第3章 抽样分布PPT课件
合集下载
抽样和抽样分布培训课件ppt(49张)
6
自有限总体的抽样
• 例:人事主管正在制定一项公司2500名管理人员的简报。 假定2500名管理人员已经按照他们在职员文件中的顺序 依次标号(即1,2,3,⋯,2499,2500)
74715 63905 60678 25514 1866 91304 34729 71986 44826 63694 56936 58319 58020 74045 58006 28668 92038 95002 88451 52056 41343 47936 21472 78278 3868 57767 89168 60772 37953 51464 68345 17347 13514 31760 35717 21630 73683 31660 28409 99721 18734 91670 54770 2513 58818 47693 7499 58368 1386 37919
3
3 抽样和抽样分布
简单随机抽样 பைடு நூலகம்点估计
x 的抽样分布
p 的抽样分布
点估计的性质 其他抽样方法
4
简单随机抽样
• 简单随机样本(有限总体) –随机样本中每个样本点以相等的概率被抽出。
• 随机样本(无限总体) –每个个体来自同一总体。 –各个个体的选择是独立的。
5
自有限总体的抽样
• 每次只选择一个样本点,总体中的每一个体等可能被抽 到。
12
3 抽样和抽样分布
简单随机抽样 点估计与抽样分布
x 的抽样分布
p 的抽样分布
点估计的性质 其他抽样方法
13
点估计
由30管理人员组成的简单随机样本的年薪和培训情况
14
点估计
样本均值 样本标准差
样本比率
51814.00美元
自有限总体的抽样
• 例:人事主管正在制定一项公司2500名管理人员的简报。 假定2500名管理人员已经按照他们在职员文件中的顺序 依次标号(即1,2,3,⋯,2499,2500)
74715 63905 60678 25514 1866 91304 34729 71986 44826 63694 56936 58319 58020 74045 58006 28668 92038 95002 88451 52056 41343 47936 21472 78278 3868 57767 89168 60772 37953 51464 68345 17347 13514 31760 35717 21630 73683 31660 28409 99721 18734 91670 54770 2513 58818 47693 7499 58368 1386 37919
3
3 抽样和抽样分布
简单随机抽样 பைடு நூலகம்点估计
x 的抽样分布
p 的抽样分布
点估计的性质 其他抽样方法
4
简单随机抽样
• 简单随机样本(有限总体) –随机样本中每个样本点以相等的概率被抽出。
• 随机样本(无限总体) –每个个体来自同一总体。 –各个个体的选择是独立的。
5
自有限总体的抽样
• 每次只选择一个样本点,总体中的每一个体等可能被抽 到。
12
3 抽样和抽样分布
简单随机抽样 点估计与抽样分布
x 的抽样分布
p 的抽样分布
点估计的性质 其他抽样方法
13
点估计
由30管理人员组成的简单随机样本的年薪和培训情况
14
点估计
样本均值 样本标准差
样本比率
51814.00美元
统计学 第三章抽样与抽样分布
=10
= 50 X
总体分布
n= 4
x 5
n =16
x 2.5
x 50
X
抽样分布
从非正态总体中抽样
结论:
从非正态中体中抽样,所形成 的抽样分布最终也是趋近于正态分 布的。只是样本容量需要更大些。
总结:中心极限定理
设从均值为,方差为 2的一个任意总体中抽 取容量为n的样本,当n充分大时(超过30),样本 均值的抽样分布近似服从均值为μ、方差为σ2/n的
总体
样本
参数
统计量
总体与样本的指标表示法
总体参数
样本统计量
(Parameter) (Sample Statistic)
容量 平均数 比例 方差 标准差
N
n
X
x
p
2
s2
s
小练习
某药品制造商感兴趣的是用该公司开发的某 种新药能控制高血压人群血压的比例。进行了一 项包含5000个高血压病人个体的研究。他发现用 这种药后80%的个体,他们的高血压能够被控制。 假定这5000个个体在高血压人群中具有代表性的 话,回答下列问题: 1、总体是什么? 2、样本是什么? 3、识别所关心的参数 4、识别此统计量并给出它的值 5、我们知道这个参数的值么?
正态分布
一个任意分 布的总体
x
n
当样本容量足够 大时(n 30) , 样本均值的抽样 分布逐渐趋于正 态分布
x
X
总体分布
正态分布
非正态分布
大样本 小样本 大样本 小样本
正态分布
正态分布
非正态分布
三 中心极限定理的应用
中心极限定理(Central Limit theorem) 不论总体服从何种分布,从中抽取
三大抽样分布课件
在方差分析中,t分布用于检验 各个组之间的均值是否存在显著
差异。
04
CATALOGUE
卡方分布
卡方分布的定义
定义
卡方分布是一种连续概率分布,描述 了随机变量的取值与自由度的平方之 间的比例关系。
公式
若随机变量X符合卡方分布,则X的概 率密度函数为f(x)=x^(n/2-1)e^(x/2)/2^(n/2)Γ(n/2),其中n为自由度 ,Γ为伽玛函数。
正态分布
正态分布的定义
01
正态分布是一种连续概率分布, 其概率密度函数呈钟形,对称轴 为均值所在直线,形状由标准差 决定。
02
正态分布是自然界中最常见的分 布形态,许多随机变量都服从或 近似服从正态分布。
正态分布的性质
01
02
03
集中性
正态分布曲线以均值为中 心,两侧分布对称。
均匀性
正态分布曲线是关于标准 差对称的,形状由标准差 决定。
t分布
t分布的定义
定义
t分布(也称为学生t分布)是一种 连续概率分布,其形状由自由度 参数决定。
描述
当数据来自正态分布的总体,且样 本量较小(通常n<30)时,t分布 近似于正态分布。
公式
t分布的密度函数和分布函数可以用 一系列复杂的数学公式来描述。
t分布的性质
形状
峰度
随着自由度的增加,t分布的形状逐渐 接近正态分布。
t分布的峰度大于正态分布的峰度,且 随着自由度的增加而减小。
偏度
t分布通常是偏态的,其偏度随着自由 度的增加而减小。
t分布在统计学中的应用
假设检验
在样本量较小时,t分布在假设 检验中常用作正态分布的替代,
用于检验统计假设。
差异。
04
CATALOGUE
卡方分布
卡方分布的定义
定义
卡方分布是一种连续概率分布,描述 了随机变量的取值与自由度的平方之 间的比例关系。
公式
若随机变量X符合卡方分布,则X的概 率密度函数为f(x)=x^(n/2-1)e^(x/2)/2^(n/2)Γ(n/2),其中n为自由度 ,Γ为伽玛函数。
正态分布
正态分布的定义
01
正态分布是一种连续概率分布, 其概率密度函数呈钟形,对称轴 为均值所在直线,形状由标准差 决定。
02
正态分布是自然界中最常见的分 布形态,许多随机变量都服从或 近似服从正态分布。
正态分布的性质
01
02
03
集中性
正态分布曲线以均值为中 心,两侧分布对称。
均匀性
正态分布曲线是关于标准 差对称的,形状由标准差 决定。
t分布
t分布的定义
定义
t分布(也称为学生t分布)是一种 连续概率分布,其形状由自由度 参数决定。
描述
当数据来自正态分布的总体,且样 本量较小(通常n<30)时,t分布 近似于正态分布。
公式
t分布的密度函数和分布函数可以用 一系列复杂的数学公式来描述。
t分布的性质
形状
峰度
随着自由度的增加,t分布的形状逐渐 接近正态分布。
t分布的峰度大于正态分布的峰度,且 随着自由度的增加而减小。
偏度
t分布通常是偏态的,其偏度随着自由 度的增加而减小。
t分布在统计学中的应用
假设检验
在样本量较小时,t分布在假设 检验中常用作正态分布的替代,
用于检验统计假设。
《抽样和抽样分布》课件
《抽样和抽样分布》ppt课件
$number {01}
目录
• 抽样调查的基本概念 • 抽样分布的基础知识 • 抽样分布的原理 • 抽样误差的评估 • 实际应用中的抽样技术 • 案例分析
01
抽样调查的基本概念
抽样的定义和意义
定义
抽样是从总体中选取一部分个体 进行研究的方法。
意义
通过对部分个体的研究,推断出 总体的特征,以节省时间和资源 。
适用场景
当总体中存在周期性变化 或某种明显的模式时,系 统抽样能够提高样本的代 表性。
注意事项
要确保抽样的间隔与总体 中的变化模式相匹配,以 避免偏差。
分层抽样
分层抽样
注意事项
将总体分成若干层,然后从每层中随 机抽取一定数量的样本。
要确保分层依据合理,且层内样本的 抽取方法一致,以避免层间和层内的 偏差。
抽样误差的衡量指标
抽样平均误差
抽样平均误差是衡量抽样误差大小的指标,它反映了样本统 计量与总体参数之间的平均偏差。
抽样变异系数
抽样变异系数是衡量非系统抽样误差的指标,它反映了由于 随机性引起的样本统计量与总体参数之间的偏差程度。
05
实际应用中的抽样技术系统ຫໍສະໝຸດ 样010203
系统抽样
按照某种规则,每隔一定 数量的个体进行抽样,直 到达到所需的样本量。
步骤 1. 明确研究目的和要求。 2. 确定总体和样本规模。
抽样的原则和步骤
01 02 03
3. 选择合适的抽样方法。 4. 制定详细的抽样计划。
5. 实施抽样调查。
02
抽样分布的基础知识
总体和样本
1 2
3
总体
研究对象的全体集合。
样本
$number {01}
目录
• 抽样调查的基本概念 • 抽样分布的基础知识 • 抽样分布的原理 • 抽样误差的评估 • 实际应用中的抽样技术 • 案例分析
01
抽样调查的基本概念
抽样的定义和意义
定义
抽样是从总体中选取一部分个体 进行研究的方法。
意义
通过对部分个体的研究,推断出 总体的特征,以节省时间和资源 。
适用场景
当总体中存在周期性变化 或某种明显的模式时,系 统抽样能够提高样本的代 表性。
注意事项
要确保抽样的间隔与总体 中的变化模式相匹配,以 避免偏差。
分层抽样
分层抽样
注意事项
将总体分成若干层,然后从每层中随 机抽取一定数量的样本。
要确保分层依据合理,且层内样本的 抽取方法一致,以避免层间和层内的 偏差。
抽样误差的衡量指标
抽样平均误差
抽样平均误差是衡量抽样误差大小的指标,它反映了样本统 计量与总体参数之间的平均偏差。
抽样变异系数
抽样变异系数是衡量非系统抽样误差的指标,它反映了由于 随机性引起的样本统计量与总体参数之间的偏差程度。
05
实际应用中的抽样技术系统ຫໍສະໝຸດ 样010203
系统抽样
按照某种规则,每隔一定 数量的个体进行抽样,直 到达到所需的样本量。
步骤 1. 明确研究目的和要求。 2. 确定总体和样本规模。
抽样的原则和步骤
01 02 03
3. 选择合适的抽样方法。 4. 制定详细的抽样计划。
5. 实施抽样调查。
02
抽样分布的基础知识
总体和样本
1 2
3
总体
研究对象的全体集合。
样本
抽样与抽样分布 ppt课件
可以按自然区域或行政区域进行分层,使抽样的组织 和实施都比较方便
分层抽样的样本分布在各个层内,从而使样本在总体 中的分布比较均匀
如果分层抽样做得好,便可以提高估计的精度
系统抽样
(systematic sampling)
1. 将总体中的所有单位(抽样单位)按一定顺 序排列,在规定的范围内随机地抽取一个 单位作为初始单位,然后按事先规定好的 规则确定其他样本单位
样本容量。样本中所包含的个体的数量,一般用n表示。 在实际工作中,人们通常把n≥30的样本称为大样本, 而把n<30的样本称为小样本。
对于某一既定的总体,由于抽样的方式方法不同,样本 容量也可大可小,因而,样本是不确定的、可变的。
抽样的目的一部分,而且样本的抽取又具有随机性, 因此,样本的内部构成与总体的内部构成总是具有一定 的差异,样本不能完全代表总体,抽样估计总是存在一 定的代表性误差。
1. 将总体中若干个单位合并为组(群),抽样 时直接抽取群,然后对中选群中的所有单 位全部实施调查
2. 特点
抽样时只需群的抽样框,可简化工作量 调查的地点相对集中,节省调查费用,方便
调查的实施 缺点是估计的精度较差
多阶段抽样
(multi-stage sampling)
1. 先抽取群,但并不是调查群内的所有单位,而是再 进行一步抽样,从选中的群中抽取出若干个单位进 行调查
1. 由简单随机抽样形成的样本 2. 从总体N个单位中随机地抽取n个单位作为
样本,使得每一个容量为n样本都有相同 的机会(概率)被抽中 3. 参数估计和假设检验所依据的主要是简单 随机样本
简单随机抽样
(用Excel对分类数据随机抽样)
【例】某 班级共有 30 名 学 生 , 他们的名 单如右表。 用 Excel 抽 出一个由5 个学生构 成的随机 样本
分层抽样的样本分布在各个层内,从而使样本在总体 中的分布比较均匀
如果分层抽样做得好,便可以提高估计的精度
系统抽样
(systematic sampling)
1. 将总体中的所有单位(抽样单位)按一定顺 序排列,在规定的范围内随机地抽取一个 单位作为初始单位,然后按事先规定好的 规则确定其他样本单位
样本容量。样本中所包含的个体的数量,一般用n表示。 在实际工作中,人们通常把n≥30的样本称为大样本, 而把n<30的样本称为小样本。
对于某一既定的总体,由于抽样的方式方法不同,样本 容量也可大可小,因而,样本是不确定的、可变的。
抽样的目的一部分,而且样本的抽取又具有随机性, 因此,样本的内部构成与总体的内部构成总是具有一定 的差异,样本不能完全代表总体,抽样估计总是存在一 定的代表性误差。
1. 将总体中若干个单位合并为组(群),抽样 时直接抽取群,然后对中选群中的所有单 位全部实施调查
2. 特点
抽样时只需群的抽样框,可简化工作量 调查的地点相对集中,节省调查费用,方便
调查的实施 缺点是估计的精度较差
多阶段抽样
(multi-stage sampling)
1. 先抽取群,但并不是调查群内的所有单位,而是再 进行一步抽样,从选中的群中抽取出若干个单位进 行调查
1. 由简单随机抽样形成的样本 2. 从总体N个单位中随机地抽取n个单位作为
样本,使得每一个容量为n样本都有相同 的机会(概率)被抽中 3. 参数估计和假设检验所依据的主要是简单 随机样本
简单随机抽样
(用Excel对分类数据随机抽样)
【例】某 班级共有 30 名 学 生 , 他们的名 单如右表。 用 Excel 抽 出一个由5 个学生构 成的随机 样本
3、抽样分布
第3章 抽样和抽样分布
第三节
x
的抽样分布
如前所述, 如前所述,样本均值 一、
x 所有可能取值的概率分布
x
的期望值和标准差
1、数学期望
E (x ) =
2、标准差
σx
表示
x
的抽样分布的标准差 计算式如下: 计算式如下:
第3章 抽样和抽样分布
有限总体
σx = σ
n N n N 1
无限总体
σx =
2
σ
商务与经济统计
第3章 抽样和抽样分布
一、统计抽样的几个基本概念 1、全及总体和样本 全及总体:研究对象全体,又称母体。容量用N表示。具 全及总体 备惟一性。 样本总体:按随机原则从总体中抽出的部分单位的全体, 样本总体 简 称样本,被抽出的每个单位称样本单位。容量用n表示。样 本不具惟一性。 样本容量、样本单位数、样本个数
x2
X
-Z
0
Z
Z
第3章 抽样和抽样分布
第四节 p 的抽样分布 样本比例 p 的所有可能取值的概率分布
一、 p 的期望值和标准差 1、期望
第3章 抽样和抽样分布
在第一部分K个单位中(顺序为1、2、3、…、i、…、K )随 机抽取一个单位i,而在第二部分中抽取第i+K单位。第三部分 中抽取第i+2K单位……在第n部分抽取第i+(n-1)K单位,共n个 单位组成一个样本,而且每个样本的间隔均为K,这种抽样方 法称等距抽样。
}
n
1、2、3、…、 、…、K
0.05 0.04 0.03 0.02 0.01 140 150 160 170 180 190
身高
当组数n→无穷大,折线→曲线。
生物统计学课件-3正态分布和抽样分布
近似性
当样本量足够大时,样本 统计量近似服从正态分布。
抽样分布在生物学中的应用
01
实验设计
在生物学实验中,常常需要从总体中随机抽取一定数量的样本进行实验,
以评估实验结果的可重复性和可靠性。抽样分布理论为实验设计提供了
理论基础。
02
数据处理和分析
在生物学数据分析和统计推断中,常常需要利用样本统计量来估计总体
生物统计学课件-3正态分布 和抽样分布
目录
• 正态分布 • 抽样分布 • 正态分布与抽样分布的关系 • 实例分析
01
正态分布
正态分布的定义
正态分布是一种连续概率分布,其概率密度函数呈钟形,对称轴为均值所在直线。
在正态分布中,数据点在均值附近最为集中,向两侧逐渐减少,形成钟形曲线。
正态分布是自然界和人类社会中最为常见的分布形态之一,许多随机变量都服从或 近似服从正态分布。
02
抽样分布
抽样分布的定义
01
02
03
抽样分布
描述样本统计量(如样本 均值、样本方差等)的概 率分布。
样本统计量
从总体中随机抽取的样本 所计算出的各种统计指标, 如样本均值、样本方差等。
总体
研究对象全体个体的集合。
抽样分布的性质
独立性
样本统计量之间相互独立。
随机性
样本统计量的取值具有随 机性。
中心极限定理
在大量独立随机抽样的前提下,不论总体分布如何,样本均值的分布趋近于正态分布。
样本均值的方差与总体方差的关系
样本均值的方差随着样本量的增加而趋近于总体方差的1/n,其中n为样本量。
正态分布与抽样分布的区别
定义不同
正态分布是对总体特征的描述,而抽样分布是对样本统计 量的描述。
第三章 正态分布与抽样分布
图3-5 正态分布的概率
关于正态分布,有几个概率应记住: 关于正态分布,有几个概率应记住: 一般正态分布: 一般正态分布:
P(µ-1.96σ≤x<µ+1.96σ)=0.95 1.96σ≤x<µ+1.96σ)= )=0.95 P(µ-2.58σ≤x<µ+2.58σ)=0.99 2.58σ≤x<µ+2.58σ)= )=0.99 P(µ-σ≤x<µ+σ)=0.6826 σ≤x<µ+σ)= )=0.6826 P(µ-2σ≤x<µ+2σ)=0.9545 2σ≤x<µ+2σ)= )=0.9545 P(µ-3σ≤x<µ+3σ)=0.9973 3σ≤x<µ+3σ)= )=0.9973
对于大样本资料,常将样本标准差S 对于大样本资料,常将样本标准差S 与样本均数配合使用,记为 X ± S ,用 与样本均数配合使用, 以说明所考察性状或指标的优良性与稳 定性。对于小样本资料, 定性。对于小样本资料,常将样本标准 误 SX 与样本均数 X 配合使用,记 配合使用, 为 X ± S ,用以表示所考察性状或指 标的优良性与抽样误差的大小。 标的优良性与抽样误差的大小。
学上已证明 总体的两个参数与x总体的两 总体的两个参数与x 个参数有如下关系: 个参数有如下关系:
µx = µ
σx =
σ
n
表 X 的抽样分布形式与原总体X分布形式的关系 的抽样分布形式与原总体X
2.2 均数标准误
均数标准误 σx = 的大小反映样本均数 X n 抽样误差的大小 标准误大, 的大小。 的抽样误差的大小。标准误大,说明各样本均 间差异程度大;反之,亦然。 数 X 间差异程度大;反之,亦然。 在实际工作中,总体标准差σ往往是未知的, 在实际工作中,总体标准差σ往往是未知的, σx 此时,可用样本标准差S 因而无法求得 。此时,可用样本标准差S估 S 于是, 计σ 。于是,以 估计 n 。记σx 为 n, S SX 称作样本标准误或均数标准误。 称作样本标准误或均数标准误。 是均数抽样 SX 误差的估计值。 误差的估计值。
抽样和抽样分布培训课件(PPT 49张)
0.07 0.5279 0.5675 0.6064 0.6443 0.6808 0.7157 0.7486 0.7794 0.8078 0.8340 0.8577 0.8790 0.8980 0.9147 0.9292 0.9418 0.9525 0.9616 0.9693 0.9756 0.9808 0.9850 0.9884 0.9911 0.9932 0.9949 0.9962 0.9972 0.9979 0.9985 0.9989
7
自有限总体的抽样
• 无放回抽样:一个元素一旦选入样本,就从总体中剔除, 不能再次被选入。 • 放回抽样:一个元素一旦选入样本,仍被放回总体中。
先前被选入的元素可能再次被选,并且在样本中可出现
多次(多于一次)。
8
自无限总体的抽样
• 无限总体经常被定义为一个持续进行的过程,总体的元 素由在相同条件下过程无限运行下去产生的每一项构成。 在这种情况下,对总体内所有项排列是不可能的。
14
点估计
样本均值 51814.00美元 样本标准差
3347.72美元
样本比率 0.63
点估计的 统计过程
15
由30名管理人员组成的简单随机样本的点估计值
16
由30名管理人员组成的500个简单随机样本的点估计值
17
由30名管理人员组成的500个简单随机样本的抽样分布
• 抽样分布:样本统计量所有可能值构成的概率分布。
0.04 0.5160 0.5557 0.5948 0.6331 0.6700 0.7054 0.7389 0.7704 0.7995 0.8264 0.8508 0.8729 0.8925 0.9099 0.9251 0.9382 0.9495 0.9591 0.9671 0.9738 0.9793 0.9838 0.9875 0.9904 0.9927 0.9945 0.9959 0.9969 0.9977 0.9984 0.9988
第三章 抽样分布
F分布特征及查表方法:
F分布的上侧和下侧分位点见下图。 根据df1值和df2值及α值可在附表7中查出。如F4,20,0.01=4.431 附表7给出的是上侧分位数,要求下侧分位数需将df1和df2位置 对调再求倒数。 如F4,20,0.99=1/F20,4,0.01=1/14.0=0.0714 有些自由度下的 F 值附表 7 没有给出,可用线性内插方法求出。 F12,17,0.05=F12,15,0.05+(F12,20,0.05-F12,15,0.05)/(20-15)×(17-15)=2.396
(x x )
1 2
12
n1
n2
标准化(
u
( x 1 x 2 ) ( 1 2 )
12
n1
2 2
)后的变量服从
n2
标准的正态分布,这样可以推断在标准差已
知时,两个样本平均数的差异是否显著。
二、总体标准差未知但相等时,两个样本平均数和与差 的分布---t分布
例1:查df=9,α=0.05的χ 2值 例2:设随机变量k服从分布χ 2(5),求λ的值使其满足 P{k≤λ}=0.05
4.2 从两个正态分布总体中抽取的样本统计量的分布
假定有两个正态总体,分别具有(μ1,σ1)和(μ2,σ2)。 从第一个总体中随机抽取含量为 n1 的样本,并独立地从第二 个总体中抽取含量为 n2的样本。求出x1,s1和x2,s2。下面我们 研究x1±x2的分布。
X 0.1 1 2 F 0.1 即, P 0.5 0.997 0.5 0.5 n n n
解:P {∣ X -μ∣<0.1}= 0.997
生物统计学课件--3正态分布和抽样分布备课讲稿
生物统计学课件--3正态分布和 抽样分布
正态分布密度函数在直角坐标上的图象称正态曲线
x
决定正态曲线最高点横坐标的值,决定正态曲线最 高点纵坐标的值和曲线的开张程度, 越小,曲线越 陡峭,数据越整齐。
N( ,2 ) N(156,4.82),N(15,4)
正态曲线有一组而不是一条
2、正态分布的累积函数
f (x)
1
x2
e2
2
三、标准正态分布
称=0,=1时的正态分布为标准正态分布,记为N(0,1)。
1、标准正态分布的密度函数和累积函数
密度函数:
(u)
1
u 2
e2
2
其中:-∞ u∞
累积函数:
(u)P(Uu) 1
u u2
e 2du
2
标准正态分布的分布曲线
u 标准正态分布的累积分布曲线
u
服从正态分布,且有:
x ,
2 x
2
n
即: X N(,2 )
n
将平均数标准化,则:u
x
, u服从N(0,1)
n
例:假如某总体由三个数字2、4、6组成,现在从该总体中做放回式抽样,
样本容量
样本
样本数
n=1
2
4
6
31
平均数
2
4
6
n=2
2 2 ,2 4 ,4 2,2 6,6 2, 4 4, 4 6,6 4,6 6
310=59049
n=20
5904959049
2、标准差未知时的样本平均数的分布----t 分布 若总体的方差是未知的,即标准差 未知,可以用样 本的标准差 s代替总体的标准差 ,
则变量
正态分布密度函数在直角坐标上的图象称正态曲线
x
决定正态曲线最高点横坐标的值,决定正态曲线最 高点纵坐标的值和曲线的开张程度, 越小,曲线越 陡峭,数据越整齐。
N( ,2 ) N(156,4.82),N(15,4)
正态曲线有一组而不是一条
2、正态分布的累积函数
f (x)
1
x2
e2
2
三、标准正态分布
称=0,=1时的正态分布为标准正态分布,记为N(0,1)。
1、标准正态分布的密度函数和累积函数
密度函数:
(u)
1
u 2
e2
2
其中:-∞ u∞
累积函数:
(u)P(Uu) 1
u u2
e 2du
2
标准正态分布的分布曲线
u 标准正态分布的累积分布曲线
u
服从正态分布,且有:
x ,
2 x
2
n
即: X N(,2 )
n
将平均数标准化,则:u
x
, u服从N(0,1)
n
例:假如某总体由三个数字2、4、6组成,现在从该总体中做放回式抽样,
样本容量
样本
样本数
n=1
2
4
6
31
平均数
2
4
6
n=2
2 2 ,2 4 ,4 2,2 6,6 2, 4 4, 4 6,6 4,6 6
310=59049
n=20
5904959049
2、标准差未知时的样本平均数的分布----t 分布 若总体的方差是未知的,即标准差 未知,可以用样 本的标准差 s代替总体的标准差 ,
则变量
抽样与抽样分布PPT-PPT精品文档
特点:
(1)遵循随机原则; (2)推断被调查对象的总体特征; (3)计算推断的准确性与可靠性。 江西财经大学统计学院
1
统计学
所谓抽样
第三章
抽样和抽样分布
抽签 编号 摇号 随机数字表
75 18 26 53 86
90 85 89 64 97
96 18 48 81 06
91 63 57 95 12
江西财经大学统计学院
7
统计学
第三章
抽样和抽样分布
[例]10人年龄资料如下。N=10 n=3。 人: A B C D E F G H I J 年龄: 5 8 12 40 42 46 48 70 72 76 分类: N1=3 N2=4 N3=3 N=10 1=2.87 2=3.16 3=2.49 =8.52 n1=? n2=? n3=? n=3 1、等额分配:n1= n2= n3= 1 2、等比例分配:n1/N1= n2/N2= … = n/N ∵ n/N =0.3 ∴n1/N1=0.3 n1=0.3×N1=0.3 ×3= 0.9 3、最优分配: i/ =ni/Ni ∵ 1/ =2.87/8.52=0.34 ∴ n1/N1=0.34 n1=0.34×3 =1.02 江西财经大学统计学院 8 二、抽样误差的计算
Z x
2
t 概率度 抽样平均误差 x n
s替代 不知 ˆ替代 p P不知
江西财经大学统计学院
3
x x x tx x x x tx
统计学
第三章
抽样和抽样分布
[例]某公司出口一种名茶,规定每包规格重量不低于150g,现用
x x P { x } 1 F ( t ) x x x x P { x x } 1 F ( t ) x x x x
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上一页
下一页
返回本章首页
第三章 抽样分布
几个常用统计量
刘思峰等编著
最常用的统计量是所谓的样本矩。设 X1, X 2 ,, X n 是来自总体 X 的一 个样本, x1, x2 ,, xn 是这一样本的观测值,称统计量
X
1 n
n i 1
Xi
为样本均值;称统计量
S 2
1n n 1 i1 ( X i
第三章 抽样分布
刘思峰等编著
几种与正态分布有关的概率分布
正态分布
几
种
χ 2 分布
概
率
分 布
F分布
t分布
上一页
下一页
返回本章首页
第三章 抽样分布
1. 正态分布
刘思峰等编著
若随机变量X的概率密度函数
f (x)
1
e ,
(
x)2 2 2
2
x
记为 X ~ N (, 2 )
上一页
下一页
返回本章首页
元素多,搜集数据费
抽 样
时、费用大,不及时而 使所得的数据无意义
原
因
检查具有破坏性
总体庞大,难以对 总体的全部元素 进行研究
炮弹、灯管、砖等
上一页
下一页
返回本章首页
第三章 抽样分布
第一节 随机样本
刘思峰等编著
简单随机抽样(x1, x2,……, xn):
简单随机抽样是指从总体中抽取样本容量为n 的样 本时,x1, x2,……, xn这n个随机变量必须具备以下 两个条件:
量,即
P{X x} p x (1 p)1x , x 0,1
(3.1.1)
上一页
下一页
返回本章首页
第三章 抽样分布
刘思峰等编著
3.1 关于抽样的基本概念
从总体中抽取有限个个体对总体进行观测的过程叫做抽样。
在相同的条件下我们对总体 X 进行 n 次重复的、独立的观测,将 n 次观测结果按试验 的次序记为 X1, X 2 ,, X n ,由于 X1, X 2 ,, X n 是对随机变量 X 观测的结果,且每次观 测是在相同的条件下独立进行的,故可以认为 X1, X 2 ,, X n 是相互独立的,且都是与总体 X 具有相同分布的随机变量。 这样得到的 X1, X 2 ,, X n 称为来自总体 X 的一个简单随 机样本, n 称为这个样本的容量。 当 n 次观测结束后,我们就得到一组实数 x1, x2 ,, xn ,
我们将试验的全部可能的观测值称为总体,每一 个观测值称为个体,总体中所包含的个体数称为总体 的容量。容量为有限的称为有限总体,否则称为无限 总体。
上一页
下一页
返回本章首页
第三章 抽样分布
刘思峰等编著
3.1 关于抽样的基本概念
为什么要抽样?
为了收集必要的资料,对所研究对象(总体)的 全部元素逐一进行观测,往往不很现实。
统计量的概率分布称为抽样分布(Sample distribution)
上一页
下一页
返回本章首页
第三章 抽样分布
刘思峰等编著
第一节 随机样本
例如,检验从某一条生产线上生产出来的产品是次品还是 正品,我们以 0 表示产品为正品,以 1 表示产品为次品。 假设
出现次品的概率为 p (常数),那么总体是由一些“0”和“1” 组成,这一总体对应一个具有参数为 p 的(0-1)分布的随机变
称为样本的 k 阶中心矩。
这些统计量的观测值分别为
(3.2.3) (3.2.4)
x
1 n
n i 1
xi
, s2
1n n 1 i1 (xi
x)2
,s
1 n 1
n i 1
( xi
x)2
,
ak
1 n
n i 1
xik
( k 1,2,), bk
1 n
n
(xi
i 1
x)k
( k 2,3,)。
上一页
X )2
(3.2.1) (3.2.2)
上一页
下一页
返回本章首页
第三章 抽样分布
刘思峰等编著
为样本方差,称统计量 S
S2
1 n 1
n i 1
(Xi
X )2
为样本标准差;统计量
Ak
1 n
n
X
k i
,
பைடு நூலகம்
k
i 1
1,2,
称为样本 k 阶原点矩;统计量
Bk
1 n
n
(Xi
i 1
X)k ,k
2,3,
第三章 抽样分布
刘思峰等编著
1. 正态分布
下一页
返回本章首页
第三章 抽样分布
刘思峰等编著
第二节 抽样分布
二、几个常用的抽样分布
抽样分布的定义 统计量的分布称为抽样分布。 来自正态总体的几个常用统计量的分布,已 有一些重要的结果(人们已经获得这些统计量 的具体的分布密度函数)。下面介绍来自正态 总体的几个常用统计量的分布。
上一页
下一页
返回本章首页
➢ 这n个随机变量与总体X具有相同的概率分布; ➢ 它们之间相互独立。
上一页
下一页
返回本章首页
第三章 抽样分布
刘思峰等编著
第一节 随机样本
甲乙丙丁四个生产商,其产品质量如下表所示:
A
B
C
D
质量 高
高
低
低
如果仅从AB两个生产商的产品中进行抽样,抽样 质量就偏高;如果仅从CD两个生产商的产品中进行 抽样,抽样质量就偏低;
第三章 抽样分布
刘思峰等编著
第三章 抽样分布
主要内容
第一节 随机样本 第二节 抽样分布
本章小节
上一页
下一页
返回本章首页
第三章 抽样分布
第一节 随机样本
刘思峰等编著
在统计学中,我们研究的问题一般集中在研究对 象的某一数量指标。 比如某型号的电子元器件的寿 命、一批某种产品的合格率等。因而,需要考虑通过 与这一数量指标相联系的随机试验,来对这一数量指 标进行试验或观测。
第三章 抽样分布
1. 正态分布
u
P(U u) f (t)dt
刘思峰等编著
一般正态分布
上一页
下一页
图4-1 返回本章首页
第三章 抽样分布
1. 正态分布
标准正态分布:
刘思峰等编著
当 0, 2 1时,
(t)
1
t2
e2
2
记为U∽N(0,1)
上一页
标准正态分布
下一页
图3-1 返回本章首页
因此采用简单随机抽样保证随机样本与总体具有 相同的概率分布。
上一页
下一页
返回本章首页
第三章 抽样分布
3.1 关于抽样的基本概念
样本统计量与抽样分布:
刘思峰等编著
在简单随机抽样中,样本具有随机性,样本的
参数 x ,s2等也会随着样本不同而不同,故它们是样
本的函数,记为g(x1, x2,……, xn),称为样本 统计量。
它们依此是随机变量 X1, X 2 ,, X n 的观测值,称为样本值。
上一页
下一页
返回本章首页
第三章 抽样分布
刘思峰等编著
第二节 抽样分布
一、 统计量 ➢定义
不含有任何未知参数的样本的函数,称为统计 量 g(X1, X 2,, X n ) 。显然,统计量为随机变量。 ➢几个常用统计量
样本矩(样本均值;样本方差;原点矩,中心 矩等)