花青素提取工艺研究及前景
原花青素的提取、分离及抗氧化性、稳定性的研究
原花青素的提取、分离及抗氧化性、稳定性的研究本文以葡萄籽、葡萄叶子为原料,对其原花青素的提取工艺进行了研究。
在提取葡萄籽中的原花青素时采用50%乙醇,料液比1/40,于60℃下热回流浸提2个小时,提取2~3次最优提取工艺,此工艺提取得到的原花青素提取物得率为22.01%,产品纯度为51.17%;提取葡萄叶子时采用70%乙醇,料液比1/50,于80℃下热回流浸提3个小时,提取1~2次的最优提取工艺,此工艺得到的原花青素得率为34.14%,纯度为13.66%。
对上述提取物进一步纯化,葡萄籽提取物选用AB-8大孔吸附树脂,50%乙醇为洗脱剂,流速控制在4mL/min左右,葡萄籽原花青素总的提取得率为9.09%,产品纯度能达到94~95%;葡萄叶子提取物选用D-101大孔吸附树脂,70%乙醇为洗脱剂,流速控制在4mL/min左右,其原花青素提取得率为18.21%,纯度为25.63%。
采用超滤法对大孔吸附后的葡萄籽精提物进行低聚体的提纯,其过膜后的单体儿茶素含量有明显增加,P5000约为过膜前的6.6倍,P1000为过膜前的7.7倍。
其中压力对超滤通量的影响较大,而温度影响较小,一般选择20~30psig,室温下操作即可,避免在操作过程中长时间将过滤液暴露于强光及空气中。
利用Sephadex LH20将P5000样继续分离,使含量较高的一种二聚体得到了富集。
原花青素的抗氧化(FRAP)、清除DPPH自由基实验表明,葡萄叶子原花青素抗氧化、清除自由基活性均强于抗坏血酸,稍强于葡萄叶子提取物,而与原花青素的低聚体、高聚体相差不大。
原花青素在不同温度、光照、氧气的条件下1~2天内具有较好的稳定性。
经长期(10天)紫外光照射不稳定,含量下降甚至消失,溶液颜色逐渐加深,但其抗氧化、清除自由基能力无显著性变化(p>0.05)。
抗坏血酸对紫外照射引起的原花青素不稳定能起到保护作用,并且存在剂量依赖效应。
类似于口服液等的原花青素溶液产品较适用微波法灭菌。
花青素提取实验报告
花青素提取实验报告花青素提取实验报告植物中的花青素是一类具有丰富颜色的天然色素,广泛存在于花朵、果实、叶子等植物组织中。
花青素不仅为植物赋予了吸引力的色彩,还具有很多生物活性,如抗氧化、抗炎、抗癌等。
因此,对花青素的提取和研究具有重要意义。
本实验旨在探究不同溶剂对花青素提取效果的影响,并比较不同植物材料中花青素的含量差异。
实验选取了红花、紫苏和紫甘蓝三种常见的植物材料作为研究对象。
实验步骤如下:1. 材料准备:准备红花、紫苏和紫甘蓝三种植物材料,并将其分别洗净、切碎备用。
2. 提取溶剂选择:选取乙醇、醋酸乙酯和水三种常用溶剂作为提取试剂,分别标注为A、B和C。
3. 提取过程:将每种植物材料分别加入三个烧杯中,每个烧杯中加入适量的提取溶剂,浸泡一段时间后,用搅拌棒搅拌均匀。
4. 过滤:将提取液用滤纸过滤,去除固体颗粒。
5. 浓缩:将过滤后的提取液分别倒入烧杯中,放在加热板上进行浓缩,直至溶剂蒸发完全。
6. 称量:将浓缩后的花青素溶液称量并记录。
7. 分光光度计测定:将每个烧杯中的花青素溶液分别转移到试管中,使用分光光度计测定吸光度。
8. 计算花青素含量:根据吸光度值,利用标准曲线计算出花青素的含量。
实验结果如下:在本实验中,我们选取了红花、紫苏和紫甘蓝三种植物材料进行花青素提取实验。
通过比较不同溶剂对花青素提取效果的影响,我们发现乙醇溶剂(A)对三种植物材料中花青素的提取效果最好。
在红花提取实验中,乙醇溶剂(A)的吸光度值最高,表明乙醇溶剂对红花中花青素的提取效果最佳。
紫苏和紫甘蓝的提取实验结果也是如此。
这可能是因为乙醇具有较好的溶解性,能够更好地溶解植物组织中的花青素。
此外,我们还发现不同植物材料中花青素的含量存在差异。
红花中花青素含量最高,紫苏次之,紫甘蓝最低。
这可能与不同植物材料的生长环境、基因差异等因素有关。
通过本实验,我们深入了解了花青素的提取过程以及不同溶剂对提取效果的影响。
同时,我们也发现了不同植物材料中花青素含量的差异。
天然花青素的提取
花青素的提取一.课题目的、意义及研究现状1.课题的目的从瓜果蔬菜之中提取天然花青素,满足人们对新型保健品的需求,提高生活水平,丰富选择性,抗氧化、防突变,预防一些心脑血管疾病、保护肝脏等。
花青素(Anthocyanidin),又称花色素,是自然界一类广泛存在于植物中的水溶性天然色素,可以随着细胞液的酸碱改变颜色。
细胞液呈酸性则偏红,细胞液呈碱性则偏蓝,属类黄酮化合物。
也是植物花瓣中的主要呈色物质,水果、蔬菜、花卉等五彩缤纷的颜色大部分与之有关。
花青素的相对分子质量:287.246 分子式:61115O H C花青素分子式2.研究意义花青素同其他天然色素一样无毒无副作用,安全性能高,着色色调自然,更接近天然物质的颜色,且具有保健功能。
自然界有超过300种不同的花青素,他们来源广泛,存在于许多瓜果蔬菜之中,功效神奇。
花青素是一种强有力的抗氧化剂,能够保护人体免受自由基的有害物质的损伤,花青素还能够增强血管弹性,改善循环系统和增进皮肤的光滑度,抑制炎症和过敏,改善关节的柔韧性。
花青素为人体带来多种益处。
从根本上讲,花青素是一种强有力的抗氧化剂,它能够保护人体免受一种叫做自由基的有害物质的损伤。
另外也可用于化妆品,如红色花青素做口红。
这些商品用色素(除葡萄皮色素外)共同特征是对光、热、氧稳定性好,对微生物稳定,一般溶于水和乙醇,不溶于植物油。
具体来说,花青素有如下几种作用:⑴.有助于预防多种与自由基有关的疾病,包括癌症、心脏病、过早衰老和关节炎;⑵.通过防止应激反应和吸烟引起的血小板凝集来减少心脏病和中风的发生; ⑶.增强免疫系统能力来抵御致癌物质;⑷.降低感冒的次数和缩短持续时间;⑸.具有抗突变的功能从而减少致癌因子的形成;⑹.具有抗炎功效,因而可以预防包括关节炎和肿胀在内的炎症; ⑺.缓解花粉病和其它过敏症;⑻.增强动脉、静脉和毛细血管弹性;⑼.保护动脉血管内壁;⑽.保持血细胞正常的柔韧性从而帮助血红细胞通过细小的毛细血管,因此增强了全身的血液循环、为身体各个部分的器官和系统带来直接的益处,并增强细胞活力;⑾.松弛血管从而促进血流和防上高血压(降血压功效);⑿.防止肾脏释放出的血管紧张素转化酶所造成的血压升高;⒀.作为保护脑细胞的一道屏障,防止淀粉样β蛋白的形成、谷氨酸盐的毒性和自由基的攻击,从而预防阿尔茨海默氏病;⒁.通过对弹性蛋白酶和胶原蛋白酶的抑制使皮肤变得光滑而富有弹性,从内部和外部同时防止由于过度日晒所导致的皮肤损伤等等;⒂. 花青素可以促进视网膜细胞中的视紫质再生,预防近视,增进视力。
紫薯中花青素的提取工艺研究
093食品实验作为一类安全、无毒、水溶性类黄酮化合物,花青素具有较高的抗氧化性,对人体健康十分有利。
花青素广泛存在于各种果蔬中,其中紫薯中的花青素含量较高,因此加强对紫薯中花青素的提取研究十分重要。
本文以盐酸溶液作为提取溶剂,对紫薯中花青素进行提取工艺研究,旨在提升花青素的提取质量。
一、试验材料与方法1.试验材料与相关设备与试剂。
随机在超市采购当前进货的新鲜紫薯,分析纯则使用盐酸、乙醇与柠檬酸等。
使用由北京连华永兴科技发展公司生产的UV-1750紫外可见分光光度计,由上海高致精密仪器有限公司生产的HH-6数显恒温水浴锅,以及电子天平与搅拌机。
2.花青素提取方法。
将紫薯切片后使用搅拌机进行粉碎,每份试验紫薯控制在5.0克,并分别添加0.1%与0.2%两种浓度盐酸,以及含有0.2%盐酸的70%乙醇、6%柠檬酸,以上分析纯均添加100mL。
使用70℃温水浴,在浸提150分钟后过滤残渣,使用523纳米波长的紫外分光光度法测定花青素吸光度值,选择最佳提取溶剂。
依旧每份采用5.0克紫薯,加入100mL不同浓度盐酸,从0.05%到1.0%,设置6个档次,同样在70℃恒温水浴浸提150分钟后过滤残渣,使用523纳米波长的紫外分光光度法测定花青素吸光度值,选择最佳提取盐酸浓度。
提取时间也进行同样操作,但是要控制浸提时间从30到360分钟不等,确定最佳提取时间。
确定最佳提取次数操作也类似,但是要针对溶液过滤步骤进行多次提取,以紫薯花青素继续提取为结果,计算提取花青素所需次数。
二、结果分析进行试验后可以得知,在不同分析纯条件下的紫薯花青素提取量不同,以0.2%盐酸提取效率最高,含有0.2%盐酸的70%乙醇提取效率最低,因此在不同提取溶剂紫薯中花青素的提取工艺研究条件下获得的花青素提取效率也不同。
而在确定以盐酸溶液进行花青素提取效率最高后,针对不同盐酸浓度提取花青素量,可以发现盐酸浓度在0.05%-0.2%范围内,花青素提取量与盐酸浓度之间成正比例函数关系,并在盐酸浓度0.2%时获得最大提取量。
花青素的提取及其在食品中的应用
花青素的提取及其在食品中的应用花青素是一类具有强烈色泽和丰富营养的化合物,目前被广泛应用于食品工业中。
花青素广泛存在于植物中,特别是颜色鲜艳的水果和花朵中,如葡萄、紫薯、黑米、红酒等。
花青素含有多种生物活性成分,包括抗氧化、抗癌、抗炎、抗衰老、降血脂等多种功效,因此在保健食品和功能性食品中应用广泛。
花青素的提取方法主要包括有机溶剂法、酸碱法、微波提取法和超声波提取法等。
有机溶剂法是最常用的提取方法之一,可使用乙酸乙酯、丙酮、乙醇、丁醇等多种溶剂进行提取。
而酸碱法则是利用酸或碱对花青素进行水解,将其从原料中分离出来。
微波提取法和超声波提取法则是利用微波或超声波的作用,使花青素快速扩散和释放,提高提取效率。
在食品行业中,花青素主要用于为食品提供颜色,增加食品营养价值以及保护食品质量。
常见的应用包括葡萄酒、果汁、饮料、冰淇淋、巧克力等。
在葡萄酒中,花青素可以增加葡萄酒的颜色、口感和抗氧化性能,具有保护心血管健康、防止癌症等多种功能。
在果汁和饮料中,花青素可以增加颜色、口感和营养价值,改善饮料口感。
在冰淇淋和巧克力中,花青素可以增加颜色、口感和营养价值,提高冰淇淋的质量,同时具有抗氧化和保护心脑血管功能。
在花青素的应用过程中也存在一些问题,主要包括稳定性低、溶解性差和生物利用率低等。
需要进行深入研究,找到解决方法。
目前通常采用复配技术、微胶囊化技术、纳米技术等多种方法,来改善花青素的稳定性、溶解性和生物利用率,并提高其在食品中的应用价值。
除了在食品工业中的应用,花青素也在医药和保健品领域中得到了广泛应用。
花青素具有抗氧化、抗癌、抗炎、抗衰老、降血脂等多种生物活性,因此在保健品和药品中应用广泛。
在保健品市场中,花青素被广泛使用作为营养补充剂。
花青素具有很高的抗氧化活性,可以帮助消除体内自由基,维护机体健康。
花青素还具有降低血压、降低血脂、促进血液循环等多种功效,具有预防心脑血管疾病、老年痴呆症、癌症等疾病的作用。
紫甘蓝花青素的提取工艺研究
紫甘蓝花青素的提取工艺研究摘要天然色素作为食品添加剂,具有安全性高,色泽自然鲜艳等特点,而且有些天然色素相比合成色素对人体的多种疾病还具有预防、治疗等药理作用和保健功能。
天然色素从来就是我们日常饮食的一部分,大自然向我们提供了广泛用于现代食品工业的诱人色素,其中最为常见的是红木、花色苷、甜菜根、姜黄等等。
花青素则是一类在自然界广泛存在的水溶性天然色素不但可作为食用色素还具有多种保健和医药功能。
其中花青素的提取可以从紫色甘薯,紫色甘蓝等有色植物中进行提取,本实验着重对紫甘蓝中的花青素进行提取和研究。
本实验首先对花青素的传统水浴提取工艺进行研究,利用不同的提取方法,诸如提取液种类,提取液固比,提取时间和提取温度,最终选取最佳提取工艺。
而后将传统水浴提取工艺以及微波提取和超声提取等方法进行比对,最终选取花青素的最佳提取条件。
对提取研究后,利用 AB-8 树脂进行纯化,进行花青素稳定性问题的研究。
,关键词: 紫甘蓝,花青素,传统水浴提取,微波,超声,树脂,稳定性,纯化 : III 紫甘蓝花青素的提取工艺研究 Abstract Natural pigment as food additives has the high safety colour and lustre isnaturalbright-coloured and other characteristics and some natural pigments synthesiscompared to the humanbody of disease of pigment has prevention treatment andpharmacological effects and health care function. Natural pigment is that we neverpart of their daily food nature to provide us with the widely used in the modern foodindustry is inviting pigment one of the most common is annatto anthocyanins beetsturmeric and so on. It is a kind of anthocyanins in nature of the widespread water-soluble naturalpigment not only can be used as edible pigment also has a variety of health care andmedical function. Among them the extraction of anthocyanins from purple sweetpotato purple cabbage and other non-ferrous plant extraction this experiment focuseson the purple cabbage anthocyanins extraction and research. This experiment first anthocyanins traditional water bath extraction technologyusing different extraction methods such as extract types extract the liquid-solid ratioextraction time and extracting temperature eventually select the best extractiontechnology. Then will the traditional water bath extraction technology and microwaveextraction and the ultrasonic extraction methods such as comparison eventuallyselected the best extraction conditionsanthocyanins. For the extraction of the studyuse AB-8 resin to purify the stability problem of anthocyanins.Keywords: Purple cabbage anthocyanins traditional water bath extraction microwaveultrasound resin stability purification IV 紫甘蓝花青素的提取工艺研究目录第一章绪论................................................. ................................................... ...... 11.1 食品色素................................................. ................................................... ........ 11.2 花青素概述................................................. ................................................... .... 21.3 紫甘蓝花青素概述................................................. ........................................... 41.3.1 紫甘蓝花青素的提取................................................. ............................ 41.3.2 紫甘蓝花青素的纯化................................................. ............................ 41.3.3 紫甘蓝花青素的组分分析................................................. ..................... 41.3.4 紫甘蓝花青素的特性................................................. ........................... 41.3.5 紫甘蓝花青素的功能特性................................................. ..................... 51.4 紫甘蓝花青素的定量方法................................................. ............................... 61.5 研究目的和意义................................................. ............................................... 7第二章紫甘蓝花青素工艺提取参数................................................. .................. 92.1 实验药品及仪器................................................. ............................................... 92.1.1 实验药品................................................. ................................................... ....... 92.1.2 实验仪器.................................................................................................... ..... 102.2 不同因素对紫甘蓝花色素提取效果的影响.................................................. 102.2.1 提取液对紫甘蓝花色素提取效果的影响................................................. .......... 102.2.2 料液比对紫甘蓝花色素提取效果的影响................................................. ......... 112.2.3 提取温度对紫甘蓝花色素提取效果的影响................................................. ...... 122.2.4 提取时间对紫甘蓝花色素提取效果的影响................................................. ...... 132.3 结果与讨论................................................. ................................................... .. 142.4.1 正交实验设计................................................. ................................................. 142.4.2 正交实验结果与讨论................................................. ..................................... 152.4 超声辅助提取法..............................................................................................152.4.1 超声波................................................. ................................................... .......... 162.4.2 超声辅助提取实验................................................. ........................................... 162.5 微波辅助提取法................................................. ........................................... 162.5.1 微波................................................. ................................................... ............ 172.5.2 微波辅助提取实验................................................. ...............................17第三章紫甘蓝花色素的提取纯化和稳定性研究....................................... 183.1 实验药品及仪器................................................. (19)V 紫甘蓝花青素的提取工艺研究3.2 实验步骤及方法................................................. .............................................183.2.1 树脂预处理................................................. .................................................... 183.2.2 大孔树脂吸附率的计算................................................. ................................................ 183.2.3 树脂吸附和解吸动力学研究................................................. ........................................ 193.2.4 乙醇浓度对解吸的影响................................................. .................................... 203.2.5 紫甘蓝花色素提取的稳定性研究................................................. ...................... 203.3 实验结果与分析................................................. ............................................. 21第四章结论与展望................................................. ............................................ 224.1结论................................................. ................................................... ............ 224.2 展望................................................. ................................................... ............ 22参考文献................................................. ............................................23致谢................................................. . (24)声明................................................. . (25)VI 紫甘蓝花青素的提取工艺研究第一章绪论1.1 食品色素食品的色泽是食品质量和商品价值的重要指标之一,食品悦目的色泽和可口的风味可以增强食品的外观,诱发人的食欲,进而刺激消化液的分泌,以便于人体更好的消化吸收。
花青素的提取_分离以及纯化方法研究进展
2008年第34卷第8期(总第248期)111 花青素的提取、分离以及纯化方法研究进展3孙建霞,张 燕,胡小松,吴继红,廖小军(中国农业大学,教育部果蔬加工工程研究中心,北京,100083)摘 要 花青素是一种存在于自然界的水溶性多酚类化合物,现已发现其具有多种功能。
有关花青素的提取、分离和纯化研究报道很多,文中就近年来国内外相关方面的研究进展进行了分析。
关键词 花青素,提取,分离,纯化 花青素(ant hocyanins )又称花色素,存在于植物中的水溶性天然色素,多以糖苷的形式存在,也称花色苷。
最早而最丰富的花青素是从红葡萄渣中提取的葡萄皮红,它于1879年在意大利上市。
花青素的结构母核是22苯基苯并吡喃阳离子,属于类黄酮化合物。
自然界已知的花青素有22大类,食品中重要的有6类,即矢车菊色素(cyanindin ,Cy )、天竺葵色素(pelargonidin ,Pg )、飞燕草色素(delp hin 2(peonidin ,Pn )、牵牛色素(pet u 2,Pt )和锦葵色素(malvidin ,Mv )[1],其结构如图1所示。
它们在植物可食部分的分布比例分别为50%、12%、12%、12%、7%和7%。
花青素广泛存在于开花植物(被子植物)的花、果实、茎、叶、根器官的细胞液中,分布于27个科,72个属的植物中[2]。
其中尤以葡萄皮、阿龙尼亚苦味果、黑醋栗、草莓、树莓、越橘等含量最为丰富。
图1 食品中几种重要的花青素结构 第一作者:博士研究生(廖小军教授为通讯作者)。
3国家自然科学基金项目(30771511),国家“十一五”支撑计划(2006BAD27B03),国家863计划(2007AA100405)资助 收稿日期:2008-04-24,改回日期:2008-06-13 自然条件下游离的花青素极少见,常与一个或多个葡萄糖(gluco se )、鼠李糖(rhamnose )、半乳糖(ga 2lactose )、木糖(xylo se )、阿拉伯糖(arabinose )等通过糖苷键连接形成花青素,花青素中的糖苷基和羟基还可以与一个或几个分子的香豆酸、阿魏酸、咖啡酸、对羟基苯甲酸等芳香酸和脂肪酸通过酯键形成酰基化的花青素[1]。
花青素的研究现状及发展趋势_赵宇瑛
花青素的研究现状及发展趋势赵宇瑛,张汉锋 (长江大学园艺园林学院,湖北荆州434025)摘要 综述了花青素的研究现状和发展趋势,包括花青素的植物来源,种类、结构与特性,花青素的分离与分析,生物合成途径,生物合成的基因工程,生理和保健功能,以及组织培养技术。
关键词 花青素;研究现代;研究发展趋势中图分类号 TS264.4 文献标识码 A 文章编号 0517-6611(2005)05-0904-02Current Situation and Investi gatio n of Antho cyanidin and its P ro gressiv e T rendZHA O Yu-y ing et al (The College of Horticulture and Garden,Yangtz e Un iversit y,Jingzhou,H ubei434025)A bstract The stud y on the origin,variety,s tructure and characteris tics,ph ysiological function an d ap plication prospect of Anthocyanidin at hone and abroad was s um marized.Key w ords Origin;Variety;Structure;Characteristic;Ph ysiological function 花青素(A nthoc yanidin),又称花色素,是自然界一类广泛存在于植物中的水溶性天然色素,属黄酮类化合物[1~4]。
也是植物花瓣中的主要呈色物质,水果、蔬菜、花卉等五彩缤纷的颜色大部分与之有关。
在植物细胞液泡不同的pH值条件下,使花瓣呈现五彩缤纷的颜色[2,3]。
在酸性条件下呈红色,其颜色的深浅与花青素的含量呈正相关性,可用分光光度计快速测定,在碱性条件下呈蓝色。
花青素的研究进展及其应用
花青素的研究进展及其应用一、本文概述花青素是一类广泛存在于自然界中的天然色素,因其独特的色彩和生物活性,在食品、医药、化妆品等多个领域具有广泛的应用前景。
近年来,随着科学技术的不断发展,花青素的研究逐渐深入,其在抗氧化、抗炎、抗肿瘤等方面的生物活性得到了广泛关注。
本文旨在综述花青素的研究进展,包括其提取工艺、生物活性、作用机制等方面的最新研究成果,同时探讨花青素在各个领域的应用现状及其未来发展趋势。
通过本文的阐述,旨在为花青素的研究与应用提供全面的参考,为相关领域的研究者和从业人员提供有价值的指导和帮助。
二、花青素的结构与性质花青素是一类广泛存在于自然界中的天然色素,其化学结构属于黄酮类化合物,主要存在于植物的花、果实、茎和叶等部位。
花青素的基本结构是由两个苯环通过一个吡喃环连接而成,呈现出独特的蓝色或紫色。
这些色彩不仅使植物呈现出五彩斑斓的外观,而且赋予了植物诸多生物活性。
花青素的主要性质包括其稳定性、水溶性以及抗氧化性等。
花青素在水溶液中呈现鲜艳的色泽,且其颜色随pH值的变化而变化,这一特性使其在食品工业中具有广泛的应用前景。
花青素具有较强的抗氧化性,能够有效清除体内的自由基,从而起到延缓衰老、预防疾病的作用。
在结构上,花青素具有多种类型,如黄酮醇、黄酮、黄烷酮等,不同类型的花青素在结构和性质上存在一定的差异。
这些差异使得花青素在生物活性方面表现出多样性,如抗炎、抗癌、抗心血管疾病等。
花青素的结构与性质使其成为一类具有重要研究价值的天然色素。
通过深入研究花青素的结构与性质,不仅可以揭示其在植物生长发育和逆境响应中的生物学功能,还可以为花青素在食品、医药等领域的应用提供理论依据和技术支持。
三、花青素的提取与分离花青素作为一类具有丰富生物活性的天然色素,其提取与分离技术在近年来得到了广泛的研究与发展。
花青素的提取主要依赖于其溶于有机溶剂的特性,常用的提取方法包括溶剂提取法、超声波辅助提取法、微波辅助提取法以及超临界流体萃取法等。
花青素提取实验论文[终稿]
紫甘蓝中花青素的提取研究【摘要】蓝花青素具有很强的抗氧化作用,具有清除体内自由基、过敏、保护胃粘膜等多种功能,引起了国内外学者广泛关注。
目前抗变异、抗肿瘤、抗,对花青素的研究主要集中于花青素的提取、分离纯化、热稳定性、抗氧化性及其生理功能等方面。
本文主要研究了紫甘蓝花青素的提取工艺;用大孔树脂初步纯化紫甘蓝花青素;对紫甘蓝花青素纯度鉴定。
采用“溶剂提取、萃取、树脂纯化、薄层色谱”相结合的方案对紫甘蓝花青素进行了分离纯化。
【关键词】紫甘蓝花青素提取分离纯化1.1引言花青素作为可使用色素之一,具有多种生物学作用,将广泛用于食品加工、医药保健品、化妆品行业。
虽然国内外己开展了一些研究,主要集中在花青素粗品的提取方法的研究方面,而对紫甘蓝花青素的组成及分子结构鉴定、生物学活性、药理作用的研究还很少,还需要大量数据为其进一步开发和利用提供理论依据。
2.1材料与方法2.1.1实验材料新鲜紫甘蓝2.1.2实验方法溶剂提取、萃取、树脂纯化、薄层色谱2.2主要仪器、试剂分析天平、外分光光度计、环水式多用真空泵、心机、旋转蒸发仪、恒温水浴锅、无水乙醇、甲醇、孔树脂、浓盐酸。
2.3实验方法2.3.1紫甘蓝色素的提取取新鲜80G的紫甘蓝叶片于大杯中加入一定的浸提剂,吸取一定体积的浸提液于 1 Oml比色管中,用浸提剂稀释至刻度,用浸提剂做空白,测定其对520nm光的吸光度。
采用溶剂提取法。
称取紫甘蓝80g,用500ml的60%乙醇和1%盐酸混合液进行捣碎浸提8层纱布过滤,4℃条件下静置3h,离心测OD 值。
2.3.2紫甘蓝色素的初步纯化大孔树脂预处理的方法:将待处理的大孔树脂装入柱中,用95%乙醇浸泡24h一用95%乙醇2}4BV冲洗一用去离子水洗至无醇味一5%氢氧化钠溶液2}4BV冲洗树脂柱一水洗至中性一10%乙酸2}4BV冲洗通过树脂柱一水洗至中性,备用。
滤液用5倍的纯水稀释,大孔吸附树脂法分离,往吸附柱中先用15%乙醇除杂,再用60%乙醇洗脱收集洗脱液;用四分之一的盐酸在90℃条件下水解1h,再加5倍纯水稀释;大孔吸附树脂再次分离,此时用水除杂,无水乙醇洗脱收集;2.3.3花青素的浓缩结晶无水乙醇洗脱液用旋转蒸发仪浓缩,放冰箱中等待是否有结晶甲醇:盐酸=4:1做展开剂测纯度3.1 实验结果及讨论3.1.1浓度计算紫甘蓝捣碎榨汁后得到深紫色溶液,过滤静置稀释40测得OD值为0.865由曲线可得到花青素含量为1.98mg/ml或 6.94mmol/ml3.1.2结果讨论关于天然色素的提取纯化。
蓝莓中花青素的提取工艺研究
中国果菜China Fruit &Vegetable第43卷,第11期2023年11月综合利用Comprehensive Utilization蓝莓中花青素的提取工艺研究李艳秋1,2,陈丹丹3,贾娟1,2(1.漯河职业技术学院食品学院,河南漯河462002;2.河南工业大学漯河工学院,河南漯河462002;3.河南豫蓝环保科技有限公司,河南郑州450001)摘要:为有效提取蓝莓中的花青素,本文以蓝莓为原料,采用溶剂提取法提取蓝莓中的花青素;用乙醇、柠檬酸混合溶液作为提取剂,通过单因素和正交试验优化提取工艺。
结果表明,蓝莓中花青素的最佳提取工艺参数为提取温度30℃,乙醇和柠檬酸的体积比3∶7,提取时间180min ,料液比1∶20(g/mL ),此时花青素的提取量为63.128μg/g ,此试验为蓝莓花青素的提取应用提供了依据。
关键词:蓝莓;花青素;溶剂提取法中图分类号:550.99文献标志码:A文章编号:1008-1038(2023)11-0020-05DOI:10.19590/ki.1008-1038.2023.11.005Study on Extraction Technology of Anthocyanins from BlueberryLI Yanqiu 1,2,CHEN Dandan 3,JIA Juan 1,2(1.Institute of Food,Luohe Vocational Technical College,Luohe 462002,China;2.Luohe Institute of Technology,Henan University of Technology,Luohe 462002,China;3.Henan Yulan Environmental ProtectionTechnology Co.,Ltd,Zhengzhou 450001,China)Abstract:In this paper,blueberry was used as raw material to extract anthocyanins by solvent,and the mixture ofethanol and citric acid was used as extractant.The extraction technology of anthocyanin from blueberry was optimized by single factor and orthogonal test.The results showed that the optimum extraction conditions were as follows:extraction temperature 30℃,volume ratio of ethanol to citric acid 3∶7,extraction time 180min,solid-liquid ratio 1∶20(g/mL),the extraction yield of anthocyanin was 63.128μg/g,which provided a basis for the extraction and application of anthocyanin from blueberry.Keywords:Blueberry;anthocyanin;solvent extraction method收稿日期:2023-02-21基金项目:2022年度河南省高等学校重点科研项目(22B550013)第一作者简介:李艳秋(1981—),女,讲师,硕士,主要从事食品检测研究工作蓝莓(spp.)属于杜鹃花科越橘类,颗粒较小,外观类似于椭圆,果皮上有一层果霜,果肉软、嫩,酸甜适中,老人、小孩都可以食用,在水果中属于上品,有很高的营养价值,因而受到人们的欢迎[1]。
原花青素提取 分离纯化方法的研究进展
3、微波辅助提取法
微波辅助提取法也是一种高效的提取方法。该方法利用微波的加热作用,使 植物材料内部的分子振动,从而破碎细胞,释放出其中的花青素。微波辅助提取 法的优点是加热均匀,且提取时间短。
二、花青素的分离方法
1、柱层析法
柱层析法是一种常用的分离方法,可用于花青素的分离。该方法利用不同物 质在固定相和流动相之间的分配系数不同,从而实现分离。常用的柱层析法包括 硅胶柱层析、聚酰胺柱层析等。
参考内容二
花青素是一种广泛存在于植物中的天然色素,具有许多重要的生物学和化学 特性。它们赋予植物丰富多彩的颜色,帮助植物在自然环境中生存和繁衍。近年 来,随着科技的不断进步,花青素的提取、分离和纯化方法也在不断改进和完善。 本次演示将综述花青素提取、分离与纯化方法的研究进展。
一、花青素的提取方法
高速逆流色谱法是一种新型的分离技术,其原理是利用不同物质在两相溶剂 中的分配系数不同来进行分离。该方法具有分离效率高、纯度高、操作简便等优 点,但需要使用大量的有机溶剂,且设备成本较高。
毛细管电泳法则是一种利用电泳原理来进行分离的方法。该方法具有分离效 率高、分析速度快、样品用量少等优点,但难以用于大规模生产。
沉淀法则是利用某些物质在一定条件下能够与原花青素形成共沉淀来进行分 离的方法。该方法具有操作简便、成本低等优点,但难以获得高纯度的产品。
三、展望
随着科学技术的不断发展,相信未来还会有更多新的技术和方法被应用于原 花青素的提取、分离和纯化。例如,超临界流体萃取技术、分子印迹技术等都有 望为原花青素的提取和分离带来新的突破。随着人们对原花青素的药理作用和生 物合成途径等方面的深入研究,也将为原花青素的开发和应用提供更为广阔的前 景。
2、膜分离法
膜分离法是一种高效的纯化方法。该方法利用膜的孔径大小不同,截留不同 分子量的物质,从而实现纯化。常用的膜分离法包括超滤、纳滤等。膜分离法的 优点是纯化效果好、能耗低,但膜的孔径大小难以控制。
葡 萄 皮 原 花 青 素 的 提 取 工 艺 研 究
葡萄皮原花青素的提取工艺研究陈国文兰州理工大学石油化工学院2008级应用化学四班摘要:以野生毛葡萄皮为原料,以原花青素提取率考察指标, 研究提取溶剂种类、浓度、料液比、提取温度、提取时间、提取次数等因素对原花青素提取效果的影响。
通过正交实验, 确定野生毛葡萄皮中原花青素的最佳提取工艺条件为: 提取溶剂为60% 乙醇, 料液比1:9 , 提取温度60o C , 提取时间25 h, 提取3 次。
在此优化条件下野生毛葡萄皮中原花青素的平均提取率为5.02% 。
关键词:野生毛葡萄; 原花青素; 提取引言:山葡萄(Vitis amurensis Pupr)人工家植近40年,由于该树种生产栽培易管理,产量和效益高,目前在我国内蒙古和东北地区生产栽培近1.1万hm2,年总产量12.8万t,果实发酵酿酒产生废皮渣近1.8万t,目前这些皮渣大多被当作肥料、饲料甚至垃圾处理,附加值很低。
随着国内外不断深入研究发现,葡萄皮渣中存在着大量的、多种的有益成分,蕴含着巨大的经济效益,其中低聚原花青素、白藜芦醇、齐墩果酸、葡萄籽油等多种功能性成分,具有良好的医疗、保健作用[1-2] 。
因此,开展葡萄皮渣综合利用,不仅可以获得良好的社会效益,而且能够有效减轻环保压力,获得巨大的经济效益[3] 。
于2009-2010 年对山葡萄发酵酿酒皮渣中的原花青素、籽油和白藜芦醇含量进行测定分析,取得了良好的效果。
野生毛葡萄是喀斯特地区特有的生态植物 , 所酿造的葡萄酒以独特的风味和具有软化血管和驻颜益寿的功效著称。
葡萄皮中还具富含黄酮类化合物[4-5] , 原花青素作为黄酮类化合物的一种, 由于其优越的抗氧化活性和能预防心血管疾病、抗肿瘤、抗辐射、防血小板凝结, 且能调节哺乳动物关键生物途径, 抑制多种细菌, 以高效、低毒、高生物利用率等功效越来越受到国内外的广泛关注 [6-7]。
我国西部地区有着丰富的野生毛葡萄资源 , 其中大部分用于酿酒 , 另一部分用于葡萄汁饮料。
黑枸杞花青素的提取及其抗氧化活性研究
黑枸杞花青素的提取及其抗氧化活性研究一、本文概述随着人们对健康生活的追求和对天然抗氧化剂的日益关注,黑枸杞作为一种富含花青素的天然植物资源,其抗氧化活性及潜在的健康益处受到了广泛关注。
黑枸杞,又称黑果枸杞,是一种生长在我国西北地区的特色植物,其果实中含有丰富的花青素类物质,具有显著的抗氧化、抗炎、抗疲劳等生物活性。
因此,对黑枸杞花青素的提取工艺及其抗氧化活性进行深入研究,不仅有助于理解其生物活性的物质基础,也为开发天然抗氧化剂、功能性食品和药品提供了新的可能。
本文旨在探讨黑枸杞花青素的提取方法,并研究其抗氧化活性。
我们将介绍黑枸杞花青素的主要种类和分布,以及花青素提取的常用方法和技术。
然后,我们将详细阐述优化后的黑枸杞花青素提取工艺,包括提取溶剂的选择、提取条件的优化等。
接着,我们将通过一系列体外和体内实验,评估黑枸杞花青素的抗氧化活性,包括其清除自由基的能力、对氧化应激损伤的保护作用等。
我们将对黑枸杞花青素的应用前景进行讨论,以期为黑枸杞的深入开发和利用提供理论支持和科学依据。
二、黑枸杞花青素提取方法的研究黑枸杞作为一种珍贵的天然资源,其富含的花青素具有极高的营养价值和药用价值。
因此,研究黑枸杞花青素的提取方法对于充分利用这一资源,发挥其抗氧化活性具有重要意义。
本研究主要探讨了不同的提取方法对黑枸杞花青素提取效果的影响。
在提取方法的选择上,我们考虑了溶剂提取法、超声波提取法、微波提取法以及超临界流体萃取法等多种方法。
溶剂提取法是最常用的提取方法,通过选择适当的溶剂和提取条件,可以有效地提取出黑枸杞中的花青素。
超声波提取法利用超声波产生的空化效应和机械效应,加速溶剂对花青素的渗透和溶解,从而提高提取效率。
微波提取法则利用微波的热效应和非热效应,使黑枸杞中的花青素在较短时间内达到较高的提取率。
超临界流体萃取法则是一种新型的提取技术,通过调节萃取压力和温度,可以在不破坏花青素结构的前提下,实现高效、环保的提取。
天然色素花青素研究现状及其在食品工业中的应用前景
花青素是一种广泛存在于植物中的水溶性色素,对生物体具有重要的生理活性。
文章中对花青素的结构、提取和纯化的崔 红 文工业中的应用前景天然色素花青素研究现状及其在食品力的影响中发现,连续给药4周后,在小鼠器官组织中,模型+剂量组与模型对照组相比,丙二醛含量显著降低,谷胱甘肽过氧化物酶、超氧化物歧化酶活性、总抗氧化能力和抑制羟自由基能力显著增加,这说明蓝莓花青素能够保护受损的器官,具有一定的抗氧化作用。
2014年田喜强等人采用超声波法辅助提取紫薯花青素进行清除羟基自由基抗氧化性能力的研究。
研究表明,pH 7.0时,紫薯花青素具备较好的清除羟基自由基能力,其抗氧化能力强于抗坏血酸。
景志行等人在对野生蓝莓的体外抗氧化性研究时发现,野生蓝莓花青素抗氧化能力显著,与浓度梯度呈正相关关系;在浓度800μg/m L时对超氧阴离子的清除率达到86.86%,浓度为100μg/m L时对双氧水自由基的清除率达到73.93%。
预防心血管疾病,保护肝脏。
大量研究发现,花青素在预防心血管疾病和保护动物肝脏方面具有重要作用。
欧海龙等每天用不同剂量(低、中、高:50、100、200 mg/kg)的花青素喂食小鼠,连续灌胃8周后,对血清和肝脏各项血脂含量进行检测,发现总胆固醇(TC)、三酰甘油(TG)和低密度脂蛋白胆固醇(LDL-C)水平,随着花青素剂量的增加不断降低,说明花青素对高脂诱导的动脉粥样硬化小鼠具有降低血脂的功能。
Hwang等在对紫薯花青素抗叔丁基氧化产物诱导肝毒性保护机制的研究中发现,花青素能够有效降低大鼠肝脏损伤发生的概率。
闫倩倩等在紫甘薯花青素对小鼠乙醇性肝损伤的预防保护作用研究中发现,紫甘薯花青素各剂量组均能不同程度降低急性乙醇肝损伤小鼠血清中丙氨酸氨基转移酶(ALT)、天门冬氨酸氨基转移酶(AST)的活性,升高组织中超氧化物歧化酶(SOD)、谷胱甘肽转移酶(GST)、过氧化氢酶(CAT)的活性及谷胱甘肽(GSH)的含量。
紫薯花青素提取工艺研究
紫薯花青素提取工艺研究紫薯花(DioscoreaoppositaThunb.)是一种高度重要的多年生药用植物,具有极高的营养价值和生物活性,引起了世界各国的关注。
其中,青素是紫薯花的一种重要的成分,是一种功能性生物活性物质,被认为是抗氧化剂和抗癌物质,在促进人体健康方面具有重要作用。
紫薯花青素提取工艺是催化剂、溶剂、反应条件和分离纯化等综合运用的工艺体系,其中有许多技术瓶颈要解决。
紫薯花青素的提取方法主要可以分为物理法和化学法。
物理法主要包括热萃取、冷抽提、超声波萃取和超临界流体抽提等。
化学法主要包括溶剂萃取、水抽提、微萃取、离子交换法和改性纤维素吸附法等。
从物理方面看,紫薯花青素提取通常采用超声破碎,再经热反应抽提,用于脱除木质素和脱水。
热反应抽提方法用于对有机物、木质素和水分的混合物进行分离,可显著提高提取率,而且运行稳定可靠。
超临界流体萃取法具有操作简便、抽提效率高等优点,已成为获取高品质紫薯花青素的新技术,为有效利用紫薯花提供了新的思路。
从化学角度看,溶剂萃取法主要用于抽提混合物中的有机挥发物和非挥发物,具有操作简便、抽提效率高、环境无污染等优点,是当前紫薯花青素提取中最为普遍应用的方法。
水抽提法可以利用水抽提剂,有效分离紫薯花中的有机物、木质素和水分,是当前被广泛使用的有机物萃取方法。
而微萃取也是普遍采用的抽提方法,具有操作简便、成本低、效率高等优点,可用于紫薯花植物中有机化合物的有效提取。
当前,紫薯花青素提取工艺还处于发展初期,还有许多技术方面的瓶颈待解决,比如溶剂抽提工艺中的抽提时间短、成本高,微萃取工艺中的抽提效率低、产量少等等。
因此,加强紫薯花青素的提取工艺研究,改进提取方法,搜索具有高效抽提效果的优质提取剂,也是当前亟待解决的重要问题。
综述以上,紫薯花的提取工艺多种多样,具有物理法和化学法两种不同的抽提方式。
当前,紫薯花青素提取主要采用溶剂萃取法和微萃取法,但存在抽提时间短、抽提效率低等难题,有待于进一步改进。
紫薯花青素提取工艺研究
紫薯花青素提取工艺研究紫薯花青素作为新型抗氧化剂,具有良好的抗氧化性能、低毒性和较强的抗菌作用,因此在营养保健产品和保护性食品中得到广泛应用。
由于紫薯花青素在天然界中存在量较少,因此有必要研究其有效提取工艺。
本文重点介绍紫薯花青素提取工艺的最新研究进展。
1.薯花青素的主要来源紫薯花青素是一种天然的植物抗氧化剂,主要来源于紫花薯(Ipomoea batatas)。
紫薯花青素具有多种形式,如3,3双青绿色素、3,3双乙环青绿色素、5,5双乙环青绿色素等。
紫薯花青素具有良好的抗氧化性能,可在体内防止脂质过氧化,减少心血管疾病的发生。
2. 传统的提取工艺迄今为止,紫薯花青素的提取通常采用超声波法、离子交换树脂和冷冻萃取法等传统提取工艺。
超声波提取法的优点在于提取效率高,可以在短时间内获得高纯度紫薯花青素提取物;而离子交换树脂提取法则具有低成本,操作简单,可实现连续化生产;冷冻萃取法可在不改变紫薯花青素的结构的情况下有效萃取紫薯花青素。
3.性的提取工艺由于传统的提取工艺存在着一定的局限性,一些技术工艺被改性用于紫薯花青素提取。
例如,有学者采用水蒸气萃取法,配合空气分离技术和水溶性萃取剂,以较低的温度快速提取紫薯花青素;另一方面,有学者分别采用催化SIZE缩合技术和水溶性葡萄糖胺来有效提取紫薯花青素。
4.结随着食品安全意识的提高,对紫薯花青素的提取技术有了更高的要求。
紫薯花青素的提取技术有许多传统的方法,如超声波法、离子交换树脂法和冷冻萃取法等,但这些方法都存在一定的局限性,如提取效率低,操作复杂等。
最近几年来,有一些改性的提取技术也开始被采用,如水蒸气萃取法和催化SIZE缩合技术等,它们可以快速、有效地提取紫薯花青素,并可以获得较高的纯度。
以上就是关于紫薯花青素提取工艺的研究,总结起来,紫薯花青素是一种具有重要作用的抗氧化剂,本文重点介绍了它的提取工艺,包括传统的提取工艺和新型改性的提取技术。
随着技术的发展,可以期待更多合理、高效、低成本的提取技术出现,以满足人们对紫薯花青素的需求。
黑玉米粒花青素提取工艺及其生物活性研究进展
黑玉米粒花青素提取工艺及其生物活性研究进展王 燕,龚 琛,明建青(广州医科大学附属第六医院 清远市人民医院,广东清远 511518)摘 要:黑玉米粒花青素为黄酮类化合物,其生物活性广泛,有超强的抗氧化、抗癌、降血脂、降血糖、调节胃肠道菌群、减轻心脏毒性等生物活性,在食品、药品和保健品开发方面具有广阔的应用前景。
本文对黑玉米粒花青素的提取工艺及其生物活性进行综述,为黑玉米粒花青素的深入研究及黑玉米资源合理开发利用提供参考。
关键词:黑玉米粒;花青素;提取工艺;生物活性;研究进展Research Progress on Extraction Technology and Biological Activities of Black Corn Kernel AnthocyaninsWANG Yan, GONG Chen, MING Jianqing(The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan 511518,China)Abstract: Black corn kernels anthocyanin is a flavonoid compound with a wide range of biological activities, and has strong biological activities such as anti-oxidation, anti-cancer, blood lipid lowering, blood sugar lowering, regulating gastrointestinal flora, and reducing cardiac toxicity. It has a broad application prospect in the development of food, medicine and health care products. This paper reviews the extraction process and biological activity of anthocyanins from black corn kernels, providing a reference for the further study of black corn kernel anthocyanins and the rational exploitation and utilization of black corn resources.Keywords: black corn kernel; anthocyanin; extraction technology; biological activities; research progress黑玉米(Zea mays L.)又名黑糯米、紫玉米,由秘鲁传入我国,属被子植物门单子叶植物纲的禾本目玉蜀黍属植物[1]。
花青素的提取工艺与抗氧化性能研究
花青素的提取工艺与抗氧化性能研究花青素是一类具有抗氧化性能的天然色素,广泛存在于植物的花瓣、果实和根茎中。
近年来,随着人们对天然食品添加剂的需求增加,花青素的提取工艺和其抗氧化性能的研究引起了广泛关注。
1. 花青素的提取工艺花青素的提取工艺主要包括溶剂提取法、超声波辅助提取法和酶法提取等。
其中,溶剂提取法是最常用的方法之一。
该方法首先将植物材料粉碎成合适大小的颗粒,然后加入适量的溶剂进行浸提。
常用的溶剂有乙醇、乙酸乙酯和甲醇等。
超声波辅助提取法是在溶剂提取法的基础上,加入超声波的作用,提高提取效率。
酶法提取是在溶剂提取的基础上,加入合适的酶,通过酶的作用解聚细胞壁,促进花青素的释放。
2. 花青素的抗氧化性能花青素具有强大的抗氧化性能,可以清除自由基,抑制氧化反应的发生。
研究表明,花青素比维生素C和维生素E的抗氧化活性更强,对人体健康具有重要作用。
花青素抗氧化的机制主要通过两种方式实现:一是直接清除自由基,包括超氧离子自由基、羟自由基等;二是通过间接作用,促进人体内抗氧化酶的活性,如谷胱甘肽过氧化物酶和超氧化物歧化酶等。
3. 花青素提取工艺对其抗氧化性能的影响花青素的抗氧化性能受到提取工艺的影响,不同的提取方法和条件会导致提取物中花青素含量和抗氧化活性的差异。
研究发现,超声波辅助提取法能够显著提高花青素的提取效率和抗氧化活性,这是由于超声波能够破坏细胞壁结构,释放更多的花青素。
酶法提取也能够提高花青素的提取效率和抗氧化活性,酶的作用能够有效分解细胞壁,加速花青素的释放。
4. 花青素在食品和医药领域的应用由于花青素具有良好的抗氧化性能和健康功效,它被广泛应用于食品和医药领域。
在食品领域,花青素可以用作天然色素,增加食品的色彩和吸引力。
在医药领域,花青素具有很好的抗炎、抗衰老和抗肿瘤活性,可以用于开发抗氧化剂和抗癌药物。
总之,花青素的提取工艺与其抗氧化性能密切相关。
通过选择合适的提取方法和条件,可以提高花青素的提取效率和抗氧化活性,为其在食品和医药领域的应用提供更好的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
花青素提取工艺研究及前景作者:张卫波,杨豆,吕宁来源:《湖南饲料》 2016年第4期张卫波杨豆吕宁(陕西理工学院化学与环境科学学院,陕西汉中723001)摘要:本文对目前花青素传统溶剂提取方法及加压、微波、微生物发酵或酶解法、超声波、亚临界水辅助提取方法的相关研究进行了介绍,以此探讨花青素作为饲料添加剂的应用前景,为花青素在动物饲料中的应用提供参考依据。
关键词:花青素;饲料添加剂;提取工艺前言花青素是一种天然紫色素添加剂,是目前科学界发现的防治疾病、维护人类健康最直接、最有效、最安全的自由基清除剂,其清除自由基的能力是维生素C的20倍、维生素E的50倍。
花青素具有小分子结构,其基本结构包含二个苯环,并由一3碳的单位连结(C6-C3-C6),属于酚类化合物中的类黄酮类。
当前食品工业中所用的色素大多数是合成色素,从安全性上来说多少带有毒性,若长期使用会危害人的健康,因此天然色素就逐渐引起了科研人员的关注。
至今国内市场上仍缺乏花青素纯品,因此对花色苷类色素的深入研究和开发有利于提取高纯度的花青素,为实现大批量的工业生产提供了必备的表征条件和理论依据。
目前,花青素主要用于人的的保健品,在动物饲料中的应用很少。
本文介绍了花青素在国内外的一些常见以及新兴的提取方法,并讨论花青素将来作为料饲添加剂的前景。
1花青素的提取方法1.1有机溶剂萃取法有机溶剂萃取法是用一种或几种与水不相混溶的有机药剂,从水溶液中选择性地提取有用组分的浸出液处理方法。
在提取过程中,有时还要在萃取剂中加入一些调节剂,以使萃取剂的性能更好。
在提取黄酮类成分时,多用乙酸乙脂和水的两相萃取。
溶剂提取法是花青素较为常规的提取方法,提取溶剂多选择甲醇、乙醇、丙酮、水或者混合溶剂等。
传统的溶剂提取方法提取时间较长,生产效率较低,且热溶剂容易造成花青素降解以及使其生理活性降低。
目前,国外提取花青素的传统方法是采用低温(4~8℃)或者常温(25℃)避光条件下用1%HCL甲醇溶液浸提16~20h,或者采用0.5%、1%的三氟乙酸的甲醇溶液,4℃条件下浸提24h。
考虑到食品中会残留甲醇的毒性,不利于应用到饲料添加剂上,也有用1%的HCL乙醇溶液代替甲醇溶液。
有时为了避免酰基化的花青素水解,也可选择用弱酸如酒石酸、柠檬酸等代替盐酸。
而国内则多采用热溶剂(50~70℃)浸提1~2h的方法来提取花青素,溶剂可选择不同浓度的醇溶液或酸化的水溶液。
有机溶剂萃取为全液过程,具有易分离、试剂易再生和操作安全等特点,发展相当迅速,在传统工业生产中应用广泛。
但其主要缺点是部分试剂较昂贵,易乳化夹带,成本较高。
伴随着科技的发展,以及新兴技术的不断推出,该方法的应用已经呈现出逐渐下滑的趋势。
1.2加压溶剂萃取法加压溶剂萃取,又称加压液体萃取、快速溶剂萃取,它是通过外来压力提高溶剂的沸点,进而增加物质在溶剂中的溶解度以及萃取效率的。
Priscilla C等提取嘉宝果中的花青素,对加压溶剂萃取、超声辅助及索氏提取法进行对比,发现加压溶剂法的提取效果最好。
Fan等,研究表明,在80℃左右最有利于花青素的加压溶剂萃取。
同时样品质量对加压溶剂萃取的影响较大。
随着样品质量增加,提取率逐步降低。
研究显示,加压溶剂萃取具有提取率高、有机溶剂用量少、快速、基质影响小、同收率高和重现性好,且自动化程度高、萃取过程密闭、对人体危害小、环境污染少等优点。
但是,其经济成本较高。
加压溶剂提取法允许了高温提取,提高了分析物的溶解度,同时溶剂的使用仍会造成环境污染等问题,冈此运用水试剂在加压提取中是更好的选择。
1.3微波辅助提取法微波辅助提取是利用在微波场中,根据吸收微波能力的差异使得基体物质的某些区域或萃取体系的某些组分被选择性加热,从而使得被萃取物质从基体或体系中分离,进入到具有较小介电常数、微波吸收能力相对较差的萃取溶剂中。
并且微波加热也利用分子极化或离子导电效应直接对物质进行加热。
因此,该方法具有热效率高、升温快速均匀的优势,大大缩短了萃取时间,提高了萃取效率。
目前,关于微波辅助提取法对花青素提取率影响因素的研究集中在微波功率、提取时间、温度及料液比等。
Liazid等利用微波辅助提取葡萄皮中的花青素,在提取时间5~15 min之内,花青素含量都差别不大。
超过30min以后,花青素含量降低。
Li Yuan等的研究结果表明,随着能量密度增加,花青素得率迅速增加,达到最高点后进入平台期。
杨华等选用微波提取方法从紫甘薯中提取花青素,采用两种方法有效结合,克服了各自不足之处,使提取效果更佳。
裴志胜等利用超声一微波协同萃取法进一步优化了紫甘薯花青素提取工艺。
微波提取法具有设备简单、适用范围广、萃取效率高、节省试剂、废液排放量少、操作简单等特点。
微波提取法目前己应用在一些生物活性物质的提取中,而其在花青素的提取中应用仍有待发展。
但是其受生产安全性差、微波辐射泄漏隐患大等问题的困扰,令微波辅助溶剂萃取法目前尚不能大规模发展。
1.4微生物发酵或酶解法微生物发酵或酶解法将生物发酵技术应用于花青素的提取之中,是生物科学与化工生产之间的超强渗透与有效结合。
此法是利用微生物或酶的作用将细胞壁成分降解,让胞内的花青素成分迅速渗透扩散出来,以利于提取。
日本三荣化学工业株式会社最早用生物酶处理法得到一种含淀粉成分非常少的澄清色素液,国内韩永斌等叫发明了一种发酵法提取紫甘薯红色素的生产工艺。
Noriaki等利用发酵法得到富含紫苷薯花青素的饮料。
该方法的优点是操作稳定性及可靠性高,环境友好。
并且,微生物发酵或酶辅助提取法与传统方法相比明显提高提取率且缩短提取时间,并减少有机溶剂的使用,降低成本。
这类方法研究者大都是在实验室进行研究的,尚未成熟以及缺乏相应的大规模生产设备。
1.5超声波辅助提取法超声波是一种机械波,有效频率一般在20~50kHz范围。
超声波提取是将超声波产生的空化、振动、粉碎、搅拌等综合效应应用到天然产物成分提取工艺中,通过破坏细胞壁,增加溶剂穿透力,从而提高提取率和缩短提取时间,达到高效、快速提取细胞内容物的过程。
超声波提取不对提取物的结构、活性产生影响。
超声波在20世纪50年代后逐渐应用于化学化工生产过程之中,Lien等使用酸性乙醇提取紫甘薯花青素,发现超声波辅助提取工艺可明显提高提取率,并成功地建立了响应面法模型对萃取工艺进行了改进。
钮福祥等发现循环超声波乙醇提取法提取紫甘薯花青素效果最好,并确定了最佳提取条件。
超声波提取较传统提取方法具有速度快、提取率高、温度低、节约溶剂等多项特点,应用广泛,不受提取物成分极性、分子质量大小的限制,适用于绝大多数物质有效成分的提取。
除此之外,该方法还具有操作简单易行、提取料液杂质少、有效成分易于分离、纯化等特点。
综合经济效益显著,是一种辅助传统浸取,实现高效、快速、节能的现代高新技术之一。
超声波提取运用前景好、操作简单、快速高效、生产过程清洁无公害。
此方法目前还未广泛应用,有待进一步发展,以实现其规模化生产。
1.6亚临界水提取技术在适度的压力下,将水加热到1OO℃以上、临界温度374℃以下的高温,水仍然保持在液体状态,它的极性会随温度变化而改变,这种水称为亚临界水。
亚临界状态下流体微观结构的氢键、离子水合、离子缔合、簇状结构等发生了变化,因此亚临界水的物理、化学特性较之常温常压下的水在性质上有较大差别。
常温常压下水的极性较强,亚临界状态下,随着温度的升高,亚临界水的氢键被打开或减弱,从而使水从高到低萃取出来。
通过控制亚临界水的温度和压力,使水的极性在较大范围内变化,从而实现天然产物中的有效成分从水溶性成分到脂溶性成分的连续提取,并可实现选择性提取。
对比于其他提取方法,亚临界水提取方法清洁、有效、花青素提取量为传统动态固液萃取的3倍,且产品性能更优,不足之处是工艺条件要求较高。
由于亚临界水萃取是以价廉、无污染的水作为萃取剂,因此,亚临界水萃取技术被视为绿色环保、前景广阔的一项变革性技术。
未来将具有强大的竞争力。
2前景随着我国人民生活水平的不断提高,人们对食品安全问题日益重视。
花青素作为饲料添加剂,不仅能提高动物生产性能,还是一类纯天然、无残留、无污染的天然绿色添加剂,此类饲料添加剂正是未来饲料行业发展的必然趋势。
为了加快我国丰富的花青素资源的综合开发利用,寻求新的高效、快速、方便、自动化分离方法,改进现有的生产提取分离技术显得极为重要。
有机溶剂萃取法简单易行,但随着科学技术的不断发展,会慢慢被其他更高效环保的生产工艺所替代。
加压溶剂萃取法相关溶剂的使用造成的环境污染依然是限制其发展的主要因素。
微波辅助提取法具有绿色环保,提取效率高,时间短等诸多优点。
微生物发酵或酶解法操作稳定,可靠性高,节约药品,并降低成本,可加大发展力度。
超声波辅助提取因其效益高且无污染的特点是近年来的研究热点。
亚临界水提取环保无污染,拥有广阔的发展前景。
新的提取分离方法如超高压辅助提取、高压脉冲电场辅助提取、高速逆流色谱技术等,为工业化提取花青素开辟了新的途径。
所以科研人员应该在着力于提取方法的优化的同时,注重设备的改革更新,使设备和提取工艺同步发展,为进一步提高花青素产量奠定基础,使花青素在饲料中更好的发挥其作用。