26 梁弯曲正应力强度条件应用

合集下载

6第六章-梁的应力详解精选全文完整版

6第六章-梁的应力详解精选全文完整版
等直梁横截面上的最大正应力发生在最大弯矩所在横 截面上距中性轴最远的边缘处,而且在这些边缘处,即使 是横力弯曲情况,由剪力引起的切应力也等于零或其值很 小(详见下节),至于由横向力引起的挤压应力可以忽略不 计。因此可以认为梁的危险截面上最大正应力所在各点处 于单向应力状态。于是可按单向应力状态下的强度条件形 式来建立梁的正应力强度条件:
需要注意的是,型钢规格表中所示的x轴是我们所标示 的z轴。
Ⅱ. 纯弯曲理论的推广
工程中实际的梁大多发生横力弯曲,此时梁的横截面
由于切应力的存在而发生翘曲。此外,横向力还使各纵向
线之间发生挤压。因此,对于梁在纯弯曲时所作的平面假
设和纵向线之间无挤压的假设实际上都不再成立。但弹性
力学的分析结果表明,受分布荷载的矩形截面简支梁,当
A

E
y
r
代入上述三个静力学条件,有
FN
dA E
A
r
y d A ESz
A
r
0
(a)
M y
z d A E
A
r
yz d A EIyz
A
r
0
(b)
M z
y d A E
A
r
y2 d A EIz
A
r
M
(c)
以上三式中的Sz,Iyz,Iz都是只与截面的形状和尺寸相 关的几何量,统称为截面的几何性质,而
图b所示的简支梁。钢的许用弯曲正应力[]=152 MPa 。试
选择工字钢的号码。
(a)
(b)
解:在不计梁的自重的情况下,弯矩图如图所示 Mmax 375kN m
强度条件 Mmax 要求:
Wz
Wz
M max

梁弯曲的强度条件和刚度条件及应用

梁弯曲的强度条件和刚度条件及应用

范中查到。
在梁的设计计算中,通常是根据强度条件确定截面尺寸,然
后用刚度条件进行校核。具体过程参看下面例题。
工程力学
梁弯曲的强度条件和刚度条件及应用
(1)小跨度梁或荷载作用在支座附近的梁。此时梁的Mm ax可能较小而FSmax较大。
(2)焊接的组合截面(如工字形)钢梁。当梁截面的腹板厚 度与高度之比小于型钢截面的相应比值时,横截面上可能产 生较大的切应力τmax。
(3)木梁。木梁在顺纹方向的抗剪能力差,可能沿中性层 发生剪切破坏。
梁弯曲的强度条件和刚度条件及应用
2. 强度条件的应用 【例8-6】
梁弯曲的强度条件和刚度条件及应用
(2)内力分析。绘制内力图如图8-27(b)和(c)所示, 确定最大剪力、弯矩为
FSmax=60 kN,Mmax=18 kN·m (3)根据正应力强度条件选择截面。由式(8-26)得
查附录型钢表,可选用16号工字钢,其抗弯截面系数 Wz=141 cm3,高h=16 cm,腿厚t=9.9 mm,腹板厚b1= 6 mm。
梁弯曲的强度条件和刚度条件及应用
图8-27
梁弯曲的强度条件和刚度条件及应用
1.2 弯曲梁的刚度条件
梁除满足强度条件外,还应满足刚度要求。根据工程实际的
需要,梁的最大挠度和最大(或指定截面的)转角应不超过某一规
定值,由此梁的刚度条件为
ymax≤y
(8-28)
θmax≤θ
(8-29)
式中,许可挠度y和许可转角θ的大小可在工程设计的有关规
工程力学
ห้องสมุดไป่ตู้
梁弯曲的强度条件和刚度条件及应用
1.1 梁弯曲的强度条件及应用 1. 强度条件
由于梁弯曲变形时横截面上即有正应力又有切应力,因此强度条 件应为两个。当弯曲梁横截面上最大正应力不超过材料的许用正应力, 最大切应力不超过材料的许用切应力时,梁的强度足够,即

梁的剪应力及其强度条件梁的弯曲应力与强度计算剪应力计算公式

梁的剪应力及其强度条件梁的弯曲应力与强度计算剪应力计算公式
8 梁的弯曲应力与强度计算
8.1 梁弯曲时横截面上的正应力 8.2 弯曲正应力的强度条件 8.3 梁的剪应力及其强度条件 8.4 提高弯曲强度的措施
8.1 梁弯曲时横截面上的正应力
横截面上有弯矩又有剪力。 例如:AC和DB段。 称为横力弯曲(剪切弯曲)。 横截面上有弯矩没有剪力。 例如:CD段。 称为纯弯曲。
力 max 发生在弯矩最大的截面上,且离中性轴最远处。即
引用记号 则
max
M max ymax Iz
Wz
Iz ymax
max
M max Wz
Wz 称为弯曲截面模量。它与截面的几何形状有关,单位为m3。
8.2 弯曲正应力的强度条件
对于宽为 b ,高为 h 的矩形截面
Wz
Iz ymax
bh3 /12 h/2
A
A
M
E
Iz
式中1/ρ为梁弯曲后轴线的曲率。
EIz 称为梁的弯曲刚度。
8.1 梁弯曲时横截面上的正应力
E y
(b)
由上面两式,得纯弯曲时正应力的计算公式:
将弯矩 M 和坐标 y 按规定的正负代入,所得到的正应力若为 正,即为拉应力,若为负则为压应力。
一点的应力是拉应力或压应力,也可由弯曲变形直接判定。 以中性层为界,梁在凸出的一侧受拉,凹入的一侧受压。
8.1 梁弯曲时横截面上的正应力
E y
(b)
将式(b)代入式(d),得
M y
z dA 0
A
(d)
M z
y dA M
A
(e)
z dA E y z dA 0
A
A
A y z dA I yz 0
(自然满足)
y 轴为对称轴,必然有Iyz=0。

梁弯曲时的强度计算

梁弯曲时的强度计算

max
2、正应力强度条件
max
M max Wz
3、正应力强度计算 ①强度校核: M
max
max
Wz

②设计截面:
Wz
M max

max
③确定许可荷载:MFra bibliotek Wz
三、正应力强度条件
1、危险点的应力——最大正应力 弯矩绝对值最大的截面称为危险截面,危 险截面上最大正应力的点(截面的上下边缘) 称为危险点。 Iz 令: Wz 则: M
max
Wz ymax 式中 Wz 称为抗弯截面模量,它是一个与截面形状和 3 mm3 尺寸有关的几何量,单位为 m 或
工程中常见弯曲实例
中 性 层 与 中 性 轴 图 示
二、梁横截面上的正应力 梁横截面上任一点处的正应力与该点到中性 轴的垂直距离y成正比。即正应力沿着截面高 度按线性规律分布。中性轴上各点的正应力为 零。上、下边缘正应力最大。
My Iz
——梁横截面上的正应力
y——所求正应力的点到中 性轴的垂直距离 I z ——横截面对中性轴的惯性矩
梁横截面上的正应力y所求正应力的点到中性轴的垂直距离横截面对中性轴的惯性矩三正应力强度条件1危险点的应力最大正应力弯矩绝对值最大的截面称为危险截面危险截面上最大正应力的点截面的上下边缘称为危险点
§6—7 梁弯曲时的强度计算
水利工程系 丁灿辉
一、基本概念
1、纯弯曲与横力弯曲 平面弯曲时,某梁段各横截面上只有弯矩而没有 剪力,这种弯曲称为纯弯曲。如果既有弯矩又有剪 力则称为横力弯曲。 2、中性层与中性轴 假设梁是由无数层纵向纤维组成的,且各层纤维 互不挤压。发生纯弯曲时,上部各层纤维缩短,下 部各层纤维伸长,中间必有一层纤维既不伸长也不 缩短,称为中性层。中性层与横截面的交线称为中 性轴。中性轴将横截面分为受压区和受拉区。

工程力学梁的正应力强度条件及其应用1

工程力学梁的正应力强度条件及其应用1

ymax
对矩形截面
Wz

bh3 12 h2

bh2 6
Wz

bh2 6
对圆形截面
Wz

d 4
d
64 2

d 3
32
Wz

d 3
32
各种型钢的截面惯性矩Iz和弯曲截面系数Wz的 数值,可以在型钢表中查得。
为了保证梁能安全的工作,必须使梁横截面上的
最大正应力不超过材料的许用应力,所以梁的正应力
强度条件为
σmax
M max Wz

σ
二、三种强度问题的计算
σmax
M max Wz

σ
(1)强度校核 (2)选择截面 (3)确定许用荷载
σmax

M max Wz

σ
Wz

M max σ
M max Wz σ
例题10-2 一矩形截面简支木梁如图所示,已知l=4m, b=140mm,h=210mm,q=2kN/m,弯曲时木材的许 用正应力[σ]=10MPa,校核该梁的强度。
σc,max

MC Iz
y1

2.7 103 0.072 0.573105
33.9 106 Pa
33.9MPa [σc]
由以上分析知该梁满足强度要求。
例题10−4 如图所示的简支梁由工字钢制成,钢的 许用应力[σ ]=150MPa,试选择工字钢的型号。
解:先画出弯矩图如图b所示。 梁的最大弯矩值为
y1

1.8103 0.072 0.573105

22.5106 Pa

22.5MPa

2016工程力学(高教版)教案:6.6杆件的强度计算

2016工程力学(高教版)教案:6.6杆件的强度计算

第六节 杆件的强度计算由内力图可直观地判断出等直杆内力最大值所发生的截面,称为危险截面,危险截面上应力值最大的点称为危险点。

为了保证构件有足够的强度,其危险点的有关应力需满足对应的强度条件。

一、正应力与切应力强度条件轴向拉(压)杆中的任一点均处于单向应力状态。

塑性及脆性材料的极限应力u σ分别为屈服极限s σ(或2.0σ)和强度极限b σ,则材料在单向应力状态下的破坏条件为u σσ= 材料的许用拉(压)应力[]nuσσ=,则单向应力状态下的正应力强度条件为[]σσ≤ (6-24)同理可得,材料在纯剪切应力状态下的切应力强度条件[]ττ≤ (6-25)二、正应力强度计算由式(6-1)和(6-25)得,拉(压)杆的正应力强度条件为[]σσ≤=AN maxmax (6-26) 由式(6-1)和(6-25)得,梁弯曲的正应力强度条件为[]σσ≤=zW M maxmax (6-27) 应用强度条件可进行强度校核、设计截面、确定许可载荷等三方面的强度计算。

例6-7 如图6-29(a)所示托架,AB 为圆钢杆2.3=d cm ,BC 为正方形木杆a=14cm 。

杆端均用铰链连接。

在结点B 作用一载荷P=60kN 。

已知钢的许用应力[]σ=140MPa 。

木材的许用拉、压应力分别为[]t σ=8MPa ,[]5.3=c σMpa ,试求:(1)校核托架能否正常工作。

(2)为保证托架安全工作,最大许可载荷为多大;(3)如果要求载荷P=60kN 不变,应如何修改钢杆和木杆的截面尺寸。

解 (1)校核托架强度 如图6-29(b)。

图6-29由 0=∑Y ,0sin 1=-P P α解得 100c s c 1==αP P kN 由 0=∑X ,0cos 21=+-P P α 解得 80cos 12==αP P kN杆AB 、BC 的轴力分别为10011==P N kN, 8022-=-=P N kN ,即杆BC 受压、轴力负号不参与运算。

材料力学--弯曲正应力及其强度条件

材料力学--弯曲正应力及其强度条件

C
E
15 106 200 109
7.5 105
q 40 kN / m
A
C
1.5 m
1.5 m
B 300 200
例21:图示木梁,已知下边缘纵向总伸
长为 10 mm,E=10GPa,求载荷P的大小。
P
300
A
C
B 200
2m
2m
解: AC
l/2
(x) dx
0
l/2 (x) d x l/2 M ( x) d x
1m
例20:简支梁受均布荷载,在其C截面
的下边缘贴一应变片,已知材料的 E=200GPa,试问该应变片所测得的应变 值应为多大?
q 40 kN / m
A
C
1.5 m
1.5 m
B 300 200
解:C截面的弯矩
ql2 MC 8 45kN m
C截面下边缘的应力 C
MC Wz
15MPa
应变值
P
y1
y2
Cz
解:
max
M max y1 Iz
[ ]
(1)
max
M max y2 Iz
[ ]
(2)
(1) 得: y1 [ ]
(2)
y2 [ ]
例16:图示外伸梁,受均布载荷作用,
材料的许用应力[σ]=160 MPa,校核 该梁的强度。
10 kN / m
2m
4m
200 100
10 kN / m
变形几何关系 从三方面考虑: 物理关系
静力学关系
1、变形几何关系
m
mn
m
aa
bb
mn
m
m
观察到以下变形现象: (1)aa、bb弯成弧线,aa缩短,bb伸长 (2)mm、nn变形后仍保持为直线,且仍与变为

梁的应力计算

梁的应力计算

Mmax WZ
§6-2 梁的正应力强度条件及其应用
q=2kN/m
A
xm
FAY
C
l = 4m
例题6-2
140
[σ]=10MPa,试校核该梁
B
的强度。
x
210
FBY
解:1. 求支反力 FAy 4kN FBy 4kN
M
ql2 / 8 4kN m
2. 求最大弯矩
Mmax
ql2 8
4kN m
物理关系 E E y
静力学关系
1 M
EI
Z
1
为曲率半径, 为梁弯曲变形后的曲
正应力公式 My (6-6)

IZ
§6-1 (纯弯曲)梁的正应力
正应力分布
My
IZ M • 正应力大小与其到
中性轴距离成正比;
• 与中性轴距离相等 的点, 正应力相等;
• 中性轴上,正应力等于零
M
max
bh3 12
Wz
bh2 6
Wz
D3
32
(1 4 )
Wz
( b0 h03 12
bh3 12
) /(h0
/
2)
§6-1 (纯弯曲)梁的正应力
横力弯曲
弹性力学精确分析表明, 当跨度 l 与横截面高度 h 之 比 l / h > 5 (细长梁)时, 纯弯曲正应力公式对于横力 弯曲近似成立。
§6-1 梁的正应力
2.离中性轴最远处
3.变截面梁要综合考虑 M 与 Iz
4.脆性材料抗拉和抗压性能不同,两方面都要考虑
t,max t
c,max c
§6-2 梁的正应力强度条件及其应用
根据弯曲正应力强度条件

材料力学梁的弯曲应力

材料力学梁的弯曲应力

52 y
解:(1)求截面形心
z1
8 0 2 0 1 0 12 20 0 80
z
yc
5m 2 m 8 0 2 0 12 200
(2)求截面对中性轴z的惯性矩
Iz
80 20 3 12
80 20 42 2
20 120 3 20 120 28 2 12
7.64 10 6 m4
28
2.5kN.m 4kN.m
与实验结果相符。
9
(2)应力分布规律
在线弹性范围内,应用胡克定律
sE E y
(b)
对一定材料, E=C; 对一定截面,
1
C.
sy
——横截面上某点处的应力与此点距中性轴的距离y成比例。
当 y0时,s0;
应力为零的点的连线。
s s yyma 时 x, ma.x
M
与实验结果相符。
10
(3)由静力平衡方程确定中性轴的位置及应力计算公式
Iz
即使最大拉、压应力同时达到许用应力值。 y
c
y2
z
y1
压边
39
(二)、合理安排载荷和支承的位置,以降低
M
值。
max
1、载荷尽量靠近支座:
F
F
A
A
B
B
0.8L
0.5L
L
L
0.25FL (+)
M 图
0.16FL (+)
M 图
40
F
F
A
BA
B
0.9L
L
L
0.09FL
(+)
M 图
M 图
41
2、将集中力分解为分力或均布力。

弯曲正应力强度条件

弯曲正应力强度条件

正应力强度计算(1)正应力强度条件一般情况下,梁弯曲时,各个截面上的弯矩和剪力是变化的,而且截面上的应力(包括正应力和切应力)分布是不均匀的。

对等截面梁而言,最大弯矩所在的截面称为危险截面。

危险截面上距中性轴最远的点(上下边缘处)称为危险点。

显然危险截面上危险点处的应力值即为梁内的最大正应力值,即:zz W M max max =σ 保证梁内最大正应力不超过材料的许用应力,就是梁的强度条件。

根据材料力学性能的不同,具体分以下两种情况讨论:● 塑性材料塑性材料的力学性能是许用拉应力和许用压应力相等,所以拉压许用应力不在区分,统称为许用应力,即表示为[][][]t c σσσ==。

梁横截面的形式可分为两种情况,一种是横截面关于中性轴对称,一种是横截面关于中性轴不对称。

但无论那种情况,只要使梁内绝对值最大的正应力不超过材料的许用应力值即可。

所以危险点则发生在最大弯矩作用的截面离中性轴最远的点处。

强度条件为: []z max max zM W =≤σσ 为了使横截面上最大拉压应力同时达到其许用应力,工程中通常将塑性材料梁的横截面做成关于中性轴对称的形状。

● 脆性材料脆性材料的力学性能是许用拉应力小于许用压应力,即[][]t c σσ<。

针对上述两种截面形式建立梁的弯曲正应力强度条件。

1)横截面关于中性轴对称荷载作用下在梁内产生的最大拉压应力相等,而材料的[][]t c σσ<,所以强度条件为:[]z max t max t zM W σσ≤ 2)横截面关于中性轴不对称为了充分利用材料,通常将脆性材料梁的横截面做成关于中性轴不对称的形状,且中性轴靠近受拉侧。

所以强度条件应为:[][]1122z t max t z z c max t zM y I M y I σσσσ=≤=≤ 式中:t max σ、c max σ——分别为最大拉应力和最大压应力;1z M 、2z M ——分别为产生最大拉应力和最大压应力截面上的弯矩; []t σ、[]c σ——分别为许用拉应力和许用压应力。

弯曲正应力、切应力与强度条件

弯曲正应力、切应力与强度条件

M
C

Z
C
Z
中性轴

y
中性轴
y

中性轴将横截面分为 受拉 和 受压 两部分。
M yAz(
d)A E
Az
y dA
E
I
yz
0
Iyz0
因为 y 轴是横截面的对称轴,所以 Iyz 一定为零。 该式自动满足
中性轴是横截面的形心主惯性轴
M ZAy(
d)A E
A
y2 dA
E
Iz
M
1M
EI z
基本假设2: 纵向纤维无挤压假设
纵向纤维间无正应力。
公式推导
d
用两个横截面从梁中假想地截取 长为 dx 的一段 。
由平面假设可知,在梁弯曲时,
这两个横截面将相对地旋转一个
角度 d 。
横截面的转动将使梁的凹边的纵 向线段缩短,凸边的纵向线段伸 长。由于变形的连续性,中间必 有一层纵向线段 O1O2 无长度改 变。此层称为 中性层 。
m M
FS m
m
m
M
FS
m
m
只有与切应力有关的切向内力元素 dFS = dA 才能合成剪力 只有与正应力有关的法向内力元素 dFN = dA 才能合成弯矩 所以,在梁的横截面上一般既有 正应力,又有 切应力
一,纯弯曲梁横截面上的正应力
RA
P
P RB
C a
P
+
D a
+
P
+
Pa
推导 纯弯曲 梁横截面上正应力的计算公式。 几何 物理 静力学
2 假想地从梁段上截出体积元素 mB1
m'
m z

工程力学基础知识单选题100道及答案解析

工程力学基础知识单选题100道及答案解析

工程力学基础知识单选题100道及答案解析1. 力的三要素是()A. 大小、方向、作用点B. 大小、方向、作用线C. 大小、作用点、作用线D. 方向、作用点、作用线答案:A解析:力的三要素是大小、方向和作用点。

2. 作用在刚体上的两个力平衡的充分必要条件是()A. 大小相等、方向相反、作用线相同B. 大小相等、方向相同、作用线相同C. 大小相等、方向相反、作用线不同D. 大小不等、方向相反、作用线相同答案:A解析:作用在刚体上的两个力平衡的充分必要条件是大小相等、方向相反、作用线相同。

3. 力偶对物体的作用效应,取决于()A. 力偶矩的大小B. 力偶的转向C. 力偶的作用平面D. 以上都是答案:D解析:力偶对物体的作用效应取决于力偶矩的大小、力偶的转向和力偶的作用平面。

4. 平面汇交力系合成的结果是()A. 一个合力B. 一个合力偶C. 一个力螺旋D. 无法确定答案:A解析:平面汇交力系合成的结果是一个合力。

5. 平面任意力系向作用面内一点简化,主矢等于()A. 零B. 合力C. 合力偶D. 原力系各力的矢量和答案:D解析:平面任意力系向作用面内一点简化,主矢等于原力系各力的矢量和。

6. 平面任意力系向作用面内一点简化,主矩等于()A. 零B. 合力C. 原力系对于简化中心之矩的代数和答案:C解析:平面任意力系向作用面内一点简化,主矩等于原力系对于简化中心之矩的代数和。

7. 平面一般力系的平衡方程的基本形式,独立方程的个数为()A. 1 个B. 2 个C. 3 个D. 4 个答案:C解析:平面一般力系的平衡方程的基本形式为三个独立方程。

8. 材料的弹性模量E 与()有关。

A. 材料的外力B. 材料的截面形状C. 材料的尺寸D. 材料的种类答案:D解析:材料的弹性模量E 只与材料的种类有关。

9. 胡克定律的适用条件是()A. 应力不超过比例极限B. 应力不超过屈服极限C. 应力不超过强度极限D. 任意应力答案:A解析:胡克定律的适用条件是应力不超过比例极限。

工程力学第章弯曲强度答案(整理)

工程力学第章弯曲强度答案(整理)

43 第7章弯曲强度7-1 直径为d 地圆截面梁,两端在对称面内承受力偶矩为M 地力偶作用,如图所示.若已知变形后中性层地曲率半径为ρ;材料地弹性模量为E .根据d 、ρ、E 可以求得梁所承受地力偶矩M .现在有4种答案,请判断哪一种是正确地.(A)M =E π d 习题7-1图(B) 64ρ M =64ρ (C) E π d4M =E π d (D)32ρM =32ρ E π d 3正确答案是A .7-2关于平面弯曲正应力公式地应用条件,有以下4种答案,请判断哪一种是正确地.(A)细长梁、弹性范围内加载;(B)弹性范围内加载、载荷加在对称面或主轴平面内;(C)细长梁、弹性范围内加载、载荷加在对称面或主轴平面内; (D)细长梁、载荷加在对称面或主轴平面内.正确答案是C _.7-3长度相同、承受同样地均布载荷q 作用地梁,有图中所示地4种支承方式,考虑,请判断哪一种支承方式最合理.l 5习题7-3图d . 7-4悬臂梁受力及截面尺寸如图所示.图中地尺寸单位为mm .求:梁地1-1截面上A 、−⎜ ⎟ A z B 两点地正应力.习题7-4图解:1. 计算梁地1-1截面上地弯矩:M =⎛1×103N ×1m+600N/m ×1m ×1m ⎞=−1300N ⋅m⎝2 ⎠2. 确定梁地1-1截面上A 、B 两点地正应力: A 点:⎛150×10−3m ⎞ 1300N ⋅m ×⎜−20×10−3m ⎟σ =M z y =⎝2⎠=2.54×106Pa =2.54MPa(拉应力) I zB 点:100×10-3m ×(150×10-3m )3121300N ⋅m ×⎜0.150m−0.04m ⎟⎛⎞σ=M z y =⎝2⎠=1.62×106Pa =1.62MPa(压应力)B 0.1m×(0.15m )3 127-5 简支梁如图所示.试求I-I 截面上A 、B 两点处地正应力,并画出该截面上地正应力 分布图. 习题7-5图A (a)A C B(b)F R AkN ⋅解:(1)求支座约束力F RA =3.64kN,F RB =4.36kN习题7-5解图(2)求I -I 截面地弯矩值(见习题7-5解图b )M I −I =3.64kN ⋅m(3)求所求点正应力σ=M I-I y AI z33I =bh 12=75×150 12=21.1×106mm 4 y A =(75−40)=35mm6∴σ=−3.64×10 ×35=−6.04MPa A 21.1×1066σ=3.64×10 ×75=12.94MPa B 21.1×1067-6加热炉炉前机械操作装置如图所示,图中地尺寸单位为mm .其操作臂由两根无缝 钢管所组成.外伸端装有夹具,夹具与所夹持钢料地总重F P =2200N ,平均分配到两根钢管上.求:梁内最大正应力(不考虑钢管自重).3习题7-6图解:1.计算最大弯矩:−33M max =−2200N ×2395×10m=−5.269×10N ⋅m2.确定最大正应力:σ=Mmax = M max,α= 66mm=0.611max32W σ=Mmax =2×πD32(1−α4)5.268N ⋅m108m m=24.71×106P a =24.71M P a max2W=π(1=08×10−3m ) 2×(1−0.6114) 327-7图示矩形截面简支梁,承受均布载荷q 作用.若已知q =2 kN/m ,l =3 m ,h =2b=240mm .试求:截面竖放(图c)和横放(图b)时梁内地最大正应力,并加以比较. 习题7-7图解:1.计算最大弯矩: ql22×103N/m ×(3m )2M max ===2.25×103N ⋅m882.确定最大正应力:3平放:σ =M max = 2.25×10N ⋅m ×6 =3.91×106Pa=3.91MPamax 2−3 −32hb6240×10 m ×(120×10 m )4 ⎝ ⎠ 竖放:σ=M max = 2.25×103N ⋅m ×6=1.95×106Pa=1.95MPamax 2−3 −32 bh 6120×10m ×(240×10 m )3.比较平放与竖放时地最大正应力:σmax (平放) () 3.91 ≈2.07-8圆截面外伸梁,图中尺寸单位为mm .已知F P =10kN ,q = M解:σ( )M max1 =32×30.65×10N ⋅m =113[σ] max 实= W 1π(140×10-3m )3σ( )M max2 = 32×20×103N ⋅m =100.3×106Pa=100.3MPa<[σ] max 空=⎡⎛⎞⎤ W 2π(140×10-3m )3⎢1− ⎢⎣ 100⎜140⎟⎥所以,梁地强度是安全地.7-9悬臂梁AB 受力如图所示,其中F P =10kN ,M =70kN ·m ,a =3m .梁横截面地形状及尺寸均示于图中(单位为mm),C 为截面形心,截面对中性轴地惯性矩I z =1.02×108mm 4,拉伸许用应力[σ]+=40MPa ,压缩许用应力[σ]-=120MPa .试校核梁地强度是否安全.解:画弯矩图如图所示:σ σ σ σ M (kN.m) C 截面30x+max =30×10N ⋅m ×96.4×10 m =28.35×106Pa=28.35MPa 1.02×108×10−12m 43−3 D 截面 -max =30×10N ⋅m ×153.6×10m =45.17×106Pa=45.17MPa 1.02×108×10−12m 43−3 +max =40×10N ⋅m ×153.6×10m =60.24×106Pa=60.24MPa>[σ] 1.02×108×10−12m 43−3- max =40×10N ⋅m ×96.4×10 m =37.8×106Pa=37.8MPa 1.02×108×10−12m 4所以,梁地强度不安全.7-10由No.10BC 连接,BC 杆在C 处用铰链悬挂[σ]=160MPa ,试求:M8max P习题7-10图解:画弯矩图如图所示:对于梁:M max =0.5qσ=M max ≤[σ], 0.5q ≤[σ] max WW[σ]W 160×106×49×10−6q ≤ ==15.68×103N/m=15.68kN/m 0.50.5对于杆: σ=F N ≤[σ],4F B =4×2.25q ≤[σ] maxA πd 2 πd 2πd 2×[σ] π×(20×10-3)2×160×106q ≤ ==22.34×103N/m=22.34kN/m4×2.254×2.25所以结构地许可载荷为[q ]=15.68kN/m7-11 图示外伸梁承受集中载荷F P 作用,尺寸如图所示.已知F P =20kN ,许用应力[σ]=160MPa ,试选择工字钢地号码. 习题7-11图解:M =F ×1m=20×103N ×1m=20×103N ⋅m σmax =M maxW≤[σ], F ×1m 20×103×1m W ≥ P ==0.125×10-3m 3=125cm 3[σ] 所以,选择No.16 工字钢. 160×106Pa7-12图示之AB 为简支梁,当载荷F P 直接作用在梁地跨度中点时,梁内最大弯曲正应力超过许用应力30%.为减小AB 梁内地最大正应力,在AB 梁配置一辅助梁CD ,CD 也可以 习题7-12图看作是简支梁.试求辅助梁地长度a .解:1.没有辅助梁时σmax=M max≤[σ], WF P l4 =1.30[σ] W σmax=M max≤[σ], WF P l(3−2a ) 2=[σ]W F P l (3−2a ) F P l2= 4=[σ]W 1.30×W 1.30×(3−2a )=3a =1.384m7-13一跳板左端铰接,中间为可移动支承.为使体重不同地跳水者站在跳板前端在跳板中所产生地最大弯矩M zmax 均相同,问距离a 应怎样变化? 习题7-13图解:最大弯矩发生在可移动简支点B 处.(见图a 、b )设不同体重分别为W ,W +ΔW ,则有,W (l −a )=(W +ΔW )(l −a −Δa ) ABW A整理后得 a 图 Δa = ΔW(W +ΔW )b 图(l −a ) 此即为相邻跳水者跳水时,可动点B 地调节距离Δa 与他们体重间地关系.7-14利用弯曲内力地知识,说明为何将标准双杠地尺寸设计成a=l /4.M MF习题7-14图解:双杠使用时,可视为外伸梁..A C Bb 图 若将a 地长度设计能达到下述情况为最经济、省工: M +=M −, max max即正负弯矩地绝对值相等,杠为等值杆.当a=l /4时,+ max− max=F P l /4(如图a,在中间面C ); =F P l /4(发生在图b 所示受力情况下地A 面或B 面).7-15图示二悬臂梁地截面均为矩形(b×h ),但(a)梁为钢质,(b)梁为木质.试写出危险截面上地最大拉应力与最大压应力地表达式,并注明其位置.二梁地弹性模量分别为E 、 E .P FP习题7-15图解:(1)两悬臂梁均为静定梁,故应力与材料弹性常数无关.(2)两悬臂梁均发生平面弯曲,危险面均在固定端处.σ σ σ σ 6 I 6I (3)钢梁: (4)木梁:+ max− max=6F P l bh 2 =6F P l bh 2(在固定端处顶边诸点) (在固定端处底边诸点) + max − max=6F P l hb 2=6F Pl hb 2(在固定端处后侧边诸点) (在固定端处前侧边诸点) 7-16T 形截面铸铁梁受力如图所示,其截面地I z=2.59×10−6m 4.试作该梁地内力图,求出梁内地最大拉应力和最大压应力,并指出它们地位置.画出危险截面上地正应力分布图.习题7-16图解:(1)求支座约束力F RA =37.5kN, F RB =112.5kN(2)作内力图,剪力图、弯矩图分别见习题7-16解图b 、c . (3)求所最大正应力和最小正应力E 、B 两截面分别发生最大正弯矩与最大负弯矩.所以,两个截面均有可能是危险截面.σ+=M E y2=14×10 ×142=76.8MPa (在E 截面下缘)z2.59×107σ−=M B y 2 =25×10 ×142=−137MPa (在B 截面下缘)z 2.59×107正应力分布图见图d.σ σ σ y m (a)AqEBD2m 1m50kN37.5kN⊕(b)⊕Ө1 62.5kN43.6MPa(d)(c)14kN·my 2⊕Ө25 kN·m 76.8MPa137MPa习题7-16解图7-17.在横放和竖放两种情况下,(a)比较许用弯曲力偶矩m O 绘出危险截面上地正应力分布图.解:(a)F R A2M (b) Өy 1(c)y 235y 1y 2σ习题7-17解图33(1)求支座约束力F RA=FRB=mOkN 5(2)作弯矩图见习题7-17解图b 所示. (3)竖放下地许用弯曲力偶矩m O由型钢表查得 从b 图中得:W =269.6×103 mm 3M =3m O由强度条件maxσmax =5 M maxW≤[σ] m ≤5W [σ]=5×269.6×10×160=71.89kN ⋅mO33(4)横放下地许用弯曲力偶矩m O由型钢表查得由强度条件W =30.61×103 mm 3m ≤5W [σ]=5×30.61×10 ×160=8.16kN ⋅mO33危险截面上地正应力分布图见图c.7-18制动装置地杠杆用直径d =30mm 地销钉支承在B 处.若杠杆地许用应力 [σ]=140MPa ,销钉地剪切许用应力[τ]=100MPa ,求许可载荷[F P1],[F P2].F P1F P2习题7-18图解:(1)求F P1 与F P2地关系4杠杠平衡时有:F P1×1000=F P2×250, (2)作弯矩图,如图 a 所示F P2 =4F P11000F(3σmax =M max W≤[σ]20×603 (20×303−)W = 1212=1.05×104mm 330 1000F p1W≤[σ] F ≤W [σ]=1.05×10×140=1.47kN P11000 1000∴F P2 ≤5.88kN(4)校核销钉地剪切强度剪切强度条件:F Q τmax = A≤[τ] 其中,F=5F=3.675mm 2 Q2P13 ∴τmax=3.675×10706.86=5.2MPa<[τ]则,销钉安全.(5)杠杆系统地许可载荷为[FP1]=1.47kN,[FP2]=5.88kN.上一章返回总目录下一章。

材料力学 正应力及其强度条件

材料力学 正应力及其强度条件

中性层
中性轴
对 称 z o 轴 中 性 y 轴
中性层
F
F
m
n
2.纯弯曲正应力公式的推导 (一)几何关系: o
中性层
d q
m
n
中性轴
m
n o
z m o 1
m
n
z
r
o
o 2
n
中性轴
y
dx
n m dx
y
变形前:
y
l = dx = r × dq
变形后:
100
例题 4.22 &
图示T形截面简支梁在中点承受集中力F=32kN,梁的长度L=2m。T形 截面的形心坐标yc=96.4mm,横截面对于z轴的惯性矩Iz=1.02×108mm4。求 弯矩最大截面上的最大拉应力和最大压应力。 y
F
150 50
A l 2 l 2
B
96 . 4 C 50
F
实验现象:
F
ü1、变形前互相平行的纵向直
m
n
线、变形后变成弧线,且凹边纤 维缩短、凸边纤维伸长。
ü2、变形前垂直于纵向线的横向
m
n
线,变形后仍为直线,且仍与弯曲 了的纵向线正交,但两条横向线 间相对转动了一个角度。
§由现象1
j靠近凹入的一侧,纤维缩短,靠近凸出的 一侧,纤维伸长; k由于纤维从凹入一侧的伸长或缩短到突出 一侧的缩短或伸长是连续变化,故中间一定 有一层,其纤维长度不变,这层纤维称为中 性层。中性层与横截面的交线称为中性轴; l弯曲变形时,梁的横截面绕中性轴旋转。
28 . 1
kNm
13. 16

梁的弯曲应力与强度计算

梁的弯曲应力与强度计算

虽然横力弯曲与纯弯曲存在这些差异,但是应用纯弯曲时正
应力计算公式来计算横力弯曲时的正应力,所得结果误差不大,
足以满足工程中的精度要求。且梁的跨高比 l/h 越大,其误差越小。

My Iz
8 梁的弯曲应力与强度计算
8.1 梁弯曲时横截面上的正应力
例: 已知 l=1m,q=6kN/m,10号槽 钢。求最大拉应力和压应力。 解:(1)作弯矩图
28 . 8 MPa t
y2

( 2 . 5 10 N m )( 88 10 763 10
8
3
m)
Iz
m
4
故该梁满足强度条件。
8 梁的弯曲应力与强度计算 8.3.1 梁的弯曲剪应力
8.3 梁的剪应力及其强度条件
1. 矩形截面梁的弯曲剪应力
关于横截面上剪应力的分布
M
max

2F 3W z
Wz




3 2
( 237 10
6
)( 160 10 ) N 56 . 9 kN
6
8 梁的弯曲应力与强度计算
8.2 弯曲正应力的强度条件
例:一矩形截面木梁,已知 F =10 kN,a =1.2 m。木材的许用应力
=10MPa。设梁横截面的高宽比为h/b=2,试选梁的截面尺寸。

bh 6
2
对于直径为 D 的圆形截面
Wz Iz y max

D / 64
4

D
32
3
D /2
对于内外径分别为 d 、D 的空心圆截面
Wz Iz y max

D (1 ) / 64

梁的弯曲(应力、变形)

梁的弯曲(应力、变形)
4
研究对象:等截面直梁 研究方法:实验——观察——假定
5
实验观察——梁表面变形特征
横线仍是直线,但发生 相对转动,仍与纵线正交
纵线弯成曲线,且梁的 下侧伸长,上侧缩短
以上是外部的情况,内部如何? 想象 —— 梁变形后,其横截面仍为平面,且垂直
于变形后梁的轴线,只是绕梁上某一轴转过一个角度 透明的梁就好了,我们用计算机模拟 透明的梁
qa 3 qA 3 EI
f PC
Pa 3 6 EI
f
qC
5 q L4 24 EI
叠加
B
APAqA
a2 (3P4qa) 12EI
q B
fC25q4Ea4I6PEa3I
三、刚度条件
y [y], []
max
max
一般钢筋混凝土梁的许可挠度: 钢筋混凝土吊车梁的许可挠度:
l~l 300 200
l ~l 600 500
28
提高梁强度的主要措施
max
Mmax WZ
[ ]
合理安排支座
1. 降低 Mmax 合理布置载荷
29
合理布置支座
F F
F
30
合理布置载荷
F
31
max
Mmax WZ
[ ]
2. 增大 WZ
合理设计截面 合理放置截面
32
合理设计截面
33
合理放置截面
WZ 左
bh2 6
WZ

hb2 6
34
51
平面应力状态分析---解析法
1.斜截面上的应力
x a
y
yx xy
x
y
x
α
a
n
a
xy

梁的弯曲正应力计算公式应在()范围内使用

梁的弯曲正应力计算公式应在()范围内使用

梁的弯曲正应力计算公式应在()范围内使用摘要:1.梁的弯曲正应力计算公式2.梁的抗弯截面系数3.梁的正应力强度条件4.强度校核、设计截面和确定许用荷载的计算方法5.例题:T 形截面外伸梁的正应力强度校核正文:一、梁的弯曲正应力计算公式在工程中,梁的弯曲正应力计算公式广泛应用于计算梁在受弯过程中产生的正应力。

这个公式是在一定范围内使用的,具体范围需要根据实际情况来确定。

在计算过程中,需要考虑到梁的材料、截面形状和尺寸等因素。

二、梁的抗弯截面系数梁的抗弯截面系数是一个与截面形状和尺寸有关的几何量,常用单位是m3 或mm3。

值越大,抗弯能力越强,它也反映了截面形状及尺寸对梁的强度的影响。

对于不同形状的梁,其抗弯截面系数的计算方法也不同。

例如,对于等直梁,其抗弯截面系数为常数;对于矩形截面梁,其抗弯截面系数与截面高度和宽度有关;对于圆形截面梁,其抗弯截面系数与直径有关。

三、梁的正应力强度条件为了保证梁能安全地工作,必须使梁截面上的最大正应力不超过材料的许用应力,这就是梁的正应力强度条件。

根据强度条件,可以解决有关强度方面的三类问题:强度校核、设计截面和确定许用荷载。

四、强度校核、设计截面和确定许用荷载的计算方法1.强度校核:在已知梁的材料、横截面的形状和尺寸以及所受荷载的情况下,可以检查梁是否满足正应力强度条件。

2.设计截面:当已知荷载和所用材料时,可根据强度条件,计算所需的抗弯截面系数,然后根据梁的截面形状进一步确定截面的具体尺寸。

3.确定许用荷载:如已知梁的材料和截面形状尺寸,则先根据强度条件算出梁所能承受的最大弯矩,然后由与荷载间的关系计算许用荷载。

五、例题:T 形截面外伸梁的正应力强度校核已知T 形截面外伸梁的材料许用拉应力和许用压应力,需要校核梁的正应力强度。

根据梁的正应力强度条件,计算出梁在受弯过程中产生的最大拉应力和最大压应力,然后与材料的许用应力进行比较,以判断梁是否满足正应力强度条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
截面的尺寸;
(3)求许可载荷,即已知 可由 确定。
例6-7、见P94
例6-8、见P95
练习、如图所示矩形截面梁,跨度L=2m,在梁的中点作用一集中力F=80kN,梁的截面尺寸b=70mm,h=140mm,许用应力[δ]=140Mpa。
(1)试校核该梁的强度;
(2)若强度不够,重新设计截面尺寸。
【课堂小结】
2、切应力强度条件
二、梁的弯曲强度计算
(1)强度校核,即已知 检验梁是否安全;
(2)设计截面,即已知 可由 确定
截面的尺寸;
(3)求许可载荷,即已知 可由 确定。
例:图7-15a所示桥式起重机的大梁由32b工字钢制成,跨长L=10m,材料的许用应力[б]=140MPa,电葫芦自重G=0.5 kN,梁的自重不计,求梁能够承受的最大起吊重量F。
1、设计截面
2、确定许可荷载
【作业布置】
P1236-14、6-16
提问法
讲授法
五大公理
重点
举例子进行讲解
(解释什么是充分必要条件)
难点
讲授法
难点
图示讲解
讲授法
【考勤】
班长报告考勤情况。
【复习旧课】
【理论教学】
梁的弯曲强度计算
一、梁的弯曲正应力强度条件:
1、正应力强度条件
弯曲时强度计算:
式中:
一侧的截面边缘到中性轴的距离。
解:起重机大梁的力学模型为图
7-15b所示的简支梁。 电葫芦移动到
梁跨长的中点时,梁中点截面处产生
最大弯矩,作出大梁的弯矩图,如图
c所示。梁中点为危险截面,其最大弯
矩为
由梁的弯曲强度条件

查热轧工字钢型钢表中的32b工字钢,
其Wz=726.33cm3=7.26×105mm3,代入上式得
梁能够承受的最大起吊重量为40.2kN。
教 师 备 课 教 案 首 页
课时授课计划编号:26
授课日期
授课时数
授课班级
12道桥8
12道桥9
12道桥10
12道桥11
2
课 题:梁弯曲正应力强度条件
教学目的:梁弯曲正应力强度条件
教学重点:正应力强度条件
教学难点:应用
课堂类型与教学方法:理论教学、讲授法
教具挂图:三角板、多媒体
教学过程:如下
教研室主任签字:年 月 日任课教师:冯春盛
例6-9、见P95
练习:一矩形截面的简支木梁,梁上作用有均布荷载,已知:l=4m,b=140mm,h=210mm,q=2kN/m,弯曲时木材的许用正应力[σ]=10Mpa,试校核该梁的强度。
解:作梁的弯矩图,梁中的最大正应力发生在跨中弯矩最大的截面上,最大弯矩为
梁的弯曲截面系数为
最大正应力为
所以满足强度要求。
解题指导:
1、通常进行弯曲强度计算时,先画弯矩图,在弯矩最大值(绝对值)截面处校核弯曲正应力强度。
2、对于铸铁一类脆性材料梁进行弯曲强度计算时,应全面考虑正、负弯矩所在截面的正应力,找出现全梁最大拉、压应力,然后再进行正应力强度校核。
3、对于变截面梁,应考虑抗弯截面模量较小截面处的弯曲强度。
(2)设计截面,即已知 可由 确定
相关文档
最新文档