层次分析法判断矩阵的权重运算
java求矩阵的特征值和特征向量(AHP层次分析法计算权重)(附源代码)
java求矩阵的特征值和特征向量(AHP层次分析法计算权重)(附源代码) 这几天做一个项目,需要用到求矩阵的特征值特征向量。
我c++学的不好,所以就去网站找了很多java的源代码,来实现这个功能。
很多都不完善,甚至是不准确。
所以自己参考写了一个。
这个用于我一个朋友的毕业设计。
结果肯定正确。
话不多说,贴源代码!import java.math.BigDecimal;import java.util.Arrays;/*** AHP层次分析法计算权重** @since jdk1.6* @author 刘兴* @version 1.0* @date 2012.05.25**/public class AHPComputeWeight {/*** @param args*/public static void main(String[] args) {/** a为N*N矩阵*///double[][] a= {{1,1,1},{1,1,1},{1,1,1}};double[][] a ={{1,3,5},{2,3,1,},{4,7,3}};//double[][] a = {{1 ,1/5, 1/3},{5, 1, 1},{3,1,1}};//double[][] a ={{1, 1/2, 2, 1},{2, 1, 3, 4},{1/2 ,1/3, 1, 1},{1 ,1/4, 1, 1}};//double[][] a = {{1 ,0.5, 0.5},{2 ,1, 1},{2 ,1, 1}};//double[][] a = {{1, 1/4, 1/3, 1},{4, 1 ,3 ,5},{3, 1/3, 1, 4},{1, 1/5, 1/4, 1}};// double[][] a= {{1,2,3,5},{0.5,1,2,3},{0.33,0.5,1,2},{0.2,0.33,0.5,1}};int N = a[0].length;double[] weight = new double[N];AHPComputeWeight instance = AHPComputeWeight.getInstance();instance.weight(a, weight, N);System.out.println(Arrays.toString(weight));}// 单例private static final AHPComputeWeight acw = new AHPComputeWeight();// 平均随机一致性指针private double[] RI = { 0.00, 0.00, 0.58, 0.90, 1.12, 1.21, 1.32, 1.41,1.45, 1.49 };// 随机一致性比率private double CR = 0.0;// 最大特征值private double lamta = 0.0;/*** 私有构造*/private AHPComputeWeight() {}/*** 返回单例** @return*/public static AHPComputeWeight getInstance() { return acw;}/*** 计算权重** @param a* @param weight* @param N*/public void weight(double[][] a, double[] weight, int N) { // 初始向量Wkdouble[] w0 = new double[N];for (int i = 0; i < N; i++) {w0[i] = 1.0 / N;}// 一般向量W(k+1)double[] w1 = new double[N];// W(k+1)的归一化向量double[] w2 = new double[N];double sum = 1.0;double d = 1.0;// 误差double delt = 0.00001;while (d > delt) {d = 0.0;sum = 0;// 获取向量int index = 0;for (int j = 0; j < N; j++) {double t = 0.0;for (int l = 0; l < N; l++)t += a[j][l] * w0[l];// w1[j] = a[j][0] * w0[0] + a[j][1] * w0[1] + a[j][2] * w0[2];w1[j] = t;sum += w1[j];}// 向量归一化for (int k = 0; k < N; k++) {w2[k] = w1[k] / sum;// 最大差值d = Math.max(Math.abs(w2[k] - w0[k]), d);// 用于下次迭代使用w0[k] = w2[k];}}// 计算矩阵最大特征值lamta,CI,RIlamta = 0.0;for (int k = 0; k < N; k++) {lamta += w1[k] / (N * w0[k]);}double CI = (lamta - N) / (N - 1);if (RI[N - 1] != 0) {CR = CI / RI[N - 1];}// 四舍五入处理lamta = round(lamta, 3);CI = Math.abs(round(CI, 3));CR = Math.abs(round(CR, 3));for (int i = 0; i < N; i++) {w0[i] = round(w0[i], 4);w1[i] = round(w1[i], 4);w2[i] = round(w2[i], 4);}// 控制台打印输出System.out.println("lamta=" + lamta);System.out.println("CI=" + CI);System.out.println("CR=" + CR);// 控制台打印权重System.out.println("w0[]=");for (int i = 0; i < N; i++) {System.out.print(w0[i] + " ");}System.out.println("");System.out.println("w1[]=");for (int i = 0; i < N; i++) {System.out.print(w1[i] + " ");}System.out.println("");System.out.println("w2[]=");for (int i = 0; i < N; i++) {weight[i] = w2[i];System.out.print(w2[i] + " ");}System.out.println("");}/*** 四舍五入** @param v* @param scale* @return*/public double round(double v, int scale) {if (scale < 0) {throw new IllegalArgumentException("The scale must be a positive integer or zero");}BigDecimal b = new BigDecimal(Double.toString(v));BigDecimal one = new BigDecimal("1");return b.divide(one, scale, BigDecimal.ROUND_HALF_UP).doubleV alue();}/*** 返回随机一致性比率** @return*/public double getCR() {return CR;}}。
层次分析法 实验报告
层次分析法实验报告层次分析法实验报告一、引言层次分析法(Analytic Hierarchy Process,简称AHP)是一种用于多目标决策的定量分析方法,广泛应用于各个领域。
本实验旨在通过实际案例,验证层次分析法在决策问题中的有效性,并探究其应用的局限性。
二、实验目的1. 了解层次分析法的基本原理和步骤;2. 运用层次分析法解决实际决策问题;3. 分析层次分析法的优势和不足。
三、实验设计本实验选取一个实际的决策问题,以选购一台新的电脑为例,通过层次分析法进行决策。
四、实验步骤1. 确定目标层:将决策问题分解为不同的层次,首先确定最终的目标层,即选购一台新的电脑。
2. 构建层次结构:在目标层的基础上,构建层次结构,包括准则层、子准则层和方案层。
准则层包括性能、价格和品牌等因素,子准则层包括CPU性能、内存容量和硬盘容量等因素,方案层包括不同品牌和型号的电脑。
3. 两两比较:对于每一层的因素,进行两两比较,根据其重要性进行打分。
例如,对于准则层的性能和价格,根据其对目标的重要程度进行比较评分。
4. 构建判断矩阵:根据两两比较的结果,构建判断矩阵。
例如,对于子准则层的CPU性能和内存容量,根据两两比较的结果构建判断矩阵。
5. 计算权重:通过计算判断矩阵的特征向量,得到各因素的权重。
根据权重可以评估各因素对目标的重要程度。
6. 一致性检验:通过计算一致性指标,判断判断矩阵的一致性。
若一致性指标超过一定阈值,则需要重新进行比较和调整。
7. 综合评价:根据各因素的权重,综合评价各方案的优劣,选取最佳方案。
五、实验结果与分析通过层次分析法,我们得到了不同因素的权重和最佳方案。
根据实验数据,我们可以发现性能对于选购电脑的重要性最高,其次是价格,品牌的重要性最低。
在子准则层中,CPU性能的权重最高,内存容量次之,硬盘容量的权重最低。
最终,我们选取了一款具有较高性能、适中价格、知名品牌的电脑作为最佳方案。
六、实验总结层次分析法是一种有效的多目标决策方法,通过将问题分解为不同层次,对各因素进行比较和权重计算,可以帮助决策者做出合理的决策。
层次分析法现代汉语例题
层次分析法是一种决策分析方法,通常用于多个方案或因素之间进行比较和排序。
以下是一个使用层次分析法的现代汉语例题:
假设你是一名公司的采购主管,你需要从三个供应商(A、B、C)中选择一家供应商品质最好、价格最优、售后服务最好的供应商。
你将使用层次分析法来进行决策。
解题步骤:
制定目标层次:选择最优供应商
确定判断准则:商品质量、价格、售后服务
构建层次结构模型:将目标层次下的判断准则放在下一层,形成层次结构模型
刻画判断矩阵:采用1~9的比较尺度,对每两个判断准则进行比较,得到判断矩阵
求出权重向量:对判断矩阵进行归一化处理,计算出每个判断准则的权重
计算一致性指标:检查矩阵的一致性程度,得出一致性指标
计算最终权重:根据层次结构模型和权重向量,计算出每个供应商的最终权重
进行灵敏度分析:分析每个判断准则的变化对结果的影响程度
得出决策结果:综合考虑判断准则的权重和灵敏度分析的结果,得出选择最优供应商的决策结果
以上是一个基本的层次分析法的应用例题,具体细节需要根据实际情况进行调整和处理。
层次法
层次分析法,是指将一个复杂的多目标决策问题作为一个系统,将目标分解为多个目标或准则,进而分解为多指标(或准则、约束)的若干层次,通过定性指标模糊量化方法算出层次单排序(权数)和总排序,以作为目标(多指标)、多方案优化决策的系统方法,称为层次分析法。
1、建立递阶层次结构;2、构造两两比较判断矩阵;(正互反矩阵)对各指标之间进行两两对比之后,然后按9分位比率排定各评价指标的相对优劣顺序,依次构造出评价指标的判断矩阵。
3、针对某一个标准,计算各备选元素的权重;关于判断矩阵权重计算的方法有两种,即几何平均法(根法)和规范列平均法(和法)。
(1)几何平均法(根法)计算判断矩阵A各行各个元素mi的乘积;计算mi的n次方根,对向量进行归一化处理,该向量即为所求权重向量。
(2)规范列平均法(和法)计算判断矩阵A各行各个元素mi的和;将A的各行元素的和进行归一化;该向量即为所求权重向量。
(3)计算矩阵A的最大特征值?max对于任意的i=1,2,…,n, 式中为向量AW的第i个元素(4)一致性检验:构造好判断矩阵后,需要根据判断矩阵计算针对某一准则层各元素的相对权重,并进行一致性检验。
虽然在构造判断矩阵A时并不要求判断具有一致性,但判断偏离一致性过大也是不允许的。
因此需要对判断矩阵A进行一致性检验。
在一个工厂里,有一百多个岗位,这些岗位复杂程度各不相同,工作的环境各不一样,一个合理的岗位工资分配制度对于提高员工满意度、体现人力资源的公平性具有非常重要的作用,而该工厂所处的行业比较特殊,没有可以借鉴的经验,必须由该工厂对自已的岗位工资水平进行合理地定义。
现已知社会的平均工资水平,该公司决定比社会平均工资水平高10%做为公司总的基数,如何对工厂内部各个岗位的工资基数进行分配,这是该文章要解决的问题。
本文以一线员工的岗位工资为例,在对公司各层次的调查中,大家一致同意将劳动强度、岗位技术含量、生产出的产品对质量的影响以及该岗位员工的获得性做为一个评判标准。
层次分析法确定评价指标权重及Excel计算
江苏科技信息February 2012表2判断矩阵摘要:文章介绍了层次分析法确定评价指标权重的过程和计算方法,建立的Excel 计算模板操作简单,方便推广,具有较强的实用性。
关键词:决策分析法;层次分析法;权重;Excel ;计算模板作者简介:曹茂林,扬州市环境监测中心站,高级工程师;研究方向:环境监测技术与环境科技管理。
■曹茂林层次分析法确定评价指标权重及Excel 计算层次分析法(Analytic hierarchy process ,简称AHP 法)是美国运筹学家T.L.Saaty 等人在20世纪70年代中期提出了一种定性和定量相结合的,系统性、层次化的多目标决策分析方法。
在环境科研实践中,AHP 法广泛应用于生态安全[1]、环境规划[2]、区域承载力[3]、化学品环境性能评价[4]等众多领域。
AHP 法的核心是将决策者的经验判断定量化,增强了决策依据的准确性,在目标结构较为复杂且缺乏统计数据的情况下更为实用。
应用AHP 法确定评价指标的权重,就是在建立有序递阶的指标体系的基础上,通过比较同一层次各指标的相对重要性来综合计算指标的权重系数。
具体步骤如下:1.构造判断矩阵同一层次内n 个指标相对重要性的判断由若干位专家完成。
依据心理学研究得出的“人区分信息等级的极限能力为7±2”的结论,AHP 法在对指标的相对重要性进行评判时,引入了九分位的比例标度,见表1。
判断矩阵A 中各元素a ij 为i 行指标相对j 列指标进行重要性两两比较的值。
显然,在判断矩阵A 中,a ij >0,a ii =1,a ij =1/a ji (其中i ,j=1,2,…,n )。
因此,判断矩阵A 是一个正交矩阵,左上至右下对角线位置上的元素为1,其两侧对称位置上的元素互为倒数。
每次判断时,只需要作n(n-1)/2次比较即可。
表2是一个7阶判断矩阵,本文以此为例介绍应用Excel 计算指标权重并进行一致性检验的方法。
层次分析法判断矩阵求权值以及一致性检验程序
function [w,CR]=mycom(A,m,RI)[x,lumda]=eig(A);r=abs(sum(lumda));n=find(r==max(r));max_lumda_A=lumda(n,n);max_x_A=x(:,n);w=A/sum(A);CR=(max_lumda_A-m)/(m-1)/RI;end本matlab程序用于层次分析法中计算判断矩阵给出的权值已经进行一致性检验。
其中A为判断矩阵,不同的标度和评定A将不同。
m为A的维数RI为判断矩阵的平均随机一致性指标:根据m的不同值不同。
当CR<0.1时符合一致性检验,判断矩阵构造合理。
下面是层次分析法的简介,以及判断矩阵构造方法。
一.层次分析法的含义层次分析法(The analytic hierarchy process)简称AHP,在20世纪70年代中期由美国运筹学家托马斯·塞蒂(T.L.Saaty)正式提出。
它是一种定性和定量相结合的、系统化、层次化的分析方法。
由于它在处理复杂的决策问题上的实用性和有效性,很快在世界范围得到重视。
它的应用已遍及经济计划和管理、能源政策和分配、行为科学、军事指挥、运输、农业、教育、人才、医疗和环境等领域。
二.层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一样的。
(1)层次分析法的原理层次分析法是将决策问题按总目标、各层子目标、评价准则直至具体的备投方案的顺序分解为不同的层次结构,然后得用求解判断矩阵特征向量的办法,求得每一层次的各元素对上一层次某元素的优先权重,最后再加权和的方法递阶归并各备择方案对总目标的最终权重,此最终权重最大者即为最优方案。
这里所谓“优先权重”是一种相对的量度,它表明各备择方案在某一特点的评价准则或子目标,标下优越程度的相对量度,以及各子目标对上一层目标而言重要程度的相对量度。
层次分析法比较适合于具有分层交错评价指标的目标系统,而且目标值又难于定量描述的决策问题。
层次分析法如何确定权重
• 精确计算的复杂和不必要 • 简化计算的思路——一致阵的任一列向量都是特征向量, 一致性尚好的正互反阵的列向量都应近似特征向量,可取 其某种意义下的平均。 和法——取列向量的算术平均
求 行 和
2 6 列向量 0.6 0.615 0.545 1 例 A 1/ 2 1 4 归一化 0.3 0.308 0.364 归 一 1/ 6 1/ 4 1 0.1 0.077 0.091 化
权向量(特征向量)w =(0.263,0.475,0.055,0.090,0.110)T
5 . 073 5 一致性指标 CI 0 . 018 5 1 随机一致性指标 RI=1.12 (查表)
一致性比率CR=0.018/1.12=0.016<0.1
通过一致 性检验
正互反阵最大特征根和特征向量的简化计算
判断矩阵是表示本层所有因素针对上一层某一个因素的 相对重要性的比较。判断矩阵的元素aij用Santy的1—9标 度方法给出。 心理学家认为成对比较的因素不宜超过9个,即每层 不要超过9个因素。
判断矩阵元素aij的标度方法
标度 1 3 含义 表示两个因素相比,具有同样重要性 表示两个因素相比,一个因素比另一个因素稍微重要
二、层次分析法的基本原理
层次分析法根据问题的性质和要达到的总目 标,将问题分解为不同的组成因素,并按照因 素间的相互关联影响以及隶属关系将因素按不 同层次聚集组合,形成一个多层次的分析结构 模型,从而最终使问题归结为最低层(供决策 的方案、措施等)相对于最高层(总目标)的相 对重要权值的确定或相对优劣次序的排定。
层次分析法的思维过程的归纳
将决策问题分为3个或多个层次: 最高层:目标层。表示解决问题的目的,即层次分析 要达到的总目标。通常只有一个总目标。 中间层:准则层、指标层、…。表示采取某种措施、 政策、方案等实现预定总目标所涉及的中间环节; 一般又分为准则层、指标层、策略层、约束层等。 最低层:方案层。表示将选用的解决问题的各种措施、政 策、方案等。通常有几个方案可选。 每层有若干元素,层间元素的关系用相连直线表示。
熵值法和层次分析法在权重确定中的应用
熵值法和层次分析法在权重确定中的应用一、本文概述权重确定作为决策分析的核心环节,其准确性和合理性直接影响到决策的质量和效果。
在众多权重确定方法中,熵值法和层次分析法因其独特的优势,被广泛应用于各种决策场景中。
本文旨在深入探讨熵值法和层次分析法在权重确定中的应用,分析两种方法的原理、特点、适用场景,并对比其优劣。
通过对这两种方法的深入研究,我们期望能为决策者提供更科学、更合理的权重确定方法,提高决策的有效性和准确性。
本文还将结合具体案例,对两种方法的实际应用进行展示,以便读者更好地理解和掌握这两种方法。
二、熵值法在权重确定中的应用熵值法是一种基于信息熵理论来确定权重的客观赋权方法。
在信息论中,熵是对不确定性的一种度量,它可以反映信息的无序程度或者信息的效用价值。
在权重确定中,熵值法通过计算各个评价指标的信息熵,来度量各个指标值的离散程度,从而确定各个指标的权重。
数据标准化处理:消除不同指标量纲的影响,对原始数据进行标准化处理,使得各指标值都处于同一数量级上。
计算指标熵值:根据标准化后的数据,计算每个指标的熵值。
熵值反映了该指标值的离散程度,熵值越大,指标的离散程度越大,该指标对综合评价的影响越小。
计算指标差异系数:用1减去熵值,得到指标的差异系数。
差异系数越大,该指标对综合评价的影响越大。
确定指标权重:根据差异系数的大小,确定各指标的权重。
差异系数越大,该指标的权重越大。
熵值法的优点在于其客观性强,不需要事先设定权重,而是根据数据的实际情况来确定权重。
熵值法也适用于多指标综合评价问题,能够有效地处理不同量纲的指标。
然而,熵值法也存在一定的局限性,例如它忽略了指标之间的相关性,并且对于数据的要求较高,需要数据量足够大且分布均匀。
在实际应用中,熵值法常常与其他方法相结合,如层次分析法、主成分分析法等,以提高权重确定的准确性和科学性。
通过综合运用这些方法,可以更加全面地考虑各种因素,使得权重确定更加合理和可靠。
用层次分析法计算权重
用层次分析法计算权重一、本文概述层次分析法(Analytic Hierarchy Process,简称AHP)是一种定性与定量分析相结合的多准则决策方法,由美国运筹学家T.L.Saaty教授于20世纪70年代提出。
该方法通过构建一个层次结构模型,将复杂问题分解为多个组成因素,并按照因素间的相互关联影响以及隶属关系将因素按不同层次聚集组合,形成一个多层次的分析结构模型。
通过两两比较的方式确定层次中诸因素的相对重要性,然后综合决策者的判断,确定决策方案相对重要性的总的排序。
层次分析法在权重计算中具有广泛的应用,包括项目管理、资源分配、风险评估、产品选择等各个领域。
本文将详细介绍层次分析法的原理、步骤及其在权重计算中的应用,帮助读者更好地理解和应用这一方法。
二、层次分析法基本原理层次分析法(Analytic Hierarchy Process,简称AHP)是一种定性与定量相结合的决策分析方法,由美国运筹学家T.L.Saaty在20世纪70年代初期提出。
这种方法将复杂的问题分解为各个组成因素,并将这些因素按照支配关系分组形成递阶层次结构。
通过两两比较的方式确定层次中诸因素的相对重要性,然后综合决策者的判断,确定决策方案相对重要性的总的排序。
层次分析法适用于存在多目标、多准则、多方案的系统评价、决策、预测等问题,尤其适用于那些难以完全用定量方法解决的复杂问题。
分解原理:将复杂的问题分解为若干个相对简单的子问题,这些子问题称为元素或因素。
每个元素都对应一个具体的评价准则或决策目标。
比较原理:通过两两比较的方式确定元素之间的相对重要性。
比较的结果以数值形式表示,通常使用1-9标度法,其中1表示两个元素同等重要,9表示一个元素比另一个元素极端重要,中间值表示不同等级的重要性。
合成原理:根据元素之间的相对重要性,通过合成运算得到元素的整体重要性排序。
合成运算通常采用加权求和的方法,权重由元素之间的相对重要性决定。
层次分析法判断矩阵求权值以及一致性检验程序
function [w,CR]=mycom(A,m,RI)[x,lumda]=eig(A);r=abs(sum(lumda));n=find(r==max(r));max_lumda_A=lumda(n,n);max_x_A=x(:,n);w=A/sum(A);CR=(max_lumda_A-m)/(m-1)/RI;end本matlab程序用于层次分析法中计算判断矩阵给出的权值已经进行一致性检验。
其中A为判断矩阵,不同的标度和评定A将不同。
m为A的维数RI为判断矩阵的平均随机一致性指标:根据m的不同值不同。
当CR<时符合一致性检验,判断矩阵构造合理。
下面是层次分析法的简介,以及判断矩阵构造方法。
一.层次分析法的含义层次分析法(The analytic hierarchy process)简称AHP,在20世纪70年代中期由美国运筹学家托马斯·塞蒂()正式提出。
它是一种定性和定量相结合的、系统化、层次化的分析方法。
由于它在处理复杂的决策问题上的实用性和有效性,很快在世界范围得到重视。
它的应用已遍及经济计划和管理、能源政策和分配、行为科学、军事指挥、运输、农业、教育、人才、医疗和环境等领域。
二.层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一样的。
(1)层次分析法的原理层次分析法是将决策问题按总目标、各层子目标、评价准则直至具体的备投方案的顺序分解为不同的层次结构,然后得用求解判断矩阵特征向量的办法,求得每一层次的各元素对上一层次某元素的优先权重,最后再加权和的方法递阶归并各备择方案对总目标的最终权重,此最终权重最大者即为最优方案。
这里所谓“优先权重”是一种相对的量度,它表明各备择方案在某一特点的评价准则或子目标,标下优越程度的相对量度,以及各子目标对上一层目标而言重要程度的相对量度。
层次分析法比较适合于具有分层交错评价指标的目标系统,而且目标值又难于定量描述的决策问题。
层次分析法
建立层次结构模型在深入分析实际问题的基础上,将有关的各个因素按照不同属性自上而下地分解成若干层次,同一层的诸因素从属于上一层的因素或对上层因素有影响,同时又支配下一层的因素或受到下层因素的作用。
最上层为目标层,通常只有1个因素,最下层通常为方案或对象层,中间可以有一个或几个层次,通常为准则或指标层。
当准则过多时(譬如多于9个)应进一步分解出子准则层。
构造成对比较阵从层次结构模型的第2层开始,对于从属于(或影响)上一层每个因素的同一层诸因素,用成对比较法和1—9比较尺度构造成对比较阵,直到最下层。
计算权向量并做一致性检验对于每一个成对比较阵计算最大特征根及对应特征向量,利用一致性指标、随机一致性指标和一致性比率做一致性检验。
若检验通过,特征向量(归一化后)即为权向量:若不通过,需重新构追成对比较阵。
计算组合权向量并做组合一致性检验计算最下层对目标的组合权向量,并根据公式做组合一致性检验,若检验通过,则可按照组合权向量表示的结果进行决策,否则需要重新考虑模型或重新构造那些一致性比率较大的成对比较阵。
美国运筹学家A.L.saaty于20世纪70年代提出的层次分析法(AnalyticHi~hyProcess,简称AHP方法),是对方案的多指标系统进行分析的一种层次化、结构化决策方法,它将决策者对复杂系统的决策思维过程模型化、数量化。
应用这种方法,决策者通过将复杂问题分解为若干层次和若干因素,在各因素之间进行简单的比较和计算,就可以得出不同方案的权重,为最佳方案的选择提供依据。
运用AHP方法,大体可分为以下三个步骤: 步骤1:分析系统中各因素间的关系,对同一层次各元素关于上一层次中某一准则的重要性进行两两比较,构造两两比较的判断矩阵;步骤2:由判断矩阵计算被比较元素对于该准则的相对权重,并进行判断矩阵的一致性检验;步骤3:计算各层次对于系统的总排序权重,并进行排序。
最后,得到各方案对于总目标的总排序。
构造判断矩阵层次分析法的一个重要特点就是用两两重要性程度之比的形式表示出两个方案的相应重要性程度等级。
层次分析法权重计算方法分析及其应用研究
层次分析法权重计算方法分析及其应用研究一、本文概述层次分析法(Analytic Hierarchy Process,简称AHP)是一种定性与定量分析相结合的多准则决策方法,由美国运筹学家T.L.Saaty教授于20世纪70年代初期提出。
该方法将复杂问题分解为若干层次和若干因素,在各因素之间进行简单的比较和计算,得出不同方案的权重,为决策者提供科学、量化的决策依据。
本文将对层次分析法的权重计算方法进行深入分析,探讨其在实际应用中的优势与局限,并通过案例研究展示其在不同领域中的应用效果。
具体而言,本文将首先介绍层次分析法的基本原理和步骤,然后重点阐述权重计算的方法与过程,接着分析该方法在实际应用中需要注意的问题和可能遇到的挑战,最后通过实例展示层次分析法在不同领域中的成功应用,以期为读者提供全面、深入的层次分析法理论与实践指导。
二、层次分析法权重计算的基本理论层次分析法(Analytic Hierarchy Process,简称AHP)是一种定性与定量相结合的决策分析方法,由美国运筹学家T.L.Saaty于20世纪70年代初提出。
该方法通过将复杂问题分解为若干层次和若干因素,在各因素之间进行简单的比较和计算,得出不同方案的权重,从而为决策者提供科学、合理的决策依据。
层次分析法的核心在于建立层次结构模型和构造判断矩阵,通过计算判断矩阵的最大特征值及其对应的特征向量,得出各因素的相对权重。
在层次分析法中,权重计算是至关重要的一步。
权重的确定直接影响到决策结果的准确性和科学性。
因此,如何合理、准确地计算权重是层次分析法研究的核心问题之一。
权重计算的基本步骤包括:根据问题的实际情况,建立层次结构模型,将问题分解为不同的层次和因素;构造判断矩阵,通过对各因素之间的相对重要性进行两两比较,形成判断矩阵;然后,计算判断矩阵的最大特征值及其对应的特征向量,得出各因素的相对权重;对计算得到的权重进行一致性检验,确保权重的合理性和准确性。
权重确定方法归纳
权重确定方法归纳多指标综合评价是指人们根据不同的评价目的,选择相应的评价形式据此选择多个因素或指标,并通过一定的评价方法将多个评价因素或指标转化为能反映评价对象总体特征的信息,其中评价指标与权重系数确定将直接影响综合评价的结果。
按照权数产生方法的不同多指标综合评价方法可分为主观赋权评价法和客观赋权评价法两大类,其中主观赋权评价法采取定性的方法由专家根据经验进行主观判断而得到权数,然后再对指标进行综合评价,如层次分析法、综合评分法、模糊评价法、指数加权法和功效系数法等。
客观赋权评价法则根据指标之间的相关关系或各项指标的变异系数来确定权数进行综合评价,如熵值法、神经网络分析法、TOPSIS法、灰色关联分析法、主成分分析法、变异系数法等。
两种赋权方法特点不同,其中主观赋权评价法依据专家经验衡量各指标的相对重要性,有一定的主观随意性,受人为因素的干扰较大,在评价指标较多时难以得到准确的评价。
客观赋权评价法综合考虑各指标间的相互关系,根据各指标所提供的初始信息量来确定权数,能够达到评价结果的精确但是当指标较多时,计算量非常大。
下面就对当前应用较多的评价方法进行阐述。
一、变异系数法(一)变异系数法简介变异系数法是直接利用各项指标所包含的信息,通过计算得到指标的权重。
是一种客观赋权的方法。
此方法的基本做法是:在评价指标体系中,指标取值差异越大的指标,也就是越难以实现的指标,这样的指标更能反映被评价单位的差距。
例如,在评价各个国家的经济发展状况时,选择人均国民生产总值(人均GNP)作为评价的标准指标之一,是因为人均GNP 不仅能反映各个国家的经济发展水平,还能反映一个国家的现代化程度。
如果各个国家的人均GNP 没有多大的差别,则这个指标用来衡量现代化程度、经济发展水平就失去了意义。
由于评价指标体系中的各项指标的量纲不同,不宜直接比较其差别程度。
为了消除各项评价指标的量纲不同的影响,需要用各项指标的变异系数来衡量各项指标取值的差异程度。
层次分析法判断矩阵
层次分析法判断矩阵层次分析法判断矩阵程序先确定判断矩阵;然后用以下程序就好了:%层次分析法的matlab程序%%%%diertimoxingyiclc,cleardisp(输入判断矩阵);% 在屏幕显示这句话A=input(A=);% 从屏幕接收判断矩阵[n,n]=size(A);% 计算A的维度,这里是方阵,这么写不太好x=ones(n,100);% x为n行100列全1的矩阵y=ones(n,100);% y同xm=zeros(1,100);% m为1行100列全0的向量m(1)=max(x(:,1));% x第一列中最大的值赋给m的第一个分量y(:,1)=x(:,1);% x的第一列赋予y 的第一列x(:,2)=A*y(:,1);% x的第二列为矩阵A*y(:,1)m(2)=max(x(:,2));% x 第二列中最大的值赋给m的第二个分量y(:,2)=x(:,2)/m(2);% x的第二列除以m(2)后赋给y的第二列p=0.0001;i=2;k=abs(m(2)-m(1));% 初始化p,i,k为m(2)-m(1)的绝对值while k>p% 当k>p是执行循环体i=i+1;% i 自加1x(:,i)=A*y(:,i-1);% x的第i列等于A*y的第i-1列m(i)=max(x(:,i));% m的第i个分量等于x第i列中最大的值y(:,i)=x(:,i)/m(i);% y的第i列等于x的第i列除以m的第i个分量k=abs(m(i)-m(i-1));% k等于m(i)-m(i-1)的绝对值enda=sum(y(:,i));% y的第i列的和赋予aw=y(:,i)/a;% y的第i 列除以at=m(i);% m的第i个分量赋给tdisp(权向量:);disp(w);% 显示权向量wdisp(最大特征值:);disp(t);% 显示最大特征值t %以下是一致性检验CI=(t-n)/(n-1);% t-维度再除以维度-1的值赋给CIRI=[0 0 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49 1.52 1.54 1.56 1.58 1.59];% 计算的标准CR=CI/RI(n);% 计算一致性if CR摘要在定性问题的决策中,AHP是一种优秀的方法,其基础是对评价对象的两两比较,并用比较结果构造判断矩阵,而这些都依赖于决策者选用的偏好关系。
权重计算公式与8种确定权重的方法
权重计算公式与8种确定权重的方法计算权重是一种常见的分析方法,在实际研究中,需要结合数据的特征情况进行选择,比如数据之间的波动性是一种信息量,那么可考虑使用CRITIC权重法或信息量权重法;也或者专家打分数据,那么可使用AHP层次法或优序图法。
本文列出常见的权重计算方法,并且对比各类权重计算法的思想和大概原理,使用条件等,便于研究人员选择出科学的权重计算方法。
首先列出常见的8类权重计算方法,如下表所示:计算权重方法汇总这8类权重计算的原理各不相同,结合各类方法计算权重的原理大致上可分成4类,分别如下:第一类为因子分析和主成分法;此类方法利用了数据的信息浓缩原理,利用方差解释率进行权重计算;第二类为AHP层次法和优序图法;此类方法利用数字的相对大小信息进行权重计算;第三类为熵值法(熵权法);此类方法利用数据熵值信息即信息量大小进行权重计算;第四类为CRITIC、独立性权重和信息量权重;此类方法主要是利用数据的波动性或者数据之间的相关关系情况进行权重计算。
第一类、信息浓缩(因子分析和主成分分析)计算权重时,因子分析法和主成分法均可计算权重,而且利用的原理完全一模一样,都是利用信息浓缩的思想。
因子分析法和主成分法的区别在于,因子分析法加带了‘旋转’的功能,而主成分法目的更多是浓缩信息。
‘旋转’功能可以让因子更具有解释意义,如果希望提取出的因子具有可解释性,一般使用因子分析法更多;并非说主成分出来的结果就完全没有可解释性,只是有时候其解释性相对较差而已,但其计算更快,因而受到广泛的应用。
比如有14个分析项,该14项可以浓缩成4个方面(也称因子或主成分),此时该4个方面分别的权重是多少呢?此即为因子分析或主成分法计算权重的原理,它利用信息量提取的原理,将14项浓缩成4个方面(因子或主成分),每个因子或主成分提取出的信息量(方差解释率)即可用于计算权重。
接下来以SPSSAU为例讲解具体使用因子分析法计算权重。
层次分析法判断矩阵的构成方法及比较
运用层次分析法(’()*+,-./0120)3,31(.4351)66, *24)确定权重系数,大体可分为四个步骤:
!建立复杂问题的递阶层次结构。 "构造两两比较的判断矩阵。 #由判断矩阵计算被比较元素的相对权重。 $计算各层元素的组合权重。 其中"是将人的比较判断量化的过程,受人的主 观因素影响很大,而判断矩阵又是计算权重的根据,是
与另一个指标相比,其重要性等级相差的级数为信息;
而数值比较法只是利用数值的比值为信息。
"345要求填写矩阵时采用“,$0”之间的正整 数及其倒数,简易表格法满足该特点;而数值比较法构 造的阵中万存方在数非据正整数倒数。
优序图(567879787:;"6*,简称 5:)是美国人 5<=< >??9+,01’年首次提出的,在我国目前尚未推广。它 也是建立在两两比较的基础之上,调查表中表格的设 计与原始矩阵相同,只是不采用“,$0”标度。它用“,” 表示行比列相对重要,用“&”表示行比列相对不重要, 用“&!.”表 示 行 与 列 同 等 重 要。 金 新 政〔%〕在《 优 序 图 和层次分析法在确定权重时的比较研究及应用》一文 中,详细阐述了优序图的优点,即省时、省力、易操作。 他也同时提到,由于优序图中只有“,,&,&!.”三个数字 来表示何者为优,对程度描述不足,因此适合于大样本 的调查。
(表%、表8),以此说明两种方法的区别与联系。 对表%、8的结果,做如下分析:
($)从一致性程度考虑,数值比较法稍优: 由矩阵理论可知〔;〕,若 + 阶判断矩阵! 的最大
特征值比+ 大得越多,! 的不一致程度就越严重;相 反,!?,@越接近于 + 时,! 的一致性程度就越好。当 !?,@:+ 时,! 为完全一致阵。计算二者的 !?,@:数
层次分析法实施的步骤
层次分析法实施的步骤概述层次分析法(Analytic Hierarchy Process,简称AHP)是一种用于解决复杂决策问题的数学模型和方法。
它通过层次化的结构来分析问题,并对各个因素进行权重的判断和排序,最终得出最佳的决策结果。
在实施AHP时,按照以下步骤进行操作。
步骤一:明确问题及目标在实施AHP之前,首先需要明确解决的问题以及所需达到的目标。
这个步骤是决策过程的起点,只有明确了问题和目标,才能有效地进行后续的分析和判断。
步骤二:建立层次结构在明确了问题和目标后,接下来需要建立问题的层次结构。
层次结构是将问题划分为一系列具有层次关系的因素和子因素,形成一个树状结构。
这样做的目的是为了明确问题的结构和因素之间的依赖关系,便于后续的分析和权重判断。
步骤三:构造判断矩阵判断矩阵是AHP的核心工具,用于判断不同因素和子因素之间的相对重要性。
在这一步骤中,需要对每个因素和子因素进行两两比较,根据相对重要性进行评分。
为了进行比较,需要设置一个评分标准,通常使用1到9的数字表示相对重要性,其中1表示相对重要性相等,9表示相对重要性极高。
根据个人对比较的感觉,对每个因素和子因素进行配对比较,填写判断矩阵。
步骤四:计算权重向量在构造判断矩阵后,需要对判断矩阵进行计算,得出每个因素和子因素的权重。
一般使用特征向量法来计算权重向量。
首先,将判断矩阵的每一列进行归一化处理,然后计算归一化后矩阵的特征向量。
特征向量的计算可以使用特征值法或一致性指标法。
最后,得出的特征向量即为权重向量。
步骤五:一致性检验在计算权重向量后,需要进行一致性检验。
一致性检验是判断所构造的判断矩阵是否满足一致性要求的过程。
如果一致性比率超过一定阈值,则需要调整判断矩阵,重新进行计算。
一般情况下,可以计算判断矩阵的一致性指标CI和一致性比例CR。
如果CR 小于0.1,则判断矩阵通过一致性检验,可以继续进行后续的分析和决策。
步骤六:综合判断和决策在计算了权重向量并通过一致性检验后,可以将得到的权重向量应用于问题的层次结构中。
层次分析法确定评价指标权重及计算
层次分析法确定评价指标权重及计算一、本文概述层次分析法(Analytic Hierarchy Process,简称AHP)是一种多准则决策分析方法,由美国运筹学家萨蒂(T.L.Saaty)教授于20世纪70年代初期提出。
这种方法通过将复杂问题分解为若干层次和若干因素,在各因素之间进行简单的比较和计算,得出不同方案的权重,从而为决策者提供定量化的决策依据。
本文旨在详细阐述层次分析法在确定评价指标权重及计算过程中的应用,包括其基本原理、步骤、优缺点以及在实际问题中的案例分析。
通过本文的阐述,读者可以更好地理解和掌握层次分析法的核心思想和应用方法,为解决复杂的多准则决策问题提供有力的工具。
二、层次分析法的基本原理层次分析法(Analytic Hierarchy Process,简称AHP)是一种定性与定量相结合的决策分析方法,由美国运筹学家T.L.Saaty教授于20世纪70年代初提出。
这种方法通过将复杂问题分解为若干层次和若干因素,在各因素之间进行简单的比较和计算,得出不同方案的权重,从而为决策者提供科学、合理的决策依据。
建立层次结构模型:将问题分解为不同的层次,包括目标层、准则层和方案层。
目标层是决策问题的最终目标或理想结果;准则层是实现目标所需考虑的各种准则或因素;方案层是实现目标的具体方案或措施。
构造判断矩阵:通过比较同一层次中各因素对于上一层次中某一准则的重要性,构造判断矩阵。
判断矩阵的元素通常采用1-9标度法赋值,表示各因素之间的相对重要性。
计算权重向量:通过求解判断矩阵的最大特征值及其对应的特征向量,得到各因素对于上一层次准则的权重向量。
常用的求解方法有和积法和方根法。
一致性检验:为保证判断矩阵的一致性和合理性,需要进行一致性检验。
一致性检验的指标为一致性比例CR,当CR小于1时,认为判断矩阵的一致性可以接受;否则,需要重新调整判断矩阵的元素值。
通过层次分析法,我们可以将复杂的决策问题分解为若干层次和因素,通过定性与定量相结合的分析方法,得出不同方案的权重,从而为决策者提供科学、合理的决策依据。
层次分析法
层次分析法层次分析法(The analytic hierarchy process,简称AHP),也称层级分析法什么是层次分析法层次分析法(The analytic hierarchy process)简称AHP,在20世纪70年代中期由美国运筹学家托马斯·塞蒂(T.L.Saaty)正式提出。
它是一种定性和定量相结合的、系统化、层次化的分析方法。
由于它在处理复杂的决策问题上的实用性和有效性,很快在世界范围得到重视。
它的应用已遍及经济计划和管理、能源政策和分配、行为科学、军事指挥、运输、农业、教育、人才、医疗和环境等领域。
层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一样的。
不妨用假期旅游为例:假如有3个旅游胜地A、B、C供你选择,你会根据诸如景色、费用和居住、饮食、旅途条件等一些准则去反复比较这3个候选地点.首先,你会确定这些准则在你的心目中各占多大比重,如果你经济宽绰、醉心旅游,自然分别看重景色条件,而平素俭朴或手头拮据的人则会优先考虑费用,中老年旅游者还会对居住、饮食等条件寄以较大关注。
其次,你会就每一个准则将3个地点进行对比,譬如A景色最好,B次之;B费用最低,C次之;C居住等条件较好等等。
最后,你要将这两个层次的比较判断进行综合,在A、B、C中确定哪个作为最佳地点。
[编辑]层次分析法的基本步骤1、建立层次结构模型。
在深入分析实际问题的基础上,将有关的各个因素按照不同属性自上而下地分解成若干层次,同一层的诸因素从属于上一层的因素或对上层因素有影响,同时又支配下一层的因素或受到下层因素的作用。
最上层为目标层,通常只有1个因素,最下层通常为方案或对象层,中间可以有一个或几个层次,通常为准则或指标层。
当准则过多时(譬如多于9个)应进一步分解出子准则层。
2、构造成对比较阵。
从层次结构模型的第2层开始,对于从属于(或影响)上一层每个因素的同一层诸因素,用成对比较法和1—9比较尺度构造成对比较阵,直到最下层。