新人教版九年级下29.2三视图同步作业含答案
九年级数学下册第二十九章投影与视图29.2三视图习题3新版新人教版(含参考答案)
九年级数学下册:三视图1.由三视图想象立体图形时,首先分别根据主视图、俯视图和左视图想象立体图形的________面、________面和________侧面,然后综合起来考虑整体图形.2.由物体三视图中的数据可得到物体的相关数据,从而可计算出物体的________或________.3.(2015·聊城)某几何体的三视图如图所示,则这个几何体是( )A.圆锥B.圆柱C.三棱柱D.三棱锥4.(2014·潍坊)一个几何体的三视图如图所示,则该几何体是( )A.B.C.D.5.如图是一个几何体的三视图,则这个几何体的侧面积是( )A.12πcm2B.8πcm2C.6πcm2D.3πcm26.(2014·扬州)如图,这是一个长方体的主视图与俯视图,由图示数据(单位:cm)可以得出该长方体的体积是________cm3.7.如图①、②分别是两个几何体的三视图,试画出这两个几何体.8.(2015·孝感)如图是一个几何体的三视图,则这个几何体是( )A.正方体B.长方体C.三棱柱D.三棱锥9.如图是一个长方体的主视图、俯视图,则其左视图的面积为( )A.3B.4C.12D.1610.如图是一个圆锥的三视图,则此圆锥的底面积为( )A.30πcm2B.25πcm2C.50πcm2D.10πcm211.如图,正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体的主视图的面积是________.12.已知一个零件的三视图如图所示,试描述这个零件的形状.13.如图是某种型号的正六角螺母毛坯的三视图,请计算出它的表面积.14.一个几何体的三视图如图所示,你能画出这个几何体吗?并求出它的表面积和体积.参考答案1.前上左2.表面积体积3.A4.D5.C6.187.略8.B9.A10.B11.18cm212.略13.(12336)+cm2 14.几何体的形状如图所示,其表面积为2812()8105885924022⨯π⨯+π⨯+⨯-⨯π⨯=π+,体积为22818()10()5120222π⨯⨯-⨯π⨯⨯=π。
【新】人教版九年级数学下册29.2 三视图同步练习附答案
由三视图到表面展开图
1. 一个几何体的展开图如图所示,这个几何体是()
A.三棱柱B.三棱锥
C.四棱柱D.四棱锥
2. 如图所示,水平放置的长方体的底面是长为4和宽为2的矩形,它的主视图的面
积为12,则长方体的体积等于()
A.16 B.24 C.32 D.48
3. 如图是某几何体的三视图及相关数据(单位:cm),则该几何体的侧面积为______cm2.
4. 如图是一个几何体的三视图,根据图中标注的数据可得该几何体的体积为.(结果保
留π)
5. 如图为一几何体从不同方向看的图形.
(1)写出这个几何体的名称;
(2)任意画出这个几何体的一种表面展开图;
(3)若长方形的高为10 cm,三角形的边长为4 cm,求这个几何体的侧面积.
参考答案
1.A
2.B
3.2π
4.3π
5.解:(1)正三棱柱;
(2)如图所示;
(3)3×10×4=120(cm2).。
【人教版】数学九年级下《29.2三视图》课时练习(含答案解析)
新人教版数学九年级下册第二十九章第二节三视图课时练习一、单选题(共15题)1、下列立体图形中,俯视图是正方形的是()A B C D答案:B知识点:简单几何体的三视图解析:解答:A.圆柱的俯视图是圆,故此选项错误.B.正方体的俯视图是正方形,故此选项正确.C.三棱锥的俯视图是三角形,故此选项错误.D.圆锥的俯视图是圆,故此选项错误;故选:B.分析: 本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.2.如图,正三棱柱的主视图为()B C D答案:B知识点:简单几何体的三视图解析:解答: 正三棱柱的主视图是矩形,主视图中间有竖着的实线.故选:B.分析: 根据正三棱柱的主视图是矩形,主视图中间有竖着的实线,即可解答.3.下列几何体中,主视图和左视图都为矩形的是()答案:B知识点:简单几何体的三视图解析:解答: A.主视图和左视图都为圆,所以A选项错误;B.主视图和左视图都为矩形的,所以B选项正确;C.主视图和左视图都为等腰三角形,所以C选项错误;D.主视图为矩形,左视图为圆,所以D选项错误.故选B.分析: 分别写出各几何体的主视图和左视图,然后进行判断.4.如图是一个圆台,它的主视图是()答案:B知识点: 简单几何体的三视图解析:解答: 解:从几何体的正面看可得等腰梯形,故选:B.分析: 主视图是从物体正面看,所得到的图形.5.下列几何体中,正视图是矩形的是()答案:B知识点:简单几何体的三视图解析:解答: A.球的正视图是圆,故此选项错误;B.圆柱的正视图是矩形,故此选项正确;C.圆锥的正视图是等腰三角形,故此选项错误;D.圆台的正视图是等腰梯形,故此选项错误;故选:B.分析: 主视图是从物体正面看,所得到的图形.6.如图,下列几何体的左视图不是矩形的是()答案:B知识点:简单几何体的三视图解析:解答: A.圆柱的左视图是矩形,不符合题意;B.圆锥的左视图是等腰三角形,符合题意;C.三棱柱的左视图是矩形,不符合题意;D.长方体的左视图是矩形,不符合题意.故选:B.分析: 根据左视图是从物体左面看所得到的图形,分别得出四个几何体的左视图,即可解答.7.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变答案:D知识点:简单组合体的三视图解析:解答:将正方体①移走前的主视图正方形的个数为1,2,1;正方体①移走后的主视图正方形的个数为1,2;发生改变.将正方体①移走前的左视图正方形的个数为2,1,1;正方体①移走后的左视图正方形的个数为2,1,1;没有发生改变.将正方体①移走前的俯视图正方形的个数为1,3,1;正方体①移走后的俯视图正方形的个数,1,3;发生改变.故选D.分析: 分别得到将正方体①移走前后的三视图,依此即可作出判断8.如图所示的几何体是由一些正方体组合而成的立体图形,则这个几何体的俯视图是()答案:D知识点:简单组合体的三视图解析:解答: 从上面看易得左侧有2个正方形,右侧有一个正方形.故选A.分析: 找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.9.如图所示的几何体是由一个圆柱体和一个长方形组成的,则这个几何体的俯视图是()答案:C知识点:简单组合体的三视图解析:解答: 从上面看外边是一个矩形,里面是一个圆.故选:C.分析: 根据俯视图是从上面看得到的图形,可得答案.10.如图所示几何体的左视图为()答案:A知识点:简单组合体的三视图解析:解答: 从左边看第一层一个小正方形,第二层一个小正方形,第三层一个小正方形.故选:A.分析:根据从左边看得到的图形是左视图,可得答案.11.如图所示几何体的左视图是()答案:C知识点:简单组合体的三视图解析:解答: 从左面看可得矩形中间有一条横着的虚线.故选C.分析: 找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.12.图中的两个圆柱体底面半径相同而高度不同,关于这两个圆柱体的视图说法正确的是()A.主视图相同B.俯视图相同C.左视图相同D.主视图、俯视图、左视图都相同答案:B知识点:简单组合体的三视图解析:解答: A.主视图的宽不同,故A错误;B.俯视图是两个相等的圆,故B正确;C.主视图的宽不同,故C错误;D.俯视图是两个相等的圆,故D错误;故选:B.分析: 根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图,可得答案.13.如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为()答案:C知识点:简单组合体的三视图解析:解答:从左面看所得到的图形是正方形,切去部分的棱能看到,用实线表示.故选:C.分析: 找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中.14.如图所示的物体的左视图为()答案: A知识点:简单组合体的三视图解析:解答:从左面看易得第一层有1个矩形,第二层最左边有一个正方形.故选A.分析: 找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.15.一个几何体的三视图如图所示,则这个几何体是()A.圆柱B.圆锥C.长方体D.正方体答案:A知识点:由三视图判断几何体解析:解答:由主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆可得此几何体为圆柱.故选A.分析: 主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.二、填空题(共5题)1.如图是一些完全相同的小正方体搭成的几何体的三视图.这个几何体只能是______.(画图解答)答案:知识点:由三视图判断几何体解析:解答: 由俯视图易得最底层有4个正方体,第二层有1个正方体,那么共有4+1=5个正方体组成,由主视图可知,一共有前后2排,第一排有3个正方体,第二排有2层位于第一排中间的后面分析:易得这个几何体共有2层,由俯视图可得第一层正方体的个数,由主视图和左视图可得第二层正方体的个数,相加即可.2.任意放置以下几何体:正方体、圆柱、圆锥、球体,则三视图都完全相同的几何体是_______________.答案:正方体和球体知识点:简单几何体的三视图解析:解答: 正方体主视图、俯视图、左视图都是正方形;圆柱主视图和左视图是矩形,俯视图是圆;圆锥主视图和左视图是等腰三角形,俯视图是圆;球体主视图、俯视图、左视图都是圆;分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.3.如图,在常见的几何体圆锥、圆柱、球、长方体中,主视图与它的左视图一定完全相同的几何体有_________答案:①②③知识点:简单几何体的三视图解析:解答: ①圆锥主视图是三角形,左视图也是三角形,②圆柱的主视图和左视图都是矩形;③球的主视图和左视图都是圆形;④长方体的主视图是矩形,左视图也是矩形,但是长和宽不一定相同,故选:①②③.分析: 主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.4.请将六棱柱的三视图名称填在相应的横线上.(1)__________(2)_____________(3)__________答案:(1)俯视图(2)主视图(3)左视图知识点:简单几何体的三视图解析:解答:(1)此形状是从几何体的上面看所得到的图形,是俯视图;(2)此形状是从几何体的正面看所得到的图形,是主视图;(3)此形状是从几何体的左面看所得到的图形,是左视图,故答案为:俯视图;主视图;左视图.分析: 主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.5.如图是一个几何体的三视图,其中主视图与左视图都是边长为4的等边三角形,则这个几何体的侧面展开图的面积为_________答案:8π知识点:简单几何体的三视图111形,求此直三棱柱左视图的面积答案:知识点:简单几何体的三视图等边三角形的性质解析:解答: 此直三棱柱左视图是长为2,宽为AB边上的高的矩形,∵底面各边长均为2,∴△ABC是等边三角形,AB边上的高为∴此直三棱柱左视图的面积故答案为:分析: 根据左视图是从物体的左面看所得到的图形,判断出此直三棱柱的左视图是以侧棱长为长,以等边三角形的高为宽的矩形,再根据矩形的面积公式列式计算即可得解.2.长方体的主视图与俯视图如图所示,求这个长方体的体积答案:24知识点:简单几何体的三视图认识立体图形解析:解答:由主视图可知,这个长方体的长和高分别为4和3,由俯视图可知,这个长方体的长和宽分别为4和2,因此这个长方体的长、宽、高分别为4、2、3,因此这个长方体的体积为4×2×3=24.故答案为:24.分析:由所给的视图判断出长方体的长、宽、高,让它们相乘即可得到体积.3.一个长方体的三视图如图所示,若其俯视图为正方形,求这个长方体的底面边长答案:24.如图,水平放置的长方体的底面是边长为3和5的长方形,它的左视图的面积为12,求长方体的体积.答案:60知识点:简单几何体的三视图解析:解答:∵它的左视图的面积为12,∴高为12÷3=4,体积是4×5×3=60,故答案为:60.分析: 首先根据左视图的面积求出长方体的高,然后根据长方体的体积公式计算出长方体的体积即可。
人教版九年级数学下册《29.2三视图》同步练习题带答案
人教版九年级数学下册《29.2三视图》同步练习题带答案学校:___________班级:___________姓名:___________考号:___________第1课时几何体的三视图1.视图:物体在某一方向光线下的正投影.主视图:在内得到的由前向后观察物体的视图;俯视图:在内得到的由上向下观察物体的视图;左视图:在内得到的由左向右观察物体的视图.2.三视图的规律:主视图与俯视图要“长对正”,主视图与左视图要“高平齐”,左视图与俯视图要“宽相等”.注意:在画三视图时,看得见的轮廓用实线表示,看不见的轮廓要用虚线表示.基础分点训练知识点1三视图的有关概念1.(2024·甘肃)如图所示,该几何体的主视图是()2.(2024·临夏州)马家窑彩陶绚丽典雅,符号丰富,被称为彩陶文化的“远古之光”.如图是一件马家窑彩陶作品的立体图形,有关其三视图说法正确的是()A.主视图和左视图完全相同B.主视图和俯视图完全相同C.左视图和俯视图完全相同D.三视图各不相同3.在我国古代建筑中经常使用榫卯构件,如图是某种榫卯构件的示意图,其中卯的俯视图是()知识点2三视图的画法4.如图,是由3个相同的小正方体搭成的几何体,画出该几何体的三视图.中档提分训练5.观察如图所示的几何体,下列关于其三视图的说法正确的是()A.主视图既是中心对称图形,又是轴对称图形B.左视图既是中心对称图形,又是轴对称图形C.俯视图既是中心对称图形,又是轴对称图形D.主视图、左视图、俯视图都是中心对称图形6.如图所示的几何体,其俯视图是()7.沿正方体相邻的三条棱的中点截掉一部分,得到如图所示的几何体,则它的主视图是()8.画出如图所示立体图的三视图.拓展素养训练9.【核心素养·空间观念】学生玩一种游戏,需按墙上的空洞造型摆出相同姿势才能穿墙而过,否则会被墙推入水池,类似地,一个几何体恰好可以无缝隙地以3个不同形状的“姿势”穿过“墙”上的3个空洞,则该几何体为()第2课时由三视图确定几何体学霸笔记由三视图确定几何体:先根据三视图想象立体图形的前面、上面和左侧面,然后综合起来考虑整体图形.基础分点训练知识点由三视图确定几何体1.如图是某几何体的三视图,则该几何体是()A.圆锥B.圆柱C.长方体D.三棱柱2.与如图所示的三视图所对应的实物图是()3.【真实问题情境】通过小颖和小明的对话,我们可以判断他们共同搭的几何体是()中档提分训练4.(2024·酒泉三模)某几何体的三视图如图所示,则该几何体是()5.【传统文化】(2024·广西桂林模拟)图(1)是矗立千年而不倒的应县木塔一角,全塔使用了54种形态各异的斗拱.斗拱是中国建筑特有的一种结构,位于柱与梁之间.斗拱由斗、升、拱、翘、昂组成,图(2)是其中一个组成部件的三视图,则这个部件是()图(1)图(2)6.小明用若干个相同的小正方体搭成的一个几何体的三视图如图所示,由此可知,搭成这个几何体的小正方体最多有()A.13个B.12个C.11个D.10个第3课时由三视图确定几何体的表面积或体积学霸笔记由三视图计算几何体的表面积或体积的方法:先由三视图想象出几何体的形状,再进一步画出展开图,最后进行计算.基础分点训练知识点由三视图确定几何体的表面积或体积1.如图是一个几何体的三视图,根据图中提供的数据(单位:cm)可求得这个几何体的体积为()A.4π cm3B.8π cm3C.16π cm3D.32π cm32.已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为.3.如图,是某几何体的三种视图.(1)说出这个几何体的名称;(2)若其看到的三个图形中图1的长为15 cm,宽为4 cm;图2的宽为3 cm;图3直角三角形的斜边长为5 cm,试求这个几何体的所有棱长的和是多少,它的表面积多大?中档提分训练4.【核心素养·空间观念】(2024·陇南县级模拟)某圆锥形遮阳伞主视图如图所示,若∠OAB=30°,OA=2 m,则遮阳伞伞面的面积(圆锥的侧面积)为()A.2√3π m2B.√3π m2C.2π m2D.4π m25.(2024·武威校级一模)一个长方体的三种视图如图所示,若其俯视图为正方形,则这个长方体的体积为cm3.6.一个长方体的三视图如图所示,若其俯视图为正方形,求这个长方体的表面积.7.李明在参观某工厂车床工作间时发现了一个工件,通过观察并画出了此工件的三视图,借助直尺测量了部分长度.如图所示,该工件的体积是多少?拓展素养训练8.如图是一个几何体的三视图(单位:cm).(1)写出这个几何体的名称;(2)根据图中所示数据计算这个几何体的表面积;(3)如果一只蚂蚁要从这个几何体中的点B出发,沿表面爬到AC 的中点D,请你求出这个线路的最短路程.参考答案1.视图:物体在某一方向光线下的正投影.主视图:在正面内得到的由前向后观察物体的视图;俯视图:在水平面内得到的由上向下观察物体的视图;左视图:在侧面内得到的由左向右观察物体的视图.2.三视图的规律:主视图与俯视图要“长对正”,主视图与左视图要“高平齐”,左视图与俯视图要“宽相等”.注意:在画三视图时,看得见的轮廓用实线表示,看不见的轮廓要用虚线表示.基础分点训练知识点1三视图的有关概念1.(2024·甘肃)如图所示,该几何体的主视图是(C)2.(2024·临夏州)马家窑彩陶绚丽典雅,符号丰富,被称为彩陶文化的“远古之光”.如图是一件马家窑彩陶作品的立体图形,有关其三视图说法正确的是(D)A.主视图和左视图完全相同B.主视图和俯视图完全相同C.左视图和俯视图完全相同D.三视图各不相同3.在我国古代建筑中经常使用榫卯构件,如图是某种榫卯构件的示意图,其中卯的俯视图是(C)知识点2三视图的画法4.如图,是由3个相同的小正方体搭成的几何体,画出该几何体的三视图.解:该几何体的三视图如图所示.中档提分训练5.观察如图所示的几何体,下列关于其三视图的说法正确的是(C)A.主视图既是中心对称图形,又是轴对称图形B.左视图既是中心对称图形,又是轴对称图形C.俯视图既是中心对称图形,又是轴对称图形D.主视图、左视图、俯视图都是中心对称图形6.如图所示的几何体,其俯视图是(C)7.沿正方体相邻的三条棱的中点截掉一部分,得到如图所示的几何体,则它的主视图是(A)8.画出如图所示立体图的三视图.解:立体图的三视图如图所示.拓展素养训练9.【核心素养·空间观念】学生玩一种游戏,需按墙上的空洞造型摆出相同姿势才能穿墙而过,否则会被墙推入水池,类似地,一个几何体恰好可以无缝隙地以3个不同形状的“姿势”穿过“墙”上的3个空洞,则该几何体为(A)第2课时由三视图确定几何体学霸笔记由三视图确定几何体:先根据三视图想象立体图形的前面、上面和左侧面,然后综合起来考虑整体图形.基础分点训练知识点由三视图确定几何体1.如图是某几何体的三视图,则该几何体是(C)A.圆锥B.圆柱C.长方体D.三棱柱2.与如图所示的三视图所对应的实物图是(A)3.【真实问题情境】通过小颖和小明的对话,我们可以判断他们共同搭的几何体是(D)中档提分训练4.(2024·酒泉三模)某几何体的三视图如图所示,则该几何体是(A)5.【传统文化】(2024·广西桂林模拟)图(1)是矗立千年而不倒的应县木塔一角,全塔使用了54种形态各异的斗拱.斗拱是中国建筑特有的一种结构,位于柱与梁之间.斗拱由斗、升、拱、翘、昂组成,图(2)是其中一个组成部件的三视图,则这个部件是(C)图(1)图(2)6.小明用若干个相同的小正方体搭成的一个几何体的三视图如图所示,由此可知,搭成这个几何体的小正方体最多有(A)A.13个B.12个C.11个D.10个第3课时由三视图确定几何体的表面积或体积学霸笔记由三视图计算几何体的表面积或体积的方法:先由三视图想象出几何体的形状,再进一步画出展开图,最后进行计算.基础分点训练知识点由三视图确定几何体的表面积或体积1.如图是一个几何体的三视图,根据图中提供的数据(单位:cm)可求得这个几何体的体积为(A)A.4π cm3B.8π cm3C.16π cm3D.32π cm32.已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为108.3.如图,是某几何体的三种视图.(1)说出这个几何体的名称;解:(1)三棱柱.(2)若其看到的三个图形中图1的长为15 cm,宽为4 cm;图2的宽为3 cm;图3直角三角形的斜边长为5 cm,试求这个几何体的所有棱长的和是多少,它的表面积多大?+++(2)棱长和为:(3+4+5)×2+15×3=69(cm).侧面积为:3×15+4×15+5×15=180(cm2).=6(cm2).底面积为:3×4×12表面积为:180+6×2=192(cm2).中档提分训练4.【核心素养·空间观念】(2024·陇南县级模拟)某圆锥形遮阳伞主视图如图所示,若∠OAB=30°,OA=2 m,则遮阳伞伞面的面积(圆锥的侧面积)为(A)A.2√3π m2B.√3π m2C.2π m2D.4π m25.(2024·武威校级一模)一个长方体的三种视图如图所示,若其俯视图为正方形,则这个长方体的体积为144cm3.6.一个长方体的三视图如图所示,若其俯视图为正方形,求这个长方体的表面积.解:根据三视图,得长方体如图所示,则AB=3√2,CE=4.∵AC2+BC2=AB2∴AC=BC=3∴正方形ACBD的面积为3×3=9.这个长方体的侧面积为4AC·CE=4×3×4=48.∴这个长方体的表面积为48+9+9=66.7.李明在参观某工厂车床工作间时发现了一个工件,通过观察并画出了此工件的三视图,借助直尺测量了部分长度.如图所示,该工件的体积是多少?解:根据三视图,知该工件是由大、小两个圆柱组合成的几何体.大、小两圆柱体底面直径分别是4 cm和2 cm.大、小两圆柱体的高分别是4 cm和1 cm.大圆柱体的体积为:π×22×4=16π(cm3)小圆柱体的体积为:π×12×1=π(cm3).∴该工件体积为:16π+π=17π(cm3).拓展素养训练8.如图是一个几何体的三视图(单位:cm).(1)写出这个几何体的名称;解:(1)这个几何体的名称是圆锥.(2)根据图中所示数据计算这个几何体的表面积;(2)S表=S侧+S底=πrl+πr2=π×2×6+π×22=16π(cm2).(3)如果一只蚂蚁要从这个几何体中的点B出发,沿表面爬到AC 的中点D,请你求出这个线路的最短路程.(3)如图,将圆锥侧面展开,线段BD为所求的最短路程.设∠BAB'=x°.⏜的长根据题意,得底面圆的周长等于BB',解得x=120.即2×π×2=x×π×6180∴∠BAB'=120°.⏜的中点,AB=AC=6 cm∵点C为BB'∴∠CAB=60°.∴△ABC是等边三角形.又∵点D为AC的中点∴∠ADB=90°.∴BD=AB·sin 60°=6×√3=3√3(cm).2∴这个线路的最短路程为3√3cm.。
第二十九章 三视图 同步练习 2022—2023学年人教版数学九年级下册
人教版九下 29.2 三视图一、选择题(共16小题)1. 如图是某几何体的三视图,该几何体是( )A. 正方体B. 圆锥C. 四棱柱D. 圆柱2. 如图所示的几何体,其俯视图是( )A. B.C. D.3. 如图是由4个小正方形体组合成的几何体,该几何体的主视图是( )A. B.C. D.4. 由若干个棱长为1cm的正方体堆积成一个几何体,它的三视图如图所示,则这个几何体的表面积是( )A. 15cm2B. 18cm2C. 21cm2D. 24cm25. 如图,是某几何体的三视图,该几何体是( )A. 圆柱B. 正方体C. 三棱柱D. 长方体6. 如图是由一个圆柱和一个长方体组成的几何体,则该几何体的俯视图是( )A. B.C. D.7. 若一个几何体的主视图、俯视图、左视图都是半径相等的圆,则这个几何体是( )A. 球体B. 圆锥C. 圆柱D. 正方体8. 如图①,长方体的体积为120,图②是图①的三视图,用S表示面积,若S主=24,S 左=20,则S俯=( )A. 26B. 28C. 30D. 329. 下列选项中,如图所示的圆柱的三视图画法正确的是( )A. B.C. D.10. 如图所示,从左面看该几何体,看到的图形是( )A. B.C. D.11. 图②是图①中长方体的三视图,若用S表示面积,S主=a2,S左=a2+a,则S俯=( )A. a2+aB. 2a2C. a2+2a+1D. 2a2+a12. 一个几何体由若干个大小相同的小正方体组成,从上面看和从左面看得到的平面图形如图,那么组成该几何体所需小正方体的个数最少为( )A. 4B. 5C. 6D. 713. 如图所示的六角螺母,从上面看,得到的图形是( )A. B.C. D.14. 一个圆柱的三视图如图所示,则这个圆柱的体积为( )A. 24B. 24πC. 96D. 96π15. 如图,是一个几何体从正面、左面、上面看得到的图形,则这个几何体是( )A. B.C. D.16. 如图,下列关于物体的主视图画法正确的是( )A. B.C. D.二、填空题(共10小题)17. 如图图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图).已知主视图和左视图是两个全等的矩形.若主视图的相邻两边长分别为2和3,俯视图是直径等于2的圆,则这个几何体的体积为.18. 下图是由一些相同长方体的积木块拾成的几何体的三视图,则此几何体共由块长方体的积木搭成.19. 在①长方体,②球,③圆锥,④圆柱,⑤三棱柱这五种几何体中,其主视图、左视图、俯视图都完全相同的是.(填上序号即可)20. 长方体的主视图、俯视图如图所示,则这个长方体的体积为;21. 一个几何体的三视图如下图所示,这个几何体是(填名称).22. 有四块如图(1)这样的小正方体摆在一起(各部分之间必须相连),其主视图如图(2),则左视图有种画法.23. 长方体直观图有多种画法,通常我们采用画法.24. 下图是由十个小正方体组成的几何体,若每个小正方体的棱长都是2,则该几何体的主视图和左视图的面积之和是.25. 图是某几何体的三视图及相关数据,则该几何体的侧面积是26. 图是由小正方体组合而成的几何体的主视图、左视图和俯视图,则至少再加个小正方体后,该几何体可成为一个正方体.三、解答题(共7小题)27. 如图是一个几何体的三视图,根据图示的数据计算出该几何体的表面积.28. 画出下列组合体的三视图.29. 学校食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,碟子的个数与碟子的高度的关系如下表:碟子的个数1234⋯碟子的高度(单位:cm)22+1.52+32+4.5⋯(1)当桌子上放有x(个)碟子时,请写出此时碟子的高度(用含x的式子表示);(2)分别从正面、左面、上面三个方向看这些碟子,看到的形状图如图所示,厨房师傅想把它们整齐叠成一摞,求叠成一摞后的高度.30. 一个等腰Rt△ABC如图所示,将它绕直线AC旋转一周,形成一个几何体.(1)写出这个几何体的名称,并画出这个几何体的三视图;(2)依据图中的数据,计算这个几何体的表面积.(结果保留π)31. 如图是由一些大小相同的小立方块搭成的几何体.(1)图中有块小立方块;(2)请分别画出它的主视图,左视图和俯视图.32. 由一些大小相同,棱长为1的小正方体搭成的几何体的俯视图如下图所示,数字表示该位置上的小正方体个数.(1)请在下图中画出它的主视图和左视图;(2)给这个几何体喷上颜色(底面不喷色),需要喷色的面积为.(3)在不改变主视图和俯视图的情况下,最多可添加个小正方体.33. 一个零件是由长为34mm、高和宽都为17mm的长方体与直径为34mm、高度为17mm的半圆柱组成几何体后,又切去直径为17mm的圆柱后剩下的几何体,其实物直观图如图所示,请画出这个零件的三视图.答案1. D【解析】该几何体的视图为一个圆形和两个矩形.则该几何体可能为圆柱.2. D【解析】从上面看,是一个带圆心的圆.3. A【解析】该组合体的主视图如下:4. B【解析】由三视图可知该几何体的直观图如图所示.∵各个小正方体的棱长为1cm,∴这个几何体的表面积是3×6×1×1=18(cm2).5. D6. A【解析】从上边看,是一个矩形,矩形的内部有一个与矩形两边相切的圆.7. A【解析】解答这种类型的题目时,可以像画图题一样,面出每个选项中的几何体的三视图,然后和已知三视图比较得出答案;也可以通过已知的三个视图想象出几何体,从选项中寻找和它一致的几何体,进而得出答案.8. C【解析】由题意,长方体的宽为120÷24=5,长为120÷20=6,∴俯视图的面积为6×5=30.9. A【解析】放置的圆柱的主视图是长方形,左视图是圆,俯视图是长方形.10. B【解析】从左面看是一个长方形,中间有两条水平的虚线,故选B.11. A【解析】∵S主=a2=a⋅a,S左=a2+a=a(a+1),∴俯视图的长为a+1,宽为a,=a⋅(a+1)=a2+a.∴S俯12. B【解析】由从上面看与从左面看得到的平面图形知,组成该几何体所需小正方体个数最少的分布情况如图所示(不唯一);所以组成该几何体所需小正方体的个数最少为5,故选B.13. B【解析】从上面看,是一个正六边形,六边形的中间是一个圆.14. B【解析】由三视图可知圆柱的底面直径为4,高为6,∴底面半径为2,=πr2ℎ=π⋅22×6=24π,∴V圆柱故选B.15. B【解析】观察从正面、左面、上面看得到的图形发现,这个几何体是长方体和圆锥的组合图形.故选B.16. C【解析】主视图是从正面看几何体得到的图形,在画图时规定:看得见的轮廓线画成实线,看不见的轮廓线画成虚线,显然空心圆柱的主视图画法正确的是C,故选C.17. 3π【解析】由三视图知几何体为圆柱,且底面圆的半径是1,高是3,∴这个几何体的体积为:π×12×3=3π.18. 419. ②20. 1221. 四棱锥22. 4【解析】左视图可能为以下4种.23. 斜二侧24. 48【解析】该几何体的主视图和左视图如下,∴面积之和为2×2×(6+6)=48.25. 16√7π【解析】根据三视图可知该几何体为圆锥,高为6,母线长为8,则底面半径为√82−62=2√7,所以S=π×2√7×8=16√7π.圆锥侧26. 22【解析】观察三视图,可知这个几何体各个位置上的小正方体的个数,在俯视图上标出如图所示,则由题意可知最小可以组成3×3×3的正方体,即组成的正方体共有27个小正方体,27−2−1−1−1=22,所以至少再加22个小正方体后,才能组成一个正方体.27. 由三视图可知该几何体是圆锥,圆锥的高为12,圆锥的底面圆的半径为5,所以圆锥的母线长=√52+122=13,⋅2π⋅5⋅13=90π.所以圆锥的表面积=π⋅52+1228. 如图所示.29. (1)由图可知,每增加一个碟子高度增加1.5cm,桌子上放有x个碟子时,高度为2+1.5(x−1)=1.5x+0.5.(2)由图可知,共有3摞,左前一摞有5个,左后一摞有4个,右边一摞有3个,共有3+4+5=12(个),叠成一摞后的高度=2+1.5×11=18.5(cm).30. (1)这个几何体是圆锥,这个几何体的三视图如图所示.×2π×2×√22+22+π×22=(4√2+4)π.(2)这个几何体的表面积为1231. (1)6(2)如图所示.32. (1)该几何体的主视图和左视图如图所示.(2)32【解析】给这个几何体喷上颜色(底面不喷色),需要喷色的面有32个,所以喷色的面积为32.(3)1【解析】在俯视图中标数字“2”的正方形的位置上再添加1个小正方体,不会改变主视图和俯视图.33. 三视图如图所示:。
29.2 三视图 人教版数学九年级下册分层作业(含答案)
29.2 三视图【A组-基础题】1.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.【详解】从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选:B.2.如图,由4个相同正方体组合而成的几何体,它的左视图是()A.B.C.D.【详解】观察图形,从左边看得到两个叠在一起的正方形,如下图所示:,故选A.3.下列几何体中,其主视图为三角形的是()A.B.C.D.【详解】A.圆柱的主视图为矩形,∴A不符合题意;B.正方体的主视图为正方形,∴B不符合题意;C.球体的主视图为圆形,∴C不符合题意;D.圆锥的主视图为三角形,∴D符合题意.故选D.4.如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是( )A.B.C.D.【详解】由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,所以其主视图为:故选C.5.如图是某几何体的三视图,该几何体是()A.圆柱B.圆锥C.三棱锥D.长方体【详解】解:长方体的三视图都是长方形,故选D.6.下面的几何图形是由四个相同的小正方体搭成的,其中主视图和左视图相同的是( )A.B.C.D.【详解】解:A、主视图看到的是2层,3列,最下1层是3个,上面一层是1个,第2列是2个;左视图是2层,上下各1个;B.主视图看到的是3层,最下1层是2个,上面2层在下面1层的中间,各1个,左视图是3层,每层各一个;C.主视图是2行2列,下面1层是2个,上面1层1个,左面1列是2个;左视图是2层2列,下面1层是2个,上面1层1个,左面1列是2个,故主视图和左视图相同;D.主视图是2层2列,下面1层2个,上面1层1个,右面1列2个,左视图也是2层2列,下面1层2个,上面1层1个,左面1列2个.故选:C.7.几何体的三视图如图所示,这个几何体是()A.B.C.D.【详解】解:根据A,B,C,D三个选项的物体的主视图可知,与题图有吻合的只有C选项,故选:C.8.如图是一个几体何的三视图(图中尺寸单位:cm),则这个几何体的侧面积为( )A.48πcm2B.24πcm2C.12πcm2D.9πcm2【详解】解:由三视图得这个几何体为圆锥,圆锥的母线长为8,底面圆的直径为6,所以这个几何体的侧面积=×π×6×8=24π(cm2).故选:B.9.由一些相同的小立方块搭成的几何体的三视图如图所示,则搭成该几何体的小立方块有( )A.3块B.4块C.6块D.9块【详解】解:从俯视图可得最底层有3个小正方体,由主视图可得有2层上面一层是1个小正方体,下面有2个小正方体,从左视图上看,后面一层是2个小正方体,前面有1个小正方体,所以此几何体共有四个正方体.故选B.10.已知一个组合体是由几个相同的正方体叠合在一起组成,该组合体的主视图与俯视图如图所示,则该组合体中正方体的个数最多是()A.10B.9C.8D.7【详解】解:从俯视图可得最底层有5个小正方体,由主视图可得上面一层是2个,3个或4个小正方体,则组成这个几何体的小正方体的个数是7个或8个或9个,组成这个几何体的小正方体的个数最多是9个.故选B.11.如图,一个正方体由27 个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走_________个小立方块.【详解】若新几何体与原正方体的表面积相等,则新几何体的面与原来的几何体的面相同,所以最多可以取走16个小立方块,只需要保留正中心三个正方体,四个角各两个,保留11个小正方体.故答案为1612.如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要________个小立方块.【详解】试题解析:由主视图可知,搭成的几何体有三层,且有4列;由左视图可知,搭成的几何体共有3行;第一层有7个正方体,第二层有2个正方体,第三层有1个正方体,共有10个正方体,∵搭在这个几何体的基础上添加相同大小的小正方体,以搭成一个大正方体,∴搭成的大正方体的共有4×4×4=64个小正方体,∴至少还需要64-10=54个小正方体.13.一个几何体的三视图如图所示,则该几何体的表面积为____________.【详解】解:观察该几何体的三视图发现其为半个圆柱,半圆柱的直径为2,高为1,故其表面积为:π×12+(π+2)×2=3π+4,故答案为:3π+4.14.用小正方体搭一几何体,从正面和上面看如图所示,这个几何体最少要_______个正方体,最多要_______个正方体.正面上面【详解】搭这样的几何体最少需要7+2+1=10个小正方体,最多需要7+4+3=14个小正方体;故最多需要14个小正方体,最少需要10个小正方体.故答案为10,14;15.三棱柱的三视图如图所示,EFG中,EF=8cm,EG=12cm,∠EGF=30°,则AB的长为_______cm.【详解】解:过点E作EQ⊥FG于点Q,由题意得:EQ=AB,∵EG=12cm,∠EGF=30°,∴EQ=AB=×12=6(cm).故答案为:616.如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所示尺寸(单位:mm),计算出这个立体图形的表面积.【详解】根据三视图可得:上面的长方体长4mm,高4mm,宽2mm,下面的长方体长8mm,宽6mm,高2mm,∴立体图形的表面积是:4×4×2+4×2×2+4×2+6×2×2+8×2×2+6×8×2-4×2=200(mm2).故答案为200 mm2.17.用小立方块搭一个几何体,使它从正面和上面看到的形状如下图所示,从上面看到形状中小正方形中的字母表示在该位置上小立方块的个数,请问:(1)俯视图中b=__________,a=__________.(2)这个几何体最少由__________个小立方块搭成.(3)能搭出满足条件的几何体共__________种情况,请在所给网格图中画出小立方块最多时几何体的左视图.(为便于观察,请将视图中的小方格用斜线阴影标注,示例:).【详解】试题解析:(1)b=1,a=3;(2)1+1+2+1+1+3=9个;(3)共7种情况,当d=2,e=2,f=2时小立方块最多.此时,左视图为:18.5个棱长为1的正方体组成如图所示的几何体.(1)该几何体的体积是__ __(立方单位),表面积是__ __(平方单位);(2)画出该几何体的主视图和左视图.【详解】解:(1)每个正方体的体积为1,∴组合几何体的体积为5×1=5;∵组合几何体的前面和后面共有5×2=10个正方形,上下共有6个正方形,左右共6个正方形,每个正方形的面积为1,∴组合几何体的表面积为22.故答案为5,22;(2)作图如下:。
九年级下《29.2三视图》课时练习含答案解析
九年级下册第二十九章第二节三视图课时练习一、单选题(共15题)1、下列立体图形中,俯视图是正方形的是()A B C D答案:B知识点:简单几何体的三视图解析:解答:A.圆柱的俯视图是圆,故此选项错误.B.正方体的俯视图是正方形,故此选项正确.C.三棱锥的俯视图是三角形,故此选项错误.D.圆锥的俯视图是圆,故此选项错误;故选:B.分析: 本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.2.如图,正三棱柱的主视图为()B C D答案:B知识点:简单几何体的三视图解析:解答: 正三棱柱的主视图是矩形,主视图中间有竖着的实线.故选:B.分析: 根据正三棱柱的主视图是矩形,主视图中间有竖着的实线,即可解答.3.下列几何体中,主视图和左视图都为矩形的是()答案:B知识点:简单几何体的三视图解析:解答: A.主视图和左视图都为圆,所以A选项错误;B.主视图和左视图都为矩形的,所以B选项正确;C.主视图和左视图都为等腰三角形,所以C选项错误;D.主视图为矩形,左视图为圆,所以D选项错误.故选B.分析: 分别写出各几何体的主视图和左视图,然后进行判断.4.如图是一个圆台,它的主视图是()答案:B知识点: 简单几何体的三视图解析:解答: 解:从几何体的正面看可得等腰梯形,故选:B.分析: 主视图是从物体正面看,所得到的图形.5.下列几何体中,正视图是矩形的是()答案:B知识点:简单几何体的三视图解析:解答: A.球的正视图是圆,故此选项错误;B.圆柱的正视图是矩形,故此选项正确;C.圆锥的正视图是等腰三角形,故此选项错误;D.圆台的正视图是等腰梯形,故此选项错误;故选:B.分析: 主视图是从物体正面看,所得到的图形.6.如图,下列几何体的左视图不是矩形的是()答案:B知识点:简单几何体的三视图解析:解答: A.圆柱的左视图是矩形,不符合题意;B.圆锥的左视图是等腰三角形,符合题意;C.三棱柱的左视图是矩形,不符合题意;D.长方体的左视图是矩形,不符合题意.故选:B.分析: 根据左视图是从物体左面看所得到的图形,分别得出四个几何体的左视图,即可解答.7.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变答案:D知识点:简单组合体的三视图解析:解答:将正方体①移走前的主视图正方形的个数为1,2,1;正方体①移走后的主视图正方形的个数为1,2;发生改变.将正方体①移走前的左视图正方形的个数为2,1,1;正方体①移走后的左视图正方形的个数为2,1,1;没有发生改变.将正方体①移走前的俯视图正方形的个数为1,3,1;正方体①移走后的俯视图正方形的个数,1,3;发生改变.故选D.分析: 分别得到将正方体①移走前后的三视图,依此即可作出判断8.如图所示的几何体是由一些正方体组合而成的立体图形,则这个几何体的俯视图是()答案:D知识点:简单组合体的三视图解析:解答: 从上面看易得左侧有2个正方形,右侧有一个正方形.故选A.分析: 找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.9.如图所示的几何体是由一个圆柱体和一个长方形组成的,则这个几何体的俯视图是()答案:C知识点:简单组合体的三视图解析:解答: 从上面看外边是一个矩形,里面是一个圆.故选:C.分析: 根据俯视图是从上面看得到的图形,可得答案.10.如图所示几何体的左视图为()答案:A知识点:简单组合体的三视图解析:解答: 从左边看第一层一个小正方形,第二层一个小正方形,第三层一个小正方形.故选:A.分析:根据从左边看得到的图形是左视图,可得答案.11.如图所示几何体的左视图是()答案:C知识点:简单组合体的三视图解析:解答: 从左面看可得矩形中间有一条横着的虚线.故选C.分析: 找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.12.图中的两个圆柱体底面半径相同而高度不同,关于这两个圆柱体的视图说法正确的是()A.主视图相同B.俯视图相同C.左视图相同D.主视图、俯视图、左视图都相同答案:B知识点:简单组合体的三视图解析:解答: A.主视图的宽不同,故A错误;B.俯视图是两个相等的圆,故B正确;C.主视图的宽不同,故C错误;D.俯视图是两个相等的圆,故D错误;故选:B.分析: 根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图,可得答案.13.如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为()答案:C知识点:简单组合体的三视图解析:解答:从左面看所得到的图形是正方形,切去部分的棱能看到,用实线表示.故选:C.分析: 找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中.14.如图所示的物体的左视图为()答案: A知识点:简单组合体的三视图解析:解答:从左面看易得第一层有1个矩形,第二层最左边有一个正方形.故选A.分析: 找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.15.一个几何体的三视图如图所示,则这个几何体是()A.圆柱B.圆锥C.长方体D.正方体答案:A知识点:由三视图判断几何体解析:解答:由主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆可得此几何体为圆柱.故选A.分析: 主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.二、填空题(共5题)1.如图是一些完全相同的小正方体搭成的几何体的三视图.这个几何体只能是______.(画图解答)答案:知识点:由三视图判断几何体解析:解答: 由俯视图易得最底层有4个正方体,第二层有1个正方体,那么共有4+1=5个正方体组成,由主视图可知,一共有前后2排,第一排有3个正方体,第二排有2层位于第一排中间的后面分析:易得这个几何体共有2层,由俯视图可得第一层正方体的个数,由主视图和左视图可得第二层正方体的个数,相加即可.2.任意放置以下几何体:正方体、圆柱、圆锥、球体,则三视图都完全相同的几何体是_______________.答案:正方体和球体知识点:简单几何体的三视图解析:解答: 正方体主视图、俯视图、左视图都是正方形;圆柱主视图和左视图是矩形,俯视图是圆;圆锥主视图和左视图是等腰三角形,俯视图是圆;球体主视图、俯视图、左视图都是圆;分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.3.如图,在常见的几何体圆锥、圆柱、球、长方体中,主视图与它的左视图一定完全相同的几何体有_________答案:①②③知识点:简单几何体的三视图解析:解答: ①圆锥主视图是三角形,左视图也是三角形,②圆柱的主视图和左视图都是矩形;③球的主视图和左视图都是圆形;④长方体的主视图是矩形,左视图也是矩形,但是长和宽不一定相同,故选:①②③.分析: 主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.4.请将六棱柱的三视图名称填在相应的横线上.(1)__________(2)_____________(3)__________答案:(1)俯视图(2)主视图(3)左视图知识点:简单几何体的三视图解析:解答:(1)此形状是从几何体的上面看所得到的图形,是俯视图;(2)此形状是从几何体的正面看所得到的图形,是主视图;(3)此形状是从几何体的左面看所得到的图形,是左视图,故答案为:俯视图;主视图;左视图.分析: 主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.5.如图是一个几何体的三视图,其中主视图与左视图都是边长为4的等边三角形,则这个几何体的侧面展开图的面积为_________答案:8π知识点:简单几何体的三视图111形,求此直三棱柱左视图的面积答案:知识点:简单几何体的三视图等边三角形的性质解析:解答: 此直三棱柱左视图是长为2,宽为AB边上的高的矩形,∵底面各边长均为2,∴△ABC是等边三角形,AB边上的高为∴此直三棱柱左视图的面积故答案为:分析: 根据左视图是从物体的左面看所得到的图形,判断出此直三棱柱的左视图是以侧棱长为长,以等边三角形的高为宽的矩形,再根据矩形的面积公式列式计算即可得解.2.长方体的主视图与俯视图如图所示,求这个长方体的体积答案:24知识点:简单几何体的三视图认识立体图形解析:解答:由主视图可知,这个长方体的长和高分别为4和3,由俯视图可知,这个长方体的长和宽分别为4和2,因此这个长方体的长、宽、高分别为4、2、3,因此这个长方体的体积为4×2×3=24.故答案为:24.分析:由所给的视图判断出长方体的长、宽、高,让它们相乘即可得到体积.3.一个长方体的三视图如图所示,若其俯视图为正方形,求这个长方体的底面边长第11页 共11页 4.如图,水平放置的长方体的底面是边长为3和5的长方形,它的左视图的面积为12,求长方体的体积.答案:60知识点: 简单几何体的三视图解析: 解答:∵它的左视图的面积为12,∴高为12÷3=4,体积是4×5×3=60,故答案为:60.分析: 首先根据左视图的面积求出长方体的高,然后根据长方体的体积公式计算出长方体的体积即可。
人教版九年级下册数学29.2 三视图 同步练习(含解析)
29.2 三视图基础闯关全练1.如图29-2-1所示的几何体的主视图是( )A .B .C .D .2.下列几何体中,俯视图为三角形的是 ( )A .B . C. D .3.图29-2-2是由5个大小相同的小正方体摆成的立体图形,它的主视图是( )A .B .C .D .4.图29-2-3是由长方体和圆柱组成的几何体.它的俯视图是( )A .B .C .D .5.三本相同的书叠成如图29-2-4所示的几何体,它的主视图是( )A .B .C .D .6.如图29-2-5,画出此立体图形的三视图.7.由几个相同的边长为1的小立方块搭成的几何体的俯视图如图29-2-6所示,方格中的数字表示该位置上的小立方块的个数.(1)请在如图29-2-7所示的方格纸中分别画出这个几何体的主视图和左视图: (2)根据三视图,请求出这个几何体的表面积(包括底面积).8.图29-2-8是某几何体的三视图,则这个几何体是( )A .棱柱B .圆柱C .棱锥D .圆锥9.图29-2-9是几个一样的小正方体摆出的立体图形的三视图,由三视图可知小正方体的个数为( )A.6B.5C.4D.310.图29-2-10是一个几何体的三视图(图中尺寸单位:cm ),根据图中数据计算,这个几何体的表面积为_______ c m².能力提升全练1.如图29-2-11所示的几何体的主视图正确的是( )A.B.C.D.2.从一个棱长为3 cm 的大立方体中挖去一个棱长为1cm 的小立方体,得到的几何体如图29-2-12所示,则该几何体的左视图正确的是( )A.B.C.D.3.圆锥的主视图与左视图都是边长为4的等边三角形,则圆锥的侧面展开图中扇形的圆心角是 ( )A.90ºB.120ºC.150ºD.180º4.用四个相同的小立方体组成几何体,要求每个几何体的主视图、左视图、俯视图中至少有两种视图的形状是相同的,下列四种摆放方式中不符合要求的是 ( )A.B.C.D.5.由若干个完全相同的小正方体组成一个立体图形,它的左视图和俯视图如图29-2-13所示,则小正方体的个数不可能是( )A .5B .6C .7D .86.已知某几何体的三视图如图29-2-14所示,其中俯视图为正六边形,则该几何体的表面积为_________.三年模拟全练1.下列水平放置的几何体中,俯视图是矩形的是 ( )A.B.C.D.2.由五个相同的立方体搭成的几何体如图29-2-15所示,则它的左视图是( )A. B. C. D.3.图29-2-16是一几何体的三视图,则这个几何体可能是( )A .三棱柱B .三棱锥C .圆柱D .圆锥4.如图29-2-17,该几何体的左视图是( )A.B. C. D.5.一个几何体的三视图如图29-2-18所示,则该几何体的侧面展开图的面积为__________.五年中考全练1.下列几何体中,主视图与俯视图不相同的是 ( )A.B. C. D.2.如图29-2-19所示几何体的左视图是( )A.B.C.D.3.已知某物体的三视图如图29-2-20所示,那么与它对应的物体是( )A.B.C.D.4.图29-2-21是某圆锥的主视图和左视图,该圆锥的侧面积是( )A. 25π B .24π C .20π D.15π5.一个几何体的主视图和俯视图如图29-2-22所示,若这个几何体最多由a 个小正方体组成,最少由b 个小正方体组成,则a+b 等于( )A.10B.llC.12D.136.三棱柱(如图29-2-23①)的三视图如图29-2-23②所示,已知△EFG 中,EF=8 cm ,EG=12 cm ,∠E FG =45º,则AB 的长为_________cm.核心素养全练1.将如图29-2-24所示的直角三角形ABC 绕直角边AB 所在的直线旋转一周得到一个几何体,从正面看这个几何体,得到的平面图形应为 ( )A.B.C.D.2.在仓库里堆放着若干个相同的正方体货箱,这堆货箱的三视图如图29-2-25所示,若每个箱子里都装有10个篮球,则这堆正方体货箱中所装的篮球总数为_________.29.2三视图1.C 圆锥体的主视图是等腰三角形,故选C.2.C A项,圆锥的俯视图是圆且中心有一个点,故A不符合题意;B项,长方体的俯视图是矩形,故B不符合题意;C项,三棱柱的俯视图是三角形,故C符合题意;D 项,四棱锥的俯视图是由几个三角形拼成的四边形,故D不符合题意,故选C.3.A从正面看易得第一层有3个正方形,第二层有1个正方形,且位于中间的位置,故选A.4.A该组合体上方的圆柱的俯视图为圆,下方的长方体的俯视图为正方形,且圆的直径小于正方形的边长,故选A.5.B主视图是从正面看到的图形,故选B.6.解析该几何体的三视图如图所示.7.解析(1)如图所示.(2)该几何体的表面积为5+2+5+4+4+3+5=28.8.D 由题图可知主视图和左视图都是等腰三角形,∴该几何体为锥体,而俯视图是有圆心的圆,∴该几何体是圆锥,故选D.9.C由主视图得该几何体由两层小正方体构成,由俯视图得第一层有3个小正方体,再结合主视图和左视图可知第二层有1个小正方体,把小正方体的个数在俯视图上标出来(如图),所以共有4个小正方体,故选C.10.答案16π解析由三视图可知该几何体为圆锥,根据三视图知该圆锥的母线长为 6 cm ,底面圆的半径为2 cm ,故表面积为π×2×6+π×2²=16π(cm ²). 1.D 由主视图的定义知选D .2.C 从左侧观察此正方体,看到的是一个正方形,但在右上角有一个用虚线表示的小正方形,排除A 、B ,但D 选项用虚线表示的小正方形的边长过大,所以错误,故选C .3.D 由题意知圆锥的母线长为4,底面圆的直径为4,设圆锥的侧面展开图中扇形的圆心角是n º,根据题意,得ππ41804=⋅⋅n ,解得n=180,则所求圆心角是180º,故选D .4.C 选项A ,几何体的主视图、左视图是相同的;选项B ,几何体的主视图、俯视图是相同的;选项C ,几何体的主视图、左视图、俯视图都不相同;选项D ,几何体的主视图、左视图是相同的.故选C .5.A 由左视图可得,几何体第2层上至少有1个小正方体,由俯视图可知,几何体第1层上一共有5个小正方体,故小正方体的个数最少为6,故小正方体的个数不可能是5.故选A . 6.答案48+123解析由几何体的三视图判断这个几何体为正六棱柱,由主视图的数据可知,此正六棱柱的高为4,正六边形ABCDEF 外接圆的直径AD=4,则半径为2.故该几何体的表面积=S 侧面+2S 正六边形=2×6×4+2×6×21×2×3=48+123.一、选择题1.B 圆柱的俯视图是圆,故A 错误;长方体的俯视图是矩形,故B 正确;三棱柱的俯视图是三角形,故C 错误;圆锥的俯视图是有圆心的圆,故D 错误.故选B 2.D 左视图中第一层有三个小正方形,第二层的左边有一个小正方形.故选D . 3.A 根据主视图和左视图为矩形判断该几何体是柱体,根据俯视图是三角形可判断这个几何体是三棱柱.故选A .4.C 从左边看是一个正方形被水平地分成3部分,中间的两条线是虚线,故C 正确,故选C . 二、填空题 5.答案 6π cm ²解析由主视图和左视图为长方形可得该几何体为柱体,由俯视图为圆可得该几何体为圆柱,圆柱的侧面展开图为矩形,两边长分别为2π cm 和3 cm ,则侧面展开图的面积为2π×3=6π cm ². 一、选择题1.B 正方体的主视图和俯视图都是正方形:四棱锥的主视图是三角形,俯视图是矩形(包含对角线和交点);圆柱的主视图和俯视图都是矩形;球的主视图和俯视图都是圆,故选B .2.D 从左边看到的图形为矩形,要注意看不见的线用虚线画出,故选D .3.B 由主视图和左视图可得此几何体为柱体和柱体的组合体,根据俯视图可判断出此几何体上方部分为圆柱,下方部分为长方体,且长方体的宽与圆柱的直径相等,故选B .4.C根据圆锥的主视图、左视图知,该圆锥的轴截面是一个底边长为8,高为3的等腰三角形(如图),AB=2243 =5.底面半径为4,故侧面积为π×4×5=20π,故选C.5.C在俯视图中标出对应位置上的小正方体数,所有情况如图所示.由图可知,a=7,b=5,则a+b=12.二、填空题6.答案42解析由三视图的性质可知,△EFG中,边FG上的高长等于AB的长,∵EF=8 cm,∠E F G=45º,∴AB=8×sin 45º=42cm.1.C直角三角形ABC绕直角边AB所在直线旋转一周得到的几何体是圆锥,从正面看这个几何体,得到的平面图形是等腰三角形,故选C.2.答案90解析由俯视图知该几何体有2行3列,结合主视图和左视图知正方体货箱的分布情况如下:∴这堆正方体货箱中所装的篮球总数为10×(1+3+3+1+1)=90.。
人教版初中数学九年级下册《29.2 三视图》同步练习卷(含答案解析
人教新版九年级下学期《29.2 三视图》同步练习卷一.选择题(共7小题)1.下面的几何体从左面看到的图形是()A.B.C.D.2.下列四个立体图形中,左视图为长方形的()A.①③B.①④C.②③D.③④3.如图所示的几何体的俯视图是()A.B.C.D.4.如图所示的某零件左视图是()A.B.C.D.5.如图是由几个相同小正方体组成的立休图形的俯视图,图上的数字表示该位置上方小正方体的个数,这个立体图形的左视图是()A.B.C.D.6.如图,是一个几何体的三视图(单位:cm),则图中几何体的体积是()A.30 πcm3B.24 πcm3C.15 πcm3D.12 πcm3 7.某几何体由若干个大小相同的小正方体组成,其主视图与左视图如图所示,则组成这个几何体的小正方体最少有()A.4个B.5个C.6个D.7个二.填空题(共1小题)8.一个长方体从正面和左面看到的图形如图所示(单位cm),则从其上面看到的图形的面积是.三.解答题(共2小题)9.如图几何体是由棱长为m的正方体摆放成如图的形状.(1)请在3×3网格中画出这个几何体从正面、左面、上面看到的几何体的形状图?并用阴影表示.(2)求这个几何体的表面积?10.观察下面由8个小立方块组成的图形,请在指定的位置画出从正面、左面、上面看到的这个几何体的形状图.人教新版九年级下学期《29.2 三视图》同步练习卷参考答案与试题解析一.选择题(共7小题)1.下面的几何体从左面看到的图形是()A.B.C.D.【分析】从左边看得到的图形是左视图,圆锥的左视图是三角形.【解答】解:从左面看到的图形是三角形,故选:A.【点评】本题考查了简单几何体的三视图,从左边看得到的图形是左视图.2.下列四个立体图形中,左视图为长方形的()A.①③B.①④C.②③D.③④【分析】左视图是从几何体的左边看所得到的视图.【解答】解:正方体左视图为正方形,也属于长方形,球左视图为圆;圆锥左视图是等腰三角形;圆柱左视图是长方形,故选:B.【点评】此题主要考查了简单几何体的三视图,关键是掌握所有的看到的棱都应表现在三视图中.3.如图所示的几何体的俯视图是()A.B.C.D.【分析】根据直观图,由几何体的俯视图的定义进而得出答案.【解答】解:由题意可得:该几何体是长方体和圆柱的组合图形,则其俯视图为长方形中间为圆形,故选项B正确.故选:B.【点评】此题主要考查了由几何体判断三视图,正确得出几何体的组成是解题关键.4.如图所示的某零件左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看是一个矩形,其中间含一个圆,如图所示:故选:B.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图,注意看到的线画实线.5.如图是由几个相同小正方体组成的立休图形的俯视图,图上的数字表示该位置上方小正方体的个数,这个立体图形的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:根据该几何体中小正方体的分布知,其左视图共2列,第1列有1个正方形,第2列有3个正方形,故选:B.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.6.如图,是一个几何体的三视图(单位:cm),则图中几何体的体积是()A.30 πcm3B.24 πcm3C.15 πcm3D.12 πcm3【分析】根据三视图得出几何体为圆锥,再利用圆锥的体积公式解答即可.【解答】解:由三视图可得:几何体为圆锥,所以圆锥的体积=cm3,故选:D.【点评】此题考查三视图判定几何体,关键是根据三视图得出几何体为圆锥.7.某几何体由若干个大小相同的小正方体组成,其主视图与左视图如图所示,则组成这个几何体的小正方体最少有()A.4个B.5个C.6个D.7个【分析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.【解答】解:由主视图和左视图可确定所需正方体个数最少时俯视图为:,则组成这个几何体的小正方体最少有5个.故选:B.【点评】此题主要考查了由三视图判断几何体,根据主视图和左视图画出所需正方体个数最少的俯视图是关键.二.填空题(共1小题)8.一个长方体从正面和左面看到的图形如图所示(单位cm),则从其上面看到的图形的面积是6cm2.【分析】先根据从左面、从正面看到的形状图的相关数据可得,从上面看到的形状图是长为3宽为2的长方形,再根据长方形的面积公式计算即可.【解答】解:根据从左面、从正面看到的形状图的相关数据可得:从上面看到的形状图是长为3宽为2的长方形,则从上面看到的形状图的面积是2×3=6cm2;故答案为:6cm2.【点评】此题考查了由三视图判断几何体,关键是根据从左面、从正面看到的形状图的相关数据得出从上面看到的形状图是长为3宽为2的长方形.三.解答题(共2小题)9.如图几何体是由棱长为m的正方体摆放成如图的形状.(1)请在3×3网格中画出这个几何体从正面、左面、上面看到的几何体的形状图?并用阴影表示.(2)求这个几何体的表面积?【分析】(1)根据三视图的定义,画出图形即可;(2)根据三视图确定表面有多少个正方形即可解决问题;【解答】解:(1)三视图如图所示:(2)这个几何体的表面一共有2(5+3+4)=24个正方形,∴这个几何体的表面积=24m2.【点评】本题考查作图﹣三视图,解题的关键是理解题意,正确作出三视图,属于中考常考题型.10.观察下面由8个小立方块组成的图形,请在指定的位置画出从正面、左面、上面看到的这个几何体的形状图.【分析】根据三视图的定义画出图形即可;【解答】解:【点评】本题考查三视图的定义,解题的关键是学会观察和想象,再画它的三视图.。
最新(人教版)数学九年级下册《29.2三视图》达标训练(含答案)
人教版数学九年级下册29.2 三视图达标训练一、选择题1.对于几何体的三视图,下列说法正确的是( C )A.主视图反映物体的长和宽B.俯视图反映物体的长和高C.左视图反映物体的高和宽D.主视图反映物体的高和宽2.2018·宜宾一个立体图形的三视图如图K-26-1所示,则该立体图形是( A )图K-26-1A.圆柱 B.圆锥 C.长方体 D.球3.如图K-27-1是某几何体的三视图,则该几何体的侧面展开图是( A )图K-27-1图K-27-24.如图K-25-4是一个空心圆柱体,其主视图正确的是( B )图K-25-4图K-25-55.如图K-26-8是由一些完全相同的小正方体搭成的几何体的三视图,这个几何体可能是( A )图K-26-8图K-26-96.一个长方体的三视图如图K-27-7所示,若其俯视图为正方形,则这个长方体的表面积为( A )图K-27-7A.66 B.48C.482+36 D.577.2018·安徽一个由圆柱和圆锥组成的几何体如图K-25-2所示水平放置,其主视图为( A )图K-25-38.2017·河南某几何体的左视图如图K-26-6所示,则该几何体不可能是( D )图K-26-6图K-26-79.一个几何体的三视图如图K-27-6所示,则该几何体的表面积为( D )图K-27-6A.4π B.3πC.2π+4 D.3π+410.将如图K-25-14所示放置的一个Rt△ABC(∠C=90°)绕斜边AB所在直线旋转一周,所得到的几何体的主视图是图K-25-15中的( B )图K-25-14图K-25-15二、填空题11.如图K-25-16是由6个棱长均为1的小正方体组成的几何体,它的主视图的面积为________.图K-25-16[答案] 512.如图K-26-17是一个长方体的主视图与俯视图,由图示数据(单位:cm)可以得出该长方体的体积是__________cm3.图K-26-17[答案] 1813.2017·宁夏如图K-26-18是由若干个棱长为1的小正方体组合而成的一个几何体的三视图,则这个几何体的表面积是________.图K-26-18[答案]2214.如图K-27-9是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是________.图K-27-9[答案]7215.如图K-27-10是某几何体的三视图,其中主视图和左视图是由若干个大小相同的正方形构成的.根据图中所标的尺寸,该几何体的表面积是________.图K-27-10[答案] 16+π三、解答题16.5个棱长均为1的正方体组成如图K-25-18所示的几何体,画出该几何体的主视图和左视图.图K-25-18解:所画图形如图所示:17.已知某几何体的三视图如图K-26-19所示,请想象出该几何体的形状图K-26-19解:观察主视图、左视图的上部都是等腰三角形且全等,俯视图为圆(有圆心),由此可得物体上部分为一圆锥;同样,物体下部分为一个与上部分共底面的圆锥.因此三视图反映的几何体是由两个共底的圆锥组成的(如图所示).18.如图K-27-11是某工件的三视图,求此工件的表面积图K-27-11解:由三视图中的主视图和左视图是全等的等腰三角形,俯视图是带圆心的圆,可知此工件是圆锥形的,如图所示,底面圆半径为10 cm,高为30 cm,则其母线长l=102+302=1010(cm),圆锥的侧面积S侧=12×20π×1010=10010π(cm2).圆锥的底面积S底=π×102=100π(cm2),∴此工件的表面积S表=S侧+S底=(10010π+100π)cm2.。
新人教版初中数学九年级下册29.2三视图同步作业及答案-精品试题
29.2 三视图一、自主学习1.画三视图时,首先确定主视图的位置.画出主视图,然后在主视图的下面画出俯视图,在主视图的右面画出左视图.主视图反映物体的_______和_______,俯视图反映物体的_______和_______,左视图反映物体的_______和_______.因此,画三视图时,主、俯视图要长对正,主、左视图要高平齐,左、俯视图要宽相等.看得见部分的轮廓线通常画成实线,看不见部分的轮廓线通常画成虚线.2.在下列几何体中,主视图是圆的是( )3.图29-14所示的水杯的俯视图是( )29-144.如图29-15所示,桌面上放着一个圆柱和一个正方体.请你说出右面的三幅图的三视图.图29-14二、基础巩固5.如图29-16所示,空心圆柱体在指定方向上的视图正确的是( )图29-166.一只小狗正在平面镜前欣赏自己的全身像(如图29-17所示),此时它所看到的全身像是( )图29-177.小明从正面观察图29-18所示的两个物体,看到的是图中的( )图29-188.“圆柱与球的组合体”如图29-19所示,则它的三视图是( )图29-199.某同学把图29-20所示的几何体的三种视图画出如图29-20①②③所示(不考虑尺寸);其中错误的是哪个图?答:是________________________.图29-2010.图29-21是直观图的三视图,它对应的直观图是下图中的( )图29-2111.请写出三种视图都相同的两种几何体是__________、_____________.12.画出下图所示的三视图.13.一个物体的俯视图是圆,则该物体的形状是( )A.球体B.圆柱C.圆锥D.以上都有可能14.一个几何体的三种视图如图29-22所示,则这个几何体是( )图29-22A.圆柱B.圆锥C.长方体D.正方体15.一个物体的正视图、俯视图如图29-23所示,请你画出该物体的左视图并说出该物体形状的名称.图29-23三、能力提高16.将如图29-24所示放置的一个直角三角形ABC(∠C=90°),绕斜边AB旋转一周所得到的几何体的主视图是四个图形中的____________(只填序号).图29-2417.如图29-25所示的物体中,一样的为( )A.(1)与(2)B.(1)与(3)C.(1)与(4)D.(2)与(3)图29-2518.桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图29-26所示,这个几何体最多可以由___________个这样的正方体组成.图29-2619.将图29-27所示的阴影部分剪下来,围成一个几何体的侧面,使AB、DC重合,则所围成的几何体图形是( )图29-2720.如图29-28所示,说出下列四个图形各是由哪些立体图形展开得到的?图29-28四、模拟链接21.由一些大小相同的小正方体组成的简单几何体的主视图和俯视图如图29-29所示.(1)请你画出这个几何体的一种左视图.(2)若组成这个几何体的小正方体的块数为n,请你写出n的所有可能值.图29-29参考答案一、自主学习1.画三视图时,首先确定主视图的位置.画出主视图,然后在主视图的下面画出俯视图,在主视图的右面画出左视图.主视图反映物体的_______和_______,俯视图反映物体的_______和_______,左视图反映物体的_______和_______.因此,画三视图时,主、俯视图要长对正,主、左视图要高平齐,左、俯视图要宽相等.看得见部分的轮廓线通常画成实线,看不见部分的轮廓线通常画成虚线.答案:长高长宽高宽2.在下列几何体中,主视图是圆的是( )答案:D3.图29-14所示的水杯的俯视图是( )图29-14答案:D4.如图29-15所示,桌面上放着一个圆柱和一个正方体.请你说出右面的三幅图的三视图.图29-14答案:俯视图主视图左视图二、基础巩固5.如图29-16所示,空心圆柱体在指定方向上的视图正确的是( )图29-16答案:C 画视图时,看得见部分的轮廓线通常画成实线,看不见部分的轮廓线通常画成虚线.6.一只小狗正在平面镜前欣赏自己的全身像(如图29-17所示),此时它所看到的全身像是( )图29-17答案:A7.小明从正面观察图29-18所示的两个物体,看到的是图中的( )图29-18答案:C8.“圆柱与球的组合体”如图29-19所示,则它的三视图是( )图29-19答案:A9.某同学把图29-20所示的几何体的三种视图画出如图29-20①②③所示(不考虑尺寸);其中错误的是哪个图?答:是________________________.图29-20答案:左视图10.图29-21是直观图的三视图,它对应的直观图是下图中的( )图29-21答案:C11.请写出三种视图都相同的两种几何体是__________、_____________.答案:略12.画出下图所示的三视图.答案:略13.一个物体的俯视图是圆,则该物体的形状是( )A.球体B.圆柱C.圆锥D.以上都有可能答案:D14.一个几何体的三种视图如图29-22所示,则这个几何体是( )图29-22A.圆柱B.圆锥C.长方体D.正方体答案:A15.一个物体的正视图、俯视图如图29-23所示,请你画出该物体的左视图并说出该物体形状的名称.图29-23答案:略三、能力提高16.将如图29-24所示放置的一个直角三角形ABC(∠C=90°),绕斜边AB旋转一周所得到的几何体的主视图是四个图形中的____________(只填序号).图29-24答案:(2)17.如图29-25所示的物体中,一样的为( )A.(1)与(2)B.(1)与(3)C.(1)与(4)D.(2)与(3)图29-25答案:A18.桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图29-26所示,这个几何体最多可以由___________个这样的正方体组成.图29-26答案:1319.将图29-27所示的阴影部分剪下来,围成一个几何体的侧面,使AB、DC重合,则所围成的几何体图形是( )图29-27答案:D20.如图29-28所示,说出下列四个图形各是由哪些立体图形展开得到的?图29-28答案:(1)正方体 (2)圆柱 (3)三棱柱 (4)四棱锥四、模拟链接21.由一些大小相同的小正方体组成的简单几何体的主视图和俯视图如图29-29所示.(1)请你画出这个几何体的一种左视图.(2)若组成这个几何体的小正方体的块数为n,请你写出n的所有可能值.图29-29答案:(1)左视图有以下5种情形,如图D29-6所示(只要画对一种即可)图D29-6(2)n=8,9,10,11.。
人教版九年级数学下29.2三视图(二)同步练习附答案解析
29.2三视图同步练习(二)一、单项选择题(本大题共有15小题,每小题3分,共45分)1、与如图中的三视图相对应的几何体是()2、由几个相同的小正方体搭成的几何体的视图如图所示,则搭成这个几何体的小正方体的个数是()3、下面四个立体图形,从正面、左面、上面观察都不可能看到长方形的是()4、如图,中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为().5、如图,几何体左视图是()6几何体从上面看的图形是()7、如图表示一个由相同小立方块搭成的几何体的从上面看到的平面图形,小正方形中的数字表示该位置上小立方块的个数,那么该几何体的从正面看的平面图形为()8、如图的从正、左、上面三种不同的角度看到的平面图形所对应的几何体是()9、如图,由几个相同的小立方体搭成的几何体从正面和上面看到的图形,组成这个几何体的小立方体的个数是()10、如图是从由几个小立方块所搭几何体的上面看到的图形,小正方形中的数字表示在该位置的小立方块的个数,那么从这个几何体的正面看到的图形是()11、如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()12、如图是三个大小不等的正方体拼成的几何体,其中两个较小正方体的棱长之和)13、形状相同、大小相等的两个小木块放置于桌面,其俯视图如下图所示,则其主视图是()14、某几何体的三视图如图所示,则此几何体是()A. 圆锥B. 圆柱C. 长方体D. 四棱柱15、如图所示的几何体的左视图是()二、填空题(本大题共有5小题,每小题5分,共25分)16、如图是有几个相同的小立方块组成的几何体的三视图,则小立方块的个数是 .17、如图是某几何体从正面、左面和上面看到的平面图形,根据图中数据,求得该几何体的体积为__________.18、如图,桌子上放着三个物体,则图(1)是从_________面看的,图(2)是从__________面看到的.19、由一些大小相同的小正方体搭成的几何体的主视图和俯视图,如图所示,则搭成该几何体的小正方体最多个.20三、解答题(本大题共有3小题,每小题10分,共30分)21图(画在所给的方格中).22、如图是一个立体图形的从正、左、上面看到的平面图形,请写出这个立体图形2329.2三视图同步练习(二) 答案部分一、单项选择题(本大题共有15小题,每小题3分,共45分)1、与如图中的三视图相对应的几何体是()【答案】B【解析】解:由主视图和左视图可以得到该几何体是一个正方体和一个长方体的复合体,由俯视图可以得到小正方体位于大长方体的右侧靠里的角上.2、由几个相同的小正方体搭成的几何体的视图如图所示,则搭成这个几何体的小正方体的个数是()【答案】C【解析】解:根据三视图,可得出,3、下面四个立体图形,从正面、左面、上面观察都不可能看到长方形的是()【答案】B【解析】解:从长方体的正面、左面、上面都能看到长方形;从圆柱体的正面、左面能看到长方形;从上面看为圆形;从圆锥的正面、左面、上面都不可能看到长方形;从四棱锥的上面可能看到长方形.4、如图,中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为().【答案】D【解析】解:能无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞;地,俯视图为圆形,故不能无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞;个不同形状的“姿势”穿过“墙”上的三个空洞;地以三个不同形状的“姿势”穿过“墙”上的三个空洞.故答案应选:5、如图,几何体左视图是()【答案】D【解析】解:根据视图知识可知,答案是:6几何体从上面看的图形是()【解析】解:7、如图表示一个由相同小立方块搭成的几何体的从上面看到的平面图形,小正方形中的数字表示该位置上小立方块的个数,那么该几何体的从正面看的平面图形为()【解析】解:俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,8、如图的从正、左、上面三种不同的角度看到的平面图形所对应的几何体是()【答案】C【解析】解:从正面看能看到一个小正方形,故选项中正面有一个小正方形的只有从左面能看到三个小正方形,则正确的答案为9、如图,由几个相同的小立方体搭成的几何体从正面和上面看到的图形,组成这个几何体的小立方体的个数是()【答案】C10、如图是从由几个小立方块所搭几何体的上面看到的图形,小正方形中的数字表示在该位置的小立方块的个数,那么从这个几何体的正面看到的图形是()【答案】A【解析】解:根据所搭几何体的上面看到的图形可得,画图如下:11、如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()【答案】D12、如图是三个大小不等的正方体拼成的几何体,其中两个较小正方体的棱长之和)【答案】A【解析】解:主视图的面积是三个正方形的面积,左视图是两个正方形的面积,俯视图是一个正方形的面积,13、形状相同、大小相等的两个小木块放置于桌面,其俯视图如下图所示,则其主视图是()【答案】D【解析】解:由实物结合它的俯视图可得该物体是由两个长方体木块一个横放一个竖放组合而成,看不见的线画成虚线.14、某几何体的三视图如图所示,则此几何体是()A. 圆锥B. 圆柱C. 长方体D. 四棱柱【答案】B【解析】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱.15、如图所示的几何体的左视图是()【答案】D【解析】解:从左向右看,得到的几何体的左视图是中间无线条的矩形.二、填空题(本大题共有5小题,每小题5分,共25分)16、如图是有几个相同的小立方块组成的几何体的三视图,则小立方块的个数是 .【答案】4 【解析】解:17、如图是某几何体从正面、左面和上面看到的平面图形,根据图中数据,求得该几何体的体积为__________.【解析】解:根据几何体从正面、左面和上面看到的平面图形,可知该几何体为空心圆柱,18、如图,桌子上放着三个物体,则图(1)是从_________面看的,图(2)是从__________面看到的.【答案】正,上【解析】解;则图(1)是从正面看的,图(2)是从上面看到的.19、由一些大小相同的小正方体搭成的几何体的主视图和俯视图,如图所示,则搭成该几何体的小正方体最多个.【答案】7【解析】解:根据题意得:20【答案】24【解析】解:该几何体的主视图以及左视图都是相同的矩形,俯视图也为一个矩形,可确定这个几何体是一个长方体,三、解答题(本大题共有3小题,每小题10分,共30分)21图(画在所给的方格中).【解析】解:从正面看有三列:第一列有两个正方形,第二列有一个正方形,第三列有两个正方形,从左面看有两列:第一列有两个正方形,第二列有一个正方形.根据几何体画图形如下所示:22、如图是一个立体图形的从正、左、上面看到的平面图形,请写出这个立体图形【解析】解:23【解析】解:根据题意,得。
【人教版】九年级下29.2三视图同步作业(含答案)
29.2 三视图一、自主学习1.画三视图时,首先确定主视图的位置.画出主视图,然后在主视图的下面画出俯视图,在主视图的右面画出左视图.主视图反映物体的_______和_______,俯视图反映物体的_______和_______,左视图反映物体的_______和_______.因此,画三视图时,主、俯视图要长对正,主、左视图要高平齐,左、俯视图要宽相等.看得见部分的轮廓线通常画成实线,看不见部分的轮廓线通常画成虚线.2.在下列几何体中,主视图是圆的是( )3.图29-14所示的水杯的俯视图是( )图29-144.如图29-15所示,桌面上放着一个圆柱和一个正方体.请你说出右面的三幅图的三视图.图29-14二、基础巩固5.如图29-16所示,空心圆柱体在指定方向上的视图正确的是( )图29-166.一只小狗正在平面镜前欣赏自己的全身像(如图29-17所示),此时它所看到的全身像是( )图29-177.小明从正面观察图29-18所示的两个物体,看到的是图中的( )图29-188.“圆柱与球的组合体”如图29-19所示,则它的三视图是( )图29-199.某同学把图29-20所示的几何体的三种视图画出如图29-20①②③所示(不考虑尺寸);其中错误的是哪个图?答:是________________________.图29-2010.图29-21是直观图的三视图,它对应的直观图是下图中的( )图29-2111.请写出三种视图都相同的两种几何体是__________、_____________.12.画出下图所示的三视图.13.一个物体的俯视图是圆,则该物体的形状是( )A.球体B.圆柱C.圆锥D.以上都有可能14.一个几何体的三种视图如图29-22所示,则这个几何体是( )图29-22A.圆柱B.圆锥C.长方体D.正方体15.一个物体的正视图、俯视图如图29-23所示,请你画出该物体的左视图并说出该物体形状的名称.图29-23三、能力提高16.将如图29-24所示放置的一个直角三角形ABC(∠C=90°),绕斜边AB旋转一周所得到的几何体的主视图是四个图形中的____________(只填序号).图29-2417.如图29-25所示的物体中,一样的为( )A.(1)与(2)B.(1)与(3)C.(1)与(4)D.(2)与(3)图29-2518.桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图29-26所示,这个几何体最多可以由___________个这样的正方体组成.图29-2619.将图29-27所示的阴影部分剪下来,围成一个几何体的侧面,使AB、DC重合,则所围成的几何体图形是( )图29-2720.如图29-28所示,说出下列四个图形各是由哪些立体图形展开得到的?图29-28四、模拟链接21.由一些大小相同的小正方体组成的简单几何体的主视图和俯视图如图29-29所示.(1)请你画出这个几何体的一种左视图.(2)若组成这个几何体的小正方体的块数为n,请你写出n的所有可能值.图29-29参考答案一、自主学习1.画三视图时,首先确定主视图的位置.画出主视图,然后在主视图的下面画出俯视图,在主视图的右面画出左视图.主视图反映物体的_______和_______,俯视图反映物体的_______和_______,左视图反映物体的_______和_______.因此,画三视图时,主、俯视图要长对正,主、左视图要高平齐,左、俯视图要宽相等.看得见部分的轮廓线通常画成实线,看不见部分的轮廓线通常画成虚线.答案:长高长宽高宽2.在下列几何体中,主视图是圆的是( )答案:D3.图29-14所示的水杯的俯视图是( )图29-14答案:D4.如图29-15所示,桌面上放着一个圆柱和一个正方体.请你说出右面的三幅图的三视图.图29-14答案:俯视图主视图左视图二、基础巩固5.如图29-16所示,空心圆柱体在指定方向上的视图正确的是( )图29-16答案:C画视图时,看得见部分的轮廓线通常画成实线,看不见部分的轮廓线通常画成虚线.6.一只小狗正在平面镜前欣赏自己的全身像(如图29-17所示),此时它所看到的全身像是( )图29-17答案:A7.小明从正面观察图29-18所示的两个物体,看到的是图中的( )图29-18答案:C8.“圆柱与球的组合体”如图29-19所示,则它的三视图是( )图29-19答案:A9.某同学把图29-20所示的几何体的三种视图画出如图29-20①②③所示(不考虑尺寸);其中错误的是哪个图?答:是________________________.图29-20答案:左视图10.图29-21是直观图的三视图,它对应的直观图是下图中的( )图29-21答案:C11.请写出三种视图都相同的两种几何体是__________、_____________.答案:略12.画出下图所示的三视图.答案:略13.一个物体的俯视图是圆,则该物体的形状是( )A.球体B.圆柱C.圆锥D.以上都有可能答案:D14.一个几何体的三种视图如图29-22所示,则这个几何体是( )图29-22A.圆柱B.圆锥C.长方体D.正方体答案:A15.一个物体的正视图、俯视图如图29-23所示,请你画出该物体的左视图并说出该物体形状的名称.图29-23答案:略三、能力提高16.将如图29-24所示放置的一个直角三角形ABC(∠C=90°),绕斜边AB旋转一周所得到的几何体的主视图是四个图形中的____________(只填序号).图29-24答案:(2)17.如图29-25所示的物体中,一样的为( )A.(1)与(2)B.(1)与(3)C.(1)与(4)D.(2)与(3)图29-25答案:A18.桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图29-26所示,这个几何体最多可以由___________个这样的正方体组成.图29-26答案:1319.将图29-27所示的阴影部分剪下来,围成一个几何体的侧面,使AB、DC重合,则所围成的几何体图形是( )图29-27答案:D20.如图29-28所示,说出下列四个图形各是由哪些立体图形展开得到的?图29-28答案:(1)正方体(2)圆柱(3)三棱柱(4)四棱锥四、模拟链接21.由一些大小相同的小正方体组成的简单几何体的主视图和俯视图如图29-29所示.(1)请你画出这个几何体的一种左视图.(2)若组成这个几何体的小正方体的块数为n,请你写出n的所有可能值.图29-29答案:(1)左视图有以下5种情形,如图D29-6所示(只要画对一种即可)图D29-6(2)n=8,9,10,11.。
2022年人教版九年级下《三视图》同步练习(附答案)
29.2 三视图第1课时三视图1.如图〔1〕放置的一个圆柱,那么它的左视图是〔〕2.如图〔1〕所示的是圆台形灯罩的示意图,它的俯视图是如图〔2〕所示的〔〕3.如下图的四个几何体中,主视图与其他几何体的主视图不同的是〔〕4.如图〔1〕所示的是由6个大小相同的正方形组成的几何体,它的俯视图是如图〔2〕所示的〔〕5.如图〔1〕所示,放置的一个水管三叉接头,假设其主视图如图〔2〕所示,那么其俯视图DCBA图(2)DCBA图(1)图(2)DCBA图(2)DCBA图(1)图(1)是图〔3〕所示的〔 〕6.在水平的讲台上放置圆柱形水杯和长方形粉笔盒,如图〔1〕所示,那么它的主视图是图〔2〕所示的〔 〕7.沿圆柱体上面直径截去一局部的物体如下图,画出它的三视图.第2课时 由三视图确定几何体1.下面是一些立体图形的三视图〔如图〕,•请在括号内填上立体图形的名称.图(3)DCBA图(2)DCBA(第3题)2.如图4-3-26,以下图形都是几何体的平面展开图,你能说出这些几何体的名称吗?3.如图,从不同方向看下面左图中的物体,右图中三个平面图形分别是从哪个方向看到的?4.一天,小明的爸爸送给小明一个礼物,小明翻开包装后画出它的主视图和俯视图如下图.根据小明画的视图,你猜小明的爸爸送给小明的礼物是〔〕A.钢笔 B.生日蛋糕 C.光盘 D.一套衣服5.一个几何体的主视图和左视图如下图,它是什么几何体?请你补画出这个几何体的俯视图.6.一个物体的三视图如下图,试举例说明物体的形状.7.几何体的主视图和俯视图如下图.〔1〕画出该几何体的左视图;〔2〕该几何体是几面体?它有多少条棱?多少个顶点?〔3〕该几何体的外表有哪些你熟悉的平面图形?8.小刚的桌上放着两个物品,它的三视图如下图,你知道这两个物品是什么吗?9.一个由几个相同的小立方体搭成的几何体的俯视图如下图,方格里的数字表示该位置的小立方体的个数,请你画出这个几何体的主视图和左视图.。
人教版九年级数学下册三视图同步练习含答案
三视图1.[2018·衢州]由五个大小相同的正方体组成的几何体如图29-2-1所示,那么它的主视图是(C)图29-2-1A B C D 2.[2018·盐城]如图29-2-2是由5个大小相同的小正方体组成的几何体,则它的左视图是(B)图29-2-2A B C D 3.[2018·娄底]如图29-2-3所示立体图形的俯视图是(B)图29-2-3A B C D【解析】A选项是主视图或者左视图;B是俯视图;C和D都不是三视图中的任何一种,故选B.4.[2018·包头]如图29-2-4,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是(C)图29-2-4A B C D5.[2018·成都]如图29-2-5所示的正六棱柱的主视图是(A)图29-2-5A B C D【解析】因为主视图是从正面看物体,如图所示的正六棱柱从正面可以看到中间一个大的矩形和两侧的两个等大的小矩形.故选择A.6.[2018·桂林]如图29-2-6所示的几何体的主视图是(C)图29-2-6A B C D 7.[2018·泰州]下列几何体中,主视图与俯视图不相同的是(B)A.正方体B.正四棱锥C.圆柱D.球【解析】正方体的主视图和俯视图都是正方形;正四棱锥的主视图是等腰三角形,俯视图是正方形及对角线;圆柱的主视图和俯视图都是矩形;球的的主视图和俯视图都是圆.故选B.8.[2018·宁波]如图29-2-7是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是(C)图29-2-7A.主视图B.左视图C.俯视图D.主视图和左视图9.[2018·湖州]如图29-2-8所示的几何体的左视图是(D)图29-2-8 A B C D 10.[2018·温州]移动台阶如图29-2-9所示,它的主视图是(B)图29-2-9 A B C D11.[2018·烟台]由5个棱长为1的小正方体组成的几何体如图29-2-10放置,一面着地,两面靠墙.如果要将露出的部分涂色,则涂色部分的面积为(B) A.9B.11C.14D.18图29-2-10第11题答图【解析】本题可以从整体考虑求露出部分面积.分别从正面、右面、上面可得该几何体的三视图如答图,其中主视图面积为4,右视图面积为3,俯视图面积为4,从而露出的部分涂色面积为4+3+4=11. 12.从一个边长为3 cm的大立方体挖去一个边长为1 cm的小立方体,得到的几何体如图29-2-11所示,则该几何体的左视图正确的是(C)图29-2-11A B C D13.由一些相同的小正方体搭成的几何体的左视图和俯视图如图29-2-12所示,请在网格中涂出一种该几何体的主视图,且使该主视图是轴对称图形.图29-2-12解:如答图所示(答案不唯一,合理即可).第13题答图14.5个棱长为1的正方体组成如图29-2-13所示的几何体.(1)该几何体的体积是__5__(立方单位),表面积是__22__(平方单位);(2)画出该几何体的主视图和左视图.图29-2-13第14题答图解:(2)如答图所示.15.图29-2-14是一个蘑菇形小零件图,其上部是一个半球体,下部是圆柱体,作出它的三视图.图29-2-14解:蘑菇形零件的上部为半球体,下部为圆柱体,它的主视图与左视图相同,上部均为半圆,下部为矩形.俯视图为同心圆(不含圆心),内圆被遮为虚线,如答图所示.第15题答图16.作出图29-2-15中立体图形的三视图.图29-2-15解:如答图所示.第16题答图第2课时由三视图描述物体的形状[学生用书B90]1.[2018·宜宾]一个立体图形的三视图如图29-2-16所示,则该立体图形是(A)A.圆柱B.圆锥C.长方体D.球图29-2-16 29-2-17 2.[2018·云南]如图29-2-17是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图).则这个几何体是(D)A.三棱柱B.三棱锥C.圆柱D.圆锥3.[2018·金华、丽水]一个几何体的三视图如图29-2-18所示,该几何体是(A)图29-2-18A.直三棱柱B.长方体C.圆锥D.立方体4.已知一个正棱柱的俯视图和左视图如图29-2-19所示,其主视图为(D)。
人教版-数学-九年级下册-29.2 三视图 第三课时 练习(含答案) 赵磊.
29.2 三视图(3)班级姓名座号月日主要内容:根据三视图的描述出几何体的基本形状或实物原型一、课堂练习:1.某几何体的三视图如右图所示,则此几何体是( )A.正三棱柱B.圆柱C.长方体D.圆锥2.(课本121页)由三视图想象实物形状,并把它们画出来.(1) (2) (3)(4)二、课后作业:1.(课本123页)根据下列三视图,分别说出它们表示的物体的形状,并把它们画出来.2.(课本124页)根据下面的三视图说出这个几何体是怎样由四个正方体合成的.(1) (2) (3)3.(课本124页)根据三视图描述物体的形状,试把它画出来.4.(课本125页)由5个相同的小正方体搭成的物体的俯视图如图所示,这个物体有几种搭法?分别画出它们的主视图和左视图.(友情提示:若有困难可先搭后画)三、新课预习:如图所示是某种型号的正六角螺母毛坯的三视图, 则它的表面积为多少?俯视图3主视图左视图参考答案班级姓名座号月日主要内容:根据三视图的描述出几何体的基本形状或实物原型一、课堂练习:1.某几何体的三视图如右图所示,则此几何体是( A )A.正三棱柱B.圆柱C.长方体D.圆锥2.(课本121页)由三视图想象实物形状,并把它们画出来.(4)二、课后作业:1.(课本123页)根据下列三视图,分别说出它们表示的物体的形状,并把它们画出来.解:(1)表示的物体是长方体(如图1);(2)表示的物体是圆柱体(如图2);(3)表示的物体是球体(如图3).解:(1)实物形状是圆柱(如图1);(2)实物形状是三棱柱(如图2);(3)实物形状是长方体,中央有一个圆柱形状上下通透的孔(如图3);(4)实物形状是一个组合体(如图4)图1 图2 图3主视图 左视图2.(课本124页)根据下面的三视图说出这个几何体是怎样由四个正方体合成的.解:如下图所示,前面3个是正方体,后面一个正方体.3.(课本124页)根据三视图描述物体的形状,试把它画出来.解:如下图所示,此物体下部为长方体,上部为半个圆柱.4.(课本125页)由5个相同的小正方体搭成的物体的俯视图如图所示,这个物体有几种搭法?分别画出它们的主视图和左视图.(友情提示:若有困难可先搭后画)解:有三种不同搭法. 附立体图(1)(2)(3)三、新课预习: 如图所示是某种型号的正六角螺母毛坯的三视图,则它的表面积为多少? 解:由三视图知,该正六角螺母毛坯是底面为正六边形的正六棱柱.∴底面积为122sin60621232⨯⨯⨯⨯⨯=o 侧面积为23636⨯⨯=∴该正六角螺母毛坯的表面积为2(12336)+cm 俯视图 主视图 左视图主视图 左视图 3cm 2cm 主视图 左视图。
新人教版九年级数学下册 29.2 三视图同步测试(含答案)
三视图三视图[见B本P90]1.如图29-2-1几何体的主视图是( C )图29-2-12.下列四个立体图形中,主视图为圆的是( B )A B C D3.有一篮球如图29-2-2放置,其主视图为( B )图29-2-2A B C D4如图29-2-3,由三个小立方块搭成的俯视图是( A )图29-2-35.如图29-2-4所示的几何体的主视图是( C )29-2-46.从不同方向看一只茶壶,你认为是其俯视图的是( A )图29-2-57. 如图29-2-6是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体( D )A .主视图改变,左视图改变B .俯视图不变,左视图不变C .俯视图改变,左视图改变D .主视图改变,左视图不变图29-2-68.如图四个水平放置的几何体中,三视图如图29-2-7所示的是( D )图29-2-79.如图29-2-8所示几何体的左视图是( C )图29-2-810.球和圆柱在水平面上紧靠在一起,组成如图29-2-9所示的几何体,托尼画出了它的三视图,其中他画的俯视图应该是( C )图29-2-9A.两个相交的圆B.两个内切的圆C.两个外切的圆 D.两个外离的圆11.下列几何体中,俯视图相同的是( C )图29-2-10A.①② B.①③ C.②③ D.②④12.将棱长是1 cm的小正方体组成如图29-2-11所示的几何体,那么这个几何体的表面积是( A )图29-2-11A.36 cm2 B.33 cm2 C.30 cm2 D.27 cm213.我国古代数学家利用“牟合方盖”(如图29-2-12甲)找到了球体体积的计算方法,“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.图29-2-12乙所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是( B )图29-2-1214.5个棱长为1的正方体组成如图29-2-13所示的几何体.(1)该几何体的体积是________(立方单位),表面积是________(平方单位);(2)画出该几何体的主视图和左视图.图29-2-13第14题答图解:(1)5 22 (2)如图所示.15.图29-2-14是一个蘑菇形小零件图,其上部是一个半球体,下部是圆柱体,作出它的三视图.图29-2-14解:蘑菇形零件的上部为半球体,下部为圆柱体,它的主视图与左视图相同,上部均为半圆,下部为矩形.俯视图为同心圆(不含圆心),内圆被遮为虚线,如图所示.16.作出下面立体图形的三视图.图29-2-15 解:如图所示.第2课时由三视图描述物体的形状[见B本P92]1.下面是一个几何体的三视图,则这个几何体的形状是( B )图29-2-16A.圆柱B.圆锥C.圆台 D.三棱柱2.某几何体的三种视图如图29-2-17所示,则该几何体是( C )图29-2-17A.三棱柱 B.长方体C.圆柱 D.圆锥3.某几何体的三视图如图29-2-18所示,则这个几何体是( A )图29-2-18A.三棱柱 B.圆柱C.正方体 D.三棱锥4.已知一个正棱柱的俯视图和左视图如图29-2-19所示,其主视图为( D )图29-2-195.长方体的主视图、俯视图如图29-2-20所示,则其左视图面积为( A )图29-2-20A.3 B.4C.12 D.166.一个长方体的左视图、俯视图及相关数据如图29-2-21所示,则其主视图的面积为( B )A.6 B.8 C.12 D.24图29-2-21图29-2-227.如图29-2-22是一个几何体的主视图和左视图,同学们在探究它的俯视图时,画出了如图29-2-23的几个图形,其中可能是该几何体俯视图的共有( C )图29-2-23A.3个 B.4个C.5个 D.6个8.图29-2-24是一个正六棱柱的主视图和左视图,则图中的a=( B )图29-2-24A.2 3 B. 3 C.2 D.1【解析】从主视图来看,正六棱柱的底面正六边形的直径为4,半径为2,而正六边形的边长等于半径,所以边长也为2,所以a=2sin60°= 3.9.下图是由几个相同的小立方块组成的几何体的三视图,小立方块的个数是( B ) A.3 B.4 C.5 D.6图29-2-2510.由n个相同的小正方体堆成的几何体,其视图如图29-2-26所示,则n的最大值是( A )A.18 B.19 C.20 D.21图29-2-2611. 某超市货架上摆放着某品牌红烧牛肉方便面,如图29-2-27是它们的三视图,则货架上的红烧牛肉方便面至少有( B )A.8 B.9 C.10 D.11图29-2-2712. 某几何体的三视图如图29-2-28所示,则组成该几何体共用了小方块( D )A. 12块B. 9块C. 7块D. 6块图29-2-2813.如图29-2-29是某几何体的三视图,则该几何体的体积是( C )图29-2-29A. 18 3B. 54 3C. 108 3D. 216 3【解析】由三视图可看出:该几何体是一个正六棱柱,其中底面正六边形的边长为6,高是2,所以该几何体的体积=6×34×62×2=108 3.14.一个几何体的三视图如图29-2-30所示(其中标注的a,b,c为相应的边长),则这个几何体的体积是__abc__.图29-2-30【解析】几何体是长方体,长为a,宽为b,高为c,则V=abc.15.图29-2-31是某实物的三视图,描述该实物的形状.图29-2-31解:观察三视图,可把三视图分解为两组如下图.由第1组三视图可观察出物体下部为一个长方体;由第2组三视图可观察出物体左上部也为一个长方体.综合原三视图可得物体是由两个长方体结合成的一个整体(像沙发),如图所示.第1组第2组16.如图29-2-32,观察由棱长为1的小立方体摆成的图形,寻找规律:如图①中,共有1个小立方体,其中1个看得见,0个看不见;如图②中,共有8个小立方体,其中7个看得见,1个看不见;如图③中,共有27个小立方体,其中19个看得见,8个看不见;……则(1)第⑥个图中,看得见的小立方体有________个;(2)猜想并写出第n个图形中看不见的小立方体的个数为多少?图29-2-32解:(1)n=1时,看不见的小立方体的个数为0个;n=2时,看不见的小立方体的个数为(2-1)×(2-1)×(2-1)=1(个);n=3时,看不见的小立方体的个数为(3-1)×(3-1)×(3-1)=8(个);……n=6时,看不见的小立方体的个数为(6-1)×(6-1)×(6-1)=125(个),故看得见的小立方体有63-125=216-125=91(个).(2)第n个图形中看不见的小立方体的个数为(n-1)3个.第3课时 由三视图到表面展开图 [见B 本P94]1.如图29-2-33是某几何体的三视图,其侧面积( C )图29-2-33A .6B .4πC .6πD .12π2.一个几何体的三视图如图29-2-34所示,那么这个几何体的侧面积是( B )图29-2-34A .4πB .6πC .8πD .12π【解析】 由三视图知该几何体是底面直径为2,高为3的圆柱体,所以该几何体的侧面积为2π×3=6π.3.图29-2-35是某几何体的三视图及相关数据,则该几何体的侧面积是( B )图29-2-35A.12ab πB.12ac π C .ab π D .ac π 【解析】 该几何体是圆锥,侧面展开图是扇形,S 扇形=12×a π×c =12ac π.4.如图29-2-36是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是__72__.图29-2-36图29-2-375.图29-2-37是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是__左视图__.【解析】 设小正方体的棱长为1,则主视图的面积为5,左视图的面积为3,俯视图的面积为5,所以左视图的面积最小.6.某几何体的三视图如图29-2-38所示,则该几何体的表面积为__270__cm 2__.图29-2-38【解析】 由三视图可知,几何体是一个直三棱柱,其表面积为S 表=(5+12+52+122)×7+2×12×12×5=270( cm 2).7.某冷饮厂要加工一批冰淇淋蛋筒,设计给出了封闭蛋筒的三视图如图29-2-39所示,请你按照三视图确定制作每个蛋筒所需的包装材料面积(π取3.14,精确到0.1 cm 2).图29-2-39【解析】 (1)由三视图知立体图形是圆锥;(2)再由圆锥画它的表面展开图计算表面积. 解:由三视图可知,蛋筒是圆锥形的,如下图所示.蛋筒的母线长为13 cm ,底面的半径为102=5(cm),运用勾股定理可得它的高h =132-52=12(cm).由展开图可知,制作一个冰淇淋蛋筒的材料面积为S 扇形+S 圆=12×2π×5×13+π×52=65π+25π=90π≈282.6(cm 2).8.图29-2-40是某几何体的展开图. (1)这个几何体的名称是____; (2)画出这个几何体的三视图;(3)求这个几何体的体积.(π取3.14)图29-2-40【解析】观察展开图,中间是一个矩形,上、下方是相等的圆,易知此几何体为圆柱;圆柱的主视图和左视图是相同的长方形,俯视图为圆,其体积为底面积乘高,且圆柱底面直径为10,高为20.解:(1)圆柱;(2)三视图如图所示.(3)体积为πr2h≈3.14×25×20=1 570.9.某个长方体的主视图是边长为1 cm的正方形,沿这个正方形的对角线向垂直于正方形的方向将长方体切开,截面是一个正方形,那么这个长方体的俯视图是( D )【解析】截面是一个正方形,边长为 2 cm,故这个长方体的俯视图是边长分别为1 cm, 2 cm的长方形,选D.10.如图29-2-41是一个包装纸盒的三视图(单位:cm),则制作一个纸盒所需纸板的面积是( C )图29-2-41A .75(1+3)cm 2B .75⎝ ⎛⎭⎪⎫1+32cm 2 C .75(2+3)cm 2D .75⎝⎛⎭⎪⎫2+32cm 2 【解析】 包装盒的侧面展开图是一个长方形,长方形长为(5×6)cm ,宽为 5 cm ,面积为30×5=150 (cm 2),包装盒的一个底面是一个正六边形,面积为6×12×52×32=7523(cm 2),故包装盒的表面积为150+2×7523=150+753=75(2+3)(cm 2),选C.11.一个如图29-2-42所示的长方体的三视图如图29-2-43所示,若其俯视图为正方形,则这个长方体的表面积为( A )图29-2-42 图29-2-43 A .66 B .48C .482+36D .57【解析】 设长方体底面边长为x ,则2x 2=(32)2,∴x =3,∴该长方体表面积为3×4×4+32×2=48+18=66,故选A.12.图29-2-44是某工件的三视图,按图中尺寸求工件的表面积.图29-2-44【解析】 在实际的生产中,三视图和展开图往往结合在一起,常由三视图想象出几何体的形状,再画出其表面展开图,然后根据展开图求表面积.解:观察三视图可知,工件的上部为一个圆锥,下部紧连着一个共底面的圆柱(如图所示).上部圆锥侧面展开图是扇形(半圆),其面积为S 扇=12×(3)2+12×2π=2π(cm 2);下部圆柱侧面展开图是矩形,其面积为S 矩=1×2π=2π(cm 2);底部为圆面,面积为S 圆=π cm 2,所以,所求工件的表面积为S 表=S 扇+S 矩+S 圆=2π+2π+π=5π(cm 2).13.一个几何体的主视图和左视图如图29-2-45所示,它的俯视图为菱形,请写出该几何体的形状,并根据图中所给的数据求出它的侧面积.图29-2-45解:该几何体的形状是直四棱柱.由三视图知,棱柱底面菱形的对角线长分别为4 cm ,3 cm ,∴菱形的边长为52 cm ,棱柱的侧面积=4×52×8=80(cm 2).14.如图29-2-46所示是一个直四棱柱及其主视图和俯视图(等腰梯形). (1)根据图中所给数据,可得俯视图(等腰梯形)的高为____; (2)在虚线框内画出其左视图,并标出各边的长.图29-2-46【解析】 (1)过上底的顶点向对边引垂线组成直角三角形求解即可;(2)易得左视图为长方形,宽等于(1)中算出的梯形的高,高等于主视图中长方形的高. 解:(1)4(2)如图所示:。
新人教版九年级数学下册 29.2 三视图 同步练习2(含答案)
29.2三视图同步练习
1. 如图所示是一个立体图形的三视图,请根据视图说出立体图形的名称.
2.请将六棱柱的三视图名称填在相应的横线上.
3.一张桌子摆放若干碟子,从三个方向上看,三种视图如下图所示,则这张桌子上共有
个碟子.
4. 圆柱对应的主视图是()
(A)(B)(C)(D)
5. 某几何体的三种视图分别如下图所示,那么这个几何体可能是().
(A)长方体(B)圆柱(C)圆锥(D)球
俯视图
主视图
左视图
主
视
图
俯视图
6. 下面是空心圆柱在指定方向上的视图,正确的是…()
(A) (B) (C) (D)
7. 一个四棱柱的俯视图如右图所示,则这个四棱柱的主视图和左视图可能是()
(A) (B) (C) (D)
8. 主视图、左视图、俯视图都是圆的几何体是(
(A)圆锥(B)圆柱(C)球(D)空心圆柱
9. 根据要求画出下列立体图形的视图.
(画左视图)(画俯视图)(画正视图)
10. 画出右方实物的三视图.
11. 如图是一个物体的三视图,请画出物体的形状.
左
视
图
12. 根据下面三视图建造的建筑物是什么样子的?共有几层?一共需要多少个小正方体.
答案:1、圆锥 2、俯视图,正视图,左视图 3、12. 4、C
5、B
6、A
7、D
8、C.
9
10、 11、
12、图略,共三层,需9个小正方体.
主视图左视图俯视图
主视图 左视图 俯视图。
新人教版九年级数学下册29.2三视图练习题及答案 (1)
29.2 三视图1.下面是一些立体图形的三视图(如图),•请在括号内填上立体图形的名称.2.如图4-3-26,下列图形都是几何体的平面展开图,你能说出这些几何体的名称吗?3.如图,从不同方向看下面左图中的物体,右图中三个平面图形分别是从哪个方向看到的?4.一天,小明的爸爸送给小明一个礼物,小明打开包装后画出它的主视图和俯视图如图所示.根据小明画的视图,你猜小明的爸爸送给小明的礼物是()A.钢笔 B.生日蛋糕 C.光盘 D.一套衣服5.一个几何体的主视图和左视图如图所示,它是什么几何体?请你补画出这个几何体的俯视图.6.一个物体的三视图如图所示,试举例说明物体的形状.7.已知一个几何体的三视图如图所示,则该几何体的体积为多少?8.已知几何体的主视图和俯视图如图所示.(1)画出该几何体的左视图;(2)该几何体是几面体?它有多少条棱?多少个顶点?(3)该几何体的表面有哪些你熟悉的平面图形?9.小刚的桌上放着两个物品,它的三视图如图所示,你知道这两个物品是什么吗?10.一个由几个相同的小立方体搭成的几何体的俯视图如图所示,方格里的数字表示该位置的小立方体的个数,请你画出这个几何体的主视图和左视图.11.如图所示,下列三视图所表示的几何体存在吗?如果存在,请你说出相应的几何体的名称.12.由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图所示,俯视图的方格中的字母和数字表示该位置上小立方体的个数,求x,y的值.13.马小虎准备制作一个封闭的正方体盒子,他先用5•个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在下图中的每个图形上再接一个正方形,•使新拼接成的图形经过折叠能成为一个封闭的正方体盒子.(注:添加的正方形用阴影表示)14.由几个小立方体叠成的几何体的主视图和左视图如图,求组成几何体的小立方体个数的最大值与最小值.参考答案:1.圆柱,正三棱锥 2.圆锥圆柱正方体三棱柱3.上正侧 4.B 5.略6.如粉笔,灯罩等 7.1208.(1)略(2)六面体,12条,8个(3)等腰梯形,•正方形9.长方体木板的正前方放置了一个圆柱体 10.略 11.不存在12.x=1或x=2,y=3 13.略 14.12个,7个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
29.2 三视图
一、自主学习
1.画三视图时,首先确定主视图的位置.画出主视图,然后在主视图的下面画出俯视图,在主视图的右面画出左视图.主视图反映物体的_______和_______,俯视图反映物体的_______和_______,左视图反映物体的_______和_______.因此,画三视图时,主、俯视图要长对正,主、左视图要高平齐,左、俯视图要宽相等.看得见部分的轮廓线通常画成实线,看不见部分的轮廓线通常画成虚线.
2.在下列几何体中,主视图是圆的是( )
3.图29-14所示的水杯的俯视图是( )
图29-14
4.如图29-15所示,桌面上放着一个圆柱和一个正方体.请你说出右面的三幅图的三视图.
图29-14
二、基础巩固
5.如图29-16所示,空心圆柱体在指定方向上的视图正确的是( )
图29-16
6.一只小狗正在平面镜前欣赏自己的全身像(如图29-17所示),此时它所看到的全身像是( )
图29-17
7.小明从正面观察图29-18所示的两个物体,看到的是图中的( )
图29-18
8.“圆柱与球的组合体”如图29-19所示,则它的三视图是( )
图29-19
9.某同学把图29-20所示的几何体的三种视图画出如图29-20①②③所示(不考虑尺寸);其中错误的是哪个图?答:是________________________.
图29-20
10.图29-21是直观图的三视图,它对应的直观图是下图中的( )
图29-21
11.请写出三种视图都相同的两种几何体是__________、_____________.
12.画出下图所示的三视图.
13.一个物体的俯视图是圆,则该物体的形状是( )
A.球体
B.圆柱
C.圆锥
D.以上都有可能
14.一个几何体的三种视图如图29-22所示,则这个几何体是( )
图29-22
A.圆柱
B.圆锥
C.长方体
D.正方体
15.一个物体的正视图、俯视图如图29-23所示,请你画出该物体的左视图并说出该物体形状的名称.
图29-23
三、能力提高
16.将如图29-24所示放置的一个直角三角形ABC(∠C=90°),绕斜边AB旋转一周所得到的几何体的主视图是四个图形中的____________(只填序号).
图29-24
17.如图29-25所示的物体中,一样的为( )
A.(1)与(2)
B.(1)与(3)
C.(1)与(4)
D.(2)与(3)
图29-25
18.桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图29-26所示,这个几何体最多可以由___________个这样的正方体组成.
图29-26
19.将图29-27所示的阴影部分剪下来,围成一个几何体的侧面,使AB、DC重合,则所围成的几何体图形是( )
图29-27
20.如图29-28所示,说出下列四个图形各是由哪些立体图形展开得到的?
图29-28
四、模拟链接
21.由一些大小相同的小正方体组成的简单几何体的主视图和俯视图如图29-29所示.
(1)请你画出这个几何体的一种左视图.
(2)若组成这个几何体的小正方体的块数为n,请你写出n的所有可能值.
图29-29
参考答案
一、自主学习
1.画三视图时,首先确定主视图的位置.画出主视图,然后在主视图的下面画出俯视图,在主视图的右面画出左视图.主视图反映物体的_______和_______,俯视图反映物体的_______和_______,左视图反映物体的_______和_______.因此,画三视图时,主、俯视图要长对正,主、左视图要高平齐,左、俯视图要宽相等.看得见部分的轮廓线通常画成实线,看不见部分的轮廓线通常画成虚线.
答案:长高长宽高宽
2.在下列几何体中,主视图是圆的是( )
答案:D
3.图29-14所示的水杯的俯视图是( )
图29-14
答案:D
4.如图29-15所示,桌面上放着一个圆柱和一个正方体.请你说出右面的三幅图的三视图.
图29-14
答案:俯视图主视图左视图
二、基础巩固
5.如图29-16所示,空心圆柱体在指定方向上的视图正确的是( )
图29-16
答案:C画视图时,看得见部分的轮廓线通常画成实线,看不见部分的轮廓线通常画成虚线.
6.一只小狗正在平面镜前欣赏自己的全身像(如图29-17所示),此时它所看到的全身像是( )
图29-17
答案:A
7.小明从正面观察图29-18所示的两个物体,看到的是图中的( )
图29-18
答案:C
8.“圆柱与球的组合体”如图29-19所示,则它的三视图是( )
图29-19
答案:A
9.某同学把图29-20所示的几何体的三种视图画出如图29-20①②③所示(不考虑尺寸);其中错误的是哪个图?答:是________________________.
图29-20
答案:左视图
10.图29-21是直观图的三视图,它对应的直观图是下图中的( )
图29-21
答案:C
11.请写出三种视图都相同的两种几何体是__________、_____________.
答案:略
12.画出下图所示的三视图.
答案:略
13.一个物体的俯视图是圆,则该物体的形状是( )
A.球体
B.圆柱
C.圆锥
D.以上都有可能
答案:D
14.一个几何体的三种视图如图29-22所示,则这个几何体是( )
图29-22
A.圆柱
B.圆锥
C.长方体
D.正方体
答案:A
15.一个物体的正视图、俯视图如图29-23所示,请你画出该物体的左视图并说出该物体形状的名称.
图29-23
答案:略
三、能力提高
16.将如图29-24所示放置的一个直角三角形ABC(∠C=90°),绕斜边AB旋转一周所得到的几何体的主视图是四个图形中的____________(只填序号).
图29-24
答案:(2)
17.如图29-25所示的物体中,一样的为( )
A.(1)与(2)
B.(1)与(3)
C.(1)与(4)
D.(2)与(3)
图29-25
答案:A
18.桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图29-26所示,这个几何体最多可以由___________个这样的正方体组成.
图29-26
答案:13
19.将图29-27所示的阴影部分剪下来,围成一个几何体的侧面,使AB、DC重合,则所围成的几何体图形是( )
知识像烛光,能照亮一个人,也能照亮无数的人。
--培根
11 / 11
图29-27
答案:
D 20.如图29-28所示,说出下列四个图形各是由哪些立体图形展开得到的?
图29-28
答案:(1)正方体 (2)圆柱 (3)三棱柱 (4)四棱锥
四、模拟链接
21.由一些大小相同的小正方体组成的简单几何体的主视图和俯视图如图29-29所示.
(1)请你画出这个几何体的一种左视图.
(2)若组成这个几何体的小正方体的块数为n ,请你写出n 的所有可能值.
图29-29
答案:(1)左视图有以下5种情形,如图D29-6所示(只要画对一种即可)
图D29-6
(2)n=8,9,10,11.。