人教版初中八年级数学上册乘法公式教案新

合集下载

14.2 乘法公式教案 2022-2023学年人教版八年级数学上册

14.2 乘法公式教案 2022-2023学年人教版八年级数学上册

14.2 乘法公式教案 2022-2023学年人教版八年级数学上册一、教学目标1.掌握乘法公式的概念和基本用法;2.理解乘法公式在实际问题中的应用;3.能够灵活运用乘法公式解决具体问题。

二、教学重点1.理解乘法公式的概念;2.熟练应用乘法公式解决问题。

三、教学难点理解乘法公式在实际问题中的应用。

四、教学过程1. 导入通过一个实际问题导入本节课的内容,激发学生的思考和兴趣。

例如:某超市正在举办特价活动,A商品的原价为10元,现在打八折出售,你能快速计算出它的现价吗?2. 学习乘法公式•引导学生理解乘法公式的概念:乘法公式是指将两个或多个数相乘的表达式,一般用字母如a、b等表示。

•介绍乘法公式的基本形式:a × b = c,其中a和b是被乘数、乘数,c是积。

•给出一些示例,帮助学生理解乘法公式的具体运用。

3. 习题训练让学生在黑板上解答一些乘法公式相关的习题,巩固所学内容。

例如: - 计算:3 × 4 = ?,5 × 7 = ?; - 根据给出的乘法公式计算:12 × 6 = ?,8 × 9 = ?; - 利用乘法公式解决实际问题:张三身高1.6米,若每一步行走的距离为0.5米,他需要走多少步才能达到2.5米的目标?4. 拓展应用通过一些拓展应用题,帮助学生将乘法公式应用到实际生活中。

例如: - 根据乘法公式计算某商品的折扣价; - 计算某地每天用水50吨,连续用水5天,总共用水多少吨?5. 小结和提高对本节课所学的内容进行小结,帮助学生复习和巩固知识点。

同时,提出一些提高题,鼓励学生进行拓展思考。

例如:如果一个数与0相乘,结果是多少?如果两个数相乘的积为0,那这两个数之一一定为0吗?五、课堂练习让学生在课堂上完成一些习题,检验他们对乘法公式的掌握情况。

同时,教师可以对学生的答题情况进行及时批改,帮助他们加强对乘法公式的理解。

六、课后作业布置乘法公式相关的课后作业,要求学生独立完成并提交。

14.2:乘法公式 教案 2021--2022学年人教版八年级数学上册

14.2:乘法公式 教案 2021--2022学年人教版八年级数学上册

14.2:乘法公式教案一、教学目标1.掌握乘法公式的概念和运用;2.理解乘法公式在解决实际问题中的作用;3.培养灵活运用乘法公式的能力;4.培养学生的逻辑思维和问题解决能力。

二、教学重难点1.乘法公式的灵活运用;2.解决含有乘法公式的实际问题。

三、教学准备1.教材《数学(八年级上册)》,人教版;2.面向每个学生的个人学习设备。

四、教学过程1. 导入(5分钟)教师以实际生活中的例子引出乘法公式的概念,如计算面积或者体积时使用的公式。

同时,与学生一起回顾乘法的基本知识,以确保学生对乘法操作的理解。

2. 学习乘法公式(15分钟)教师将乘法公式的定义和运用方法呈现给学生,并进行示范和讲解。

教师可使用具体的图形、实物展示或者实际生活例子等方式,帮助学生理解乘法公式的意义和运用方法。

3. 练习运用乘法公式(20分钟)学生进行巩固练习,从简单到复杂,逐步提高难度。

教师布置一些乘法公式的练习题,鼓励学生使用乘法公式来解决问题。

教师可根据学生的水平和进度,提供适当的帮助和指导。

4. 拓展应用(15分钟)教师引导学生从实际问题中应用乘法公式进行思考和解决。

教师可以设计一些情境问题,让学生灵活运用乘法公式进行计算和推理。

同时,教师可以鼓励学生分享自己的解题思路和方法。

5. 总结归纳(10分钟)教师与学生一起总结乘法公式的定义、运用方法和解决实际问题的步骤。

教师梳理学生在本节课中所掌握的知识点,并提供相关笔记或总结。

6. 课堂反思(5分钟)教师与学生一起回顾本节课的学习内容,了解学生对乘法公式的掌握程度和思考能力。

教师可以提问学生乘法公式的运用场景,以及复杂问题的解决方法。

五、课后作业1.完成课后习题;2.思考并解决一个实际问题,并运用乘法公式来解决。

六、板书设计•乘法公式•乘法公式的运用方法•解决实际问题的步骤七、教学反思本节课通过引入实际问题,帮助学生理解乘法公式的实际意义和运用方法。

在练习环节,通过渐进式的难度设置,使学生逐渐掌握乘法公式的灵活应用能力。

八年级数学上册 14.2 乘法公式教案 (新版)新人教版

八年级数学上册 14.2 乘法公式教案 (新版)新人教版

14.2 乘法公式第1课时平方差公式教学目标1.经历探索平方差公式的过程,会推导平方差公式,并能运用公式进行简单的运算.2.理解平方差公式的结构特征,灵活应用平方差公式.教学重点平方差公式的推导和应用.教学难点理解平方差公式的结构特征,灵活应用平方差公式.教学设计一师一优课一课一名师(设计者:)教学过程设计一、创设情景,明确目标从前,有一个狡猾的庄园主,把一块边长为x米的正方形土地租给张老汉种植,第二年,他对张老汉说:“我把这块地的一边增加5米,另一边减少5米,继续租给你,租金不变,你也没有吃亏,你看如何?”张老汉一听觉得好像没有吃亏,就答应了,回到家中,把这事和邻居们一讲,都说:“张老汉,你吃亏了!”张老汉非常吃惊.同学们,你知道张老汉为什么吃亏吗?通过本节课的学习,你将能解释这其中的原因!二、自主学习,指向目标自学教材第107页至108页,思考下列问题:1.根据条件列式:(1)a、b两数的平方差可以表示为________;(2) a、b两数差的平方可以表示为________;2.平方差公式的推导依据是________________________________________________________________________.3.平方差公式(乘法)的特征是:左边是__________________,右边是__________________.三、合作探究,达成目标探究点一探索平方差公式活动一:1.填写教材P107三个计算结果,展示点评:(1)二项式乘以二项式,合并前结果应该是几项式?(四项)合并后都是几项式?(二项)(2)观察上列算式的左边的两个二项式,有什么异同?运算出结果后的二项式与等式左边的二项式有什么关系?(等号的左边是两数的和乘以这两数的差,等号的右边是这两数的平方差.)2.归纳:两个数的________与这两个数的差的积,等于这两数的________.用公式表示上述规律为:(a+b)(a-b) =________这就是平方差公式.3.观察教材图14.2-1,请你用两种方法计算图形中阴影部分的面积,得到什么结果?(a+b)(a-b)=a2-b24.观察教材P108例1中的两个算式,能否用平方差公式进行计算?若能用,公式中a,b分别代表什么?例1运用平方差公式计算(1)(3x+2)(3x-2);(2)(-x+2y)(-x-2y).思考:确定能否应用平方差公式进行运算的关键是什么?展示点评:观察算式:①是不是两个二项式相乘;②是不是两数的和乘以两数的差;③若作为因式的二项式的首项是负号的,可以连同符号一起看作为一项,也可以把一个因式里的两项颠倒位置观察思考.关键就是确定是不是两数的和乘以两数的差.解答过程见课本P108例1小组讨论:能运用平方差公式计算的式子有何特征?【反思小结】能运用平方差公式进行计算的式子特征:①二项式与二项式的积;②把两个二项式进行对比:有一项相同,另一项互为相反数.针对训练:1.计算(2a+5)(2a-5)等于( A )A.4a2-25 B.4a2-5 C.2a2-25 D.2a2-52.计算(1-m)(-m-1),结果正确的是( B )A.m2-2m-1 B.m2-1 C.1-m2 D.m2-2m+1探究点二平方差公式的综合应用活动二:计算:(1)102×98;(2)(y+2)(y-2)-(y-1)(y+5).展示点评:(1)例1是数的计算,观察其特征,把两个因数如何变形能够运用平方差公式进行计算?(2)例2中有整式的简单的混合运算,在进行运算时要注意什么?展示点评:第1题可以变为100与2的和乘以100与2的差;第(2)题中多项式的乘法,能运用平方差公式的一定要运用平方差公式进行运算.解答过程见课本P108例2小组讨论:平方差公式与整式乘法有什么关系?在运用时应注意什么问题?【反思小结】(1)可运用平方差公式运算的式子,也属于我们前面所学的多项式乘以多项式的运算,所以说平方差公式适用于特殊形式的该类运算.(2)有些不能直接用平方差公式的题目可向公式形式转化,写成两数和与两数差乘积的形式,再运用公式.(3)在运用平方差公式运算时,一要注意确定好公式中的“a”项,“b”项;二要注意对两个数整体平方,而不是部分平方.针对训练:见《学生用书》相应部分四、总结梳理,内化目标1.平方差公式的特征,公式中的字母a和b既可以表示数,也可表示字母,还可以表示多项式;2.能应用平方差公式进行乘法运算,并能进行简单变形应用.3.平方差公式与多项式乘法之间的关系.五、达标检测,反思目标1.下列多项式乘法,能用平方差公式进行计算的是( C )A.(x+y)(-x-y) B.(2x+3y)(2x-3z)C.(-a-b)(a-b) D.(m-n)(n-m)2.下列各式运算结果是x2-25y2的是( B )A.(x+5y)(-x+5y) B.(-x-5y)(-x+5y)C.(x-y)(x+25y) D.(x-5y)(5y-x)3.两个连续奇数的平方差是( B )A.6的倍数B.8的倍数C.12的倍数D.16的倍数4.计算:(2+3x)(-2+3x)=__9x2-4__.5.已知(x-ay)(x+ay)=x2-16y2,那么a=__±4__.6.计算:(1)a(a-5)-(a+6)(a-6)解:原式=a2-5a-(a2-36)=36-5a(2)(x+y)(x-y)(x2+y2)解:原式=(x2-y2)(x2+y2)=x4-y4(3)9982-4解:原式=(998+2)(998-2)=1000×996=996000●布置作业,巩固目标教学难点1.上交作业:课本P112第1题.2.课后作业:见《学生用书》.第2课时完全平方公式教学目标1.理解完全平方公式,掌握两个公式的结构特征.2.熟练应用公式进行计算.教学重点完全平方公式的推导过程、结构特点以及几何解释,并能灵活应用.教学难点理解完全平方方式的结构特征,并能灵活应用.教学设计一师一优课一课一名师(设计者:)教学过程设计一、创设情景,明确目标1.多项式乘以多项式的法则是什么?(多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.)2.观察下列计算过程及结果:(1)(p+q)(p+q)=________________=________________;(2)(x-y)(x-y)=________________=________________.展示点评:怎样快速的计算形如(2x+y)2的运算,这就是我们今天所要学习的主要内容.二、自主学习,指向目标自学教材第109页至110页,思考下列问题:1.完全平方公式的推导的依据多项式乘以多项式的乘法法则2.完全平方公式的特征是:左边是两数和(或差)的平方,右边是这两数的平方和,加上(或减去)这两数积的2倍;与平方差公式的区别是平方差公式是两数的和乘以两数的差,等于这两数的平方差,其结果是一个二项式.3.从几何的角度去理解完全平方公式,观察下图,可以得到:(1)(a+b)2=________;(2)(a-b)2=________.三、合作探究,达成目标 探究点一 完全平方公式活动一:1.根据条件列式:(1)a ,b 两数和的平方可以表示为________; (2)a ,b 两数平方的和可以表示为________. 2.填写教材P 109四个计算结果. 展示点评:(1)一个多项式的平方运算可以看做哪种形式的运算(两个相同的多项式的乘法运算) (2)课本中的二项式乘以二项式,合并前结果应该是几项式?(四项)合并后都是几项式?(三项)(3)上列算式运算的依据是什么? (依据是多项式乘以多项式的乘法法则) (4)观察上列算式,运算出结果后的三项式与等式左边的二项式有什么关系?(等号的左边是两数的和或差的平方;等号的右边是这两数的平方和,加上或减去这两数积的2倍.)3.归纳:由上述规律可得到公式:(a +b)2=________;(a -b)2=________. 完全平方公式:两数和(或差)的平方等于这两个数的______加上(或减去)这两个数积的______倍.可记作:首平方,尾平方,二倍乘积放中央.4.观察教材图14 .2-2及14 .2-3你通过图形中的面积,得到什么结果?(a +b)2=a 2+ab +b 2+ab =a 2+2ab +b 2;(a -b)2=a 2-ab -ab +b 2=a 2-2ab +b 2; 5.观察教材P 110例3中的两个算式,能否用完全平方公式进行计算?若能用,公式中a ,b 分别代表什么?例1 运用完全平方公式计算:(1)(4m +n)2(2)⎝ ⎛⎭⎪⎫y -122(3)(-2a -3b)2展示点评:从平方的意义看,⎝ ⎛⎭⎪⎫y -122与⎝ ⎛⎭⎪⎫12-y 2的结果一样吗?(-2a -3b)2与(-3b -2a)2的结果相同吗?而(4m +n)2与(4m -n)2的结果呢?展示点评:互为相反数的平方结果相等,因此(y -12)2与(12-y)2的结果一样;而4m +n与4m -n 不一定相等或是相反数,因此其平方的结果不一定相等.小组讨论:应用完全平方公式计算应注意什么? 解答过程见课本P 110例3反思小结:1.应用公式时,可以先确定两数的平方和,再加上(或减去)两数积的2倍;切记不要漏掉两数积的2倍;2.互为相反数的两个多项式的平方相等.针对训练:见《学生用书》相应部分 探究点二 完全平方公式的综合应用 活动二:运用完全平方公式计算:(1)1022 (2)992小组讨论:一个较大或较小数的平方运算,如何巧妙地进行变形,应用完全平方公式,快速的进行计算呢?展示点评:把102或99写成两数和或差的形式,再进行计算.反思小结:对于较大数的平方可以转化成两整数和(或差)的平方,再运用完全平方公式进行计算比较简便.针对训练:见《学生用书》相应部分 四、总结梳理,内化目标1.完全平方公式的推导及其几何意义;2.完全平方公式里的字母可以表示一个数,表示一个单项式,也可以表示一个多项式; 3.应用完全平方公式进行计算,有关数字计算题应用完全平方公式可以使计算简便. 4.数学思想:类比、数形结合. 五、达标检测,反思目标1.( x +3y )2=x 2+6xy +__9y 2__.2.a 2-kab +9b 2是完全平方式,则k =__±6__.3.计算(-a -b)2结果是( B )A .a 2-2ab +b 2B .a 2+2ab +b 2C .a 2+b 2D .a 2-b 24.运用乘法公式计算(1)⎝ ⎛⎭⎪⎫12x -12; (2)1052; 解:(1)原式=14x 2-x +1(2)原式=(100+5)2=1002+2×100×5+25 =10000+1025 =11025(3)(a -b -3)(a -b +3).解:原式=[(a -b )-3][(a -3)+3]=(a -b )2-9 =a 2-2ab +b 2-95.已知x +y =9,xy =20,求(x -y)2的值.解:(x -y )2=(x +y )2-4xy =81-80=1 ●布置作业,巩固目标教学难点1.上交作业:课本第112页2、3(2)(3)、7. 2.课后作业:见《学生用书》.第3课时 乘法公式的拓展教学目标1.了解添括号法则.2.能应用添括号法则,结合乘法公式,对项数是三项或三项以上的多项式乘法进行运算.教学重点应用添括号法则及乘法公式进行运算.教学难点正确的添加括号后,应用公式进行计算.教学设计一师一优课一课一名师(设计者:)教学过程设计一、创设情景,明确目标1.去括号法则是什么?(如果括号前面是正号,去掉括号后,括号里的各项不变号;如果括号前面是负号,去掉括号后,括号里的各项都要变号.)2.我们学过的乘法公式有哪些,你能完整的叙述出来吗?(平方差公式,完全平方公式)3.对于形如(x+2y-3)(x-2y+3)的乘法可以怎样运算呢?你能运用比较简便的方法运算吗?这就是我们这节课主要学习的内容.二、自主学习,指向目标1.添括号的法则:添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.它和去括号的联系是互逆变形.2.试一试,在括号内添加适当的项:(1) (x+2y-3)(x-2y+3)=[x+(2y-3)][x-(2y-3)](2)x-2y-4x=x-2(y+2x)三、合作探究,达成目标探究点一添括号法则活动一:去括号:a+(b+c)=________;a-(b-c)=________反过来,你能给下列多项式添括号吗:a+b+c=a+(b+c) a-b-c=a-(b+c)展示点评:添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.小组讨论:添括号法则与去括号法则有什么关系?反思小结:添括号法则与去括号法则是互逆变形的过程,其符号变化与去括号法则变化一样.针对训练:见《学生用书》相应部分探究点二乘法公式的推广活动二:平方差公式:(a+b)(a-b)=________完全平方公式:(a±b)2=________公式中的a 和b是一个字母,可以是一个多项式吗?如果a或b是一个多项式,如何运算?(a和b可以代替一个多项式,计算时可以看作一个整体先按照乘法公式进行计算,然后再根据相应的法则,再进行运算.)例1运用乘法公式计算:(1)(x+2y-3)(x-2y+3)(2)(a+b+c)2思考:第(1)题首先要应用添括号法则进行变形,需要应用几次公式,应用的公式相同吗?第(2)题与第(1)题的形式、运算过程和方法有何区别?展示点评:第1小题中先应用添括号法则把两个因式内互为相反数的两项结合变成两数的和乘以两数差的形式,先进行运算,再运用完全平方公式乘开,能合并同类项的一定要合并同类项;第2小题中应用加法交换与结合律,任意结合其中两项,应用两次完全平方公式即可.解答过程见课本P 111例5小组讨论:第(1)(2)题在添括号时,有什么相同点和不同点?【反思小结】两个多项式相乘,若两个多项式中既有相同的项,又有互为相反数的项,且没有其它的项,则要运用添括号法则把相同的项或互为相反数的项,分别括起来,把添到括号内的多项式当做一个整体,再进行计算.针对训练:见《学生用书》相应部分 四、总结梳理,内化目标 1.添括号法则;2.乘法公式里的字母可以表示一个数,表示一个单项式,也可以表示一个多项式;因此对于项数是三项或三项以上的多项式乘法,根据乘法的形式,添加适当的括号,再运用乘法公式运算.五、达标检测,反思目标 1. 判断下列变形是否正确.(1)2a -b -c 2=2a -(b -c2)(2)m -3n +2a -b =m +(3n +2a -b)(3)2x -3y +2=-(2x +3y -2)(4)a -2b -4c +5=(a -4c)-(2b -5) 解:(1)(2)(3)都错误,(4)正确2.下列式子:①(3x+1)(3x -1)=(3x -1)2;②(x-3y)2=x 2-3xy +9y 2;③(1-2xy 2)2=1-4x 2y 4;④(a +1a )2=a 2+2+1a2;其中正确的是( D )A .①B .①②C .①②③D .④3.如果x +y =-7,xy =12, 那么x 2-xy +y 2的值为( C ) A .61 B .37 C .13 D .11 4.运用乘法公式计算(1)(a -b -3)(a -b +3) (2)(a +2b -1)2解:(1)原式=[(a -b )-3][(a -b )+3]=(a -b )2-9 =a 2-2ab +b 2-9 解:原式=[(a +2b )-1]2=(a +2b )2-2(a +2b )+1 =a 2+4ab +4b 2-2a -4b +15.求证:无论x ,y 为何值时,多项式x 2+y 2-2x +6y +10的值恒大于负数.解: x 2+y 2-2x +6y +10 =x 2-2x +1+y 2+6y +9=(x -1)2+(y +3)2∵(x -1)2≥0, (y +3)2≥0 ∴x 2+y 2-2x +6y +10≥0即无论x ,y 为何值时,多项式x 2+y 2-2x +6y +10的值恒为非负数.。

人教版八年级数学上册乘法公式教学设计

人教版八年级数学上册乘法公式教学设计
-阅读相关的数学故事或资料,了解乘法公式在数学发展史上的地位和作用,撰写一篇不少于300字的心得体会。
3.小组合作任务:
-以小组为单位,共同探讨乘法公式在生活中的应用,结合实际案例,制作一份简洁明了的PPT,下节课进行分享。
4.家长参与作业:
-家长协助孩子一起完成一道乘法公式的实际问题,鼓励孩子在家庭环境中运用所学知识,增进亲子沟通。
二、学情分析
八年级学生已经具备了一定的数学基础,掌握了基本的算术运算和简单的代数知识。在此基础上,乘法公式的学习将成为他们数学学习中一个新的里程碑。学生在这个阶段好奇心强,求知欲旺盛,但注意力容易分散,对抽象的数学概念和公式接受程度不一。因此,针对这些特点,教师在教学过程中应注重以下方面:
1.激发兴趣:通过生动有趣的生活实例,让学生感受到乘法公式在实际问题中的应用价值,提高学生的学习兴趣。
(二)过程与方法
1.采用直观演示、实际操作等方式,引导学生观察、思考、总结乘法公式。
2.设计丰富多样的练习题,让学生在解题过程中熟悉并运用乘法公式,提高运算技巧。
3.组织学生进行小组讨论、合作学习,培养学生主动探究、合作解决问题的能力。
4.引导学生通过比较、分析,发现乘法公式之间的联系,形成知识体系。
(一)教学重难点
1.重点:平方差公式、完全平方公式以及乘法分配律的理解和应用。
2.难点:乘法公式的推导过程及其在实际问题中的灵活运用。
(二)教学设想
1.创设情境,导入新课
-利用生活实例,如计算土地面积、求解勾股定理等,引出乘法公式的应用,激发学生学习兴趣。
-通过提问、思考、讨论等方式,引导学生自主发现乘法公式。
-布置具有挑战性的课后作业,让学生在课后继续巩固乘法公式。

人教初中数学八上《乘法公式》完全平方公式教案

人教初中数学八上《乘法公式》完全平方公式教案

人教初中数学八上《乘法公式》完全平方公式教案【教案】一、教学目标:1.知识与技能:掌握乘法公式和完全平方公式的基本概念和计算方法。

2.过程与方法:培养学生观察问题、发现问题和解决问题的能力,培养学生合作学习的能力。

3.态度与价值观:培养学生对数学的兴趣,增强学生学习数学的自信心。

二、教学重点和难点:1.教学重点:乘法公式和完全平方公式的基本概念和计算方法。

2.教学难点:如何应用乘法公式和完全平方公式进行复杂问题的求解。

三、教学过程:1.导入新旧知识:引导学生回顾乘法的基本概念和运算规则,提醒学生乘法公式与乘法的关系。

2.学习乘法公式:a.引入例子:例如,计算(a+b)²=?,学生根据分配律,可以计算出:(a + b)² = a² + b² + 2abb.导出乘法公式:老师引导学生通过上述例子的观察,总结得到乘法公式的一般表示形式。

c.练习:让学生在小组内互相出题,计算出(a+b)²、(a-b)²、(a+b)·(a-b)。

3.学习完全平方公式:a.引入例子:例如,计算(a-b)²=?,学生根据乘法公式的改写形式,可以计算出:(a - b)² = a² - 2ab + b²b.导出完全平方公式:老师引导学生通过上述例子的观察,总结得到完全平方公式的一般表示形式。

c.练习:让学生在小组内互相出题,计算出(a+b)²、(a-b)²、(a+b)·(a-b)。

4.拓展应用:让学生通过实际问题进行乘法公式和完全平方公式的应用。

例如,有一块田地,长为(a+b)米,宽为(a-b)米,求该田地的面积。

解:田地的面积为(a+b)·(a-b)平方米,根据乘法公式,可化简为a²-b²平方米。

五、师生互动:在学生解答问题的过程中,老师及时给予肯定和鼓励,引导学生提出自己的思路和解题方法。

人教版数学八年级上册《第十二课时乘法公式的综合应用》教案

人教版数学八年级上册《第十二课时乘法公式的综合应用》教案

人教版数学八年级上册《第十二课时乘法公式的综合应用》教案一. 教材分析人教版数学八年级上册《第十二课时乘法公式的综合应用》这一课时,是在学生掌握了平方差公式、完全平方公式等基本乘法公式的基础上进行教学的。

本课时主要让学生进一步理解乘法公式的结构特征,提高学生灵活运用乘法公式解决实际问题的能力,培养学生的逻辑思维能力和创新思维能力。

二. 学情分析八年级的学生已经掌握了平方差公式、完全平方公式等基本乘法公式,对公式有一定的理解,但在运用公式解决实际问题时,往往会因为对公式的理解不够深入而出现错误。

此外,学生的逻辑思维能力和创新思维能力还有待提高,因此,在教学中,需要引导学生深入理解乘法公式的结构特征,培养学生灵活运用公式解决实际问题的能力。

三. 教学目标1.知识与技能目标:让学生进一步理解乘法公式的结构特征,提高学生灵活运用乘法公式解决实际问题的能力。

2.过程与方法目标:通过自主学习、合作交流的方式,培养学生独立解决问题的能力,提高学生的逻辑思维能力和创新思维能力。

3.情感态度与价值观目标:培养学生对数学的兴趣,使学生感受到数学在生活中的重要性,培养学生的团队协作精神和积极进取的精神。

四. 教学重难点1.教学重点:让学生进一步理解乘法公式的结构特征,提高学生灵活运用乘法公式解决实际问题的能力。

2.教学难点:如何引导学生深入理解乘法公式的结构特征,如何培养学生灵活运用公式解决实际问题的能力。

五. 教学方法1.自主学习法:引导学生独立思考,自主探究,提高学生的独立解决问题的能力。

2.合作交流法:鼓励学生之间相互讨论、交流,培养学生的团队协作精神。

3.启发式教学法:教师通过提问、设疑,引导学生深入思考,激发学生的创新思维。

六. 教学准备1.教师准备:教师需要对乘法公式有深入的了解,以便在教学中引导学生深入理解乘法公式的结构特征。

2.学生准备:学生需要预习平方差公式、完全平方公式等基本乘法公式,以便在课堂上更好地理解和运用。

14.2乘法公式 教案-2022-2023学年八年级人教版数学上册

14.2乘法公式 教案-2022-2023学年八年级人教版数学上册

14.2 乘法公式教案一、教学目标1.了解乘法公式的基本概念和用途;2.掌握乘法公式的运用方法;3.能够灵活运用乘法公式解决实际问题。

二、教学准备1.教材《数学》(人教版)八年级上册;2.课件、投影仪等教学工具。

三、教学过程1. 导入与激发兴趣(5分钟)通过展示一道有关乘法的实际问题,激发学生对乘法公式的兴趣,并引出乘法公式的概念。

问题:小明一共有3个口袋,每个口袋里都装满了红色和蓝色的小球。

第一个口袋里有2个红球和3个蓝球,第二个口袋里有4个红球和2个蓝球,第三个口袋里有3个红球和5个蓝球。

如果从这3个口袋中随机选择一个球,那么选择蓝球的概率是多少?2. 乘法公式的引入与讲解(20分钟)通过上述实际问题的引导,引出乘法公式的概念和思想。

乘法公式的概念:乘法公式是指将两个或多个数相乘的运算法则。

在乘法公式中,被乘数、乘数和积分别称为乘法的三个基本要素。

乘法公式的运用方法:乘法公式的运用方法分为两种情况:已知两个乘法因子和求积、已知积和一个乘法因子求另一个乘法因子。

1.已知两个乘法因子和求积:例如,已知 a 和 b,求a × b。

解题时,直接将 a 与 b 相乘即可,即 a × b = c。

2.已知积和一个乘法因子求另一个乘法因子:例如,已知 a 和 c,求 b。

解题时,可以通过反向运算,将积 c 除以已知乘数 a,即 b = c / a。

3. 乘法公式的练习与应用(20分钟)练习1:已知两个乘法因子和求积1.计算下列各式的值:a)2 × 3 = ?b)4 × 5 = ?c)7 × 8 = ?d)9 × 10 = ?e)12 × 13 = ?2.根据实际情况填写空缺:a)一包饼干有 4 行,每行有 5 个,共有 ___ 个饼干。

b)一桶矿泉水有 6 瓶,每瓶有 8 升,共有 ___ 升矿泉水。

c)一根手指有 3 节,每节有 4 个关节,共有 ___ 个关节。

人教版八年级数学上册教学设计14.2 乘法公式

人教版八年级数学上册教学设计14.2  乘法公式

人教版八年级数学上册教学设计14.2 乘法公式一. 教材分析人教版八年级数学上册的教学内容涉及平面几何、立体几何、代数、概率等多个方面,其中第14章“整式乘法”是基础也是重点。

本节课的内容“乘法公式”是整式乘法中的一个重要部分,主要包括平方差公式和完全平方公式的探究和应用。

平方差公式和完全平方公式在解决实际问题中有着广泛的应用,是学生必须掌握的基础知识。

二. 学情分析学生在七年级时已经学习了有理数的乘法、幂的运算等基础知识,对整式的乘法有了一定的了解。

但平方差公式和完全平方公式的推导和应用还需要通过实例和练习来加深理解。

此外,学生可能对公式的记忆和应用存在困难,需要通过反复练习和实际问题来提高应用能力。

三. 教学目标1.知识与技能:掌握平方差公式和完全平方公式的推导过程和应用方法。

2.过程与方法:通过探究、合作、交流的方式,培养学生的逻辑思维能力和解决问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和积极进取的精神。

四. 教学重难点1.重点:平方差公式和完全平方公式的推导和应用。

2.难点:对平方差公式和完全平方公式的理解和灵活应用。

五. 教学方法采用探究式教学法、合作学习法和案例教学法。

通过引导学生自主探究、合作交流,以实际问题为载体,让学生在实践中理解和掌握平方差公式和完全平方公式。

六. 教学准备1.准备相关的基础知识和例题。

2.准备多媒体教学设备,如投影仪、电脑等。

3.准备练习题和测试题,以检验学生的学习效果。

七. 教学过程导入(5分钟)通过一个实际问题引入本节课的主题:已知正方形的面积是20,求这个正方形的边长。

让学生思考如何解决这个问题,从而引出平方公式。

呈现(10分钟)1.平方差公式:a² - b² = (a + b)(a - b)2.完全平方公式:a² + 2ab + b² = (a + b)²,a² - 2ab + b² = (a - b)²通过讲解和示例,让学生理解平方差公式和完全平方公式的推导过程和应用方法。

人教版初中数学八年级上册14.2乘法公式教学设计示例

人教版初中数学八年级上册14.2乘法公式教学设计示例
(4)结合实际例子,展示乘法公式在简化计算、解决问题方面的优势。
(三)学生小组讨论
1.教学活动设计:
(1)将学生分成小组,每组讨论乘法公式的应用场景,如购物、几何图形面积计算等。
(2)每组选取一个应用场景,展示乘法公式的运用过程。
2.教学目的:
(1)培养学生的团队协作能力,提高交流表达能力。
(2)让学生在实际场景中感受乘法公式的应用,加深对乘法公式的理解。
1.导入:通过生活中的实例,引导学生发现乘法公式的规律。
2.基本概念:介绍平方差公式、完全平方公式的含义,让学生理解并掌握。
3.案例分析:运用乘法公式解决实际问题,使学生体会数学的实用性。
4.课堂练习:设计不同难度的练习题,让学生在练习中巩固乘法公式。
5.小组讨论:分组讨论乘法公式在几何、代数等领域的应用,培养学生的团队协作能力。
1.激发学生的学习兴趣,使他们愿意主动投入到乘法公式的学习中。
2.注重学生的个体差异,针对不同学生的需求进行有针对性的指导。
3.创设丰富的教学情境,让学生在实际操作中感受乘法公式的意义和价值。
4.加强对学生的思维训练,培养他们运用乘法公式解决问题的能力。
三、教学重难点和教学设想
(一)教学重难点
1.重点:平方差公式、完全平方公式的理解与应用。
4.课后反思:请学生总结自己在学习乘法公式过程中的收获和不足,并提出改进措施。
要求:学生认真反思,诚实面对自己的学习状况,为下一阶段的学习制定合理的目标和计划。
5.家长参与:请家长协助学生完成拓展题,并共同探讨乘法公式在日常生活中的应用。
要求:家长关注学生的学习情况,积极参与,增进亲子关系,共同提高学生的数学素养。
(四)课堂练习
1.教学活动设计:

乘法公式教案人教版八年级数学上册

乘法公式教案人教版八年级数学上册
(3)(a+b)(m+n)→(a+b)(ab)=?
(a+b)(ab)=a2b2
亲身经历公式的推导过程,得出“由一般到特殊”的研究问题的方法,加深学生对公式的理解与记忆,培养其概括与表达能力,通过追问加强他们对公式中字母 a,的认识与理解,从而用数学的眼光与思维在丰富的乘法运算中寻找一般化的规律。
小结:
课时教学设计模板
题目
乘法公式
第6课时
内容和内容解析
内容
乘法公式
内容解析
乘法公式是在研究般多项式乘法的基础上,对具有一定特征的多项式乘法更深人的探究,其结果具有特殊性,以此完善对整式乘法的全面研究,是多项式乘法(a+b)(m+n)=am+an+bm+bn中字母a,b,m,n有特殊关系时的特殊形式呈现。它既是对整式乘法中存在特殊规律的补充描述,又为接下来通过公式进行因式分解奠定基础。教材编排中,“乘法公式”第1课时主要学习平方差公式及其运用,第2课时主要学习完全平方公式及其运用,而乘法公式的本质就是两数(式)和与两数(式)差的自乘及互乘情形,它们展现出个统的整体。从大单元视角审视教材内容,为实现“整体部分整体”的系统认知,对教材内容进行优化重组,将两个课时的教学内容整合在一起,三式同源、齐头并进,整体把握乘法公式与整式乘法的联系及其自身特征,结合学生的认知规律,从多项式乘法切入到两数和自乘,从而引出三个公式。在发现规律后,遵循般的探究过程“观察特征概括规律图形说明”进步说明公式的意义,这也与本章中整式乘法这内容的研究方法致。学生思考探究性问题、动手拼图操作后,设置辨析公式、套用公式、巧用公式逐步推进,在运用公式的过程中体会用数学的眼光观察问题,加深对公式的理解,并学会用数学的思维思考问题。

最新人教版初中八年级上册数学《乘法公式的灵活运用》精品教案

最新人教版初中八年级上册数学《乘法公式的灵活运用》精品教案
措施为将其化为整十、整百与另一个数的平方差,再用公式计算.
a+b 和
a-b 差
a2+b2 平方和
a2-b2 平方差
(a+b)2
(a-b)2
完全平方和 完全平方差
平方差公式: 完全平方和公式: 完全平方差公式:
(a+b)(a-b)=a2-b2 (a+b)2 =a2+b2+2ab (a-b)2 =a2+b2+2ab
1.老师引导学生归纳本课知识点。 2.师生共同反思学习心得。
教科书本课课后习题第一题。完 成后同桌之间相互订正
Байду номын сангаас
⑵19.7×20.3 =(20-0.3) (20+0.3) =202-0.32 =400-0.09 =399.91
(1)2013²-2012×2014+1 (2)9×11×101×10001.
解:⑴2013²-2012×2014+1 =20132-(2013-1)(2013+1)+1 =20132-(20132-12)+1 =20132-20132+1+1 =2
乘法公式的灵活运用
乘法公式实质是多项式乘法的简便运算,运用乘法公式同样也可以简化 某些乘法运算,下面略举一二.
类型一:利用乘法公式进行简便运算
运用乘法公式简便计算: (1)9982 (2)19.7×20.3
解:⑴9982 =(1000-2) 2 =10002-2×1000×2+22 =100 0000-4000+4 =996004
⑵9×11×101×10001 =(10-1)(10+1) (100+1) (10000+1) =(102-12) (102+1) (104+1) = (104-1) (104+1) = 108-1 =99999999
方法总结 求一个复杂数的平方时,可以考虑用完全平方公式简化计算,具体措施为

八年级数学人教版上册14.2.乘法公式平方差公式优秀教学案例

八年级数学人教版上册14.2.乘法公式平方差公式优秀教学案例
三、教学策略
(一)情景创设
为了让学生更好地理解和掌握平方差公式,我将在课堂上创设与学生生活息息相关的问题情境。例如,可以设计这样一个问题:小明和小华进行跳远比赛,小明的起跳点距离比小华多1米,他们的跳远成绩分别为a米和b米,你能用数学公式表示出两人成绩差的两倍吗?通过这样的问题,让学生感受到数学知识在实际生活中的应用,激发他们学习的兴趣。
2.平方差公式的结构特点:教师引导学生总结平方差公式的结构特点,即“相同项的平方减去相反项的平方”。
3.应用平方差公式进行因式分解:教师通过例题,演示如何运用平方差公式进行因式分解,并强调注意事项。
(三)学生小组讨论
1.教师给出讨论题目:请同学们运用平方差公式,尝试解决以下问题:(1)x^2 - 9;(2)16 - y^2;(3)a^2 - 4b^2。
2.学生尝试解答,教师引导:我们可以通过列出算式来表示这个问题,即2(a - b)。接下来,我们看看如何运用平方差公式来简化这个算式。
(二)讲授新知
1.平方差公式的推导:教师引导学生观察以下算式:
(a + b)(a - b) = a^2 - ab + ab - b^2 = a^2 - b^2
通过观察,学生发现:两个二项式相乘,其中一项相同,另一项互为相反数,结果为相同项的平方减去相反项的平方。
(四)反思与评价
1.课堂小结:在课堂结束前,我会引导学生进行课堂小结,总结平方差公式的知识点、推导过程和应用技巧,巩固所学内容。
2.学生自评:鼓励学生对自己的学习过程进行评价,反思自己在学习平方差公式过程中的优点和不足,为今后的学习制定合理的目标。
3.同伴互评:组织学生进行同伴互评,让他们在互相评价中学习他人的优点,发现自身的不足,提高自我认知能力。

2024乘法公式人教版数学八年级上册教案

2024乘法公式人教版数学八年级上册教案

2024乘法公式人教版数学八年级上册教案一、教学目标1.让学生掌握多项式乘以多项式的法则。

2.能够灵活运用乘法公式解决实际问题。

3.培养学生的观察能力、逻辑思维能力和解决问题的能力。

二、教学重点与难点重点:多项式乘以多项式的法则。

难点:运用乘法公式解决实际问题。

三、教学过程1.导入新课(1)回顾已学的平方公式和立方公式。

(2)引导学生思考:如何将多项式相乘转化为平方和立方公式来解决?2.探究新知(1)引导学生观察多项式乘以多项式的特点,如(a+b)(c+d)。

(2)引导学生利用平方公式和立方公式,将(a+b)(c+d)转化为平方和立方公式的形式。

3.应用练习(1)让学生独立完成课本P30页的练习题1、2。

(2)教师选取部分学生板演,讲解解题过程。

(2)让学生举例说明如何运用乘法公式解决实际问题。

5.课堂小结(1)回顾本节课所学内容,让学生复述多项式乘以多项式的法则。

(2)强调乘法公式在解决实际问题中的应用。

6.课后作业(1)完成课本P31页的练习题3、4、5。

(2)预习下一节课的内容,思考如何运用乘法公式解决实际问题。

四、教学反思2.在探究环节,教师引导学生观察、思考,充分调动了学生的积极性,提高了课堂参与度。

3.在应用练习环节,教师选取部分学生板演,讲解解题过程,让学生在实践中巩固所学知识。

4.课堂小结环节,教师引导学生回顾所学内容,强化了知识点,提高了学生的学习效果。

五、教学策略1.采用启发式教学,引导学生主动探究、发现规律。

2.利用实例讲解,让学生在具体情境中感受乘法公式的应用。

3.注重课后作业的布置,巩固所学知识,提高学生的实际运用能力。

六、教学评价1.课堂参与度:观察学生在课堂上的发言、提问情况,了解学生的参与程度。

2.作业完成情况:检查学生的作业完成情况,了解学生对知识点的掌握程度。

3.测试成绩:通过测试,了解学生对乘法公式的掌握情况,评估教学效果。

重难点补充:1.教学重点:多项式乘以多项式的法则(1)难点解释:学生可能会混淆多项式乘法的步骤,比如在分配律的应用上出错。

人教版数学八年级上册教学设计《14-2乘法公式》(第1课时)

人教版数学八年级上册教学设计《14-2乘法公式》(第1课时)

人教版数学八年级上册教学设计《14-2乘法公式》(第1课时)一. 教材分析《14-2乘法公式》是人教版数学八年级上册的教学内容,本节课的主要内容是掌握乘法公式的概念、形式以及应用。

乘法公式是数学中基本的公式之一,对于学生来说,理解和掌握乘法公式对于后续的学习具有重要意义。

二. 学情分析学生在学习本节课之前,已经学习了有理数的乘法、分配律等基础知识,对于这些知识的理解和应用能力将影响到对本节课的理解。

同时,学生对于新知识的学习能力和兴趣也是需要考虑的因素。

三. 教学目标1.知识与技能:使学生理解和掌握乘法公式的概念和形式,能够运用乘法公式进行计算。

2.过程与方法:通过自主学习、合作交流等方法,培养学生的数学思维能力和问题解决能力。

3.情感态度价值观:激发学生对数学的兴趣,培养学生的自主学习能力和团队合作意识。

四. 教学重难点1.重点:乘法公式的概念和形式的掌握。

2.难点:乘法公式的运用和理解。

五. 教学方法1.自主学习:引导学生通过自主学习,理解和掌握乘法公式的概念和形式。

2.合作交流:学生进行小组合作,通过交流和讨论,共同解决问题。

3.实例分析:通过具体的实例,使学生理解和掌握乘法公式的运用。

六. 教学准备1.教材:人教版数学八年级上册。

2.课件:乘法公式的相关课件。

3.练习题:乘法公式的相关练习题。

七. 教学过程1.导入(5分钟)通过复习有理数的乘法和分配律,引导学生进入对新知识的学习。

2.呈现(10分钟)通过课件,呈现乘法公式的概念和形式,引导学生理解和掌握。

3.操练(15分钟)让学生通过自主学习和合作交流,解决乘法公式的问题。

4.巩固(10分钟)通过练习题,使学生巩固对乘法公式的理解和掌握。

5.拓展(10分钟)引导学生运用乘法公式解决实际问题,提高学生的问题解决能力。

6.小结(5分钟)对本节课的内容进行总结,使学生加深对乘法公式的理解。

7.家庭作业(5分钟)布置乘法公式的相关练习题,让学生巩固所学知识。

最新人教版八年级数学上册第十四章《乘法公式》精品教案

最新人教版八年级数学上册第十四章《乘法公式》精品教案

拓展提升 2
将多项式3m3+m2+4m-5添括号正确的是( B )
A.3m3+m2+(4m+5)
B.3m3+(m2+4m-5) C.3m3+m2-(-4m-5) D.3m3-(m2+4m-5)
A.3m3+m2+(4m-5)
C.3m3+m2-(-4m+5) D.3m3-(-m2-4m+5)
课后反思
知识回顾
完全平方公式:(a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2
语言叙述:两个数的和(或差)的平方,等于它们的平方和,加上 (或减去)它们的积的2倍.
知识回顾
完全平方公式的特点 (1)两个公式的等号左边都是一个二项式的完全平方,两者仅有一个 “符号”不同; (2)两个公式的等号右边都是二次三项式,其中首尾两项是等号左边 二项式中每一项的平方,中间一项是左边二项式中两项乘积的2倍, 两者也仅有一个“符号”不同.
课堂小结
乘法公式
添括号法则 添括号法则在计算中的应用
拓展提升 1
当x2-xy=18,xy-y2=-15时,求x2-2xy+y2的值.
解:x2-2xy+y2=x2-xy-xy+y2=(x2-xy)-(xy-y2). 因为x2-xy=18,xy-y2=-15, 所以原式=18-(-15)
=18+15 =33.
乘法公式
14.2.3 添括号
知识回顾-课堂导入-新知探究-随堂练习-课堂小结-拓展提升 人教版-数学-八年级上册
知识回顾
平方差公式:(a+b)(a-b)=a2-b2. 语言叙述:两个数的和与这两个数的差的积,等于这两个数的平方差.

八年级数学上册《乘法公式》教案、教学设计

八年级数学上册《乘法公式》教案、教学设计
(三)学生小组讨论
1.教学活动设计:将学生分成若干小组,每组针对以下问题进行讨论:
a.平方差公式和完全平方公式的推导过程;
b.乘法公式在解决实际问题中的应用;
c.运用乘法公式进行整式乘法的优点。
2.教师指导:在学生讨论过程中,教师巡回指导,解答学生的疑问,引导学生深入探讨。
(四)课堂练习
1.教学内容:设计以下几类练习题,巩固学生对乘法公式的掌握:
7.信息技术辅助教学:利用多媒体、网络资源等信息技术手段,形象直观地展示乘法公式的推导过程,提高教学效果。
8.关注个体差异,因材施教:针对不同学生的特点,给予个性化的指导,使每个学生都能在原有基础上得到提高。
9.定期评估,总结提高:通过定期测试和评估,了解学生的学习情况,总结教学经验,不断调整和优化教学方法,提高教学质量。
a.平方差公式:a² - b² = (a + b)(a - b)
通过具体的数值代入,引导学生观察、发现并总结出平方差公式的规律。
b.完全平方公式:a² + 2ab + b² = (a + b)²
同样,通过具体的数值代入,引导学生观察、发现并总结出完全平方公式的规律。
2.教学方法:采用引导式教学,让学生通过观察、思考和总结,自主发现乘法公式的规律。
4.利用信息技术手段,如多媒体、网络资源等,辅助教学,提高课堂教学效果。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和热情,激发学生学习数学的积极性。
2.培养学生勇于探索、积极思考的学习态度,使学生养成良好的学习习惯。
3.培养学生合作交流的意识,学会倾听他人意见,提高人际沟通能力。
4.培养学生认识到数学知识在实际生活中的重要性,增强学生的应用意识和实践能力。

2024年人教版八年级数学上册教案及教学反思全册第14章 整式的乘法与因式分解公式法(第2课时)教案

2024年人教版八年级数学上册教案及教学反思全册第14章 整式的乘法与因式分解公式法(第2课时)教案

第十四章整式的乘法与因式分解14.3因式分解14.3.2公式法第2课时一、教学目标【知识与技能】1.在掌握了因式分解意义的基础上,会运用平方差公式和完全平方公式对比较简单的多项式进行因式分解.【过程与方法】1.经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.2.在运用公式法进行因式分解的同时,培养学生的观察、比较和判断能力以及运算能力,用不同的方法分解因式可以提高综合运用知识的能力.【情感、态度与价值观】1.培养学生逆向思维的意识,同时培养学生团队合作、互帮互助的精神.2.进一步体验“整体”的思想,培养“换元”的意识.二、课型新授课三、课时第2课时,共2课时。

四、教学重难点【教学重点】运用完全平方公式法进行因式分解.【教学难点】观察多项式的特点,判断是否符合公式的特征和综合运用分解的方法,并完整地进行分解.五、课前准备教师:课件、直尺、矩形图片等。

学生:三角尺、练习本、铅笔、钢笔。

六、教学过程(一)导入新课我们知道,因式分解与整式乘法是反方向的变形,我们学习了因式分解的两种方法:提取公因式法、运用平方差公式法.现在,大家自然会想,还有哪些乘法公式可以用来分解因式呢?(出示课件2)(二)探索新知1.创设情境,探究运用完全平方公式分解因式教师问1:什么叫因式分解?(出示课件4)学生回答:把一个多项式化成几个整式的积的形式的变形叫做把这个多项式因式分解,也叫把这个多项式分解因式.教师问2:我们已经学过哪些因式分解的方法?学生回答:提公因式法、平方差公式:a2–b2=(a+b)(a–b)教师问3:把下列各式分解因式:(1)ax4-a;(2)16m4-n4.学生回答:(1)ax4-a=a(x2+1)(x+1)(x-1);(2)16m4-n4=(4m2+n)(2m+n)(2m-n).教师问4:结合上题思考因式分解要注意什么问题?学生回答:①一提二看三检查;②分解要彻底.教师问5:我们学过的乘法公式除了平方差公式之外,还有哪些公式?请写出来.学生回答:完全平方公式:(a±b)2=a2±2ab+b2教师讲解:这节课我们就来讨论如何运用完全平方公式把多项式因式分解.教师问6:你能把下面4个图形拼成一个正方形并求出你拼成的图形的面积吗?(出示课件5)学生讨论后拼出下图:教师问7:这个大正方形的面积可以怎么求?学生回答:(a+b)2=a2+2ab+b2教师问8:将上面的等式倒过来看,能得到什么呢?学生回答:a2+2ab+b2=(a+b)2(出示课件6)教师问:观察这两个多项式:a2+2ab+b2;a2–2ab+b2,请回答下列各题:(出示课件7)(1)每个多项式有几项?学生回答:三项(2)每个多项式的第一项和第三项有什么特征?学生回答:这两项都是数或式的平方,并且符号相同.(3)中间项和第一项,第三项有什么关系?学生回答:是第一项和第三项底数的积的±2倍.教师讲解:我们把a²+2ab+b²和a²–2ab+b²这样的式子叫做完全平方式.教师问9:把下列各式分解因式:(1)a2+2ab+b2;(2)a2-2ab+b2.学生回答:(1)a2+2ab+b2=(a+b)2;(2)a2-2ab+b2=(a-b)2.教师问10:将整式乘法的平方差公式反过来写即是分解因式的平方差公式.同样道理,把整式乘法的完全平方公式反过来写即分解因式的完全平方公式.能不能用语言叙述呢?学生回答后,师生共同讨论后解答如下:两个数的平方和,加上(或减去)这两数的积的2倍,等于这两个数的和(或差)的平方.即a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.教师问11:下列各式是不是完全平方式?如果是,请分解因式.(1)a2-4a+4;(2)x2+4x+4y2;(3)4a2+2ab+14b2;(4)a2-ab+b2;(5)x2-6x-9;(6)a2+a+0.25.学生讨论后回答如下:(1)a2-4a+4;是,原式=(a-2)2 (2)x2+4x+4y2;不是(3)4a2+2ab+14b2;是,原式=(2a+12b)2(4)a2-ab+b2;不是(5)x2-6x-9;不是(6)a2+a+0.25.是,原式=(a+0.5)2教师问12:根据学习用平方差公式分解因式的经验和方法,分析和推测什么叫做运用完全平方公式分解因式?能够用完全平方公式分解因式的多项式具有什么特点?学生讨论后回答,师生共同归纳如下:①三项式;②两项为两个数的平方和的形式;③第三项为加(或减)这两个数的积的2倍.总结点拨:(出示课件8)完全平方式:a²±2ab+b²完全平方式的特点:1.必须是三项式(或可以看成三项的);2.有两个同号的数或式的平方;3.中间有两底数之积的±2倍.简记口诀:首平方,尾平方,首尾两倍在中央.(出示课件9)凡具备这些特点的三项式,就是完全平方式,将它写成完全平方形式,便实现了因式分解.两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.例1:分解因式:(出示课件12)(1)16x2+24x+9;(2)–x2+4xy–4y2.师生共同解答如下:(1)分析:(1)中,16x2=(4x)2,9=3²,24x=2·4x·3,所以16x2+24x+9是一个完全平方式,即16x2+24x+9=(4x)2+2·4x·3+32.解:(1)16x2+24x+9=(4x)2+2·4x·3+32=(4x+3)2;(2)中首项有负号,一般先利用添括号法则,将其变形为–(x2–4xy+4y2),然后再利用公式分解因式.(2)–x2+4xy–4y2=–(x2–4xy+4y2)=–(x–2y)2.例2:如果x2–6x+N是一个完全平方式,那么N是()(出示课件15)A.11B.9C.–11D.–9师生共同解答如下:解析:根据完全平方式的特征,中间项–6x=2x×(–3),故可知N=(–3)2=9.答案:B总结点拨:(出示课件16)本题要熟练掌握完全平方公式的结构特征,根据参数所在位置,结合公式,找出参数与已知项之间的数量关系,从而求出参数的值.计算过程中,要注意积的2倍的符号,避免漏解.例3:把下列各式分解因式:(出示课件18)(1)3ax2+6axy+3ay2;(2)(a+b)2–12(a+b)+36.师生共同解答如下:分析:(1)中有公因式3a,应先提出公因式,再进一步分解因式;(2)中将a+b 看成一个整体,设a+b=m,则原式化为m2–12m+36.解:(1)原式=3a(x2+2xy+y2)=3a(x+y)2;(2)原式=(a+b)2–2·(a+b)·6+62=(a+b–6)2.总结点拨:利用公式把某些具有特殊形式(如平方差式,完全平方式等)的多项式分解因式,这种分解因式的方法叫做公式法.(出示课件19)例4:把下列完全平方式分解因式:(出示课件21)(1)1002–2×100×99+99²;(2)342+34×32+162.师生共同解答如下:解:(1)原式=(100–99)²=1(2)原式=(34+16)2=2500.总结点拨:本题利用完全平方公式分解因式,可以简化计算.例5:已知:a 2+b 2+2a–4b+5=0,求2a 2+4b–3的值.(出示课件23)师生共同解答如下:分析:从已知条件可以看出,a 2+b 2+2a–4b+5与完全平方式有很大的相似性(颜色相同的项),因此可通过“凑”成完全平方式的方法,将已知条件转化成非负数之和等于0的形式,从而利用非负数的性质来求解.(出示课件24)解:由已知可得(a 2+2a+1)+(b 2–4b+4)=0即(a+1)2+(b–2)2=01020a b +=⎧∴⎨-=⎩12a b =-⎧∴⎨=⎩∴2a 2+4b–3=2×(–1)2+4×2–3=7总结点拨:遇到多项式的值等于0、求另一个多项式的值,常常通过变形为完全平方公式和(非负数的和)的形式,然后利用非负数性质来解答.(三)课堂练习(出示课件27-31)1.下列四个多项式中,能因式分解的是()A.a 2+1B.a 2–6a+9C.x 2+5yD.x 2–5y 2.把多项式4x 2y–4xy 2–x 3分解因式的结果是()A.4xy(x–y)–x 3B.–x(x–2y)2C.x(4xy–4y 2–x 2)D.–x(–4xy+4y 2+x 2)3.若m=2n+1,则m 2–4mn+4n 2的值是________.4.若关于x 的多项式x 2–8x+m 2是完全平方式,则m 的值为_________.5.把下列多项式因式分解.(1)x 2–12x+36;(2)4(2a+b)2–4(2a+b)+1;(3)y 2+2y+1–x 2;6.计算:(1)38.92–2×38.9×48.9+48.92.(2)20142-2014×4026+201327.分解因式:(1)4x 2+4x+1;(2)13x 2–2x+3.小聪和小明的解答过程如下:他们做对了吗?若错误,请你帮忙纠正过来.8.(1)已知a–b=3,求a(a–2b)+b 2的值;(2)已知ab=2,a+b=5,求a 3b+2a 2b 2+ab 3的值.小聪:小明:参考答案:1.B2.B3.14.±45.解:(1)原式=x2–2·x·6+62=(x–6)2;(2)原式=[2(2a+b)]²–2·2(2a+b)·1+1²=(4a+2b–1)2;(3)原式=(y+1)²–x²=(y+1+x)(y+1–x).6.解:(1)原式=(38.9–48.9)2=100.(2)原式=20142-2×2014×2013+20132=(2014-2013)2=17.解:(1)原式=(2x)2+2•2x•1+1=(2x+1)2 (2)原式=13(x2–6x+9)=13(x–3)28.解:(1)原式=a2–2ab+b2=(a–b)2.当a–b=3时,原式=32=9.(2)原式=ab(a2+2ab+b2)=ab(a+b)2.当ab=2,a+b=5时,原式=2×52=50.(四)课堂小结今天我们学了哪些内容:a2±2ab+b2=(a±b)2一提,二看,三检查。

八年级数学上册14.2乘法公式教案(新版)新人教版

八年级数学上册14.2乘法公式教案(新版)新人教版

14.2.1平方差公式(1)教学目标1.知识与技能会推导平方差公式,并且懂得运用平方差公式进行简单计算.2.过程与方法经历探索特殊形式的多项式乘法的过程,发展学生的符号感和推理能力,使学生逐渐掌握平方差公式.3.情感、态度与价值观通过合作学习,体会在解决具体问题过程中与他人合作的重合性,体验数学活动充满着探索性和创造性.重点难点1.重点:平方差公式的推导和运用,以及对平方差公式的几何背景的了解.2.难点:平方差公式的应用.对于平方差公式的推导,我们可以通过教师引导,学生观察、•总结、猜想,然后得出结论来突破;抓住平方差公式的本质特征,是正确应用公式来计算的关键.教学方法采用“情境──探究”的教学方法,让学生在观察、猜想中总结出平方差公式.教学过程一、创设情境,故事引入【情境设置】教师请一位学生讲一讲《狗熊掰棒子》的故事【学生活动】1位学生有声有色地讲述着《狗熊掰棒子》的故事,•其他学生认真听着,不时补充.【教师归纳】听了这则故事之后,同学们应该懂得这么一个道理,学习千万不能像狗熊掰棒子一样,前面学,后面忘,那么,上节课我们学习了什么呢?还记得吗?【学生回答】多项式乘以多项式.【教师激发】大家是不是已经掌握呢?还是早扔掉了呢?和小狗熊犯了同样的错误呢?下面我们就来做这几道题,看看你是否掌握了以前的知识.【问题牵引】计算:(1)(x+2)(x-2);(2)(1+3a)(1-3a);(3)(x+5y)(x-5y);(4)(y+3z)(y-3z).做完之后,观察以上算式及运算结果,你能发现什么规律?再举两个例子验证你的发现.【学生活动】分四人小组,合作学习,获得以下结果:(1)(x+2)(x-2)=x2-4;(2)(1+3a)(1-3a)=1-9a2;(3)(x+5y)(x-5y)=x2-25y2;(4)(y+3z)(y-3z)=y2-9z2.【教师活动】请一位学生上台演示,然后引导学生仔细观察以上算式及其运算结果,寻找规律.【学生活动】讨论【教师引导】刚才同学们从上述算式中找到了这一组整式乘法的结果的规律,这些是一类特殊的多项式相乘,那么如何用字母来表现刚才同学们所归纳出来的特殊多项式相乘的规律呢?【学生回答】可以用(a+b)(a-b)表示左边,那么右边就可以表示成a2-b2了,即(a+b)(a -b)=a2-b2.用语言描述就是:两个数的和与这两个数的差的积,等于这两个数的平方差.【教师活动】表扬学生的探索精神,引出课题──平方差,并说明这是一个平方差公式和公式中的字母含义.二、范例学习,应用所学【教师讲述】平方差公式的运用,关键是正确寻找公式中的a和b,只有正确找到a和b,•一切就变得容易了.现在大家来看看下面几个例子,从中得到启发.【例1】运用平方差公式计算:(1)(2x+3)(2x-3);(2)(b+3a)(3a-b);(3)(-m+n)(-m-n).填表:【例2】计算:(1)103×97(2)(3x-y)(3y-x)-(x-y)(x+y)通过做题,应该总结出:在两个因式中,符号相同的一项作a,符号不同的一项作b.三、随堂练习,巩固新知课本P108练习第1、2题.四、课堂总结,发展潜能本节课的内容是两数和与这两数差的积,公式指出了具有特殊关系的两个二项式积的性质.运用平方差公式应满足两点:一是找出公式中的第一个数a,•第二个数b;二是两数和乘以这两数差,这也是判断能否运用平方差公式的方法.五、布置作业,专题突破课本P112第1、2题.板书设计14.2.1平方差公式(2)教学目标1.知识与技能探究平方差公式的应用,熟练地应用于多项式乘法之中.2.过程与方法经历平方差公式的运用过程,体会平方差公式的内涵.3.情感、态度与价值观培养良好的运算能力,以及观察事物的特征的能力,感受到学习数学知识的实际价值.重点难点1.重点:运用平方差公式进行整式计算.2.难点:准确把握运用平方差公式的特征.弄清平方差公式的结构特点,左边:(1)两个二项式的积;(2)•两个二项式中一项相同,另一项互为相反数.右边:(1)二项式;(2)两个因式中相同项平方减去互为相反数的项的平方.教学方法采用“精讲.精练”分层递推的教学方法,让学生在训练中,熟练掌握平方差的特征.教学过程一、回顾交流,课堂演练1.用平方差公式计算:(1)(-9x-2y)(-9x+2y)(2)(-0.5y+0.3x)(0.5y+0.3x)(3)(8a2b-1)(1+8a2b)(4)20082-2009×20072.计算:(a+b)(a-b)-(3a-2b)(3a+2b)【教师活动】请部分学生上讲台“板演”,然后组织学生交流.【学生活动】先独立完成课堂演练,再与同学交流.二、范例学习,巩固深化【例1】计算:(1)(y+2x)(2x-y);(2)(-x-0.7a2b)(x-0.7a2b);(3)(2a-3b)(2a+3b)(4a2+9b2)(16a4+81b4).解:(1)原式=(x+y)(x-y)=y2(2)原式=(-0.7a2b-x)(-0.7a2b+x)=(-0.7a2b)2-(x)2=0.4 9a4b2-x2(3)原式=(4a2-9b2)(4a2+9b2)(16a4+81b4)=(16a4-81b4)(16a4+81b4)=256a8-6561b8【例2】运用乘法公式计算:7×8【思路点拨】因为7可改写为8-,8可改写成8+,这样可用平方差公式计算.解:7×8=(8-)(8+)=82-()2=64-=63.【教师活动】边讲例边引导学生学会应用平方差公式.【学生活动】参与到例1~2的学习中去.三、课堂演练,拓展思维【演练题1】想一想:(1)计算下列各组算式,并观察它们的共同特征.(2)从以上的过程中,你能寻找出什么规律?(3)请你用字母表现你所发现的规律,并得出结论.【演练题2】1.计算:(1)118×122 (2)105×95 (3)1007×993 2.求(2-1)(2+1)(22+1)(24+1)…(232+1)+1的个位数字.【教师活动】组织学生进行课堂演练,并适时归纳.【学生活动】先独立完成上面的演练题,再与同伴交流.四、随堂练习,巩固提升【探研时空】1.计算:[2a2-(a+b)(a-b)][(-a-b)(-a+b)+2b2];2.解不等式:(3x+4)(3x-4)<9(x-2)(x+3);3.利用平方差公式计算:1.97×2.03;4.化简求值:x4-(1-x)(1+x)(1+x2)其中x=-2.【教师活动】引导学生通过探究,领会平方差公式的真正意义.【学生活动】分四人小组合作学习,互相交流.五、课堂总结,发展潜能提问式总结:1.什么叫做平方差公式?它有什么特征?2.你在应用过程中有什么感想?3.在应用平方差公式时,应注意什么?举例说明.六、布置作业,专题突破选用补充作业.板书设计14.2.2 完全平方公式(1)教学目标1.知识与技能会推导完全平方公式,并能运用公式进行简单的运算,形成推理能力.2.过程与方法利用多项式与多项式的乘法以及幂的意义,推导出完全平方公式.掌握完全平方公式的计算方法.3.情感、态度与价值观培养学生观察、类比、发现的能力,体验数学活动充满着探索性和创造性.重点难点1.重点:完全平方公式的推导和应用.2.难点:完全平方公式的应用.从多项式与多项式相乘入手,推导出完全平方公式,•利用几何模和割补面积的方法来验证公式的正确性.教具准备制作边长为a和b的正方形以及长为a宽为b的纸板.教学方法采用“情境──探究”教学方法,让学生在所创设的情境中领会完全平方公式的内涵.教学过程一、创设情境,导入新知【激趣辅垫】寓言故事:请一位学生讲一讲《滥竽充数》的寓言故事.【学生活动】由一位学生上讲台讲《滥竽充数》的寓言故事,其他学生补充.【教师活动】提出:你们从故事中学到了什么道理?(寓德于教)【学生发言】比喻没有真才实学的人,混在行家里充数,或以次货充好货.【教师引导】对!所以我们在以后的学习和工作中,千万别滥竽充数,一定要有真才实学.好.今天同学们喊得很响亮,我要看看有没有南郭先生,请同学们完成下面的几道题:(1)(2x-3)2;(2)(x+y)2;(3)(m+2n)2;(4)(2x-4)2.【学生活动】先独立完成以上练习,再争取上讲台演练,(1)(2x-3)2=4x2-12x+9;(2)(x+y)2=x2+2xy+y2;(3)(m+2n)2=m2+4mn+4n2;(4)(2x-4)2=4x2-16x+16.【教师活动】组织学生通过上面的运算结果中的每一项,观察、猜测它们的共同特点.【学生活动】分四人小组,讨论.观察,探讨,发现规律如下:(1)•右边第一项是左边第一项的平方,右边最后一项是左边第二项的平方,中间一项是它们两个乘积的2倍.(2)左边如果为“+”号,右边全是“+”号,左边如果为“-”号,它们两个乘积的2•倍就为“-”号,其余都为“+”号.【教师提问】那我们就利用简单的(a+b)2与(a-b)2进行验证,请同学们利用多项式乘法以及幂的意义进行计算.【学生活动】计算出(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2,完成后,•一位学生上讲台板演.【教师活动】利用学生的板演内容,引出本节课的教学内容──完全平方公式.归纳:完全平方公式:(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.语言叙述:两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍.为了让学生直观理解公式,可做下面的拼图游戏.【拼图游戏】解释:(1)现有图1所示的三种规格的硬纸片各若干张,•请你根据二次三项式a2+2ab+b2,选取相应种类和数量的硬纸片,拼出一个正方形,•并探究所拼出的正方形的代数意义.(2)你能根据图2,谈一谈(a-b)2=a2-2ab+b2吗?【课堂活动】第(1)题由小组合作,在互动中完成拼图游戏,比一比,哪个四人小组快?第(2)题,可以借助多媒体课件,直观地演示面积的变化,帮助学生联想到(a-b)2=a2-b2-2b(a-b)=a2-2ab+b2.二、范例学习,应用所学【例1】运用完全平方公式计算:(1)(-x-y)2;(2)(2y-)2(1)解法一:(-x-y)2=[(-x)+(-y)] 2=(-x)2+2(-x)(-y)+(-y)2=x2+2xy+y2;解法二:(-x-y)2=[-(x+y)] 2=(x+y)2=x2+2xy+y2.(2)解法一:(2y-)2=(2y)2-2·2y·+()2=4y2-y+.解法二:(2y-)2=[2y+(-)] 2=(2y)2+2·2y·(-)+(-)2=4y2-y+.【例2】运用乘法公式计算99992.解:99992=(104-1)2=108-2×104+1三、随堂练习,巩固新知【基础训练】(1)(-)2;(2)(2xy+3)2;(3)(-ab+)2;(4)(7ab+2)2.【拓展训练】(1)(-2x-3)2;(2)(2x+3)2;(3)(2x-3)2;(4)(3-2x)2.【教师活动】在学生完成“拓展训练”之后,让学生观察一下结果,看看有什么规律.【学生活动】分四人小组合作交流,寻找规律如下:把以上所有的题目都看作两个数的和的完全平方(把减去一个数看作加上一个负数),如果两个数是相同的符号,则结果中的每一项都是正的,如果两个数具有不同的符号,•则它们乘积的2倍这一项就是负的.【探研时空】已知:x+y=-2,xy=3,求x2+y2.四、课堂总结,发展潜能本节课学习了(a±b)2=a2±2ab+b2,两个乘法公式,在应用时,(1)•要了解公式的结构和特征.让住每一个公式左右两边的形式特征,记准指数和系数的符号;(2)掌握公式的几何意义;(3)弄清公式的变化形式;(4)注意公式在应用中的条件;(5)应灵活地应用公式来解题.五、布置作业,专题突破课本P112习题14.2第3、4、8、9题.板书设计14.2.2 完全平方公式(2)教学目标1.知识与技能引导学生通过观察、分析使他们掌握每一个乘法公式的结构特征及公式的含义,会正确地运用这些公式.2.过程与方法通过探索和理解乘法公式,感受乘法公式从一般到特殊的认知过程,拓展思维空间.3.情感、态度与价值观培养良好的分析思想和与人合作的习惯,体会到数学算理的重要价值.重点难点1.重点:正确应用乘法公式(平方差公式,完全平方公式).2.难点:对乘法公式的结构特征以及内涵的理解.对公式的结构特征进行具体的分析,•从中感悟公式的特点并加以概括.教学方法采用“精讲.精练”的教学方法,增强教学的有效性.教学过程一、回顾交流,拓展延伸【教师提问】1.请同学们说一说平方差公式与完全平方公式的内容.2.这两个公式有什么区别?如何使用?【学生活动】踊跃发言.平方差公式:(a+b)(a-b)=a2-b2完全平方公式:(a±b)2=a2±2ab+b2这里的字母a、b可以是数、单项式、多项式.二、范例学习,拓展知识【例1】计算(2a-3b-4)(2a+3b+4)该题关键在于正确的分组,一般规律是:把完全相同的项分为一组,符合相反、绝对值相等的项分为另一组.【例2】例a=-1,b=2时,求代数式[(a+b)2+(a-b)2](a2-2b2)的值.【例3】已知a+b=-2,ab=-15,求a2+b2的值.解:∵(a+b)2=a2+2ab+b2,变形后可有a2+b2=(a+b)2-2ab.把a+b=-2,ab=-15代入上式,则a2+b2=(-2)2-2×(-15)=34.三、随堂练习,巩固深化【课堂演练】演练题1:应用乘法公式计算:19952-1994×1996.演练题2:已知a+b=-6,ab=8,求(1)a2+b2;(2)(a-b)2.四、课堂总结,发展潜能1.本节课应理解乘法公式是一种特殊形式的乘法,•注意平方差公式与完全平方公式的区别. 2.在乘法计算中,能用公式简便计算的应该使用公式,•要注意公式的应用条件,记住公式的模样,在此前提下对具体题目进行细致观察,想办法将题目调整或变形,使之能使用公式,当然,有些不能使用公式的整式乘法计算就只能运用一般的多项式乘法来进行了.五、布置作业,专题突破课本P112第5、6、7题.板书设计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

14.2.1平方差公式(1)教学目标1.知识与技能会推导平方差公式,并且懂得运用平方差公式进行简单计算.2.过程与方法经历探索特殊形式的多项式乘法的过程,发展学生的符号感和推理能力,使学生逐渐掌握平方差公式.3.情感、态度与价值观通过合作学习,体会在解决具体问题过程中与他人合作的重合性,体验数学活动充满着探索性和创造性.重点难点1.重点:平方差公式的推导和运用,以及对平方差公式的几何背景的了解.2.难点:平方差公式的应用.对于平方差公式的推导,我们可以通过教师引导,学生观察、•总结、猜想,然后得出结论来突破;抓住平方差公式的本质特征,是正确应用公式来计算的关键.教学方法采用“情境──探究”的教学方法,让学生在观察、猜想中总结出平方差公式.教学过程一、创设情境,故事引入【情境设置】教师请一位学生讲一讲《狗熊掰棒子》的故事【学生活动】1位学生有声有色地讲述着《狗熊掰棒子》的故事,•其他学生认真听着,不时补充.【教师归纳】听了这则故事之后,同学们应该懂得这么一个道理,学习千万不能像狗熊掰棒子一样,前面学,后面忘,那么,上节课我们学习了什么呢?还记得吗?【学生回答】多项式乘以多项式.【教师激发】大家是不是已经掌握呢?还是早扔掉了呢?和小狗熊犯了同样的错误呢?下面我们就来做这几道题,看看你是否掌握了以前的知识.【问题牵引】计算:(1)(x+2)(x-2);(2)(1+3a)(1-3a);(3)(x+5y)(x-5y);(4)(y+3z)(y-3z).做完之后,观察以上算式及运算结果,你能发现什么规律?再举两个例子验证你的发现.【学生活动】分四人小组,合作学习,获得以下结果:(1)(x+2)(x-2)=x2-4;(2)(1+3a)(1-3a)=1-9a2;(3)(x+5y)(x-5y)=x2-25y2;(4)(y+3z)(y-3z)=y2-9z2.【教师活动】请一位学生上台演示,然后引导学生仔细观察以上算式及其运算结果,寻找规律.【学生活动】讨论【教师引导】刚才同学们从上述算式中找到了这一组整式乘法的结果的规律,这些是一类特殊的多项式相乘,那么如何用字母来表现刚才同学们所归纳出来的特殊多项式相乘的规律呢?【学生回答】可以用(a+b)(a-b)表示左边,那么右边就可以表示成a2-b2了,即(a+b)(a -b)=a2-b2.用语言描述就是:两个数的和与这两个数的差的积,等于这两个数的平方差.【教师活动】表扬学生的探索精神,引出课题──平方差,并说明这是一个平方差公式和公式中的字母含义.二、范例学习,应用所学【教师讲述】平方差公式的运用,关键是正确寻找公式中的a和b,只有正确找到a和b,•一切就变得容易了.现在大家来看看下面几个例子,从中得到启发.【例1】运用平方差公式计算:(1)(2x+3)(2x-3);(2)(b+3a)(3a-b);(3)(-m+n)(-m-n).填表:【例2】计算:(1)103×97(2)(3x-y)(3y-x)-(x-y)(x+y)通过做题,应该总结出:在两个因式中,符号相同的一项作a,符号不同的一项作b.三、随堂练习,巩固新知课本P108练习第1、2题.四、课堂总结,发展潜能本节课的内容是两数和与这两数差的积,公式指出了具有特殊关系的两个二项式积的性质.运用平方差公式应满足两点:一是找出公式中的第一个数a,•第二个数b;二是两数和乘以这两数差,这也是判断能否运用平方差公式的方法.五、布置作业,专题突破课本P112第1、2题.板书设计14.2.1平方差公式(2)教学目标1.知识与技能探究平方差公式的应用,熟练地应用于多项式乘法之中.2.过程与方法经历平方差公式的运用过程,体会平方差公式的内涵.3.情感、态度与价值观培养良好的运算能力,以及观察事物的特征的能力,感受到学习数学知识的实际价值.重点难点1.重点:运用平方差公式进行整式计算.2.难点:准确把握运用平方差公式的特征.弄清平方差公式的结构特点,左边:(1)两个二项式的积;(2)•两个二项式中一项相同,另一项互为相反数.右边:(1)二项式;(2)两个因式中相同项平方减去互为相反数的项的平方.教学方法采用“精讲.精练”分层递推的教学方法,让学生在训练中,熟练掌握平方差的特征.教学过程一、回顾交流,课堂演练1.用平方差公式计算:(1)(-9x-2y)(-9x+2y)(2)(-0.5y+0.3x)(0.5y+0.3x)(3)(8a2b-1)(1+8a2b)(4)20082-2009×20072.计算:(a+12b)(a-12b)-(3a-2b)(3a+2b)【教师活动】请部分学生上讲台“板演”,然后组织学生交流.【学生活动】先独立完成课堂演练,再与同学交流.二、范例学习,巩固深化【例1】计算:(1)(34y+212x)(212x-34y);(2)(-56x-0.7a2b)(56x-0.7a2b);(3)(2a-3b)(2a+3b)(4a2+9b2)(16a4+81b4).解:(1)原式=(52x+34y)(52x-34y)=2259416x y2(2)原式=(-0.7a2b-56x)(-0.7a2b+56x)=(-0.7a2b)2-(56x)2=0.4 9a4b2-2536x2(3)原式=(4a2-9b2)(4a2+9b2)(16a4+81b4) =(16a4-81b4)(16a4+81b4)=256a8-6561b8【例2】运用乘法公式计算:734×814【思路点拨】因为734可改写为8-14,814可改写成8+14,这样可用平方差公式计算. 解:734×814=(8-14)(8+14)=82-(14)2=64-116=631516.【教师活动】边讲例边引导学生学会应用平方差公式. 【学生活动】参与到例1~2的学习中去. 三、课堂演练,拓展思维【演练题1】想一想:(1)计算下列各组算式,并观察它们的共同特征.68?1315?6163?5961?77?1414?6262?6060?⨯=⨯=⨯=⨯=⎧⎧⎧⎧⎨⎨⎨⎨⨯=⨯=⨯=⨯=⎩⎩⎩⎩ (2)从以上的过程中,你能寻找出什么规律? (3)请你用字母表现你所发现的规律,并得出结论. 【演练题2】1.计算:(1)118×122 (2)105×95 (3)1007×9932.求(2-1)(2+1)(22+1)(24+1)…(232+1)+1的个位数字. 【教师活动】组织学生进行课堂演练,并适时归纳. 【学生活动】先独立完成上面的演练题,再与同伴交流. 四、随堂练习,巩固提升 【探研时空】1.计算:[2a 2-(a+b )(a -b )][(-a -b )(-a+b )+2b 2]; 2.解不等式:(3x+4)(3x -4)<9(x -2)(x+3); 3.利用平方差公式计算:1.97×2.03;4.化简求值:x 4-(1-x )(1+x )(1+x 2)其中x=-2. 【教师活动】引导学生通过探究,领会平方差公式的真正意义. 【学生活动】分四人小组合作学习,互相交流. 五、课堂总结,发展潜能 提问式总结:1.什么叫做平方差公式?它有什么特征? 2.你在应用过程中有什么感想?3.在应用平方差公式时,应注意什么?举例说明. 六、布置作业,专题突破选用补充作业.板书设计14.2.2 完全平方公式(1)教学目标1.知识与技能会推导完全平方公式,并能运用公式进行简单的运算,形成推理能力.2.过程与方法利用多项式与多项式的乘法以及幂的意义,推导出完全平方公式.掌握完全平方公式的计算方法.3.情感、态度与价值观培养学生观察、类比、发现的能力,体验数学活动充满着探索性和创造性.重点难点1.重点:完全平方公式的推导和应用.2.难点:完全平方公式的应用.从多项式与多项式相乘入手,推导出完全平方公式,•利用几何模和割补面积的方法来验证公式的正确性.教具准备制作边长为a和b的正方形以及长为a宽为b的纸板.教学方法采用“情境──探究”教学方法,让学生在所创设的情境中领会完全平方公式的内涵.教学过程一、创设情境,导入新知【激趣辅垫】寓言故事:请一位学生讲一讲《滥竽充数》的寓言故事.【学生活动】由一位学生上讲台讲《滥竽充数》的寓言故事,其他学生补充.【教师活动】提出:你们从故事中学到了什么道理?(寓德于教)【学生发言】比喻没有真才实学的人,混在行家里充数,或以次货充好货.【教师引导】对!所以我们在以后的学习和工作中,千万别滥竽充数,一定要有真才实学.好.今天同学们喊得很响亮,我要看看有没有南郭先生,请同学们完成下面的几道题:(1)(2x-3)2;(2)(x+y)2;(3)(m+2n)2;(4)(2x-4)2.【学生活动】先独立完成以上练习,再争取上讲台演练,(1)(2x-3)2=4x2-12x+9;(2)(x+y)2=x2+2xy+y2;(3)(m+2n)2=m2+4mn+4n2;(4)(2x-4)2=4x2-16x+16.【教师活动】组织学生通过上面的运算结果中的每一项,观察、猜测它们的共同特点.【学生活动】分四人小组,讨论.观察,探讨,发现规律如下:(1)•右边第一项是左边第一项的平方,右边最后一项是左边第二项的平方,中间一项是它们两个乘积的2倍.(2)左边如果为“+”号,右边全是“+”号,左边如果为“-”号,它们两个乘积的2•倍就为“-”号,其余都为“+”号.【教师提问】那我们就利用简单的(a+b)2与(a-b)2进行验证,请同学们利用多项式乘法以及幂的意义进行计算.【学生活动】计算出(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2,完成后,•一位学生上讲台板演.【教师活动】利用学生的板演内容,引出本节课的教学内容──完全平方公式.归纳:完全平方公式:(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.语言叙述:两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍.为了让学生直观理解公式,可做下面的拼图游戏.【拼图游戏】解释:(1)现有图1所示的三种规格的硬纸片各若干张,•请你根据二次三项式a2+2ab+b2,选取相应种类和数量的硬纸片,拼出一个正方形,•并探究所拼出的正方形的代数意义.(2)你能根据图2,谈一谈(a -b )2=a 2-2ab+b 2吗?【课堂活动】第(1)题由小组合作,在互动中完成拼图游戏,比一比,哪个四人小组快?第(2)题,可以借助多媒体课件,直观地演示面积的变化,帮助学生联想到(a -b )2=a 2-b 2-2b (a -b )=a 2-2ab+b 2. 二、范例学习,应用所学 【例1】运用完全平方公式计算: (1)(-x -y )2; (2)(2y -13)2(1)解法一:(-x -y )2=[(-x )+(-y )] 2=(-x )2+2(-x )(-y )+(-y )2=x 2+2xy+y 2;解法二:(-x -y )2=[-(x+y )] 2=(x+y )2=x 2+2xy+y 2. (2)解法一:(2y -13)2=(2y )2-2·2y ·13+(13)2 =4y 2-43y+19. 解法二:(2y -13)2=[2y+(-13)] 2=(2y )2+2·2y ·(-13)+(-13)2=4y 2-43y+19. 【例2】运用乘法公式计算99992. 解:99992=(104-1)2=108-2×104+1 =100000000-20000+1 =99980001.三、随堂练习,巩固新知 【基础训练】(1)(3a -2b )2; (2)(2xy+3)2; (3)(-ab+13)2; (4)(7ab+2)2.【拓展训练】(1)(-2x -3)2; (2)(2x+3)2; (3)(2x -3)2; (4)(3-2x )2.【教师活动】在学生完成“拓展训练”之后,让学生观察一下结果,看看有什么规律. 【学生活动】分四人小组合作交流,寻找规律如下:把以上所有的题目都看作两个数的和的完全平方(把减去一个数看作加上一个负数),如果两个数是相同的符号,则结果中的每一项都是正的,如果两个数具有不同的符号,•则它们乘积的2倍这一项就是负的. 【探研时空】已知:x+y=-2,xy=3,求x 2+y 2. 四、课堂总结,发展潜能本节课学习了(a ±b )2=a 2±2ab+b 2,两个乘法公式,在应用时,(1)•要了解公式的结构和特征.让住每一个公式左右两边的形式特征,记准指数和系数的符号;(2)掌握公式的几何意义;(3)弄清公式的变化形式;(4)注意公式在应用中的条件;(5)应灵活地应用公式来解题. 五、布置作业,专题突破课本P112习题14.2第3、4、8、9题. 板书设计14.2.2 完全平方公式(2)教学目标1.知识与技能引导学生通过观察、分析使他们掌握每一个乘法公式的结构特征及公式的含义,会正确地运用这些公式. 2.过程与方法通过探索和理解乘法公式,感受乘法公式从一般到特殊的认知过程,拓展思维空间.3.情感、态度与价值观培养良好的分析思想和与人合作的习惯,体会到数学算理的重要价值.重点难点1.重点:正确应用乘法公式(平方差公式,完全平方公式).2.难点:对乘法公式的结构特征以及内涵的理解.对公式的结构特征进行具体的分析,•从中感悟公式的特点并加以概括.教学方法采用“精讲.精练”的教学方法,增强教学的有效性.教学过程一、回顾交流,拓展延伸【教师提问】1.请同学们说一说平方差公式与完全平方公式的内容.2.这两个公式有什么区别?如何使用?【学生活动】踊跃发言.平方差公式:(a+b)(a-b)=a2-b2完全平方公式:(a±b)2=a2±2ab+b2这里的字母a、b可以是数、单项式、多项式.二、范例学习,拓展知识【例1】计算(2a-3b-4)(2a+3b+4)该题关键在于正确的分组,一般规律是:把完全相同的项分为一组,符合相反、绝对值相等的项分为另一组.【例2】例a=-1,b=2时,求代数式[(12a+b)2+(12a-b)2](12a2-2b2)的值.【例3】已知a+b=-2,ab=-15,求a2+b2的值.解:∵(a+b)2=a2+2ab+b2,变形后可有a2+b2=(a+b)2-2ab.把a+b=-2,ab=-15代入上式,则a2+b2=(-2)2-2×(-15)=34.三、随堂练习,巩固深化【课堂演练】演练题1:应用乘法公式计算:19952-1994×1996.演练题2:已知a+b=-6,ab=8,求(1)a2+b2;(2)(a-b)2.四、课堂总结,发展潜能1.本节课应理解乘法公式是一种特殊形式的乘法,•注意平方差公式与完全平方公式的区别. 2.在乘法计算中,能用公式简便计算的应该使用公式,•要注意公式的应用条件,记住公式的模样,在此前提下对具体题目进行细致观察,想办法将题目调整或变形,使之能使用公式,当然,有些不能使用公式的整式乘法计算就只能运用一般的多项式乘法来进行了.五、布置作业,专题突破课本P112第5、6、7题.板书设计11。

相关文档
最新文档