向量积分配律的证明(完整版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

向量积分配律的证明

向量积分配律的证明

·sin.

分配律的几何证明方法很繁琐,大意是用作图的方法验证。有兴趣的话请自己参阅参考文献中的证明。

下面给出代数方法。我们假定已经知道了:

1)外积的反对称性:

a×b=-b×a.

这由外积的定义是显然的。

2)内积的分配律:

a·=a·b+a·,

·=a·+b·.

这由内积的定义a·b=s|osθ,并揭示这个物理模型的实质,即:

力与位移的数量积。

其次,具体分析平面向量的夹角,向量的数量积、重要性质等概念,并巩固练习。再者,基本概念均简明有效的给出,为之后学生深入学习、探究提供了时间上的保证,从定义出发推导运算律也变得简单易行。随后,从特殊到一般,得出数量积的几何表示。在教师为主导、学生为主体的教学模式中,学习活动进展顺利,学生们都显得游刃有余。在教学过程中,学生对平面向量数量积的定义及运算律的理解有些难度,总的感觉是:

在核心问题上的处理不太容易把握,学生需要较多的时间去探究和体验。

结合多年教学发现学生对数量积的结果是数量重视不够,解题中往往忽略,

?学生容易忽略;书写中符号“?”学生容易省略不写,教学和作业中发现问题教师应时常提醒学生及时纠正,避免重复错误;运算律中消去律和结合律不能乱用,要给学生讲清楚一定不能与实数的运算律混淆,这些地方应反复给学生强调。

最后,在有效落实教学目标的同时,如何让学生的“学”更轻松些,让教师的“教”更顺畅些,使“数量积”的概念形成更具一般性,更能揭示“数量积”的本质内含就显得尤为重要。

四、教法及教学反思

教学过程中采用启发引导式与讲练相结合,并借助多媒体教学手段,使学生理解平面向量数量积的定义,理解定义之后引导学生推导数量积的性质,通过例题和练习加深学生对平面向量数量积定义的认识,初步掌握平面向量数量积定义的运用。这一切主要是通过课堂教学来实现的,因此,要精于课堂教学设计,并在实践中进行反思和再设计,形成一系列适合学生认知、发展的教学方案。同时,在教学中要注意引导学生不断增强自主性、探索性、合作性和思辨性,促使他们成为学习的主人。而贯彻数形结合思想是克服难点的有效举措.通过例题、练习的分析讲评和学生积极主动的解题实践,运用知识解决问题的能力将得到提高。由于课堂教学准备的较充分,基本能达到预定目标。

教学反思,是教师对自身教学工作的检查与评定,是整理教学中的反馈信息,适时总结经验教训、找出教学的成功与不足的重要过程。因此教学后适时的反思有利于促进教学,以上就是我对本节课的理解和反思。

第四篇:

用正弦定理证明三重向量积

用正弦定理证明三重向量积

作者:

光信1002班李立

内容:

通过对问题的讨论和转化,最后用正弦定理来证明三重向量积的公式——?a?b。

首先,根据叉乘的定义,a、b、a?b可以构成一个右手系,而且对公式的观察与分析我们发现,在公式中,a与b是等价的,所以我们不妨把a、b、a?b放在一个空间直角坐标系中,让a与b处于ox面上,a?b与z轴同向。如草图所示:

其中,向量可以沿着z轴方向与平行于ox平面的方向分解,即:?z?x

将式子带入三重向量积的公式中,发现,化简得:

(a?b)?xab这两个式子等价

现在我们考虑?刚好被a与b反向夹住的情况,其他的角度情况以此类推。

由图易得,?与a、b共面,a与b不共线,不妨设??xa?b,

a,x

?,b,x

?,所以:

在三角形中使用正弦定理,得

a?b)?sin

?sin

?

?b,x?

又因为a?b)??absina,b

所以,解得k=ab,于是解得:

x= bxosb,xaxosa,x

?b?x a?x

由图示和假定的条件,?在a和b方向上的投影皆为负值,所以x,都取负值,

所以,

(a?b)?xab

其他的相对角度关系,以此类推,也能得到相同的答案,所以:?a?b,命题得证。

小结论:

当直观解答有困难时,可以通过分析转化的方法来轻松地解决。

第五篇:

两个向量的数量积

8、《两个向量的数量积》说课稿

尊敬的各位评委老师:

大家好!

今天我说课的内容是《两个向量的数量积》。现代教育理论指出学生是教学的主体,教师的教应本着从学生的认知规律出发、以学生活动为主线、在原有认知结构基础上、建构新的知识体系。本节课的教学设计中,我将此理念贯穿于整个教学过程中。下面就从教材分析、教学目标分析、重难点分析、教法分析、学法分析、教学设计、板书设计及教学评价等方面进行说明。

一、教材分析

《两个向量的数量积》是现行人教版高中数学第二册下第九章第5节的内容。在本节之前,同学们已经学习了空间向量的一些知识,包括空间向量的坐标运算、共线向量和共面向量、空间向量基本定律,这些知识是学习本节的基础。

向量概念的引入是数学学习的一个捷径,同时也引入了一种新的解决数学问题的方法:

坐标法,同时也引入了一种新的数学思想:

数形结合的思想。同时,两个向量之间的位置关系可以通过数量积来表示。因此,研究两个向量的数量积是高中数学的一个重点知识。

二、教学目标

根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:

1.基础知识目标:

掌握空间向量夹角和模的概念及表示方法,掌握两个向量数量积的概念、性质、计算方法及运算律;

2.能力训练目标:

掌握两个向量数量积的主要用途,会用它解决立体几何中的一些简单问题。

3.个性品质目标:

训练学生分析问题、解决问题的能力,了解数量积在实际问题中的初步应用。

4.创新素质目标:

培养学生数形结合的思想。

三、重难点分析

教学的重点是两个向量数量积的计算方法及其应用,在此基础上应该让学生理解两个向量数量积的几何意义,这也就是本节课的难点。

下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我将从教法和学法上进行讲解。

四、教法

教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,采用采用引导式、讲练结合法进行讲解。

五、学法

教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:

联想法:

相关文档
最新文档