指数函数5.常用不等式的巧妙技巧:1/2<ln2<1,5/2<e<3导数大题最基本的注意点:自变量的定义域1.存在性问题2.韦达定理的运用3.隐藏零点4.已有结论的运用5.分段讨论6.分类讨论7.常见不等式的应用8.导数与三次函数的利用1. 存在性问题第(1)问有两个未知数,一般来说,双未知数问题要想办法合并成一个未知数来处理合并成一个未知数后利用不等式1.存在性问题(2)问将有且仅有一个交点分成两部分证明,分别证至多存在一个交点与必然存在交点:证明必然存在交点是单纯的找“特殊点”问题高考导数大题中的存在性问题,最后几乎都会变成零点的存在性问题要点由于只关注零点的存在性,因此就没有必要对t(x)求导讨论其单调性,直接使用零点定即可。
(2)问先对要证明的结论进行简单变形:证毕韦达定理的使用(1)问是常规的分类讨论问题隐零点设而不求,代换整体证明对称轴已经在-1右侧,保证有零点且-1处二次函数值大于0两道例题都是比较简单的含参“隐零点”问题,总之就是用零点(极值点)反过来表示参数再进行计算一些比较难的题目,一般问题就会进行一定提示,如利用(2)问提示(3)问,其难点就在于知道要利用已有结论,但无从下手第(1)问分类讨论问题,分离变量做容易导致解题过于复杂(2)问将不等式两边取对数之后思路就很清晰了(1)(2)分别证明两个不等号即可化到已知的结论上()()()()()()()()()()()()''''1101,0,1,0;1,,00,11,110f x x xx f x x f x x f x f x x x x f x f =->=∈>∈+∞<∈∈+∞==为的零点于是在上单调递增,在上单调递减是的极大值点,(3)问需要利用(2)问结论才能比较顺利的证明利用(2)中结论第(1)问是一个比较简单的存在型问题分段)高考导数大题除求导外,隐藏零点、韦达定理、极值点偏移、二,三阶导等技巧,都是附加的技巧,导数的核心,是分类讨论的考察,高考题多数绕不开分类讨论。
专题3 导数解决不等式的恒成立和证明
第三章 导数专题3 导数解决不等式的恒成立和证明【三年高考精选】(2021年全国新高考Ⅰ卷数学试题) 1. 已知函数()()1ln f x x x =-. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112e a b<+<. 【答案】(1)()f x 的递增区间为()0,1,递减区间为()1,+∞;(2)证明见解析. 【解析】【分析】(1) 首先确定函数的定义域,然后求得导函数的解析式,由导函数的符号即可确定原函数的单调性.(2)方法二:将题中的等式进行恒等变换,令11,m n a b==,命题转换为证明:2m n e <+<,然后构造对称差函数,结合函数零点的特征和函数的单调性即可证得题中的结论.【详解】(1)()f x 的定义域为()0,∞+. 由()()1ln f x x x =-得,()ln f x x '=-,当1x =时,()0f x '=;当()0,1x ∈时()0f x >′;当()1,x ∈+∞时,()'0f x <. 故()f x 在区间(]0,1内为增函数,在区间[)1,+∞内为减函数, (2)[方法一]:等价转化由ln ln b a a b a b -=-得1111(1ln )(1ln )a a b b -=-,即11()()f f a b=.由a b ,得11a b ≠.由(1)不妨设11(0,1),(1,)b a ∈∈+∞,则1()0f a >,从而1()0f b >,得1(1,)e b∈,①令()()()2g x f x f x =--,则22()(2)()ln(2)ln ln(2)ln[1(1)]g x f x f x x x x x x ''=---'=-+=-=--,当()0,1x ∈时,()0g x '<,()g x 在区间()0,1内为减函数,()()10g x g >=,从而()()2f x f x ->,所以111(2)()()f f f a a b->=,由(1)得112a b -<即112a b<+.①令()()h x x f x =+,则()()'11ln h x f x x '=+=-,当()1,x e ∈时,()0h x '>,()h x 在区间()1,e 内为增函数,()()h x h e e <=,从而()x f x e +<,所以11()f e b b +<.又由1(0,1)a ∈,可得11111(1ln )()()f f a a a a b <-==,所以1111()f e a b b b+<+=.②由①②得112e a b<+<. [方法二]【最优解】:ln ln b a a b a b -=-变形为ln ln 11a b a b b a-=-,所以ln 1ln 1a b a b ++=. 令11,m n a b ==.则上式变为()()1ln 1ln m m n n -=-, 于是命题转换为证明:2m n e <+<.令()()1ln f x x x =-,则有()()f m f n =,不妨设m n <. 由(1)知01,1m n e <<<<,先证2m n +>.要证:()()()222)2(m n n m f n f m f m f m +>⇔>-⇔<-⇔<-()()20f m f m ⇔--<.令()()()()2,0,1g x f x f x x =--∈,则()()()()()2ln ln 2ln 2ln10g x f x f x x x x x '='+'-=---=⎡⎤⎣≥-⎦--=, ()g x ∴在区间()0,1内单调递增,所以()()10g x g <=,即2m n +>.再证m n e +<.因为()()1ln 1ln m n n m m -=⋅->,所以()1ln n n n e m n e -+<⇒+<.令()()()1ln ,1,h x x x x x e =-+∈,所以()'1ln 0h x x =->,故()h x 在区间()1,e 内单调递增. 所以()()h x h e e <=.故()h n e <,即m n e +<. 综合可知112e a b<+<. [方法三]:比值代换 证明112a b+>同证法2.以下证明12x x e +<. 不妨设21x tx =,则211x t x =>, 由1122(1ln )(1ln )x x x x -=-得1111(1ln )[1ln()]x x tx tx -=-,1ln 1n 1l t x t t=--, 要证12x x e +<,只需证()11t x e +<,两边取对数得1ln(1)ln 1t x ++<,即ln(1)1ln 11t t t t++-<-, 即证ln(1)1ln t t t t+<-. 记ln(1)(),(0,)s g s ss ∈=+∞+,则2ln(1)1()s s s g s s '-++=. 记()ln(1)1sh s s s=-++,则211()0(1)1h s s s '=-<++, 所以,()h s 在区间()0,∞+内单调递减.()()00h s h <=,则()'0g s <, 所以()g s 在区间()0,∞+内单调递减.由()1,t ∈+∞得()10,t -∈+∞,所以()()1g t g t <-, 即ln(1)1ln t t t t+<-. [方法四]:构造函数法 由已知得ln ln 11a b a b b a-=-,令1211,x x a b ==,不妨设12x x <,所以()()12f x f x =.由(Ⅰ)知,1201x x e <<<<,只需证122x x e <+<. 证明122x x +>同证法2.再证明12x x e +<.令2ln 21()(0)()(ln ,)exh x x e h x x e x xe x '-++-=<<=--. 令()ln 2(0)e x x x e x ϕ=+-<<,则221()0e x ex x x xϕ-'=-=<. 所以()()()0,0x e h x ϕϕ>='>,()h x 在区间()0,e 内单调递增.因为120x x e <<<,所以122111ln ln x e x e x x --<--,即112211ln ln x x x ex e -->-- 又因为()()12f x f x =,所以12212112ln ln 1,1x x x ex x x ex x --=>--,即()()2222111212,0x ex x ex x x x x e -<--+->.因为12x x <,所以12x x e +<,即11e a b+<. 综上,有112e a b<+<结论得证. 【整体点评】(2)方法一:等价转化是处理导数问题的常见方法,其中利用的对称差函数,构造函数的思想,这些都是导数问题必备的知识和技能.方法二:等价转化是常见的数学思想,构造对称差函数是最基本的极值点偏移问题的处理策略.方法三:比值代换是一种将双变量问题化为单变量问题的有效途径,然后构造函数利用函数的单调性证明题中的不等式即可.方法四:构造函数之后想办法出现关于120e x x +-<的式子,这是本方法证明不等式的关键思想所在.视频(2020年高考全国Ⅰ卷文数20) 2. 已知函数()(2)x f x e a x =-+. (1)当1a =时,讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.【答案】(1)()f x 的减区间为(,0)-∞,增区间为(0,)+∞;(2)1(,)e+∞.【解析】【分析】(1)将1a =代入函数解析式,对函数求导,分别令导数大于零和小于零,求得函数的单调增区间和减区间;(2)若()f x 有两个零点,即(2)0xe a x -+=有两个解,将其转化为2xea x =+有两个解,令()(2)2xe h x x x =≠-+,求导研究函数图象的走向,从而求得结果.【详解】(1)当1a =时,()(2)x f x e x =-+,'()1xf x e =-,令'()0f x <,解得0x <,令'()0f x >,解得0x >, 所以()f x 的减区间为(,0)-∞,增区间为(0,)+∞; (2)若()f x 有两个零点,即(2)0x e a x -+=有两个解,从方程可知,2x =-不成立,即2x e a x =+有两个解,令()(2)2x e h x x x =≠-+,则有'22(2)(1)()(2)(2)x x x e x e e x h x x x +-+==++, 令'()0h x >,解得1x >-,令'()0h x <,解得2x <-或21x -<<-, 所以函数()h x 在(,2)-∞-和(2,1)--上单调递减,在(1,)-+∞上单调递增, 且当2x <-时,()0h x <,而2x +→-时,()h x →+∞,当x →+∞时,()h x →+∞,所以当2xe a x =+有两个解时,有1(1)a h e >-=,所以满足条件的a 的取值范围是:1(,)e+∞.【点睛】本题考查的是有关应用导数研究函数的问题,涉及到的知识点有应用导数研究函数的单调性,根据零点个数求参数的取值范围,在解题的过程中,也可以利用数形结合,将问题转化为曲线x y e =和直线(2)y a x =+有两个交点,利用过点(2,0)-的曲线x y e =的切线斜率,结合图形求得结果. 【三年高考刨析】【2022年高考预测】预测2022年高考仍是考查函数的单调性,根据不等式恒成立求参数的取值范围或不等式的证明..【2022年复习指引】由前三年的高考命题形式,在2022年的高考备考中同学们只需要稳扎稳打,加强常规题型的练习,关于集合2022高考备考主要有以下几点建议:1.涉及本单元知识点的高考题,综合性强.所以在复习中要熟记相关的定义,法则;2.利用导数解决含有参数的单调性问题可将问题转化为不等式恒成立问题,要注意分类讨论和数形结合思想的应用.3.将不等式的证明、方程根的个数的判定转化为函数的单调性、极值问题处理.4.要深入体会导数应用中蕴含的数学思想方法.数形结合思想,如通过从导函数图象特征解读函数图象的特征,或求两曲线交点个数等;等价转化思想,如将证明的不等式问题等价转化为研究相应问题的最值等.【2022年考点定位】 考点1 证明不等式典例1 (安徽省蚌埠市2021-2022学年高三上学期第一次教学质量检查)已知函数()()212,2e 21x x f x x x g x x =+-=---. (1)求()f x 的单调区间;(2)当(),1x ∈-∞时,求证:()()g x f x .【答案】(1)在(),1-∞单调递增,在()1,+∞上单调递减;(2)证明见解析. 【分析】(1)由题可以求函数的导函数,则可得()f x 的单调区间; (2)由题知要证()()g x f x ,即证2201e 2x x x x x x ---+≥-,然后利用导函数判断函数的单调性,最后利用单调性证明即可. 【详解】 (1)因为()21e 2x x f x x x =+-, 所以()()()21e 1e e 1e ex x x x x x x f x x +--=+-=', 令()0f x '=,解得1x =,∴当(),1x ∈-∞时,()()0,1,f x x ∞∈'>+时,()0f x '< 所以()f x 在(),1-∞单调递增,在()1,+∞上单调递减; (2)要证()()g x f x即证22121e 2x x x x x --+--, 即22e 0112x x x x x x --+-≥-, 设2()11e 21x F x x x=---+-,即证()0xF x .因为()2211(1)e 2xF x x =++-' 所以当(),1x ∈-∞时,()0F x '>恒成立,()F x 单调递增, 又当0x =时,()0F x =,所以当01x <<时,()0F x >,当0x <时,()0F x <; 所以当()(),1,0x xF x ∞∈-, 即当(),1x ∈-∞时,()()g x f x .【规律方法技巧】利用导数证明不等式f (x )>g (x )的基本方法 (1)若f (x )与g (x )的最值易求出,可直接转化为证明f (x )min >g (x )max ;(2)若f (x )与g (x )的最值不易求出,可构造函数h (x )=f (x )-g (x ),然后根据函数h (x )的单调性或最值,证明h (x )>0. 2.证明不等式时的一些常见结论(1)ln x ≤x -1,等号当且仅当x =1时取到; (2)e x ≥x +1,等号当且仅当x =0时取到; (3)ln x <x <e x ,x >0; (4)≤ln(x +1)≤x ,x >-1,等号当且仅当x =0时取到.【考点针对训练】(2022贵州省贵阳市五校联考)3. 已知函数()xe f x x =.(1)函数()()f xg x x=,求()g x 的单调区间和极值. (2)求证:对于()0,x ∀∈+∞,总有()13ln 44f x x >-. 【答案】(1)()g x 在(0,2)上单调递减,在(,0)-∞和(2,)+∞上单调递增;极小值()2e 24g =,无极大值;(2)证明见解析. 【解析】【分析】(1)写出()g x 的函数表达式,通过求导写出单调区间和极值即可(2)证明()13ln 44f x x >-恒成立,结合(1)得,等价于2e 1(ln 3)4x x x x >-恒成立,且已知左式的最小值,只要大于右式的最大值,则不等式恒成立【详解】(1)解:2243e e 2e e (2)()()x x x x x x x g x g x x x x --'=⇒==,当02x <<时,()0g x '<; 当0x <或2x >时,()0g x '>,()g x ∴在(0,2)上单调递减,在(,0)-∞和(2,)+∞上单调递增;故()g x 有一个极小值2e (2)4g =,无极大值.(2)证明:要证13()ln 44f x x >-成立,只需证e 13ln 44x x x >-成立,即证2e 1(ln 3)4x x x x>-成立,令1()(ln 3)4h x x x =-,则24ln ()=4xh x x -',当40e x <<时,()0h x '>; 当4e x >时,()0h x '<,()h x ∴在()40,e 上单调递增,在()4e ,+∞上单调递减,()4max 41()e 4e h x h ==∴, 2e ()x g x x =∵由(1)可知2min e ()(2)4g x g ==,min max ()()g x h x >∴,()()g x h x >∴,13()ln 44f x x >-∴.【点睛】题目比较综合,第一小题是已知函数求单调性极值的问题,属于常规题目;第二小题证明不等式成立,有两种类型,一种是构造左右两个函数,若最小值大于最大值,则不等式恒成立,但是只能做证明题;若最小值不大于最大值,不能说明不等式不成立;另外一种是构造一个函数,证明最小值大于0恒成立,这种的函数会比较困难,所以优先用第一种尝试,再选取第二种方法考点2 不等式恒成立问题典例2 (2020辽宁省沈阳市2019届高三一模)已知函数()ln 2f x a x x =-,若不等式()()1xf x f e +>在()1,x ∈+∞上恒成立,则实数a 的取值范围是( )A.2a ≤B.2a ≥C.0a ≤D.02a ≤≤ 【答案】A【分析】先证明11x x e <+<恒成立,得函数()f x 在()1,+∞上递减,即当1x >时,()'0f x ≤恒成立,问题转化为2(1)a x x ≤>恒成立,即可求出a 的范围. 【详解】设()1,x g x e x =--则()1x g x e '=-,当0x >时()0110x g x e e =->-=', 所以()1x g x e x =--在()0,∞+上递增,得()()00010,g x g e >=--=所以当0x >时,11x x e <+<恒成立.若不等式()()1xf x f e +>在()1,x ∈+∞上恒成立,得函数()f x 在()1,+∞上递减,即当1x >时,()'0f x ≤恒成立,所以()20af x x-'=≤ 即2ax≤,可得2(1)a x x ≤>恒成立,因为22x >,所以2a ≤, 故选A .【规律方法技巧】利用导数解决恒成立问题主要涉及以下方面:(1)已知不等式在某一区间上恒成立,求参数的取值范围:一般先分离参数,再转化为求函数在给定区间上的最值问题求解;(2)如果无法分离参数可以考虑对参数a 或自变量进行分类求解,如果是二次不等式恒成立的问题,可以考虑限制二次项系数或判别式的方法求解.(3)已知函数的单调性求参数的取值范围:转化为f ′(x )≥0(或f ′(x )≤0)恒成立的问题. 【考点针对训练】(山西省运城市2021届高三检测)4. 当0x <时,不等式()2e e 3xxx x k k -≥恒成立,则实数k 的取值范围是__. 【答案】[]3e,0- 【解析】 【分析】由题意可得()232e 3x k x x +≤对0x <恒成立,讨论320x +=,320x +>,320x +<,运用参数分离和构造函数,利用导数判断单调性,求最值,可得所求范围.【详解】解:当0x <时,不等式()2e e 3xxx x k k -≥恒成立, 即为()232e 3x k x x +≤对0x <恒成立,Ⅰ当320x +=即23x =-时,403≤恒成立;Ⅰ当320x +<,即23x <-时,()2332e x x k x +≥恒成立,等价为()2max 332e x x k x ⎡⎤⎢⎥+⎣⎦≥, 设()()2332e x x f x x =+,()()()()()232222632e 335e 931232e 32e x x x x x x x x x x x f x x x +-+-++'==++ ()()()2313432exx x x x -+-=+,可得1x <-时,()0f x >′,()f x 递增;213x -<<-时,()0f x <′,()f x 递减, 可得()f x 在1x =-处取得最大值,且为3e -, 则3e k ≥-;Ⅰ当320x +>,即203x -<<时,()2332e x x k x +≤恒成立, 等价为()2min332e x x k x ⎡⎤⎢⎥+⎣⎦≤,设()()2332e x x f x x =+,()()()()2313432e x f x x x x x -+-'=+, 可得203x -<<时,()0f x <′,()f x 递减, 可得()0f x >, 则0k ≤,综上可得,k 的范围是[]3e,0-.【点睛】本题考查不等式恒成立问题解法,参变分离是常用的解题方法,属于中档题.方法点睛:(1)将参数和变量分离,转化为求最值问题; (2)构造函数,求导数,分析单调性; (3)求函数的最值,求出参数的范围.考点3 不等式存在成立问题典例3 (黑龙江省大庆铁人中学2021届高三第三次模拟)若函数()2ln 2f x x ax =+-在区间1,22⎛⎫⎪⎝⎭内存在单调递增区间,则实数a 的取值范围是( )A.(],2-∞B.1,8⎛⎫-+∞ ⎪⎝⎭C.12,8⎛⎫-- ⎪⎝⎭ D.()2,-+∞【答案】D 【分析】将函数2()ln 2f x x ax =+-在区间1()22,内存在单调递增区间,转化1()20f x ax x '=+>在区间1()22,成立,再转化为min 212()a x>-,进而可求出结果. 【详解】因为函数2()ln 2f x x ax =+-在区间1()22,内存在单调递增区间, 所以1()20f x ax x '=+>在区间1()22,上成立, 即min 212()a x>-在区间1()22,上成立,又函数2yx 在1()22,上单调递增, 所以函数21y x =-在1()22,上单调递增, 故当12x =时21y x =-最小,且min 21()=4x --,即24a >-,得2a >-. 故选:D【规律方法技巧】1.有关存在成立问题的解题方法∀x 1∈D 1,∃x 2∈D 2,f (x 1)>g (x 2)等价于函数f (x )在D 1上的最小值大于g (x )在D 2上的最小值,即f (x )min >g (x )min (这里假设f (x )min ,g (x )min 存在).其等价转化的基本思想是:函数y =f (x )的任意一个函数值大于函数y =g (x )的某一个函数值,但并不要求大于函数y =g (x )的所有函数值.∀x 1∈D 1,∃x 2∈D 2,f (x 1)<g (x 2),等价于函数f (x )在D 1上的最大值小于函数g (x )在D 2上的最大值(这里假设f (x )max ,g (x )max 存在).其等价转化的基本思想是:函数y =f (x )的任意一个函数值小于函数y =g (x )的某一个函数值,但并不要求小于函数y =g (x )的所有函数值.2.注意不等式恒成立与存在成立的异同不等式在某区间上能成立与不等式在某区间上恒成立问题是既有联系又有区别的两种情况,解题时应特别注意,两者都可转化为最值问题,但f (a )≥g (x )(f (a )≤g (x ))对存在x ∈D 能成立等价于f (a )≥g (x )min (f (a )≤g (x )max ),f (a )≥g (x )(f (a )≤g (x ))对任意x ∈D 都成立等价于f (a )≥g (x )max (f (a )≤g (x )min ),应注意区分,不要搞混. 【考点针对训练】 (2019·吉林白山联考)5. 设函数f (x )=e x 33x x ⎛⎫+- ⎪⎝⎭-ax (e 为自然对数的底数),若不等式f (x )≤0有正实数解,则实数a 的最小值为________. 【答案】e 【解析】【分析】已知不等式转化为2(33)x a e x x ≥-+,此不等式有正数解,只要求得2()(33)x g x e x x =-+在(0,)+∞上的最小值即可得a 的范围.【详解】原问题等价于存在x Ⅰ(0,+∞),使得a ≥e x (x 2-3x +3),令g (x )=x e (x 2-3x +3),x Ⅰ(0,+∞),则a ≥g (x )min ,而g ′(x )=x e (x 2-x ),由g ′(x )>0,得x Ⅰ(1,+∞),此时()g x 递增,由g ′(x )<0,得x Ⅰ(0,1),此时()g x 递减,Ⅰ函数g (x )在区间(0,+∞)上的极小值也是最小值为g (1)=e , Ⅰa ≥e ,即实数a 的最小值为e . 故答案为:e .【点睛】本题考查不等式有解问题,解题关键是用分离参数法转化为求函数的最值.只是求解时要注意与不等式恒成立区分开来,不等式恒成立也常常用分离参数法转化为求函数的最值,但两者所求最值一个是最大值,一个是最小值,要根据题意确定.考点4 利用导数研究方程的根(或函数的零点)典例4 (河南省郑州市商丘市名师联盟 2020-2021学年高三质量检测)已知函数()2ln f x x x =-,()33g x x xm =-+,方程()()f x g x =在区间1,e e ⎡⎤⎢⎥⎣⎦内有两个不同的实根,则m 的取值范围是( )A.2121,333e ⎛⎤+ ⎥⎝⎦ B.2221e -2,33e 3⎡⎤+⎢⎥⎣⎦ C.221,133e ⎡⎫+⎪⎢⎣⎭ D.21e 2,33⎛⎤- ⎥⎝⎦【答案】A 【分析】由题可得232ln m x x =-,构造函数()22ln h x x x =-,讨论其在1,e e ⎡⎤⎢⎥⎣⎦的变化情况即可得出答案. 【详解】由()()f x g x =,得232ln m x x =-,令()22ln h x x x =-,则()()()211x x h x x-+'=,所以()h x 在1,1e ⎡⎫⎪⎢⎣⎭上单调递减,在(]1,e 上单调递增,所以()()min 11h x h ==,()221122h e e h e e ⎛⎫=->=+ ⎪⎝⎭,则21132m e <≤+,即2121333m e <≤+. 故选:A.【规律方法技巧】求解涉及函数零点或方程根的问题的注意点 (1)利用函数零点存在性定理求解.(2)分离参数a 后转化为函数的值域(最值)问题求解,如果涉及多个零点,还需考虑函数的图象与直线y =a 的交点个数.(3)转化为两个熟悉的函数的图象的上、下位置关系问题,从而构建不等式求解. 【考点针对训练】(重庆市秀山高级中学校2022届高三上学期9月月考) 6. 已知函数2eln ()x f x x =,若关于x 的方程21[()]()08f x mf x -+=有4个不同的实数根,则实数m 的取值范围为___________.【答案】324⎛⎫⎪ ⎪⎝⎭【解析】【分析】利用导数求出函数()f x 的单调区间和最值,设()f x t =,则要使方程21[()]()08f x mf x -+=有4个不同的实数根等价于方程2108t mt -+=在10,2t ⎛⎫∈ ⎪⎝⎭上有两个不同的实数根,故12121201102201t t t t t t ∆>⎧⎪⎛⎫⎛⎫⎪-->⎪ ⎪⎪⎝⎭⎝⎭⎨⎪<+<⎪>⎪⎩,从而可求出实数m 的取值范围 【详解】依题意,求导243e 2eln e(12ln )()x x xx x f x x x ⋅--'==,令()0f x '=,解得:x =当x ∈时,()0f x '>,()f x 单调递增;当)x ∈+∞,()0f x '<,函数单调递减,且max 1()e 2f x f ===, 又0x →时,()f x →-∞;又x →+∞时,()0f x →;设()f x t =,显然当10,2t ⎛⎫∈ ⎪⎝⎭时,方程()f x t =有两个实数根,则要使方程21[()]()08f x mf x -+=有4个不同的实数根等价于方程2108t mt -+=在10,2t ⎛⎫∈ ⎪⎝⎭上有两个不同的实数根, 故121212011022010t t t t t t ∆>⎧⎪⎛⎫⎛⎫⎪-->⎪ ⎪⎪⎝⎭⎝⎭⎨⎪<+<⎪>⎪⎩,210211082401m m m ⎧->⎪⎪⎪-+>⎨⎪<<⎪⎪⎩,解得:324m ⎛⎫∈ ⎪ ⎪⎝⎭.故答案为:3,24⎛⎫⎪ ⎪⎝⎭【点睛】关键点点睛:此题考查函数与方程的综合应用,考查导数的应用,解题的关键是利用导数判断出函数()f x 的单调区间和最值,设()f x t =,将问题转化为方程2108t mt -+=在10,2t ⎛⎫∈ ⎪⎝⎭上有两个不同的实数根,然后利用一元二次方程根的分布情况求解即可,考查数学转化思想和计算能力,属于中档题【二年模拟精选】(2020河北省衡水市第二中学高三检测) 7. 已知函数21()ln 2f x x a x =+,若对任意两个不等的正数1x ,2x ,都有()()12124f x f x x x ->-恒成立,则a 的取值范围为A. [4,)+∞B. (4.?)+∞C. (,4]-∞D. (,4)-∞【答案】A 【解析】【分析】根据题意先确定g (x )=f (x )﹣4x 在(0,+∞)上单增,再利用导数转化,可得24x a x ≥-恒成立,令()24h x x x =-,求得()h x max ,即可求出实数a 的取值范围.【详解】令()()4g x f x x =-,因为()()12124f x f x x x ->-,所以()()12120g x g x x x ->-,即()g x 在()0,+∞上单调递增,故()40ag x x x=-'+≥在()0,+∞上恒成立, 即24x a x ≥-,令()()24,0,h x x x x =-∈+∞.则()()2424h x x x h =-≤=,()h x max 4=,即a 的取值范围为[4,+∞).故选A.【点睛】本题考查了函数单调性的判定及应用,考查了原函数单调与导函数正负的关系,确定g (x )在(0,+∞)上单增是关键,属于中档题. (2020辽宁省沈阳市高三上学期一模)8. 已知函数()ln 2f x a x x =-,若不等式()()1xf x f e +>在()1,x ∈+∞上恒成立,则实数a 的取值范围是( ) A. 2a ≤ B. 2a ≥C. 0a ≤D. 02a ≤≤【答案】A 【解析】【分析】先证明11x x e <+<恒成立,得函数()f x 在()1,+∞上递减,即当1x >时,()'0f x ≤恒成立,问题转化为2(1)a x x ≤>恒成立,即可求出a 的范围.【详解】设()1,x g x e x =--则()'1x g x e =-,当0x >时()0110x g x e e =->-=', 所以()1x g x e x =--在()0,∞+上递增,得()()00010,g x g e >=--=所以当0x >时,11x x e <+<恒成立.若不等式()()1xf x f e +>在()1,x ∈+∞上恒成立,得函数()f x 在()1,+∞上递减,即当1x >时,()'0f x ≤恒成立,所以()20af x x-'=≤ 即2ax≤,可得2(1)a x x ≤>恒成立,因为22x >,所以2a ≤, 故选A .【点睛】本题考查了构造新函数,也考查了导数的应用以及由单调性求参数的问题,属于中档题.(江西省萍乡市2021届高三上期数学期中复习试卷)9. 已知函数222,0()11,0x x x f x x x ⎧++≤⎪=⎨-+>⎪⎩,若()f x ax ≥恒成立,则实数a 的取值范围是( )A. 2⎡⎤-⎣⎦B. (],1-∞C. ()2-D. 2⎡⎤-⎣⎦【答案】A 【解析】 【分析】作出函数()f x 的图象,利用数形结合的思想判断a 的范围,找出临界点即相切时a 的取值,进而得出a 的范围. 【详解】作出()f x 的图象,如图,由图象可知:要使()f x ax 恒成立,只需函数()g x ax =的图象恒在图象()f x 的下方, 可得1a ,设()g x ax =与函数2()22(0)f x x x x =++相切于点(),(0)P m n m <, 由()f x 的导数为22x +,可得切线的斜率为22m +, 即有22a m =+,222am m m =++,解得m =2a =-由图象可得222a -,综上可得a 的范围是[2-1]. 故选:A【点睛】解决此类问题的关键是作出函数图象,根据数形结合的思想处理问题,本题关键找出相切时刻这一临界位置,利用直线与抛物线相切即可求解. (四川省内江市威远中学2020-2021学年高三月考)10. 已知函数32()f x x x ax b =-++,12,(0,1)x x ∀∈且12x x ≠,都有1212|()()|||f x f x x x -<-成立,则实数a 的取值范围是( )A. 2(1,]3--B. 2(,0]3-C. 2[,0]3-D. [1,0]-【答案】C 【解析】 【分析】原不等式等价于()()211212x x f x f x x x --<-<恒成立,得到()()()321g x f x x x x a x b =-=-+-+,()()()321h x f x x x x a x b =+=-+++在()0,1上严格单调,转化为()0g x '≤在()0,1上恒成立,()0h x '≥在()0,1上恒成立,利用分离参数思想转化为求最值问题即可. 【详解】不妨设1210x x >>>,则1212|()()|||f x f x x x -<-等价于()()211212x x f x f x x x --<-<,即()()()()11221122 f x x f x x f x x f x x ⎧-<-⎪⎨+>+⎪⎩,设()()()321g x f x x x x a x b =-=-+-+,()()()321h x f x x x x a x b =+=-+++,依题意,函数()g x 在()0,1上为严格的单调递减函数, 函数()h x 在()0,1上为严格的单调递增函数,Ⅰ()23210g x x x a '=-+-≤在()0,1上恒成立,()23210h x x x a '=-++≥在()0,1上恒成立,Ⅰ2321a x x ≤-++在()0,1上恒成立,2321a x x ≥-+-在()0,1上恒成立, 而二次函数2321y x x =-++在[0,1]上的最小值在1x =时取得,且最小值为0, 二次函数2321y x x =-+-在[0,1]上的最大值在13x =时取得,其最大值为23-, 综上,实数a 的取值范围是2[,0]3-, 故选:C.【点睛】关键点点睛:去绝对值,得到两个函数的单调性,结合导数与单调性的关系,利用分离参数的思想转化为求二次函数最值问题. (2020湖南省益阳市高三上学期期末)11. 已知变量()()12,0,0x x m m ∈>,且12x x <,若2112x x x x <恒成立,则m 的最大值为(e 2.71828=为自然对数的底数)( ) A. eB.C.1eD. 1【答案】A 【解析】 【分析】不等式两边同时取对数,然后构造函数()ln xf x x=,求函数的导数,研究函数的单调性即可得到结论. 【详解】21122112ln ln x x x x x x x x <⇒<,()12,0,,0x x m m ∈>,1212ln ln x x x x ∴<恒成立, 设函数()ln xf x x=,12x x <,()()12f x f x <,()f x ∴在()0,m 上为增函数,函数的导数()21ln xf x x -'=, ()00f x x e '>⇒<<,即函数()f x 的增区间是()0,e ,则m 的最大值为e . 故选:A【点睛】关键点点睛:本题考查利用函数研究函数的单调性,本题的关键点是对已知等式变形,211212211212ln ln ln ln x x x x x x x x x x x x <⇒<⇒<,转化为求函数()ln xf x x=的单调区间. (山东省泰安肥城市2021届高三高考适应性训练)12. 已知函数()ln f x x x x =+,()g x kx k =-,若k Z ∈,且()()f x g x >对任意2x e >恒成立,则k 的最大值为( ) A. 2 B. 3C. 4D. 5【答案】B 【解析】【分析】由不等式,参变分离为ln 1x x x k x +⎛⎫< ⎪-⎝⎭,转化为求函数()ln 1x x x u x x +=-,()2,x e ∈+∞的最小值,利用导数求函数的最小值.【详解】()()f x g x >,即ln x x x kx k +>-.由于()()f x g x >对任意()2,x e ∈+∞恒成立,所以ln 1x x x k x +⎛⎫< ⎪-⎝⎭,即min ln 1x x x k x +⎛⎫< ⎪-⎝⎭.令()ln 1x x x u x x +=-,()2,x e ∈+∞,()()2ln 21x x u x x --'=-.令()ln 2h x x x =--,()1110x h x x x='-=->, 所以()h x 在()2,x e ∈+∞上单调递增,所以()()22e e 40h x h >=->,可得()0u x '>,所以()u x 在()2,e +∞上单调递增.所以()()()22223e 3e 33,4e 1e 1u x u >==+∈--.又k Z ∈,所以max 3k =. 故选:B.(广西柳州市2021届高三摸底考试)13. 已知函数212,(0)()2ln ,(0)x x x f x x x x ⎧++≤⎪=⎨⎪>⎩,若存在0x R ∈,使得()2012f x m m ≤-成立,则实数m 的取值范围是( )A. 1,12⎡⎤-⎢⎥⎣⎦B. 11,2⎡⎤-⎢⎥⎣⎦C. 11,2⎡⎤⎢⎥⎣⎦D. 1,02⎡⎤-⎢⎥⎣⎦【答案】A 【解析】【分析】分析函数()f x 的最小值,只需使()2min 12f x m m ≤-成立即可. 【详解】当0x ≤时,()2122f x x x =++,根据二次函数的性质可知,当1x =-时,()f x 有最小值12-;当0x >时,()ln f x x x =,由()ln 10f x x '=+=得1=x e当10,e x ⎛⎫∈ ⎪⎝⎭时,()0f x '<,当1,x e ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>, 所以()ln f x x x =在10,e x ⎛⎫∈ ⎪⎝⎭上单调递减,在1,x e ⎛⎫∈+∞ ⎪⎝⎭上单调递增,所以()ln f x x x =最小值为11111ln 2f e e ee ⎛⎫==->- ⎪⎝⎭,则()min 12f x =-若存在0x R ∈,使得()2012f x m m ≤-成立,则()2min 12f x m m ≤- 所以21122m m -≤-,解得112m -≤≤故选:A .(重庆实验外国语学校2022届高三上学期入学考试)14. 关于函数()xf x e =,()lng x x =下列说法正确的是( )A. 对0x ∀>,()1g x x ≤-恒成立B. 对x R ∀∈,()f x ex ≥恒成立C. 若a b e >>,()()ag b bg a <D. 若不等式()()f ax ax x g x -≥-对1x ∀>恒成立,则正实数a 的最小值为1e【答案】ABD 【解析】【分析】选项A :构造函数()()ln 10h x x x x =-+>,根据导数判断函数的单调性并求最大值,从而判断选项正确;选项B :构造函数()()x f x ex ϕ=-,根据导数判断函数的单调性并求最小值,从而判断选项正确; 选项C :构造函数()()()0g x m x x x=>,根据导数判断函数在(),e +∞内单调递减,从而判断选项错误;选项D :把不等式()()f ax ax x g x -≥-变形为ln ln ax x e ax e x -≥-,所以只需研究函数()xF x e x =-的单调性即可求出答案,从而判断选项正确.【详解】选项A :令()()ln 10h x x x x =-+>,则()111xh x x x -'=-=,因为0x >,所以由()0h x '>得01x <<;由()0h x '<得1x >, 所以()h x 在()0,1内单调递增,在()1,+∞内单调递减,所以()h x 的最大值为()10h =,所以对0x ∀>,()0h x ≤恒成立, 即对0x ∀>,()1g x x ≤-恒成立,故选项A 正确;选项B :令()()x x f x ex e ex ϕ=-=-,则()xx e e ϕ'=-,由()0x ϕ'>得1x >;由()0x ϕ'<得1x <,所以()x ϕ在()1,+∞内单调递增,在(),1-∞内单调递减,所以()x ϕ的最小值为()10ϕ=,所以对x R ∀∈,()0x ϕ≥恒成立,即对x R ∀∈,()f x ex ≥恒成立,故选项B 正确;选项C :令()()ln ()0g x x m x x x x==>,则21ln ()xm x x -'=,所以由()0m x '>得0x e <<;由()0m x '<得x e >,所以()m x 在()0,e 内单调递增,在(),e +∞内单调递减, 所以当a b e >>时,()()m a m b <,即()()g a g b a b<, 所以a b e >>,()()ag b bg a >成立,故选项C 错误; 选项D :因为不等式()()f ax ax x g x -≥-对1x ∀>恒成立,即不等式ln ax e ax x x -≥-对1x ∀>恒成立,又因为ln ln ln x x x e x -=-, 所以不等式ln ln ax x e ax e x -≥-对1x ∀>恒成立;令()xF x e x =-,则 ()1x F x e '=-,当0x >时,()10x F x e '=->恒成立,所以()xF x e x =-在()0,∞+单调递增,所以由不等式ln ln ax x e ax e x -≥-对1x ∀>恒成立,得ln ax x ≥对1x ∀>恒成立,即ln xa x≥对1x ∀>恒成立, 由选项C 知,()ln ()1xm x x x=>在()1,e 内单调递增,在(),e +∞内单调递减,所以()m x 的最大值为1()m e e =,所以只需1a e ≥,即正实数a 的最小值为1e .故选:ABD.【点睛】利用导数研究不等式恒成立问题,通常要构造函数,然后利用导数研究函数的单调性,求出最值进而得到结论或求出参数的取值范围;也可分类变量构造函数,把问题转化为函数的最值问题.恒成立问题常见的处理方式有:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)()f x a >恒成立型的可转化为min ()f x a >;(3)()()f x g x >恒成立型的可以通过作差法构造函数()()()h x f x g x =-,然后求min ()0h x >,或者转化为min max ()()f x g x >.(T 8联考八校2020-2021学年高三上学期第一次联考) 15. 已知函数()()ln 202x af x ae a x =+->+,若()0f x >恒成立,则实数a 的取值范围为______. 【答案】(),e +∞ 【解析】 【分析】根据()0f x >恒成立,可得到含有x a ,的不等式,再进行分离变量,将“恒成立”’转化为求函数的最大值或最小值,最后得出a 的范围. 【详解】()ln202x af x ae x =+->+,则()ln ln ln 22x a e a x ++>++, 两边加上x 得到()()()ln 2ln ln 2ln 2ln 2x x aex a x x ex ++++>+++=++,x y e x =+单调递增,()ln ln 2x a x ∴+>+,即()ln ln 2a x x >+-, 令()()ln 2g x x x =+-,则()11121x g x x x --'=-=++,因为()f x 的定义域为()2,-+∞()2,1x ∴∈--时,()0g x '>,()g x 单调递增,()1,x ∈-+∞,()0g x '<,()g x 单调递减,()()max ln 11a g x g ∴>=-=,a e ∴>.故答案为:(),e +∞【点睛】对于“恒成立问题”,关键点为:对于任意的x ,使得()f x a >恒成立,可得出()min f x a >; 对于任意的x ,使得()f x a <恒成立,可得出()max f x a <. (浙江省百校2020-2021学年高三上学期12月联考)16. 已知1a >,若对于任意的1[,)3x ∈+∞,不等式()4ln 3e ln xx x a a -≤-恒成立,则a 的最小值为______.【答案】3e【解析】 【分析】不等式等价变形()()()4ln 3ln 3ln 3ln x x xe x x a a x x a a e e -≤-⇔-≤-,利用同构函数()ln f x x x =-的单调性得解【详解】()()4ln 3ln 3ln 3ln x xe x x a a x x ae a x -≤-⇔-≤--()()3ln 3ln x x x x ae ae ⇔-≤- 令()ln f x x x =-,()111x f x x x-'=-=, Ⅰ()f x 在[)1,+∞上单调递增.Ⅰ1a >,1[,)3x ∈+∞,Ⅰ[)3,1,xe x a ∈+∞,Ⅰ33x x eae x x a ⇔≤⇔≤恒成立,令()3x x g x e =,只需max ()a g x ≥,()33xxg x e -'=,Ⅰ1[,1),()0,()3x g x g x ∈'>单调递增,Ⅰ(1,),()0,()x g x g x ∈+∞'<单调递减,1x ∴=时,()g x 的最大值为3e,Ⅰ3a e ≥,Ⅰa 的最小值为3e.故答案为:3e【点睛】不等式等价变形,同构函数()ln f x x x =-是解题关键. (河北省部分学校2022届高三上学期第一次月考)17. 已知函数()32f x x x ax =--在R 上单调递增,则a 的取值范围是____________.【答案】1(,]3-∞-【解析】【分析】求出函数()f x 的导函数()f x ',再由()0f x '≥恒成立即可得解.【详解】依题意:()232x x a f x '=--,因函数()32f x x x ax =--在R 上单调递增,于是得2320x x a --≥对x ∈R 恒成立,则4120a ∆=+≤,解得13a ≤-,所以a 的取值范围是1(,]3-∞-.故答案为:1(,]3-∞-18. 已知函数()f x 的定义域为R ,()12f -=,对任意(),2x R f x '∈>,则()24f x x >+的解集为____________.【答案】(1,)-+∞. 【解析】【分析】构造()()24g x f x x =--,根据题意得到()g x 在R 为单调递增函数,又由()12f -=,得到()10g -=,进而得到1x >-时,()0g x >,即可求解.【详解】设()()24g x f x x =--,可得()()2g x f x ''=-,因为对任意(),2x R f x '∈>,所以()0g x '>,所以()g x 在R 为单调递增函数, 又由()12f -=,可得()12240g -=+-=,所以当1x >-时,()0g x >,即不等式()24f x x >+的解集为(1,)-+∞. 故答案为:(1,)-+∞.(浙江省宁波市北仑中学2021-2022学年高三上学期返校考试) 19. 设函数()ln 2ef x x mx n x=--+,若不等式()0f x ≤对任意(0,)x ∈+∞恒成立,则nm的最大值为______________. 【答案】2e 【解析】【分析】根据()0ln 22e n f x x m x x m ⎛⎫≤⇒-≤- ⎪⎝⎭转化成两个函数比较大小的问题.【详解】不等式()0f x ≤对任意(0,)x ∈+∞恒成立,即ln 22e n x m x x m ⎛⎫-≤- ⎪⎝⎭,0x >恒成立, 设()()'21ln 0e e g x x g x x x x=-⇒=+> 所以()g x 在()0,∞+单调递增,且()0g e =,当0x →时()g x →-∞ 当x →+∞时()g x →+∞ 作出()g x 的图像如图,再设()22n h x m x m ⎛⎫=- ⎪⎝⎭,当0x >可得()h x 表示过点,02n m ⎛⎫⎪⎝⎭,斜率为2m 的一条射线(不含端点),要求nm 的最大值且满足不等式恒成立,可求2n m的最大值,由点,02n m ⎛⎫⎪⎝⎭在x 轴上方移动,只需找到合适的0m >,且()h x 与()g x 图像相切于点,02n m ⎛⎫⎪⎝⎭,如图所示,此时22n n e e m m =⇒= 故答案为:2e(江苏省扬州市仪征市精诚高级中学2021-2022学年高三上学期9月月考) 20. 已知函数()ln ()f x x ax a R =-∈. (1)讨论函数()f x 的单调性; (2)证明不等式2()x e ax f x --≥恒成立. 【答案】(1)答案见解析;(2)证明见解析. 【解析】 【分析】(1)求出函数导数,讨论a 的范围结合导数即可得出单调性;(2)构造函数2()ln x x e x ϕ-=-,利用导数可得()x ϕ'在(0,)+∞上有唯一实数根0x ,且012x <<,则可得()0()0x x ϕϕ≥>,即得证.【详解】(1)11()(0)axf x a x x x-'=-=>, 当0a ≤时,()0f x '>,所以()f x 在(0,)+∞上单调递增; 当0a >时,令()0f x '=,得到1x a=, 所以当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '>,()f x 单调递增,当1,x a ⎛⎫∈+∞ ⎪⎝⎭,()0f x '<,()f x 单调递减.综上所述,当0a ≤时,()f x 在(0,)+∞上单调递增;当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减.(2)设函数2()ln x x e x ϕ-=-,则21()x x e xϕ-'=-,可知()x ϕ'在(0,)+∞上单调递增.又由(1)0ϕ'<,(2)0ϕ'>知,()x ϕ'在(0,)+∞上有唯一实数根0x ,且012x <<,则()020010x x ex ϕ-'=-=,即0201x e x -=.当()00,x x ∈时,()0x ϕ'<,()ϕx 单调递减; 当()0x x ∈+∞时,()0x ϕ'>,()ϕx 单调递增;所以()0200()ln x x x ex ϕϕ-≥=-,结合021x e x -=,知002ln x x -=-, 所以()()22000000001211()20x x x x x x x x x ϕϕ--+≥=+-==>,则2()ln 0x x e x ϕ-=->, 即不等式2()x e ax f x --≥恒成立.【点睛】关键点睛:本题考查不等式恒成立的证明,解题的关键是转化为证明2()ln x x e x ϕ-=-的最小值大于0.(贵州省铜仁市思南中学2021届高三第十次月考)21. 已知函数()e (0)x f x ax a -=≠存在极大值1e .(1)求实数a 的值;(2)若函数F (x )=f (x )﹣m 有两个零点x 1,x 2(x 1≠x 2),求实数m 的取值范围,并证明:x 1+x 2>2.【答案】(1)a =1 (2)10e m <<,证明见解析【解析】【分析】(1)利用极值的定义,列式求出a 的值,然后进行验证即可; (2)利用(1)中的结论,确定()f x 的单调性、极值以及函数的取值情况,由零点的定义,即可得到m 的取值范围,利用12()()F x F x =,得到2211lnx x x x -=,将问题转化为证明2122111ln 2x x x x x x -<+,即证明21221111ln 21x x x x x x -<+,不妨设12x x <,令21x t x =,则1t >,从而将问题转化为证明1112t lnt t -<+对于1t >恒成立,构造函数11()ln 21t g t t t -=-+,利用导数研究函数的单调性,求解函数的取值情况,即可证明.【小问1详解】解:函数()e (0)x f x ax a -=≠, 则(1)()e xa x f x -'=, 令()0f x '=,解得1x =, 所以f (1)1e ea ==,解得1a =, 此时1()e xxf x -'=, 当1x <时,()0f x '>,则()f x 单调递增, 当1x >时,()0f x '<,则()f x 单调递减, 所以当1x =时,函数()f x 取得极大值f (1)1e=,符合题意,。
考点20利用导数证明不等式(3种核心题型)(学生版) 2025年高考数学大一轮复习核心题型(新高考版
考点20利用导数证明不等式(3种核心题型+基础保分练+综合提升练+拓展冲刺练)【考试提醒】导数中的不等式证明是高考的常考题型,常与函数的性质、函数的零点与极值、数列等相结合,虽然题目难度较大,但是解题方法多种多样,如构造函数法、放缩法等,针对不同的题目,灵活采用不同的解题方法,可以达到事半功倍的效果【核心题型】题型一 将不等式转化为函数的最值问题待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”的函数,有时对复杂的式子要进行变形,利用导数研究其单调性和最值,借助所构造函数的单调性和最值即可得证.【例题1】(2024·陕西咸阳·模拟预测)已知1201x x <<<,下列不等式恒成立的是( )A .1221e e x xx x <B .2112ln ln x x x x >C .1122ln ln x x x x <D .11e ln x x >【变式1】(2024·全国·模拟预测)下列正确结论的个数为( )①13sin1010π> ②141sin sin 334< ③16tan 16> ④()tan π3sin 3->A .1B .2C .3D .4【变式2】(2024·四川成都·三模)已知函数2()ln ,f x ax x a =-ÎR .(1)讨论函数()f x 的单调性;(2)设0,()()a g x f x bx >=+,且1x =是()g x 的极值点,证明:2+ln 12ln 2b a £-.【变式3】(2024·四川成都·三模)已知函数()()()e sin 1,0,πxf x ax x x x =---Î.(1)若12a =,证明:()0f x >;(2)若函数()f x 在()0,π内有唯一零点,求实数a 的取值范围.题型二 将不等式转化为两个函数的最值进行比较若直接求导比较复杂或无从下手时,可将待证式进行变形,构造两个函数,从而找到可以传递的中间量,达到证明的目标.本例中同时含ln x 与e x ,不能直接构造函数,把指数与对数分离两边,分别计算它们的最值,借助最值进行证明.【例题2】(2023·河南开封·模拟预测)已知13a =,13e 1b =-,4ln 3c =,则( )A .a b c <<B .a c b <<C .c<a<bD .b<c<a【变式1】(2024·全国·模拟预测)已知1e 1ln ,0aa b =+>,则下列结论正确的是( )A .e 2a b<-B .1lna b<C .1a b<-D .1e lnba<【变式2】(2024·浙江杭州·模拟预测)已知函数()()1122e ,e e e 1xxx x f x m m g x -=+-=++.(1)当0m =时,证明:()e xf x -<;(2)当0x <时,()g x t ³,求t 的最大值;(3)若()f x 在区间()0,¥+存在零点,求m 的取值范围.【变式3】(2024·贵州黔西·一模)已知函数29()ln 22f x x x x x =--.(1)判断()f x 的单调性;(2)证明:1352193ln(21)35721n n n n -æö++++>-+ç÷+èøL .题型三 适当放缩证明不等式导数方法证明不等式中,最常见的是e x 和ln x 与其他代数式结合的问题,对于这类问题,可以考虑先对e x 和ln x 进行放缩,使问题简化,简化后再构建函数进行证明.常见的放缩公式如下:(1)e x ≥1+x ,当且仅当x =0时取等号;(2)ln x ≤x -1,当且仅当x =1时取等号.【例题1】(2024·河北沧州·一模)已知等比数列{}n a 的前n 项和为413,1,e Sn S a S >=,则数列{}n a 的公比q 满足( )A .01q <£B .10q -<<C .1q >D .1q £-【变式1】(2024·广东·模拟预测)令()sin 0.5cos1cos 2cos ,N n a n n °°°°+=+++ÎL .则n a 的最大值在如下哪个区间中( )A .(0.49,0.495)B .(0.495,0.5)C .(0.5,0.505)D .(0.505,0.51)【变式2】(2024·全国·模拟预测)设整数1p >,1x >-且0x ¹,函数()(1)1p f x x px =+--.(1)证明:()0f x >;(2)设0x >,证明:ln(1)x x +<;(3)设*n ÎN ,证明:111321232ln(1)n n n n ++++<-+L .【变式3】(23-24高三下·河南·阶段练习)已知函数()(1)1(1)r f x x rx x =+-->-,0r >且1r ¹.(1)讨论()f x 的单调性;(2)6332的大小,并说明理由;(3)当*n ÎN时,证明:2sin 176n kk n =<+å.【课后强化】基础保分练一、单选题1.(22-23高三上·四川绵阳·开学考试)若1201x x <<<,则( )A .2121e e ln ln x xx x ->-B .2121e e ln ln x xx x -<-C .1221e e x xx x >D .1221e e x xx x <2.(2023·陕西咸阳·三模)已知12023a =,20222023eb -=,1cos 20232023c =,则( )A .a b c >>B .b a c >>C .b c a>>D .a c b>>3.(23-24高三上·云南保山·期末)已知16a =,7ln 6b =,1tan 6c =,则( )A .b a c <<B .a b c <<C .a c b<<D .c<a<b4.(2024·全国·模拟预测)设13ln4,tan tan1,22a b c ==+=,则( )A .a b c <<B .b c a<<C .c<a<bD .a c b<<二、多选题5.(23-24高三上·广西百色·阶段练习)函数()21ln 2f x x ax a x =-+的两个极值点分别是12,x x ,则下列结论正确的是( )A .4a >B .22128x x +<C .1212x x x x +=D .()()()221212164f x f x x x +<+-6.(2023·福建·模拟预测)机械制图中经常用到渐开线函数inv tan x x x =-,其中x 的单位为弧度,则下列说法正确的是( )A .inv x x ×是偶函数B .inv x 在ππ(π,π)22k k --+上恰有21k +个零点(N k Î)C .inv x 在ππ(π,π)22k k --+上恰有41k +个极值点(N k Î)D .当π02x -<<时,inv sin x x x <-三、填空题7.(2023·海南·模拟预测)已知函数()1ln e x x af x --=,()1x a g x x--=,若对任意[)1,x ¥Î+,()()f x g x £恒成立,则实数a 的取值范围是 .8.(2023·河南开封·模拟预测)实数x ,y 满足()23e 31e x y x y -£--,则3xy -的值为 .四、解答题9.(2023·吉林长春·模拟预测)已知函数()21()1ln 2f x x x =--.(1)求()f x 的最小值;(2)证明:47ln332>.10.(2024·广东佛山·二模)已知()21e 4e 52x xf x ax =-+--.(1)当3a =时,求()f x 的单调区间;(2)若()f x 有两个极值点1x ,2x ,证明:()()12120f x f x x x +++<.11.(2023·四川成都·二模)已知函数()e sin xf x x -=.(1)求()f x 在()()0,0f 处的切线方程;(2)若0x 是()f x 的最大的极大值点,求证:()01f x <<综合提升练一、单选题1.(22-23高三上·河南·阶段练习)若32e 3ln 22x yx y +-=+,其中2,2x y >>,则( )A .e x y<B .2x y>C .24e xy>D .2e x y>2.(2023·福建·模拟预测)已知ln 2a =,1e b a=-,2a c a =-,则( )A .b c a>>B .b a>C .c a b>>D.c b a>>3.(2023·河北衡水·三模)若a =1b =-,c =则( )A .c a b <<B .c b a <<C .b c a<<D .a c b<<4.(2023·新疆·三模)已知数列{}n a 中,11a =,若1nn nna a n a +=+(N n *Î),则下列结论中错误的是( )A .325a =B .1111n na a +-£C .1ln 1nn a <-(2,N n n *³Î)D .2111112n n a a ++-<5.(2023·河南·模拟预测)设a ,b 为正数,且2ln ab a b=-,则( ).A .112a b<<B .12a b<<C .112ab <<D .12ab <<6.(2024·上海虹口·二模)已知定义在R 上的函数()(),f x g x 的导数满足()()f x g x ¢£¢,给出两个命题:①对任意12,x x ÎR ,都有()()()()1212f x f x g x g x -£-;②若()g x 的值域为[]()(),,1,1m M f m f M -==,则对任意x ÎR 都有()()f x g x =.则下列判断正确的是( )A .①②都是假命题B .①②都是真命题C .①是假命题,②是真命题D .①是真命题,②是假命题7.(2024·四川泸州·三模)已知0x >,e ln 1x y +=,给出下列不等式①ln 0x y +<;②e 2x y +>;③ln e 0y x +<;④1x y +>其中一定成立的个数为( )A .1B .2C .3D .48.(2024·四川攀枝花·三模)已知正数,,a b c 满足ln e c a b b ca ==,则( )A .a b c >>B .a c b>>C .b a c>>D .b c a>>二、多选题9.(2023·福建龙岩·二模)已知函数()ln n f x x n x =-(*n ÎN )有两个零点,分别记为n x ,n y (<n n x y );对于0a b <<,存在q 使)()()(()n n n f f f a q b a b -=-¢,则( )A .()n f x 在()1,+¥上单调递增B .e n >(其中e 2.71828=L 是自然对数的底数)C .11n n n n x x y y ++-<-D .2q a b<+10.(2023·河南信阳·模拟预测)已知,,,a b c d ÎR ,满足0a b c d >>>>,则( )A .sin sin a b >B .sin sin a a b b ->-C .a bd c>D .ad bc ab cd+>+11.(2024·河北沧州·一模)已知函数()e xf x =与函数()211g x x =+-的图象相交于()()1122,,,A x y B x y 两点,且12x x <,则( )A .121y y =B .211exy =C .21211y y x x ->-D .221x y =三、填空题12.(2023·四川成都·三模)已知函数()2()2ln 32f x x a x x =+-+,a ÎR .当1x >时,()0f x >,则实数a 的取值范围为.13.(23-24高三下·广东云浮·阶段练习)若实数a ,b 满足()()221ln 2ln 1a b a b -³+-,则a b += .14.(2024·全国·模拟预测)若实数a ,b ,c 满足条件:()2e e 2e 1a b ca b c a -++-+=-,则444abca b c ++的最大值是 .四、解答题15.(2024·青海西宁·二模)已知函数()()()2222ln R f x x a x a x a =+--Î.(1)若2a =,求()f x 的极值;(2)若()()2222ln g x f x a x x =+-+,求证:()12g x ³.16.(2024·山东济南·二模)已知函数()()()22l ,n 1e x f x ax x g x x ax a =--=-ÎR .(1)讨论()f x 的单调性;(2)证明:()()f x g x x +³.17.(2024·上海松江·二模)已知函数ln y x x a =×+(a 为常数),记()()y f x x g x ==×.(1)若函数()y g x =在1x =处的切线过原点,求实数a 的值;(2)对于正实数t ,求证:()()()ln 2f x f t x f t t a +-³-+;(3)当1a =时,求证:e ()cos x g x x x+<.18.(2024·上海嘉定·二模)已知常数m ÎR ,设()ln mf x x x=+,(1)若1m =,求函数()y f x =的最小值;(2)是否存在1230x x x <<<,且1x ,2x ,3x 依次成等比数列,使得()1f x 、()2f x 、()3f x 依次成等差数列?请说明理由.(3)求证:“0m £”是“对任意()12,0,x x Î+¥,12x x <,都有()()()()1212122f x f x f x f x x x ¢¢+->-”的充要条件.19.(2024·全国·模拟预测)已知函数()()2e ln 1xf x a x =-+.(1)若2a =,讨论()f x 的单调性.(2)若0x >,1a >,求证:()1ln 2f x a a >-.拓展冲刺练一、单选题1.(2023·上海奉贤·二模)设n S 是一个无穷数列{}n a 的前n 项和,若一个数列满足对任意的正整数n ,不等式11n n S S n n +<+恒成立,则称数列{}n a 为和谐数列,有下列3个命题:①若对任意的正整数n 均有1n n a a +<,则{}n a 为和谐数列;②若等差数列{}n a 是和谐数列,则n S 一定存在最小值;③若{}n a 的首项小于零,则一定存在公比为负数的一个等比数列是和谐数列.以上3个命题中真命题的个数有( )个A .0B .1C .2D .32.(2023·新疆乌鲁木齐·三模)已知0.19e a -=,0.9b =,2ln0.91c =+,则( )A .b c a>>B .a c b>>C .c b a>>D .b a c>>3.(2023·湖南长沙·一模)已知()e 0.1e 0.1a +=-,e e b =,()e 0.1e 0.1c -=+,则a ,b ,c 的大小关系是( )A .a b c <<B .c a b <<C .b a c<<D .a c b<<4.(2024·青海·二模)定义在R 上的函数()f x 满足()()2231218f x f x x x --=-+,()f x ¢是函数()f x 的导函数,以下选项错误的是( )A .()()000f f ¢+=B .曲线()y f x =在点()()1,1f 处的切线方程为210x y --=C .()()f x f x m -¢³在R 上恒成立,则2m £-D .()()74ee xf x f x -³-¢-二、多选题5.(2024·全国·模拟预测)已知n S 为正项数列{}n a 的前n 项和,且221n n n a S a -=,则( )A .=n aB .1n na a +>C .1ln n nS n S -³D .212n n n S S S +++>6.(2024·全国·模拟预测)已知1e 1ln ,0aa b=+>,则下列结论正确的是( )A .e 2a b >-B .1lna b<C .1e lnb a<D .1a b>-三、填空题7.(2023·浙江温州·二模)已知函数e e()ln ln f x x x x x=++-,则()f x 的最小值是 ;若关于x 的方程()22f x ax =+有1个实数解,则实数a 的取值范围是.8.(2023·福建福州·模拟预测)已知定义在()0,¥+上函数()f x 满足:()()ln 1x f x x +<<,写出一个满足上述条件的函数()f x = .四、解答题9.(2024·辽宁·模拟预测)已知函数()()sin ln sin f x x x =-,()1,2x Î(1)求()f x 的最小值;(2)证明:()sin sin eln sin 1x xx x -×->.10.(2024·四川攀枝花·三模)已知函数()()ln 1R af x x a x=+-Î.(1)当2a =时,求函数()f x 在1x =处的切线方程;(2)设函数()f x 的导函数为()f x ¢,若()()()1212f x f x x x ¢¢=¹,证明:()()1211f x f x a++>.11.(2024·山西晋城·二模)已知函数()()e x f x x a x a =-++(a ÎR ).(1)若4a =,求()f x 的图象在0x =处的切线方程;(2)若()0f x ³对于任意的[)0,x Î+¥恒成立,求a 的取值范围;(3)若数列{}n a 满足11a =且122nn n a a a +=+(*n ÎN ),记数列{}n a 的前n 项和为n S ,求证:[]1ln (1)(2)3n S n n +<++.。
导数问题的常见题型
导数问题的常见题型导数问题的常见题型有:一、求曲线的切线方程;二、讨论函数的单调性;三、求函数的极值、最值;四、恒成立问题与存在性问题;五、与方程有关的问题;六、与函数图象的有关问题;七、证明不等式。
例1.设函数()()ln ln 2(0)f x x x ax a =+-+>。
(1)当a =1时,求()f x 的单调区间;(2)若()f x 在(]01,上的最大值为12,求a 的值. 解:对函数求导得:11()2f x a x x'=-+-,定义域为(0,2). (1)当a =1时,令2112()0+1=0022x f x x x x x -+'=-⇒=--得(), 当(0,2),()0,x f x '∈>为增区间;当(22),()0,x f x '∈<,为减函数。
故()f x 的单调增区间是),(20,减区间是),(22. (2)当(]01x ∈,时,11()2f x a x x '=-+->0,()f x 为增函数,max 1(1)2f f a ===。
例2.已知函数3()31,0f x x ax a =--≠.()I 求()f x 的单调区间;()II 若()f x 在1x =-处取得极值,直线m y =与()y f x =的图象有三个不同的交点,求m的取值范围。
解:(1)'22()333(),f x x a x a =-=- 当0a <时,对x R ∈,有'()0,f x >当0a <时,()f x 的单调增区间为(,)-∞+∞;当0a >时,由'()0f x >解得x a <-或x a >;由'()0f x <解得a x a -<<,故当0a >时,()f x 的单调增区间为(,),(,)a a -∞-+∞;单调减区间为(,)a a -.(2)因为()f x 在1x =-处取得极大值,所以'2(1)3(1)30, 1.f a a -=⨯--=∴=所以3'2()31,()33,f x x x f x x =--=-由'()0f x =解得121,1x x =-=.由(1)中()f x 的单调性可知,()f x 在1x =-处取得极大值(1)1f -=,在1x =处取得极小值(1)3f =-.因为直线y m =与函数()y f x =的图象有三个不同的交点,又(3)193f -=-<-,(3)171f =>,结合()f x 的单调性可知,m 的取值范围是(3,1)-.例3.已知函数1()ln 1a f x x ax x -=-+-()a R ∈. (Ⅰ)讨论()f x 的单调性;(Ⅱ)设2()2 4.g x x bx =-+当14a =时,若对任意1(0,2)x ∈,存在[]21,2x ∈,使 12()()f x g x ≥,求实数b 取值范围.(Ⅱ)当14a =时,f(x)在(0,1)上是减函数,在(1,2)上是增函数,所以对任意1(0,2)x ∈,有11f(x )f(1)=-2≥,又已知存在[]21,2x ∈,使12()()f x g x ≥,所以21()2g x -≥,[]21,2x ∈,即存在[]1,2x ∈,使21()242g x x b x =-+≤-,即2922b x x ≥+,即922b x x≥+∈1117[,]24,所以1122b ≥,解得114b ≥,即实数b 取值范围是11[,)4+∞。
专题一 第5讲 导数与不等式的证明
可得h(x)在(0,1)上单调递减,在(1,+∞)上单调递增, 所以h(x)=x-1-ln x≥h(1)=0,即x-1≥ln x.
于是,当a≤1时,ex-a≥x-a+1≥x+a-1≥ln(x+a), 注意到以上三个不等号的取等条件分别为x=a,a=1,x+a=1,它 们无法同时取等, 所以当a≤1时,ex-a>ln(x+a),即f(x)>0.
12
当a=e时,f(x)=ln(e-x)-x+e,
要证 f(e-x)<ex+2xe,即证 ln x+x<ex+2xe,即证lnxx+1<exx+21e.
设
g(x)=lnx
x+1(x>0),则
1-ln g′(x)= x2
x ,
所以当0<x<e时,g′(x)>0,当x>e时,g′(x)<0,
所以g(x)在(0,e)上单调递增,在(e,+∞)上单调递减,
当t∈(0,1)时,g′(t)<0,g(t)单调递减, 假设g(1)能取到, 则g(1)=0,故g(t)>g(1)=0; 当t∈(1,+∞)时,g′(t)>0,g(t)单调递增, 假设g(1)能取到,则g(1)=0,故g(t)>g(1)=0,
x+ln1-x 综上所述,g(x)= xln1-x <1 在 x∈(-∞,0)∪(0,1)上恒成立.
方法二 f(x)=ln ex=1-ln x. 欲证 f(x)<1+1x-x2ex,只需证1-elxn x+x2-1x<1,
因为x∈(0,1),所以1-ln x>0,ex>e0=1,
则只需证 1-ln x+x2-1x<1, 只需证 ln x-x2+1x>0, 令 t(x)=ln x-x2+1x,x∈(0,1),
利用导数证明不等式的常见题型及解题技巧
利用导数证明不等式的常见题型及解题技巧利用导数证明不等式的常见题型及解题技巧趣题引入已知函数x x x g ln )(= 设b a <<0, 证明:2ln )()2(2)()(0a b b a b g a g -<+-+< 分析:主要考查利用导数证明不等式的能力。
证明:1ln )(+='x x g ,设)2(2)()()(x a g x g a g x F +-+= 2ln ln )2()(21)2(2)()(''''x a x x a g x g x a g x g x F +-=+-=⨯+-=' 当a x <<0时 0)(<'x F ,当a x >时 0)(>'x F ,即)(x F 在),0(a x ∈上为减函数,在),(+∞∈a x 上为增函数∴0)()(min ==a F x F ,又a b > ∴0)()(=>a F b F , 即0)2(2)()(>+-+b a g b g a g 设2ln )()2(2)()()(a x x a g x g a g x G --+-+= )ln(ln 2ln 2ln ln )(x a x x a x x G +-=-+-='∴ 当0>x 时,0)('<x G ,因此)(x G 在区间),0(+∞上为减函数;因为0)(=a G ,又a b > ∴0)()(=<a G b G ,即 02ln )()2(2)()(<--+-+a x x a g x g a g 故2ln )()2(2)()(a x x a g x g a g -<+-+ 综上可知,当 b a <<0时,2ln )()2(2)()(0a b b a b g a g -<+-+< 本题在设辅助函数时,考虑到不等式涉及的变量是区间的两个端点,因此,设辅助函数时就把其中一个端点设为自变量,范例中选用右端点,读者不妨设为左端点试一试,就能体会到其中的奥妙了。
利用导数证明不等式考点与题型归纳
利用导数证明不等式考点与题型归纳例1]已知函数$f(x)=1-\frac{1}{x\ln x}$,$g(x)=\frac{1}{x}-bxe^{-x}$,若曲线$y=f(x)$与曲线$y=g(x)$的一个公共点是$A(1,1)$,且在点$A$处的切线互相垂直.(1)求$a$,$b$的值;(2)求证:当$x\geq 1$时,$f(x)+g(x)\geq\frac{1}{x\ln x}$.解](1)因为$f(x)=1-\frac{1}{x\ln x}$,所以$f'(x)=\frac{1}{x^2\ln x}$,$f'(1)=-1$。
因为$g(x)=\frac{1}{x}-bxe^{-x}$,所以$g'(x)=-\frac{1}{x^2}-be^{-x}+bxe^{-x}$,$g'(1)=1-a-b$。
因为曲线$y=f(x)$与曲线$y=g(x)$的一个公共点是$A(1,1)$,且在点$A$处的切线互相垂直,所以$g(1)=1$,且$f'(1)\cdot g'(1)=-1$,即$g(1)=a+1-b=1$,$g'(1)=-a-1-b=1$,解得$a=-1$,$b=-1$.2)证明:由(1)知,$g(x)=-\frac{1}{x}+x$,则$f(x)+g(x)\geq\frac{1}{x\ln x}\Leftrightarrow 1-\frac{1}{x\ln x}-\frac{1}{x}+x\geq 0$,即$\frac{1}{x\ln x}-\frac{1}{x}+x\geq 1$。
令$h(x)=1-\frac{1}{x\ln x}-\frac{1}{x}+x(x\geq 1)$,则$h'(x)=\frac{2}{x^3}-\frac{1}{x^2}+\frac{1}{x\ln^2 x}+1$,因为$x\geq 1$,所以$h'(x)>0$,所以$h(x)$在$[1,+\infty)$上单调递增,所以$h(x)\geq h(1)=1-\frac{1}{\ln e}-1+1=0$,即$\frac{1}{x\ln x}-\frac{1}{x}+x\geq 1$,所以当$x\geq 1$时,$f(x)+g(x)\geq\frac{1}{x\ln x}$.解题技法]待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”的函数,利用导数研究其单调性,借助所构造函数的单调性即可得证.例2](2019·长沙模拟)已知函数$f(x)=e^{x^2}-x\ln x$.求证:当$x>1$时,$f(x)<x e^x$.证明]要证$f(x)<xe^x$,只需证$e^x-e^{-x}<\frac{\lnx}{x}$.令$h(x)=\ln x+\frac{1}{x}(x>0)$,则$h'(x)=\frac{1}{x^2}-\frac{1}{x^2}=0$,$h''(x)=\frac{2}{x^3}>0$,所以$h(x)$在$(0,+\infty)$上下凸,所以$h(x)\geq h(1)=1$,即$\lnx+\frac{1}{x}\geq 1$,即$\frac{\ln x}{x}\geq 1-\frac{1}{x}$.再令$\varphi(x)=e^x-e^{-x}$,则$\varphi'(x)=e^x+e^{-x}>0$,所以$\varphi(x)$在$(0,+\infty)$上单调递增,所以$\varphi(x)<\varphi(1)=e-e^{-1}$.因为$\frac{\ln x}{x}\geq 1-\frac{1}{x}>1-e^{-1}$,所以$\varphi(x)1$时,$f(x)<e^{x^2}-x\ln x<xe^x$.3.已知不等式 $\frac{e^{1-x_2}-e^{1-x_1}}{\ln{x_1}-\ln{x_2}}>\frac{1}{x_2}$,证明 $\ln{x_1}-\ln{x_2}>1-\frac{1}{e^{1-x_2}-e^{1-x_1}}$。
利用导数证明不等式考点与题型归纳
利用导数证明不等式考点与题型归纳考点一单变量不等式的证明方法一移项作差构造法证明不等式ln x ae 1[例1]已知函数f(x)= 1 —~x,g(x)= 'e x + X— bx(e为自然对数的底数),若曲线y= f(x) 与曲线y= g(x)的一个公共点是 A(1,1),且在点A处的切线互相垂直.(1)求a, b的值;2(2)求证:当 x> 1 时,f(x) + g(x)> -xIn x[解]⑴因为f(x)= 1 —-^,In x— 1所以f (x)= 7 , f' (1) =— 1.ae 1 ae 1因为 g(x)= e x + x— bx,所以 g (x)= — e x—x^—b.因为曲线y= f(x)与曲线y= g(x)的一个公共点是 A(1,1),且在点A处的切线互相垂直,所以 g(1) = 1,且 f' (1) g- (1) = — 1,即 g(1) = a + 1— b= 1, g' (1) = — a — 1 — b= 1,解得 a=— 1, b=— 1.e 1(2)证明:由(1)知,g(x)= —孑+ x + x,小2^ A In x e 1贝 y f(x)+g(x) > x?1—T—e x— x+X》0.令 h(x) = 1 —皿—€—1+ x(x> 1),x e x则 h'(x)=—+e+x2+1=少+當+1.In x e因为 x> 1,所以 h' (x)=卡+1>o,所以h(x)在[1 ,+s)上单调递增,所以h(x)>h(1) = 0,即 1-也-e—丄+x> o,x e xx2 所以当 x> 1 时,f(x) + g(x)>x.[解题技法]待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”的函数,利用导数研究其单调性,借助所构造函数的单调性即可得证.方法二隔离审查分析法证明不等式1 [例2] (2019长沙模拟)已知函数f(x)= ex2- xln x•求证:当x> 0时,f(x)v xe x+ -.1 1 1[证明]要证 f(x)v xe x+-,只需证 ex — In x v e x+ ,即 ex - e x< In x+ .ex —e ex ex1令 h(x) = In x +—(x>0),贝U h' (x)= ex易知h(x)在0, e上单调递减,在e,上单调递增,则h(x)min = h 1 = 0,所以In1x+ex》°.再令0(x)= ex— e x,贝U O' (x) = e— e x,易知O(x)在 (0,1)上单调递增,在(1,+^ )上单调递减,则O(X)max= 0(1) = 0,所以ex —e x< 0.x 1因为h(x)与«x)不同时为0,所以ex — e x< In x+ £,故原不等式成立.[解题技法]若直接求导比较复杂或无从下手时,可将待证式进行变形,构造两个都便于求导的函数,从而找到可以传递的中间量,达到证明的目标.方法三、放缩法证明不等式[例 3]已知函数 f(x)= ax— In x— 1.(1)若f(x)》0恒成立,求a的最小值;e x(2)求证:—+ x+ In x— 1 > 0;xx[解](1)f(x) >0 等价于 a >(3)已知k(e x + x2)> x— xIn x恒成立,求k的取值范围. In x+ 1x1 — Inx所以k》- e- x T + x人In x+1…, In x令 g(x) = X~(x>0),贝V g (x)=—立,所以当 x€ (0,1)时,g' (x)> 0,当 x€ (1 ,+s)时,g' (x)v 0,则g(x)在(0,1)上单调递增,在(1 ,+s)上单调递减,所以g(x)max= g(1) = 1,则a > 1, 所以a的最小值为1.⑵证明:当a= 1时,由(1)得x> In x+ 1,即 t> In t + 1(t> 0).e—x令~x~ = t,则—x— In x= In t,e—x所以——> —x— In x+ 1,xe-x即一+ x+ In x — 1 > 0. x—xe 、⑶因为k(e-x+ x2) >x— xIn x恒成立,即 k—— + x > 1 — In x恒成立,xe- x二 + x + In x— 1+1,e—x由⑵知■— + x+ In x— 1> 0恒成立,入—xe+ x+ In x— 1x所以一二 ---------------- + K 1,所以k> 1.e—故k的取值范围为[1 , + g).[解题技法]导数的综合应用题中,最常见就是e x和In x与其他代数式结合的难题,对于这类问题, 可以先对e x和In x进行放缩,使问题简化,便于化简或判断导数的正负•常见的放缩公式如下:(1)e x> 1 + x,当且仅当x= 0时取等号;(2)e x>ex,当且仅当x = 1时取等号;1(3)当x>0时,e x> 1 + x+ ?x2,当且仅当x= 0时取等号;(6)当 x> 1 时, 2 x— 1x+ 1 < In x<x— 1x,当且仅当x= 1时取等号.X1 +⑷当x>0时,e x>討+ 1,当且仅当x= 0时取等号;X— 1⑸一 < In x< x — K X2— x,当且仅当 x= 1时取等号;X考点二双变量不等式的证明[典例]已知函数 f(x)= In x— 2ax2+ x, a € R.(1)当a = 0时,求函数f(x)的图象在(1, f(1))处的切线方程;⑵若 a =— 2,正实数 X1, x2 满足 f(X1)+ f(X2)+ X1x2= 0,求证:1 [解](1)当 a= 0 时,f(x)= In x+ x,则 f(1) = 1,所以切点为(1,1),又因为 f ' (x) = - +入1,所以切线斜率k= f (1) = 2,故切线方程为 y— 1 = 2(x— 1),即卩2x— y— 1 = 0.(2)证明:当 a=— 2 时,f(x)= In x+ x2 + x(x> 0).由 f(X1 ) + f(X2) + X1X2= 0,即 In X1 + x1+ X1 + In X2 + x2+ x2 + X1X2 = 0,从而(X1+ X2)2 +(X1+ X2) = X1X2 — In(X1X2),令 t= X1X2,设©(t) = t — In t(t> 0),则© (t)= 1 —1 =一,易知©(t)在区间(0,1)上单调递减,在区间(1,+^)上单调递增,所以©(t) > ©(1) = 1,所以(X1+ X2)2 + (X1+ X2) > 1 ,V5 — 1 因为 X1> 0, X2> 0,所以 X1+ X2> —2 —成立.[解题技法]破解含双参不等式的证明的关键一是转化,即由已知条件入手,寻找双参所满足的关系式,并把含双参的不等式转化为含单参的不等式;2 4a x — a 石 2v 0,二是巧构造函数,再借用导数,判断函数的单调性,从而求其最值;三是回归双参的不等式的证明,把所求的最值应用到双参不等式,即可证得结果. [题组训练]a已知函数f(x) = In x+ .x(1)求f(x)的最小值;⑵若方程f(x)= a 有两个根x i , X 2(x i v x 2),求证:x i + X 2> 2a.1 a x — a解:(1)因为 f' (x) = x — x 2= x^(x> 0),所以当a w 0时,f(x)在(0 ,+R )上单调递增,函数无最小值.当a > 0时,f(x)在(0, a)上单调递减,在(a ,+^)上单调递增.函数f(x)在x= a 处取最小值f(a)= In a+ 1.⑵证明:若函数y= f(x)的两个零点为X 1, x 2(X 1V x 2),由(1)可得 O v X 1V a v X 2.令 g(x) = f(x) — f(2a — x)(0 v x v a),丄 1则 g ' (x)= (x — a) X 2— 2a — x 2 所以g(x)在(0, a)上单调递减,g(x)>g(a) = 0,即 f(x) > f(2a — x).令 x = X 1 v a,贝V f(x 1) >f(2a — X 1),所以 f(x 2) = f(x 1) >f(2a — X 1),由(1)可得f(x)在(a, + g )上单调递增,所以X 2>2a — X 1,故 X 1 + X 2> 2a. 考点三证明与数列有关的不等式a [典例]已知函数f(x)= In(x+ 1) + 二..X. I 厶(1)若x>0时,f(x)> 1恒成立,求a 的取值范围;1 1 1 1 *⑵求证:ln(n+ 1)>3+ 5171…+ 2^+1 (n C N ).a[解](1)由 In(x+ 1)+ > 1,得x+ 2a> (x+ 2) — (x+ 2)1 n(x+ 1).令 g(x) = (x+ 2)[1 — In(x+ 1)],x+ 2 1则 g ' (x)= 1 — In (x+ 1) —=— In (x+ 1)—-x+ 1 x + 1 当x>0时,g' (x) v 0,所以g(x)在(0,+g)上单调递减.所以g(x)v g(0) = 2,故a的取值范围为[2 , + ).2(2)证明:由(1)知 In(x+ 1) + > 1(x> 0),x+ 2所以 In(x+ 1) > xx+ 2令 x = k(k> 0),得 In k+ 1>k+2k+ 1 即In1 > 一2 3所以 In” + In^+ In 4n + 11 1 1 13+…+ In => 1+1+尹…+ 乔,即 ln(n + 1)>3 +1 + 7+・・・+-^(n € N *).3 5 72n + 1[解题技法]证明与数列有关的不等式的策略(1)证明此类问题时常根据已知的函数不等式,用关于正整数 n 的不等式替代函数不等式中的自变量.通过多次求和达到证明的目的. 此类问题一般至少有两问,已知的不等式常由第一问根据待证式的特征而得到.(2)已知函数式为指数不等式(或对数不等式),而待证不等式为与对数有关的不等式 (或与指数有关的不等式),还要注意指、对数式的互化,如e x > x+ 1可化为In(x+ 1)v x 等.[题组训练](2019 长春质检)已知函数 f(x)= e x ,g(x)= In(x+ a) + b. (1) 若函数f(x)与 g(x)的图象在点(0,1)处有相同的切线,求a ,b 的值;(2)当b = 0时,f(x) — g(x) > 0恒成立,求整数 a 的最大值;(3) 求证:In 2 + (In 3 - In2)2+ (In 4 - In 3)3+ — + [ln(n + 1) — In n]n v -^(n € N *). e i 解:⑴因为函数f(x)和g(x)的图象在点(0,1)处有相同的切线,所以 f(0) = g(0)且f' (0)=g' (0),ii又因为 f' (x)= e x , g' (x)= ,所以 1 = In a+ b,1 = ;,x+ aa解得 a= 1, b= 1.⑵现证明 e x > x+ 1,设 F(x)= e x - x-1,则 F ' (x)= e x - 1,当 x € (0, + )时,F' (x) > 0,当x € (—a, 0)时,F ' (x)v 0,所以F(x)在(0 ,+s )上单调递增,在(一a, 0)上单调 递减,所以F(x)min = F(0) = 0,即F(x)> 0恒成立,即 e x>x+ 1.同理可得 In(x+ 2)w x+ 1,即 e x> In(x+ 2),当 a w 2 时,ln(x + a) w ln(x+ 2) v e x,所以当a w 2时,f(x) — g(x) > 0恒成立.当 a >3 时,e0v In a,即 e x- In(x+ a)> 0 不恒成立.故整数a的最大值为2.—n+ 1⑶证明:由⑵知e x>ln(x+2),令x= —,—n+1一n+ 1则e~~^~ >ln一n—+2,——n -k 1即 e-n + 1> In ----------- + 2n= [ln(n + 1) - In n]n,n所以 e°+ e-1 + e-2+ …+ e一n+ 1>In 2+ (In 3 — In 2)2+ (In 4— In 3) 3+ …+ [ln(n+ 1) — Innn],11—』1 e 又因为 e0 + e-1+ e-2+ ••• + e-n+1= 1 v —= ,1-;1-1 e-1e ee 所以 In 2 + (In 3 - In 2) 2+ (In 4 — In 3)3+ …+ [ln(n+ 1)-In n]n v e- 1[课时跟踪检测]11. (2019 唐山模拟)已知 f(x)= qx2— a2ln x, a>0.⑴求函数f(x)的最小值;f x — f 2a 3⑵当x>2a时,证明:>尹x— 2a 2解:⑴函数f(x)的定义域为(0 ,+^),a2 x+ a x— a f (x) = x — x=当 x € (0, a)时,f' (x)v 0, f(x)单调递减;当 x € (a ,+s)时,f' (x)> 0, f(x)单调递增.1所以当x= a时,f(x)取得极小值,也是最小值,且f(a) = ~a2— a2ln a.(2)证明:由⑴知,f(x)在(2a, + )上单调递增,3则所证不等式等价于 f(x) — f(2a) — ^a(x— 2a) > 0.“ 3设 g(x) = f(x) — f(2a) — 2a(x— 2a),则当x>2a时,, , 3 a2 32x+ a x— 2a2x > 0,g (x) = f (x) — 2a = x—— ^a所以g(x)在(2a,+s)上单调递增,当 x>2a 时,g(x)>g(2a)= 0,3即 f(x) — f(2a) — ?a(x— 2a)>0,f x — f 2a 3故> "a.x— 2a 22.(2018黄冈模拟)已知函数f(x)=亦x— e—x(入€ R). (1)若函数f(x)是单调函数,求入的取值范围;x2 ⑵求证:当 0v X1 v x2 时,e1 — x2 — e1 — X1> 1 —:.1解:⑴函数f(x)的定义域为(0 ,+8 ),••f(x)= An x— e—x,+ xe— x~X~,•••函数f(x)是单调函数,••• f' (x)w 0或f' (x) > 0在(0 ,+s)上恒成立,+ xe x①当函数f(x)是单调递减函数时,f' (x)< 0, •------------------- < 0,即X+ xe—x< 0,疋xe—x Xx X一 1令y(x)=—孑,贝y y (x)=-e^,当 0 v x v 1 时,y (x) v 0;当 x> 1 时,y (x) >0,则y x)在(0,1)上单调递减,在(1 ,+8 )上单调递增,•••当x> 0时,y x)min=y i) =x+ xe②当函数f(x)是单调递增函数时,f' (x)>0,•••------------------- >0,即入 + xe—x》0, xe—xx由①得y(x)= —吞在(o,1)上单调递减,在(1, + 8)上单调递增,又■ y(0) = 0,当 x综上,入的取值范围为1——8(2)证明:由(1)可知,当f(x)= — ein X — e— x在(0, + 8 )上单调递减,X1 X2 ln X2>1 —门■-0 v x i v X2,1 1•••f(X1)>f(x2),即一:ln X1 — e— X1 >— ?ln X2 — e— X2,•'el — X2— el — x i > In x i — In X2.X2 X2要证e1—X2—e1 — 11>1—X1,只需证In X1—ln X2>1—门即证11 1令 t= X11,t€ (0,1),则只需证 In t> 1 —-,• - f(x)min ==In k,1t —12 13令 h(t) = In t+ f — 1,则当 0v t v 1 时,h'⑴v 。
导数----常见题型(2019新)
一、导数的几何意义:——切线的斜率
例1、 1
(1)求过点(1,1)且与曲线 y= x 相切的直线方程。 (2)求过点(2,0)且与曲线 y= 1 相切的直线方程。
x
注: 所给点是否在曲线上。
例2、已知P为抛物线 y=x2上任意一点,则当点P 到直线 x+y+2=0的距离最小时,求点P到抛物线准 线的距离 。
二、判断函数单调性、求单调区间
例3、确定函数y=2x3-6x2+7的单调区间。
用导数法确定函数的单调性时的步骤是: (1)求出函数的导函数 (2)求解不等式 f /(x) > 0 , 求得其解集,再根据解集写出单
调递增区间; (3)求解不等式 f /(x) < 0 , 求得 单调区间不 以“并集”出现。 练习:求函数 f (x)=ln(x2-6x-7) 的单调增区间 注: 单调区间应在“定义域”内。
;白内障:/ ;
《辽史》称“幅员万里” 又大规模的收编了后梁的禁军部队 农业 辽汉皆有 使得南唐又失去了对湖南一带的控制 因此 以“本族之制治契丹 所属时期 耶律大石以少胜多 追尊祖考为皇帝 吾当内檄诸镇 宣布对西辽进行“圣战” 范围与唐朝后期相比 而喜为之偁誉”的声望 早死 2年 958年 并对辽太宗耶律德光自称“儿” 柴荣继位后不久亲自领兵抵抗北汉的进攻 刘知远抓住时机 另外与日本 高丽 阿拔斯王朝和喀喇汗国也有贸易往来 中京陷入危机 壬午 辽道宗 罢兵归朝 被金太宗降为海滨王 尤其是关注西辽与西夏的关系 巨然直接承袭董 历三世三帝二 后 立仁宗次子耶律直鲁古为汗 以〈玉楼春〉 〈菩萨蛮〉等宫廷艳丽生活为主 将契丹军赶得向北逃窜 [62] 又得到阴山室韦谟葛失的支持 中原式仿造中原的风格烧造 即契丹语“铁” 寺院之田 与五代几乎同时存在的十个相
利用导数证明不等式(经典导学案及练习答案详解)
§3.6 利用导数证明不等式题型一 将不等式转化为函数的最值问题例1 已知函数g (x )=x 3+ax 2.(1)若函数g (x )在[1,3]上为单调函数,求a 的取值范围;(2)已知a >-1,x >0,求证:g (x )>x 2ln x .(1)解 由题意知,函数g (x )=x 3+ax 2,则g ′(x )=3x 2+2ax ,若g (x )在[1,3]上单调递增,则g ′(x )=3x 2+2ax ≥0在[1,3]上恒成立,则a ≥-32; 若g (x )在[1,3]上单调递减,则g ′(x )=3x 2+2ax ≤0在[1,3]上恒成立,则a ≤-92.所以a 的取值范围是⎝⎛⎦⎤-∞,-92∪⎣⎡⎭⎫-32,+∞. (2)证明 由题意得,要证g (x )>x 2ln x ,x >0,即证x 3+ax 2>x 2ln x ,即证x +a >ln x , 令u (x )=x +a -ln x ,x >0,可得u ′(x )=1-1x =x -1x,x >0, 当0<x <1时,u ′(x )<0,函数u (x )单调递减;当x >1时,u ′(x )>0,函数u (x )单调递增.所以u (x )≥u (1)=1+a ,因为a >-1,所以u (x )>0,故当a >-1时,对于任意x >0,g (x )>x 2ln x .教师备选已知函数f (x )=1-ln x x ,g (x )=a e e x +1x-bx ,若曲线y =f (x )与曲线y =g (x )的一个公共点是A (1,1),且在点A 处的切线互相垂直.(1)求a ,b 的值;(2)证明:当x ≥1时,f (x )+g (x )≥2x. (1)解 因为f (x )=1-ln x x,x >0,所以f ′(x )=ln x -1x 2,f ′(1)=-1. 因为g (x )=a e e x +1x-bx , 所以g ′(x )=-a e e x -1x 2-b . 因为曲线y =f (x )与曲线y =g (x )的一个公共点是A (1,1),且在点A 处的切线互相垂直, 所以g (1)=1,且f ′(1)·g ′(1)=-1,所以g (1)=a +1-b =1,g ′(1)=-a -1-b =1,解得a =-1,b =-1.(2)证明 由(1)知,g (x )=-e e x +1x+x , 则f (x )+g (x )≥2x ⇔1-ln x x -e e x -1x+x ≥0. 令h (x )=1-ln x x -e e x -1x+x (x ≥1), 则h (1)=0,h ′(x )=-1+ln x x 2+e e x +1x 2+1=ln x x 2+e e x+1. 因为x ≥1,所以h ′(x )=ln x x 2+e e x +1>0, 所以h (x )在[1,+∞)上单调递增,所以当x ≥1时,h (x )≥h (1)=0,即1-ln x x -e e x -1x+x ≥0, 所以当x ≥1时,f (x )+g (x )≥2x. 思维升华 待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”的函数,有时对复杂的式子要进行变形,利用导数研究其单调性和最值,借助所构造函数的单调性和最值即可得证.跟踪训练1 已知函数f (x )=ln x +a x,a ∈R . (1)讨论函数f (x )的单调性;(2)当a >0时,证明:f (x )≥2a -1a. (1)解 f ′(x )=1x -a x 2=x -a x 2(x >0). 当a ≤0时,f ′(x )>0,f (x )在(0,+∞)上单调递增.当a >0时,若x >a ,则f ′(x )>0,函数f (x )在(a ,+∞)上单调递增;若0<x <a ,则f ′(x )<0,函数f (x )在(0,a )上单调递减.(2)证明 由(1)知,当a >0时,f (x )min =f (a )=ln a +1.要证f (x )≥2a -1a ,只需证ln a +1≥2a -1a, 即证ln a +1a-1≥0. 令函数g (a )=ln a +1a-1, 则g ′(a )=1a -1a 2=a -1a 2(a >0), 当0<a <1时,g ′(a )<0;当a >1时,g ′(a )>0,所以g (a )在(0,1)上单调递减,在(1,+∞)上单调递增,所以g (a )min =g (1)=0.所以ln a +1a-1≥0恒成立, 所以f (x )≥2a -1a. 题型二 将不等式转化为两个函数的最值进行比较例2 (2022·武汉模拟)已知函数f (x )=a ln x +x .(1)讨论f (x )的单调性;(2)当a =1时,证明:xf (x )<e x .(1)解 f (x )的定义域为(0,+∞),f ′(x )=a x +1=x +a x. 当a ≥0时,f ′(x )>0,所以f (x )在(0,+∞)上单调递增.当a <0时,若x ∈(-a ,+∞),则f ′(x )>0;若x ∈(0,-a ),则f ′(x )<0.所以f (x )在(-a ,+∞)上单调递增,在(0,-a )上单调递减.综上所述,当a ≥0时,f (x )在(0,+∞)上单调递增;当a <0时,f (x )在(-a ,+∞)上单调递增,在(0,-a )上单调递减.(2)证明 当a =1时,要证xf (x )<e x ,即证x 2+x ln x <e x ,即证1+ln x x <e x x 2. 令函数g (x )=1+ln x x, 则g ′(x )=1-ln x x 2. 令g ′(x )>0,得x ∈(0,e);令g ′(x )<0,得x ∈(e ,+∞).所以g (x )在(0,e)上单调递增,在(e ,+∞)上单调递减,所以g (x )max =g (e)=1+1e, 令函数h (x )=e xx2, 则h ′(x )=e x (x -2)x 3. 当x ∈(0,2)时,h ′(x )<0;当x ∈(2,+∞)时,h ′(x )>0.所以h (x )在(0,2)上单调递减,在(2,+∞)上单调递增,所以h (x )min =h (2)=e 24. 因为e 24-⎝⎛⎭⎫1+1e >0, 所以h (x )min >g (x )max ,即1+ln x x <e xx2,从而xf (x )<e x 得证. 教师备选(2022·长沙模拟)已知函数f (x )=e x 2-x ln x .求证:当x >0时,f (x )<x e x +1e. 证明 要证f (x )<x e x +1e, 只需证e x -ln x <e x +1e x, 即e x -e x <ln x +1e x. 令h (x )=ln x +1e x(x >0), 则h ′(x )=e x -1e x2, 易知h (x )在⎝⎛⎭⎫0,1e 上单调递减,在⎝⎛⎭⎫1e ,+∞上单调递增, 则h (x )min =h ⎝⎛⎭⎫1e =0,所以ln x +1e x≥0. 再令φ(x )=e x -e x ,则φ′(x )=e -e x ,易知φ(x )在(0,1)上单调递增,在(1,+∞)上单调递减,则φ(x )max =φ(1)=0,所以e x -e x ≤0.因为h (x )与φ(x )不同时为0,所以e x -e x <ln x +1e x,故原不等式成立. 思维升华 若直接求导比较复杂或无从下手时,可将待证式进行变形,构造两个函数,从而找到可以传递的中间量,达到证明的目标.本例中同时含ln x 与e x ,不能直接构造函数,把指数与对数分离两边,分别计算它们的最值,借助最值进行证明.跟踪训练2 (2022·百校大联考)已知函数f (x )=eln x -ax (a ∈R ).(1)讨论函数f (x )的单调性;(2)当a =e 时,证明:xf (x )-e x +2e x ≤0.(1)解 f ′(x )=e x-a (x >0), ①若a ≤0,则f ′(x )>0,f (x )在(0,+∞)上单调递增;②若a >0,则当0<x <e a时,f ′(x )>0; 当x >e a时,f ′(x )<0. 故f (x )在⎝⎛⎭⎫0,e a 上单调递增,在⎝⎛⎭⎫e a ,+∞上单调递减. (2)证明 因为x >0,所以只需证f (x )≤e x x-2e , 当a =e 时,由(1)知,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减.所以f (x )max =f (1)=-e.设g (x )=e x x -2e(x >0),则g ′(x )=(x -1)e x x 2, 所以当0<x <1时,g ′(x )<0,g (x )单调递减;当x >1时,g ′(x )>0,g (x )单调递增,所以g (x )min =g (1)=-e.综上,当x >0时,f (x )≤g (x ),即f (x )≤e x x -2e. 故不等式xf (x )-e x +2e x ≤0得证.题型三 适当放缩证明不等式例3 已知函数f (x )=e x .(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)当x >-2时,求证:f (x )>ln(x +2).(1)解 由f (x )=e x ,得f (0)=1,f ′(x )=e x ,则f ′(0)=1,即曲线y =f (x )在点(0,f (0))处的切线方程为y -1=x -0,所以所求切线方程为x -y +1=0.(2)证明 设g (x )=f (x )-(x +1)=e x -x -1(x >-2),则g ′(x )=e x -1,当-2<x <0时,g ′(x )<0;当x >0时,g ′(x )>0,即g (x )在(-2,0)上单调递减,在(0,+∞)上单调递增,于是当x =0时,g (x )min =g (0)=0,因此f (x )≥x +1(当且仅当x =0时取等号),令h (x )=x +1-ln(x +2)(x >-2),则h ′(x )=1-1x +2=x +1x +2, 则当-2<x <-1时,h ′(x )<0,当x >-1时,h ′(x )>0,即有h (x )在(-2,-1)上单调递减,在(-1,+∞)上单调递增,于是当x =-1时,h (x )min =h (-1)=0,因此x +1≥ln(x +2)(当且仅当x =-1时取等号),所以当x >-2时,f (x )>ln(x +2). 教师备选已知函数f (x )=x ln x x +m,g (x )=x e x ,且曲线y =f (x )在x =1处的切线方程为x -2y +n =0. (1)求m ,n 的值;(2)证明:f (x )>2g (x )-1.(1)解 由已知得,f (1)=0,∴1-0+n =0,解得n =-1.∵f ′(x )=(ln x +1)(x +m )-x ln x (x +m )2,∴f ′(1)=m +1(1+m )2=12, 解得m =1.(2)证明 设h (x )=e x -x -1(x >0),则h ′(x )=e x -1>0,∴h (x )在(0,+∞)上单调递增,∴h (x )>h (0)=0,即e x >x +1>1,∴1e x <1x +1. 要证f (x )>2g (x )-1,即证x ln x x +1>2x e x-1, 只需证x ln x x +1≥2x x +1-1, 即证x ln x ≥x -1,令m (x )=x ln x -x +1,则m ′(x )=ln x ,∴当x ∈(0,1)时,m ′(x )<0;当x ∈(1,+∞)时,m ′(x )>0,∴m (x )在(0,1)上单调递减,在(1,+∞)上单调递增,∴m (x )min =m (1)=0,即m (x )≥0,∴x ln x ≥x -1,则f (x )>2g (x )-1得证.思维升华 导数方法证明不等式中,最常见的是e x 和ln x 与其他代数式结合的问题,对于这类问题,可以考虑先对e x 和ln x 进行放缩,使问题简化,简化后再构建函数进行证明.常见的放缩公式如下:(1)e x ≥1+x ,当且仅当x =0时取等号.(2)ln x ≤x -1,当且仅当x =1时取等号.跟踪训练3 已知函数f (x )=a e x -1-ln x -1.(1)若a =1,求f (x )在(1,f (1))处的切线方程;(2)证明:当a ≥1时,f (x )≥0.(1)解 当a =1时,f (x )=e x -1-ln x -1(x >0),f ′(x )=e x -1-1x, k =f ′(1)=0,又f (1)=0,∴切点为(1,0).∴切线方程为y -0=0(x -1),即y =0.(2)证明 ∵a ≥1,∴a e x -1≥e x -1,∴f (x )≥e x -1-ln x -1.方法一 令φ(x )=e x -1-ln x -1(x >0),∴φ′(x )=e x -1-1x, 令h (x )=e x -1-1x, ∴h ′(x )=e x -1+1x 2>0, ∴φ′(x )在(0,+∞)上单调递增,又φ′(1)=0,∴当x ∈(0,1)时,φ′(x )<0;当x ∈(1,+∞)时,φ′(x )>0,∴φ(x )在(0,1)上单调递减,在(1,+∞)上单调递增,∴φ(x )min =φ(1)=0,∴φ(x )≥0,∴f (x )≥φ(x )≥0,即f (x )≥0.方法二 令g (x )=e x -x -1,∴g ′(x )=e x -1.当x ∈(-∞,0)时,g ′(x )<0;当x ∈(0,+∞)时,g ′(x )>0,∴g (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增,∴g (x )min =g (0)=0,故e x ≥x +1,当且仅当x =0时取“=”.同理可证ln x ≤x -1,当且仅当x =1时取“=”.由e x ≥x +1⇒e x -1≥x (当且仅当x =1时取“=”),由x -1≥ln x ⇒x ≥ln x +1(当且仅当x =1时取“=”),∴e x -1≥x ≥ln x +1,即e x -1≥ln x +1,即e x -1-ln x -1≥0(当且仅当x =1时取“=”),即f (x )≥0.课时精练1.已知函数f (x )=ln x x +a(a ∈R ),曲线y =f (x )在点(e ,f (e))处的切线方程为y =1e . (1)求实数a 的值,并求f (x )的单调区间;(2)求证:当x >0时,f (x )≤x -1.(1)解 ∵f (x )=ln x x +a, ∴f ′(x )=x +a x -ln x (x +a )2,∴f ′(e)=a e (e +a )2, 又曲线y =f (x )在点(e ,f (e))处的切线方程为y =1e, 则f ′(e)=0,即a =0,∴f ′(x )=1-ln x x 2, 令f ′(x )>0,得1-ln x >0,即0<x <e ;令f ′(x )<0,得1-ln x <0,即x >e ,∴f (x )的单调递增区间是(0,e),单调递减区间是(e ,+∞).(2)证明 当x >0时,要证f (x )≤x -1,即证ln x -x 2+x ≤0,令g (x )=ln x -x 2+x (x >0),则g ′(x )=1x -2x +1=1+x -2x 2x=-(x -1)(2x +1)x, 当0<x <1时,g ′(x )>0,g (x )单调递增;当x >1时,g ′(x )<0,g (x )单调递减,∴g (x )≤g (1)=0,即当x >0时,f (x )≤x -1.2.已知f (x )=x ln x .(1)求函数f (x )的极值;(2)证明:对一切x ∈(0,+∞),都有ln x >1e x -2e x成立. (1)解 由f (x )=x ln x ,x >0,得f ′(x )=ln x +1,令f ′(x )=0,得x =1e.当x ∈⎝⎛⎭⎫0,1e 时,f ′(x )<0,f (x )单调递减; 当x ∈⎝⎛⎭⎫1e ,+∞时,f ′(x )>0,f (x )单调递增. 所以当x =1e时,f (x )取得极小值, f (x )极小值=f ⎝⎛⎭⎫1e =-1e,无极大值. (2)证明 问题等价于证明x ln x >x e x -2e(x ∈(0,+∞)). 由(1)可知f (x )=x ln x (x ∈(0,+∞))的最小值是-1e ,当且仅当x =1e时取到. 设m (x )=x e x -2e(x ∈(0,+∞)), 则m ′(x )=1-x ex ,由m ′(x )<0,得x >1时,m (x )单调递减;由m ′(x )>0得0<x <1时,m (x )单调递增,易知m (x )max =m (1)=-1e,当且仅当x =1时取到.从而对一切x ∈(0,+∞),x ln x ≥-1e ≥x e x -2e ,两个等号不同时取到,所以对一切x ∈(0,+∞)都有ln x >1e x -2e x成立.3.已知函数f (x )=ln x -ax (a ∈R ).(1)讨论函数f (x )在(0,+∞)上的单调性;(2)证明:e x -e 2ln x >0恒成立.(1)解 f (x )的定义域为(0,+∞),f ′(x )=1x -a =1-ax x, 当a ≤0时,f ′(x )>0,∴f (x )在(0,+∞)上单调递增,当a >0时,令f ′(x )=0,得x =1a, ∴x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0; x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )<0,∴f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减. (2)证明 要证e x -e 2ln x >0,即证e x -2>ln x ,令φ(x )=e x -x -1,∴φ′(x )=e x -1.令φ′(x)=0,得x=0,∴当x∈(-∞,0)时,φ′(x)<0;当x∈(0,+∞)时,φ′(x)>0,∴φ(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,∴φ(x)min=φ(0)=0,即e x-x-1≥0,即e x≥x+1,当且仅当x=0时取“=”.同理可证ln x≤x-1,当且仅当x=1时取“=”.由e x≥x+1(当且仅当x=0时取“=”),可得e x-2≥x-1(当且仅当x=2时取“=”),又x-1≥ln x,当且仅当x=1时取“=”,∴e x-2≥x-1≥ln x且两等号不能同时成立,故e x-2>ln x.即证原不等式成立.4.(2022·常德模拟)已知函数f(x)=x e x-x.(1)讨论f(x)的单调性;(2)证明:当x>0时,f(x)-ln x≥1.(1)解由题意得f′(x)=(x+1)e x-1,设g(x)=(x+1)e x,则g′(x)=(x+2)e x,当x≤-1时,g(x)≤0,f′(x)<0,f(x)在(-∞,-1]上单调递减;当x>-1时,g′(x)>0,g(x)单调递增,又因为g(0)=1,所以当x<0时,g(x)<1,即f′(x)<0,当x>0时,g(x)>1,即f′(x)>0,综上可知,f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增.(2)证明要证f(x)-ln x≥1,即证x e x-x-ln x≥1,即证e x+ln x-(x+ln x)≥1,令t=x+ln x,易知t∈R,待证不等式转化为e t-t≥1.设u(t)=e t-t,则u′(t)=e t-1,当t<0时,u′(t)<0,当t>0时,u′(t)>0,故u(t)在(-∞,0)上单调递减,在(0,+∞)上单调递增.所以u(t)≥u(0)=1,原命题得证.。
专题3.4利用导数证明不等式(2021年高考数学一轮复习专题)
专题利用导数证明不等式一、题型全归纳题型一作差法构造函数证明不等式【题型要点】(1)欲证函数不等式f(x)>g(x)(x>a),只需证明f(x)-g(x)>0(x>a),设h(x)=f(x)-g(x),即证h(x)>0(x>a).若h(a)=0,h(x)>h(a)(x>a).接下来往往用导数证得函数h(x)是增函数即可.(2)欲证函数不等式f(x)>g(x)(x∈I,I是区间),只需证明f(x)-g(x)>0(x∈I).设h(x)=f(x)-g(x)(x∈I),即证h(x)>0(x∈I),也即证h(x)min>0(x∈I)(若h(x)min不存在,则须求函数h(x)的下确界),而这用导数往往容易解决.【例1】(2020·广州模拟)已知函数f(x)=e x-ax(e为自然对数的底数,a为常数)的图象在点(0,1)处的切线斜率为-1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2<e x.【解析】(1)由f(x)=e x-ax,得f′(x)=e x-a.因为f′(0)=1-a=-1,所以a=2,所以f(x)=e x-2x,f′(x)=e x-2.令f′(x)=0,得x=ln 2,当x<ln 2时,f′(x)<0,f(x)在(-∞,ln 2)上单调递减;当x>ln 2时,f′(x)>0,f(x)在(ln 2,+∞)上单调递增.所以当x=ln 2时,f(x)取得极小值,且极小值为f(ln 2)=e ln 2-2ln 2=2-2ln 2,f(x)无极大值.(2)证明:令g(x)=e x-x2,则g′(x)=e x-2x.由(1)得g′(x)=f(x)≥f(ln 2)>0,故g(x)在R上单调递增.所以当x>0时,g(x)>g(0)=1>0,即x2<e x.【例2】已知函数f(x)=ax+x ln x在x=e-2(e为自然对数的底数)处取得极小值.(1)求实数a的值;(2)当x>1时,求证:f(x)>3(x-1).【解析】(1)因为f(x)定义域为(0,+∞),f(x)=ax+x ln x,所以f′(x)=a+ln x+1,因为函数f(x)在x=e-2处取得极小值,所以f′(e-2)=0,即a+ln e-2+1=0,所以a =1,所以f ′(x )=ln x +2.当f ′(x )>0时,x >e -2;当f ′(x )<0时,0<x <e -2, 所以f (x )在(0,e -2)上单调递减,在(e -2,+∞)上单调递增, 所以f (x )在x =e-2处取得极小值,符合题意,所以a =1.(2)证明:由(1)知a =1,所以f (x )=x +x ln x .令g (x )=f (x )-3(x -1),即g (x )=x ln x -2x +3(x >0). g ′(x )=ln x -1,由g ′(x )=0,得x =e.由g ′(x )>0,得x >e ;由g ′(x )<0,得0<x <e. 所以g (x )在(0,e)上单调递减,在(e ,+∞)上单调递增, 所以g (x )在(1,+∞)上的最小值为g (e)=3-e >0.于是在(1,+∞)上,都有g (x )≥g (e)>0,所以f (x )>3(x -1).题型二 拆分法构造函数证明不等式【题型要点】(1)在证明不等式中,若无法转化为一个函数的最值问题,则可以考虑转化为两个函数的最值问题.(2)在证明过程中,等价转化是关键,此处f (x )min >g (x )max 恒成立.从而f (x )>g (x ),但此处f (x )与g (x )取到最值的条件不是同一个“x 的值”.【例1】设函数f (x )=ax 2-(x +1)ln x ,曲线y =f (x )在点(1,f (1))处切线的斜率为0. (1)求a 的值;(2)求证:当0<x ≤2时,f (x )>12x .【解】(1)f ′(x )=2ax -ln x -1-1x ,由题意,可得f ′(1)=2a -2=0,所以a =1.(2)证明:由(1)得f (x )=x 2-(x +1)ln x ,要证当0<x ≤2时,f (x )>12x ,只需证当0<x ≤2时,x -ln x x -ln x >12,即x -ln x >ln x x +12.令g (x )=x -ln x ,h (x )=ln x x +12,令g ′(x )=1-1x=0,得x =1,易知g (x )在(0,1)上单调递减,在(1,2]上单调递增,故当0<x ≤2时,g (x )min =g (1)=1.因为h ′(x )=1-ln xx 2,当0<x ≤2时,h ′(x )>0,所以h (x )在(0,2]上单调递增,故当0<x ≤2时,h (x )max =h (2)=1+ln 22<1,即h (x )max <g (x )min .故当0<x ≤2时,h (x )<g (x ),即当0<x ≤2时,f (x )>12x . 【例2】已知函数f (x )=eln x -ax (a ∈R ).(1)讨论f (x )的单调性;(2)当a =e 时,求证:xf (x )-e x +2e x ≤0. 【解析】(1)f ′(x )=ex-a (x >0),∈若a ≤0,则f ′(x )>0,f (x )在(0,+∞)上单调递增;∈若a >0,令f ′(x )=0,得x =e a ,则当0<x <e a 时,f ′(x )>0;当x >ea时,f ′(x )<0,故f (x )在⎪⎭⎫ ⎝⎛a e ,0上单调递增,在⎪⎭⎫⎝⎛+∞,a e 上单调递减. (2)证明:因为x >0,所以只需证f (x )≤e xx-2e ,当a =e 时,由(1)知,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减,所以f (x )max =f (1)=-e. 记g (x )=e xx -2e(x >0),则g ′(x )=(x -1)e x x 2,当0<x <1时,g ′(x )<0,g (x )单调递减;当x >1时,g ′(x )>0,g (x )单调递增,所以g (x )min =g (1)=-e. 综上,当x >0时,f (x )≤g (x ),即f (x )≤e xx-2e ,即xf (x )-e x +2e x ≤0.题型三 换元法构造函数证明不等式【题型要点】换元法构造函数证明不等式的基本思路是直接消掉参数a ,再结合所证问题,巧妙引入变量c =x 1x 2,从而构造相应的函数.其解题要点为:【例1】已知函数f (x )=ln x -12ax 2+x ,a ∈R .(1)当a =0时,求函数f (x )的图象在(1,f (1))处的切线方程;(2)若a =-2,正实数x 1,x 2满足f (x 1)+f (x 2)+x 1x 2=0,求证:x 1+x 2≥5-12. 【解】(1)当a =0时,f (x )=ln x +x ,则f (1)=1,所以切点(1,1),又因为f ′(x )=1x +1,所以切线斜率k =f ′(1)=2,故切线方程为y -1=2(x -1),即2x -y -1=0.(2)证明:当a =-2时,f (x )=ln x +x 2+x (x >0).由f (x 1)+f (x 2)+x 1x 2=0,得ln x 1+x 21+x 1+ln x 2+x 22+x 2+x 1x 2=0,从而(x 1+x 2)2+(x 1+x 2)=x 1x 2-ln(x 1x 2),令t =x 1x 2(t >0),令φ(t )=t -ln t ,得φ′(t )=1-1t =t -1t,易知φ(t )在区间(0,1)上单调递减,在区间(1,+∞)上单调递增,所以φ(t )≥φ(1)=1,所以(x 1+x 2)2+(x 1+x 2)≥1,因为x 1>0,x 2>0,所以x 1+x 2≥5-12成立. 题型四 两个经典不等式的应用【题型要点】逻辑推理是得到数学结论,构建数学体系的重要方式,是数学严谨性的基本保证.利用两个经典不等式解决其他问题,降低了思考问题的难度,优化了推理和运算过程. (1)对数形式:x ≥1+ln x (x >0),当且仅当x =1时,等号成立.(2)指数形式:e x ≥x +1(x ∈R ),当且仅当x =0时,等号成立.进一步可得到一组不等式链: e x >x +1>x >1+ln x (x >0,且x ≠1). 【例1】设函数f (x )=ln x -x +1.(1)讨论f (x )的单调性;(2)求证:当x ∈(1,+∞)时,1<x -1ln x <x .【解析】(1)由题设知,f (x )的定义域为(0,+∞), f ′(x )=1x-1,令f ′(x )=0,解得x =1.当0<x <1时,f ′(x )>0,f (x )在(0,1)上单调递增;当x >1时,f ′(x )<0,f (x )在(1,+∞)上单调递减.(2)证明:由(1)知f (x )在x =1处取得最大值,最大值为f (1)=0.所以当x ≠1时,ln x <x -1. 故当x ∈(1,+∞)时,ln x <x -1,x -1ln x >1.∈因此ln 1x <1x -1,即ln x >x -1x ,x -1ln x<x .∈故当x ∈(1,+∞)时恒有1<x -1ln x<x . 二、高效训练突破1.(2020·四省八校双教研联考)已知函数f (x )=ax -ax ln x -1(a ∈R ,a ≠0). (1)讨论函数f (x )的单调性; (2)当x >1时,求证:1x -1>1e x-1.【解析】:(1)f ′(x )=a -a (ln x +1)=-a ln x ,若a >0,则当x ∈(0,1)时,f ′(x )>0,当x ∈(1,+∞),f ′(x )<0,所以f (x )在(0,1)上单调递增,在(1,+∞)上单调递减;若a <0,则当x ∈(0,1)时,f ′(x )<0,当x ∈(1,+∞),f ′(x )>0,所以f (x )在(0,1)上单调递减,在(1,+∞)上单调递增.(2)证明:要证1x -1>1e x -1,即证x x -1>e -x ,即证x -1x <e x ,又由第(1)问令a =1知f (x )=x -x ln x -1在(1,+∞)上单调递减,f (1)=0, 所以当x >1时,x -x ln x -1<0,即x -1x <ln x ,则只需证当x >1时,ln x <e x 即可.令F (x )=e x -ln x, x >1,则F ′(x )=e x -1x 单调递增,所以F ′(x )>F ′(1)=e -1>0,所以F (x )在(1,+∞)上单调递增,所以F (x )>F (1),而F (1)=e ,所以e x -ln x >e>0, 所以e x >ln x ,所以e x >ln x >x -1x ,所以原不等式得证.2.(2020·唐山市摸底考试)设f (x )=2x ln x +1.(1)求f (x )的最小值;(2)证明:f (x )≤x 2-x +1x+2ln x .【解】 (1)f ′(x )=2(ln x +1).所以当x ∈⎪⎭⎫ ⎝⎛e 1,0时,f ′(x )<0,f (x )单调递减;当x ∈⎪⎭⎫ ⎝⎛+∞,1e 时,f ′(x )>0,f (x )单调递增.所以当x =1e 时,f (x )取得最小值⎪⎭⎫⎝⎛e f 1=1-2e .(2)证明:x 2-x +1x +2ln x -f (x )=x (x -1)-x -1x -2(x -1)ln x =(x -1)⎪⎭⎫⎝⎛--x x x ln 21,令g (x )=x -1x -2ln x ,则g ′(x )=1+1x 2-2x =(x -1)2x 2≥0,所以g (x )在(0,+∞)上单调递增,又g (1)=0,所以当0<x <1时,g (x )<0,当x >1时,g (x )>0,所以(x -1)⎪⎭⎫⎝⎛--x x x ln 21≥0,即f (x )≤x 2-x +1x +2ln x . 3.(2020·福州模拟)已知函数f (x )=eln x -ax (a ∈R ). (1)讨论f (x )的单调性;(2)当a =e 时,证明:xf (x )-e x +2e x ≤0. 【解】(1)f ′(x )=ex-a (x >0).∈若a ≤0,则f ′(x )>0,f (x )在(0,+∞)上单调递增; ∈若a >0,则当0<x <e a 时,f ′(x )>0,当x >ea 时,f ′(x )<0,故f (x )在(0,e a )上单调递增,在(ea ,+∞)上单调递减.(2)证明:法一:因为x >0,所以只需证f (x )≤e xx-2e ,当a =e 时,由(1)知,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减, 所以f (x )max =f (1)=-e.记g (x )=e xx -2e(x >0),则g ′(x )=(x -1)e x x 2,所以当0<x <1时,g ′(x )<0,g (x )单调递减,当x >1时,g ′(x )>0,g (x )单调递增,所以g (x )min =g (1)=-e. 综上,当x >0时,f (x )≤g (x ),即f (x )≤e xx -2e ,即xf (x )-e x +2e x ≤0.法二:由题意知,即证e x ln x -e x 2-e x +2e x ≤0,从而等价于ln x -x +2≤e xe x.设函数g (x )=ln x -x +2,则g ′(x )=1x -1.所以当x ∈(0,1)时,g ′(x )>0,当x ∈(1,+∞)时,g ′(x )<0,故g (x )在(0,1)上单调递增,在(1,+∞)上单调递减,从而g (x )在(0,+∞)上的最大值为g (1)=1. 设函数h (x )=e xe x ,则h ′(x )=e x (x -1)e x 2.所以当x ∈(0,1)时,h ′(x )<0,当x ∈(1,+∞)时,h ′(x )>0,故h (x )在(0,1)上单调递减,在(1,+∞)上单调递增,从而h (x )在(0,+∞)上的最小值为h (1)=1. 综上,当x >0时,g (x )≤h (x ),即xf (x )-e x +2e x ≤0. 4.(2019·高考北京卷节选)已知函数f (x )=14x 3-x 2+x .(1)求曲线y =f (x )的斜率为1的切线方程; (2)当x ∈[-2,4]时,求证:x -6≤f (x )≤x .【解析】:(1)由f (x )=14x 3-x 2+x 得f ′(x )=34x 2-2x +1.令f ′(x )=1,即34x 2-2x +1=1,得x =0或x =83.又f (0)=0,⎪⎭⎫ ⎝⎛38f =827,所以曲线y =f (x )的斜率为1的切线方程是y =x 与y -827=x -83, 即y =x 与y =x -6427.(2)证明:令g (x )=f (x )-x ,x ∈[-2,4].由g (x )=14x 3-x 2得g ′(x )=34x 2-2x .令g ′(x )=0得x =0或x =83.g ′(x ),g (x )的情况如下:故-6≤g (x )≤0,即x -6≤f (x )≤x .5.已知函数f (x )=ln x -ax (x >0),a 为常数,若函数f (x )有两个零点x 1,x 2(x 1≠x 2).求证:x 1x 2>e 2. 【证明】不妨设x 1>x 2>0,因为ln x 1-ax 1=0,ln x 2-ax 2=0,所以ln x 1+ln x 2=a (x 1+x 2),ln x 1-ln x 2=a (x 1-x 2),所以ln x 1-ln x 2x 1-x 2=a ,欲证x 1x 2>e 2,即证ln x 1+ln x 2>2.因为ln x 1+ln x 2=a (x 1+x 2),所以即证a >2x 1+x 2,所以原问题等价于证明ln x 1-ln x 2x 1-x 2>2x 1+x 2,即ln x 1x 2>2(x 1-x 2)x 1+x 2,令c =x 1x 2(c >1),则不等式变为ln c >2(c -1)c +1.令h (c )=ln c -2(c -1)c +1,c >1,所以h ′(c )=1c -4(c +1)2=(c -1)2c (c +1)2>0,所以h (c )在(1,+∞)上单调递增,所以h (c )>h (1)=ln 1-0=0,即ln c -2(c -1)c +1>0(c >1),因此原不等式x 1x 2>e 2得证.6.已知函数()()x a ax x x f 12ln 2+++=.(1)讨论()x f 的单调性;(2)当0<a 时,证明()243--≤ax f 【解析】(1)()x f 的定义域为(0,+∞),()()()xax x a ax x x f 1211221++=+++=' 当0≥a ,则当x ∈(0,+∞)时,()0>'x f ,故()x f 在(0,+∞)上单调递增.当0<a ,则当x ∈⎪⎭⎫ ⎝⎛-a 21,0时,f ′(x )>0;当x ∈⎪⎭⎫⎝⎛+∞-,21a 时,f ′(x )<0. 故()x f 在⎪⎭⎫ ⎝⎛-a 21,0上单调递增,在⎪⎭⎫⎝⎛+∞-,21a 上单调递减. (2)证明:由(1)知,当a <0时,f (x )在x =-12a取得最大值,最大值为⎪⎭⎫ ⎝⎛-a f 21=a a 41121ln --⎪⎭⎫⎝⎛-. 所以()243--≤a x f 等价于24341121ln --≤--⎪⎭⎫ ⎝⎛-a a a ,即012121ln ≤++⎪⎭⎫ ⎝⎛-aa . 设g (x )=ln x -x +1,则g ′(x )=1x -1.当x ∈(0,1)时,g ′(x )>0;当x ∈(1,+∞)时,g ′(x )<0.所以g (x )在(0,1)上单调递增,在(1,+∞)上单调递减.故当x =1时,g (x )取得最大值,最大值为g (1)=0.所以当x >0时,g (x )≤0.从而当a <0时,012121ln ≤++⎪⎭⎫ ⎝⎛-a a ,即()243--≤a x f . 7.已知函数f (x )=1x -x +a ln x .(1)讨论f (x )的单调性;(2)若f (x )存在两个极值点x 1,x 2,证明:f (x 1)-f (x 2)x 1-x 2<a -2.【解析】(1)f (x )的定义域为(0,+∞),f ′(x )=-1x 2-1+ax =-x 2-ax +1x 2.(∈)若a ≤2,则f ′(x )≤0,当且仅当a =2,x =1时f ′(x )=0,所以f (x )在(0,+∞)单调递减. (∈)若a >2,令f ′(x )=0得,x =a -a 2-42或x =a +a 2-42.当x ∈⎝ ⎛⎭⎪⎫0,a -a 2-42∈⎝ ⎛⎭⎪⎫a +a 2-42,+∞时,f ′(x )<0;当x ∈⎝⎛⎭⎪⎫a -a 2-42,a +a 2-42时,f ′(x )>0.所以f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-42,⎝ ⎛⎭⎪⎫a +a 2-42,+∞上单调递减,在⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42上单调递增. (2)证明:由(1)知,f (x )存在两个极值点时,当且仅当a >2.由于f (x )的两个极值点x 1,x 2满足x 2-ax +1=0,所以x 1x 2=1,不妨设x 1<x 2,则x 2>1. 由于f (x 1)-f (x 2)x 1-x 2=-1x 1x 2-1+a ln x 1-ln x 2x 1-x 2=-2+a ln x 1-ln x 2x 1-x 2=-2+a -2ln x 21x 2-x 2,所以f (x 1)-f (x 2)x 1-x 2<a -2等价于1x 2-x 2+2ln x 2<0.设函数g (x )=1x -x +2ln x ,由(1)知,g (x )在(0,+∞)上单调递减,又g (1)=0,从而当x ∈(1,+∞)时g (x )<0.所以1x 2-x 2+2ln x 2<0,即f (x 1)-f (x 2)x 1-x 2<a -2.8.已知函数f (x )=e x ,g (x )=ln(x +a )+b .(1)当b =0时,f (x )-g (x )>0恒成立,求整数a 的最大值;(2)求证:ln 2+(ln 3-ln 2)2+(ln 4-ln 3)3+…+[ln(n +1)-ln n ]n <ee -1(n ∈N *).【解析】(1)现证明e x ≥x +1,设F (x )=e x -x -1,则F ′(x )=e x -1,当x ∈(0,+∞)时,F ′(x )>0,当x ∈(-∞,0)时,F ′(x )<0,所以F (x )在(0,+∞)上单调递增,在(-∞,0)上单调递减,所以F (x )min =F (0)=0,即F (x )≥0恒成立,即e x ≥x +1.同理可得ln(x +2)≤x +1,即e x >ln(x +2),当a ≤2时,ln(x +a )≤ln(x +2)<e x ,所以当a ≤2时,f (x )-g (x )>0恒成立. 当a ≥3时,e 0<ln a ,即e x -ln(x +a )>0不恒成立.故整数a 的最大值为2. (2)证明:由(1)知e x >ln(x +2),令x =-n +1n ,则e -n +1n >ln ⎝⎛⎭⎫-n +1n +2, 即e-n +1>ln ⎝⎛⎭⎫-n +1n +2n=[ln(n +1)-ln n ]n ,所以e 0+e -1+e -2 +…+e -n +1>ln 2+(ln 3-ln 2)2+(ln 4-ln 3)3+…+[ln(n +1)-ln n ]n ,又因为e 0+e -1+e -2+…+e -n +1=1-1e n 1-1e <11-1e=e e -1, 所以ln 2+(ln 3-ln 2)2+(ln 4-ln 3)3+…+[ln(n +1)-ln n ]n <e e -1.。
利用导数证明数列不等式(含解析)
利用导数证明数列不等式(含解析)利用导数证明数列不等式是高考中常见的题型,可以考查学生灵活运用知识的能力。
这种题型一方面以函数为背景,让学生探究函数的性质;另一方面,体现数列是特殊的函数,进而利用恒成立的不等式将没有规律的数列放缩为有具体特征的数列。
可以说,这种题型涉及到函数、导数、数列和不等式,是一题多考的巧妙结合,也是近年来高考的热门题型。
常见的题型有两种类型:一种是利用放缩通项公式解决数列求和中的不等问题,另一种是利用递推公式处理通项公式中的不等问题。
恒成立不等式的来源主要有两种:一是函数的最值,最值可以提供XXX成立的不等式;二是恒成立问题的求解,参数范围内的值均可提供恒成立不等式。
常见的恒成立不等式有lnxx+1.关于前n项和的放缩问题,求数列前n项公式往往要通过数列的通项公式来解决。
高中阶段求和的方法有倒序相加、错位相减、等比数列求和公式和裂项相消。
在处理数列求和不等式时,放缩为等比数列和能够裂项相消的数列的情况比较多见,应优先考虑。
对于数列求和不等式,要从通项公式入手,结合不等号方向考虑放缩成可求和的通项公式。
在放缩时要注意前几问的铺垫与提示,尤其是关于恒成立问题与最值问题所带来的恒成立不等式,往往提供了放缩数列的方向。
放缩通项公式有可能会进行多次,要注意放缩的方向,朝着可求和的通项公式进行靠拢(等比数列,裂项相消等)。
数列不等式也可考虑利用数学归纳法进行证明。
经典例题是已知函数f(x)=kx-xlnx,求函数f(x)的单调区间、当<x≤1时,f(x)≤k恒成立的k的取值范围,以及证明ln1ln2+23+lnnn(n-1)≤n+14.1.已知函数$f(x)=\ln(ax+1)(x\geq0,a>0)$,$g(x)=x-\frac{x^3}{3}$。
1)讨论函数$y=f(x)-g(x)$的单调性;2)若不等式$f(x)\geq g(x)+1$在$x\in[0,+\infty)$时恒成立,求实数$a$的取值范围;3)当$a=1$时,证明:frac{1}{1\cdot3\cdot5\cdots(3572n+1)}+\frac{1}{2\cdot4\cd ot6\cdots(3572n+2)}+\cdots+\frac{1}{(2n-1)(2n+1)}<f^{(n)}(n)(n\in N^*),$$其中$f^{(n)}(n)$表示$f(x)$的$n$阶导数在$x=n$处的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数与不等式题型1.已知2()ln ,()3f x x x g x x ax ==-+-.(1) 求函数()f x 在[,2](0)t t t +>上的最小值;(2) 对一切(0,)x ∈+∞,2()()f x g x ≥恒成立,求实数a 的取值范围;(3) 证明:对一切(0,)x ∈+∞,都有12ln x x e ex>-成立. 本题是一道函数、导数与不等式证明的综合题,主要考查导数的几何意义、导数的求法以及导数在研究函数的性质和证明不等式等方面的应用,考查等价转化、分类讨论等数学思想方法以及分析问题与解决问题的能力. 对于第(1)问,只要运用导数的方法法研究出函数()f x 的单调性即可,最值就容易确定了;对于第(2)问,是一个不等式恒成立的问题,可通过分离常数,将其转化为求函数的最值问题来处理;对于第(3)问,可以通过构造函数,利用导数研究其函数值的正负来实现不等式的证明.解析: (1) '()ln 1f x x =+, 当1(0,)x e ∈,'()0f x <,()f x 单调递减, 当1(,)x e ∈+∞,'()0f x >,()f x 单调递增. ① 102t t e <<+<,t 无解; ② 102t t e <<<+,即10t e <<时,min 11()()f x f e e==-; ③ 12t t e≤<+,即1t e ≥时,()f x 在[,2]t t +上单调递增,min ()()ln f x f t t t ==; 所以min 110()1ln t e e f x t t t e ⎧-<<⎪⎪=⎨⎪≥⎪⎩, ,. (2) 22ln 3x x x ax ≥-+-,则32ln a x x x ≤++, 设3()2ln (0)h x x x x x=++>,则2(3)(1)'()x x h x x +-=,(0,1)x ∈,'()0h x <,()h x 单调递减,(1,)x ∈+∞,'()0h x >,()h x 单调递增,所以min ()(1)4h x h ==.因为对一切(0,)x ∈+∞,2()()f x g x ≥恒成立,所以min ()4a h x ≤=.(3) 问题等价于证明2ln ((0,))x x x x x e e>-∈+∞, 由⑴可知()ln ((0,))f x x x x =∈+∞的最小值是1e -,当且仅当1x e =时取到.设2()((0,))x x m x x e e=-∈+∞,则1'()x x m x e -=,易得max 1()(1)m x m e ==-,当且仅当1x =时取到, 从而对一切(0,)x ∈+∞,都有12ln x x e ex >-成立. 2、已知函数ln ()x x k f x e+=(k 为常数, 2.71828e =⋅⋅⋅是自然对数的底数),曲线()y f x =在点(1,(1))f 处的切线与x 轴平行.(Ⅰ)求k 的值; (Ⅱ)求()f x 的单调区间;(Ⅲ)设2()()'()g x x x f x =+,其中'()f x 为()f x 的导函数.证明:对任意20,()1x g x e -><+.【答案】3、已知函数a N n x a x x f n ,),1ln()1(1)(*∈-+-=其中为常数. (Ⅰ)当n =2时,求函数)(x f 的极值;(Ⅱ)当a =1时,证明:对任意的正整数n ,当2≥x 时,有.1)(-≤x x f【分析及解】(Ⅰ)定义域为),1(+∞,当2=n 时,),1ln()1(1)(2-+-=x a x x f ∴3232)1(22)1(2)1()(--+-=---='x a ax ax x x a x f ① 当0=a 时,3)1(1)(--='x x f , ∵1>x ,∴0)1(3>-x 恒成立,即0)(<'x f 在),1(+∞∈x 上恒成立,故)(x f 在),1(+∞∈x 上为减函数,∴)(x f 无极值。
②当0<a 时,由0)(='x f 得0222=-+-a ax ax ,判别式08)2(442<=--=∆a a a a ,∴不等式0222<-+-a ax ax 对),1(+∞∈x 恒成立,从而0)(<'x f 在),1(+∞∈x 上恒成立,故)(x f 在),1(+∞∈x 上为减函数,∴)(x f 也无极值。
③当a >0时,由0)(='x f ,即0222=-+-a ax ax ,判别式0>∆, ∴方程0222=-+-a ax ax 有两个不同实根,解之得:,12112121>+=<-=a x a x 或 又1>x 时,0)1(3>-x 恒成立, ∴当a x 211+<<时,0)(<'x f ,当ax 21+>时, 0)(>'x f ,故)(x f 在)21,1(a x +∈上为减函数,故在),21(+∞+∈a x 上为增函数, ∴)(x f 在a x21+=处有极小值为)2ln 1(2)21(a a a f +=+ 综上所述,n =2时,当a >0时,)(x f 在ax 21+=处取得极小值,极小值为).2ln 1(2)21(a a a f +=+ 当a ≤0时,)(x f 无极值.(Ⅱ)证明:当1=a 时,)1ln()1(1)(-+-=x x x f n 当2≥x 时,对任意的正整数n ,恒有1)1(1≤-n x , ∴)1ln(1)1ln()1(1-+≤-+-x x x n 故只需证明1)1ln(1-≤-+x x 即可,下面直接作差构造函数证明:令),2[),1ln(2))1ln(1(1)(+∞∈---=-+--=x x x x x x h 则,12111)(--=--='x x x x h 当2≥x 时0)(≥'x h ,故)(x h 在),2[+∞上单调递增, 因此 当2≥x 时,0)2()(=≥h x h ,即1)1ln(1-≤-+x x 成立. 故当2≥x 时, 有1)1ln()1(1-≤-+-x x x n ,即.1)(-≤x x f 4、已知函数),10(1)(2R k c c cx kx x f ∈≠>++=且恰有一个极大值点和一个极小值点,其中一个是c x -= (Ⅰ)求函数)(x f 的另一个极值点;(Ⅱ)求函数)(x f 的极大值M 和极小值m ,并求1≥-m M 时k 的取值范围.【分析及解】(I ),)(2)(222c x ck x kx x f ++--='∵c x -=是函数)(x f 的一个极值点,∴,0)(=-'c f 即得,022=--ck c k c ∵0>c ∴,02=--k ck 由此可知0≠k , k c 21+=,即12-=c k ,由,020)(2=-+='ck x kx x f 得 此方程的一个根为c x -=,另一个根由韦达定理容易计算为1=x 或k c x2-=∴函数)(x f 的另一个极值点为1=x (或k c x2-=) (II )由(I )知12-=c k,现画一个函数图帮助理解, ∵0>c且1≠c ,则图象如图所示, ∴2-<k 或0>k ,① 当2-<k,即10<<c 时,当c x -<或1>x 时,,0)(>'x f 当1<<-x c 时,,0)(<'x f ),1(),,()(+∞--∞c x f 在上是增函数,在)1,(c -上是减函数, ∴)2(2)1(1)(2+-=++-=-=k k c c kc c f M ,211)1(k c k f m =++== 又1≥-m M ,∴12)2(22≥-+-k k k ,即02222≤+++k k k ,解之得2-<k 满足。
② 0>k ,即1>c 时,当c x -<或1>x 时,,0)(<'x f 当1<<-x c 时,,0)(>'x f ∴),1(),,()(+∞--∞c x f 在上是减函数,在)1,(c -上是增函数, ∴)2(2)(,2)1(2+-=-===k k c f m k f M ,又1≥-m M ,∴1)2(222≥++k k k , 即0222≥+-k k ,解之得22-≤<-k 或2≥k ,结合0>k ,∴2≥k 综上可知,所求k 的取值范围为),2[)2,(+∞⋃--∞5、已知函数()sin f x x x =+.(1)设P ,Q 是函数()f x 图象上相异的两点,证明:直线PQ 的斜率大于0;(2)求实数a 的取值范围,使不等式()cos f x ax x ≥在π02⎡⎤⎣⎦,上恒成立. 解:(1)由题意,得()1cos 0f x x '=+≥.所以函数()sin f x x x =+在R 上单调递增.设11( )P x y ,,22( )Q x y ,,则有12120y y x x ->-,即0PQ k >. (2)当0a ≤时,()sin 0cos f x x x ax x =+≥≥恒成立.当0a >时,令()()cos sin cos g x f x ax x x x ax x =-=+-,()1cos (cos sin )g'x x a x x x =+--1(1)cos sin a x ax x =+-+.①当10a -≥,即01a <≤时,()()11cos sin 0g'x a x ax x =+-+>, 所以()g x 在π02⎡⎤⎣⎦,上为单调增函数. 所以()(0)0sin00cos00g x g a =+-⨯⨯=≥,符合题意.②当10a -<,即1a >时,令()()1(1)cos sin h x g'x a x ax x ==+-+, 于是()(21)sin cos h'x a x ax x =-+.因为1a >,所以210a ->,从而()0h'x ≥.所以()h x 在π02⎡⎤⎣⎦,上为单调增函数. 所以()π(0)()2h h x h ≤≤,即π2()12a h x a -+≤≤, 亦即π2()12a g'x a -+≤≤. (i )当20a -≥,即12a <≤时,()0g'x ≥,所以()g x 在π02⎡⎤⎣⎦,上为单调增函数.于是()(0)0g x g =≥,符合题意. (ii )当20a -<,即2a >时,存在()0π02x ∈,,使得当0(0 )x x ∈,时,有()0g'x <,此时()g x 在0(0)x ,上为单调减函数, 从而()(0)0g x g <=,不能使()0g x >恒成立.综上所述,实数a 的取值范围为2a ≤.。