新人教版七年级下期中数学练习题(三)
人教版数学七年级下学期期中测试卷三(含答案及解析)
人教版数学七年级下学期期中测试卷三一、选择题(每小题3 分,共30 分)1.(3 分)如图,两只手的食指和拇指在同一个平面内,它们构成的一对角可看成是()A.同位角B.内错角C.对顶角D.同旁内角2.(3 分)下列方程中,是二元一次方程的是()A.x+2y=5 B.xy=3 C.3x+y2=5 D.3.(3 分)在实数、0. 、、0.202020、中,属于无理数的有()个.个B.2 个C.3 个D.4 个4.(3 分)下列计算结果正确的是()A.a3×a4=a12 B.a5÷a=a5 C.(ab2)3=ab6 D.(a3)2=a65.(3 分)下列从左边到右边的变形,属于因式分解的是()A.(x+1)(x﹣1)=x2﹣1 B.x2﹣2x+1=x(x﹣2)+1C.a(x﹣y)=ax﹣ay D.x2+2x+1=(x+1)26.(3 分)《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5 尺;将绳子对折再量长木,长木还剩余1 尺,问木长多少尺.设木长为x 尺,绳子长为y 尺,则下列符合题意的方程组是()A.B.C.D.7.(3 分)如果x+m 与x+8 的乘积中不含x 的一次项,则m 的值是()A.﹣8 B.8 C.0 D.18.(3 分)为了奖励疫情期间线上学习表现优异的同学,某校决定用1200 元购买篮球和排球,其中篮球每个120 元,排球每个90 元,在两种球类都购买且资金恰好用尽的情况下,购买方案有()种B.3 种C.4 种D.5 种9.(3 分)如图,在平面直角坐标系上有点A(1,0),点A 第一次向左跳动至A1(﹣1,1),第二次向右跳动至A2(2,1),第三次向左跳动至A3(﹣2,2),第四次向右跳动至A4(3,2)…依照此规律跳动下去,点A 第124 次跳动至A124 的坐标()A.(63,62)B.(62,61)C.(﹣62,61)D.(124,123)10.(3 分)如图,AB∥CD,∠DCE 的角平分线CG 的反向延长线和∠ABE 的角平分线BF 交于点F,∠E﹣∠F=36°,则∠E=()A.82°B.84°C.97°D.90°二、填空题(每小题3 分,共18 分)11.(3 分)﹣的立方根是.12.(3 分)若不等式5(x﹣2)+8<6(x﹣1)+7 的最小整数解是方程2x﹣ax=3 的解,则a 的值为.13.(3 分)如图,已知AB∥DE,∠ABC=75°,∠CDE=160°,则∠BCD 的度数为.14.(3 分)分解因式:ax2﹣ax=.15.(3 分)不等式组有解且解集是2<x<m+7,则m 的取值范围为16.(3 分)计划在一块长为10 米,宽为7 米的长方形草坪上,修建一条宽为2 米的人行道,则剩余草坪的面积为平方米.三、解答题(共72 分)17.(8 分)(1)计算:﹣+ ;(2)计算:(+2)﹣18.(8 分)解方程组:(1);(2).19.(8 分)请把下面证明过程补充完整如图,已知AD⊥BC 于D,点E 在BA 的延长线上,EG⊥BC 于G,交AC 于点F,∠E=∠1.求证:AD 平分∠BAC.证明:∵AD⊥BC 于D,EG⊥BC 于G(),∴∠ADC=∠EGC=90°(),∴AD∥EG(),∴∠1=∠2(),=∠3(),又∵∠E=∠1(已知),∴∠2=∠3(),∴AD 平分∠BAC()20.(10 分)如图,已知BE 平分∠ABC,点D 在射线BA 上,且∠ABE=∠BED.(1)判断BC 与DE 的位置关系,并说明理由.(2)当∠ABE=25°时,求∠ADE 的度数.21.(10 分)三角形ABC(记作△ABC)在8×8 方格中,位置如图所示,A(﹣2,1),B(﹣1,4).(1)请你在方格中建立直角坐标系,并写出C 点的坐标;(2)把△ABC 向上平移2 个单位长度,再向右平移3 个单位长度,请你画出平移后的△A1B1C1,若△ABC 内部一点P 的坐标为(a,b),则点P 的对应点P1 的坐标是.(3)在x 轴上存在一点D,使△DBC 的面积等于3,则点D 的坐标为.22.(10 分)疫情无情人有情,八方相助暖人心.一爱心人士向某社区捐赠了A 品牌一次性医用口罩5000 个和B 品牌免洗消毒液100 瓶,总价值18000 元.已知10 个A 品牌一次性医用口罩与1 瓶B 品牌免洗消毒液共需84 元.求A 品牌一次性医用口罩和B 品牌免洗消毒液的单价分别是多少?23.(12 分)用1 块A 型钢板可制成1 块C 型钢板、3 块D 型钢板;用1 块B 型钢板可制成2 块C 型钢板、1 块D 型钢板.(1)现需150 块C 型钢板、180 块D 型钢板,则恰好用A 型、B 型钢板各多少块?(2)若A、B 型钢板共100 块,现需C 型钢板至多150 块,D 型钢板不超过204 块,共有几种方案?(3)若需C 型钢板80 块,D 型钢板不多于45 块(A 型、B 型钢板都要使用).求A、B 型钢板各需多少块?24.(14 分)如图1,在平面直角坐标系中,A(a,0),B(b,3),C(4,0),且满足(a+b)2+|a﹣b+6|=0,线段AB 交y 轴于F 点.(1)求点A、B 的坐标.(2)点D 为y 轴正半轴上一点,若ED∥AB,且AM,DM 分别平分∠CAB,∠ODE,如图2,求∠AMD 的度数.(3)如图3,(也可以利用图1)①求点F 的坐标;②点P 为坐标轴上一点,若△ABP 的三角形和△ABC 的面积相等?若存在,求出P 点坐标.人教版数学七年级下学期期中测试卷三参考答案与试题解析一.选择题(每小题3 分,共30 分)1.(3 分)如图,两只手的食指和拇指在同一个平面内,它们构成的一对角可看成是()A.同位角B.内错角C.对顶角D.同旁内角【分析】拇指所在直线被两个食指所在的直线所截,因而构成的一对角可看成是内错角.【解答】解:角在被截线的内部,又在截线的两侧,符合内错角的定义,故选:B.2.(3 分)下列方程中,是二元一次方程的是()A.x+2y=5 B.xy=3 C.3x+y2=5 D.【分析】根据含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程.逐一判断可得.【解答】解:A.x+2y=5 是二元一次方程;B.xy=3 中xy 的指数为2,不是二元一次方程;C.3x+y2=5 中y2 的指数为2,不是二元一次方程;D.中不是整式,不是二元一次方程;故选:A.3.(3 分)如图,直线AB 与直线CD 相交于点O,OE⊥3.(3 分)在实数、0. 、、0.202020、中,属于无理数的有()个.A.1个B.2 个C.3 个D.4 个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:0. 是循环小数,属于有理数;0.202020 是有限小数,属于有理数;是分数,属于有理数.无理数有:、共2个.故选:B.4.(3 分)下列计算结果正确的是()A.a3×a4=a12 B.a5÷a=a5 C.(ab2)3=ab6 D.(a3)2=a6【分析】直接利用同底数幂的乘除运算法则、积的乘方运算法则分别计算得出答案.【解答】解:A、a3×a4=a7,故此选项错误;B、a5÷a=a4,故此选项错误;C、(ab2)3=a3b6,故此选项错误;D、(a3)2=a6,正确.故选:D.5.(3 分)下列从左边到右边的变形,属于因式分解的是()A.(x+1)(x﹣1)=x2﹣1 B.x2﹣2x+1=x(x﹣2)+1C.a(x﹣y)=ax﹣ay D.x2+2x+1=(x+1)2【分析】直接利用因式分解的意义分析得出答案.【解答】解:A、(x+1)(x﹣1)=x2﹣1,从左到右是整式的乘法运算,不合题意;B、x2﹣2x+1=(x﹣1)2,不合题意;C、a(x﹣y)=ax﹣ay,不合题意;D、x2+2x+1=(x+1)2,从左到右是因式分解,符合题意.故选:D.6.(3 分)《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5 尺;将绳子对折再量长木,长木还剩余1 尺,问木长多少尺.设木长为x 尺,绳子长为y 尺,则下列符合题意的方程组是()A.B.C.D.【分析】根据题意可以列出相应的二元一次方程组,从而本题得以解决.【解答】解:由题意可得,,故选:B.7.(3 分)如果x+m 与x+8 的乘积中不含x 的一次项,则m 的值是()A.﹣8 B.8 C.0 D.1【分析】原式利用多项式乘多项式法则计算,根据结果不含x 的一次项,确定出m 的值即可.【解答】解:原式=x2+(m+8)x+8m,由结果不含x 的一次项,得到m+8=0,解得:m=﹣8,故选:A.8.(3 分)为了奖励疫情期间线上学习表现优异的同学,某校决定用1200 元购买篮球和排球,其中篮球每个120 元,排球每个90 元,在两种球类都购买且资金恰好用尽的情况下,购买方案有()A.2种B.3 种C.4 种D.5 种【分析】设购买篮球x 个,排球y 个,根据“购买篮球的总钱数+购买排球的总钱数=1200”列出关于x、y 的方程,由x、y 均为正整数即可得.【解答】解:设购买篮球x 个,排球y 个,根据题意可得120x+90y=1200,则y=,∵x、y 均为正整数,∴x=1、y=12;x=4、y=8;x=7、y=4.所以购买资金恰好用尽的情况下,购买方案有3 种,故选:B.9.(3 分)如图,在平面直角坐标系上有点A(1,0),点A 第一次向左跳动至A1(﹣1,1),第二次向右跳动至A2(2,1),第三次向左跳动至A3(﹣2,2),第四次向右跳动至A4(3,2)…依照此规律跳动下去,点A 第124 次跳动至A124 的坐标()A.(63,62)B.(62,61)C.(﹣62,61)D.(124,123)【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,然后写出即可.【解答】解:观察发现,第 2 次跳动至点的坐标是(2,1),第4 次跳动至点的坐标是(3,2),第6 次跳动至点的坐标是(4,3),第8 次跳动至点的坐标是(5,4),…第2n 次跳动至点的坐标是(n+1,n),∴第124 次跳动至点的坐标是(63,62).故选:A.10.(3 分)如图,AB∥CD,∠DCE 的角平分线CG 的反向延长线和∠ABE 的角平分线BF 交于点F,∠E﹣∠F=36°,则∠E=()A.82°B.84°C.97°D.90°【分析】根据平行线的性质即可求解.【解答】解:过E 作直线MN∥AB,如下图所示,∵AB∥MN,∴∠3+∠4+∠BEM=180°(两直线平行,同旁内角互补),∵AB∥CD,∴MN∥CD,∴∠MEC=∠1+∠2(两直线平行,内错角相等),∴∠BEC=∠MEC+∠BEM=180°﹣∠3﹣∠4+∠1+∠2,∵∠DCE 的角平分线CG 的反向延长线和∠ABE 的角平分线BF 交于点F,∴∠1=∠2,∠3=∠4,∴∠BEC=180°﹣2∠4+2∠1,∴∠4﹣∠1=90°﹣,∵四边形BECF 内角和为360°,∴∠4+∠BEC+∠180°﹣∠1+∠F=360°,∴+∠F=90°,由,∴,故选:B.二、填空题(每小题3 分,共18 分)11.(3 分)﹣的立方根是﹣2 .【分析】先根据算术平方根的定义求出,再利用立方根的定义解答.【解答】解:∵82=64,∴=8,∴﹣=﹣8,∵(﹣2)3=﹣8,∴﹣的立方根是﹣2.故答案为:﹣2.12.(3 分)若不等式5(x﹣2)+8<6(x﹣1)+7 的最小整数解是方程2x﹣ax=3 的解,则a 的值为.【分析】首先解不等式确定不等式的最小整数解,然后代入方程,即可得到关于 a 的方程,求得a 的值.【解答】解:解不等式5(x﹣2)+8<6(x﹣1)+7 得:x>﹣3.则最小整数解是:﹣2,把x=﹣2 代入方程得:﹣4+2a=3,解得:a=.故答案是:.13.(3 分)如图,已知AB∥DE,∠ABC=75°,∠CDE=160°,则∠BCD 的度数为55°.【分析】延长ED 与BC 相交于点F,根据两直线平行,内错角相等可得∠BFD=∠ABC,再根据邻补角的定义分别求出∠CDF 和∠CFD,然后根据三角形的内角和定理列式计算即可得解.【解答】解:如图,延长ED 与BC 相交于点F,∵AB∥DE,∴∠BFD=∠ABC=75°,∴∠CFD=180°﹣75°=105°,∵∠CDE=160°,∴∠CDF=180°﹣∠CDE=180°﹣160°=20°,在△CDF 中,∠BCD=180°﹣∠CDF﹣∠CFD=180°﹣20°﹣105°=55°.故答案为:55°.14.(3 分)分解因式:ax2﹣ax=ax(x﹣1).【分析】提取公因式ax,然后整理即可.【解答】解:ax2﹣ax=ax(x﹣1).15.(3 分)不等式组有解且解集是2<x<m+7,则m 的取值范围为﹣5<m≤﹣1 .【分析】根据已知得出不等式m+1≤2 且m+7≤6,求出两不等式的公共解集,即可得出答案.【解答】解:∵不等式组的解集是2<x<m+7,∴m+1≤2 且m+7≤6 且m+7>2,解得:﹣5<m≤﹣1,故答案是:﹣5<m≤﹣1.16.(3 分)计划在一块长为10 米,宽为7 米的长方形草坪上,修建一条宽为2 米的人行道,则剩余草坪的面积为56 平方米.【分析】依据平移变换,长草部分可以组成一个长为8 米,宽为7 米的长方形,即可得到其面积.【解答】解:长草部分的面积为7×(10﹣2)=7×8=56(平方米),即长草部分的面积为56 平方米.故答案为:56.三、解答题(共72 分)17.(1)计算:﹣+ ;(2)计算:(+2)﹣.【分析】(1)利用二次根式的性质和立方根的性质进行计算,再算加减即可;(2)首先利用乘法分配律计算乘法,再算加减即可.【解答】解:(1)原式=2﹣2﹣=﹣;(2)原式=2+2 ﹣=2+ .18.解方程组:(1);(2).【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1),把②代入①得:10+6y+3y=1,解得:y=﹣1,把y=﹣1 代入②得:x=2,则方程组的解为;(2),①×2+②×3 得:13x=38,解得:x=,把x=代入①得:y=﹣,则方程组的解为.19.请把下面证明过程补充完整如图,已知AD⊥BC 于D,点E 在BA 的延长线上,EG⊥BC 于G,交AC 于点F,∠E=∠1.求证:AD 平分∠BAC.证明:∵AD⊥BC 于D,EG⊥BC 于G(已知),∴∠ADC=∠EGC=90°(垂直的定义),∴AD∥EG(同位角相等,两直线平行),∴∠1=∠2(两直线平行,内错角相等),∠E =∠3(两直线平行,同位角相等),又∵∠E=∠1(已知),∴∠2=∠3(等量代换),∴AD 平分∠BAC(角平分线的定义)【分析】根据垂直的定义得出∠ADC=∠EGC=90°,进而利用平行线的判定和性质解答即可.【解答】证明:∵AD⊥BC 于D,EG⊥BC 于G(已知),∴∠ADC=∠EGC=90°(垂直的定义),∴AD∥EG(同位角相等,两直线平行),∴∠1=∠2(两直线平行,内错角相等),∠E=∠3(两直线平行,同位角相等),又∵∠E=∠1(已知),∴∠2=∠3(等量代换),∴AD 平分∠BAC(角平分线的定义)故答案为:已知;垂直的定义;同位角相等,两直线平行;两直线平行,内错角相等;∠E;两直线平行,同位角相等;等量代换;角平分线的定义.20.如图,已知BE 平分∠ABC,点D 在射线BA 上,且∠ABE=∠BED.(1)判断BC 与DE 的位置关系,并说明理由.(2)当∠ABE=25°时,求∠ADE 的度数.【分析】(1)根据角平分线定义和∠ABE=∠BED,即可判断BC 与DE 的位置关系;(2)结合(1)的结论,根据∠ABE=25°,即可求∠ADE 的度数.【解答】解:(1)BC∥DE,理由如下:∵BE 平分∠ABC,∴∠ABE=∠EBC,∵∠ABE=∠BED,∴∠EBC=∠BED,∴BC∥DE;(2)∵BE 平分∠ABC,∴∠ABC=2∠ABE=2×25°=50°,∵BC∥DE,∴∠ADE=∠ABC=50°.21.三角形ABC(记作△ABC)在8×8 方格中,位置如图所示,A(﹣2,1),B(﹣1,4).(1)请你在方格中建立直角坐标系,并写出C 点的坐标;(2)把△ABC 向上平移2 个单位长度,再向右平移3 个单位长度,请你画出平移后的△A1B1C1,若△ABC 内部一点P 的坐标为(a,b),则点P 的对应点P1 的坐标是(a+3,b+2).(3)在x 轴上存在一点D,使△DBC 的面积等于3,则点D 的坐标为(5,0)或(﹣1,0).【分析】(1)根据A,B 两点坐标画出坐标系即可.(2)分别作出A,B,C 的对应点A1,B1,C1 即可.(3)设D(m,0),由题意直线BC 交x 轴于(3,0),则有•|m﹣3|•(4﹣1)=3,求出m 即可.【解答】解:(1)平面直角坐标系如图所示,C(2,1).(2)如图△A1B1C1,即为所求,若△ABC 内部一点P 的坐标为(a,b),则点P 的对应点P1 的坐标是(a+3,b+2).故答案为(a+3,b+2).(3)设D(m,0),由题意直线BC 交x 轴于(3,0),则有•|m﹣3|•(4﹣1)=3,解得m=5 或﹣1,∴D(5,0)或(﹣1,0).22.疫情无情人有情,八方相助暖人心.一爱心人士向某社区捐赠了A 品牌一次性医用口罩5000 个和B品牌免洗消毒液100 瓶,总价值18000 元.已知10 个A 品牌一次性医用口罩与1 瓶B 品牌免洗消毒液共需84 元.求A 品牌一次性医用口罩和B 品牌免洗消毒液的单价分别是多少?【分析】设A 品牌一次性医用口罩单价是x 元/个,B 品牌免洗消毒液的单价是y 元/瓶,由“A 品牌一次性医用口罩5000 个和B 品牌免洗消毒液100 瓶,总价值18000 元.已知10 个A 品牌一次性医用口罩与1 瓶B 品牌免洗消毒液共需84 元”列出方程组可求解.【解答】解:设A 品牌一次性医用口罩单价是x 元/个,B 品牌免洗消毒液的单价是y 元/瓶,由,解得:,答:A 品牌一次性医用口罩单价是 2.4 元/个,B 品牌免洗消毒液的单价是60 元/瓶.23.用1 块A 型钢板可制成1 块C 型钢板、3 块D 型钢板;用1 块B 型钢板可制成2 块C 型钢板、1块D 型钢板.(1)现需150 块C 型钢板、180 块D 型钢板,则恰好用A 型、B 型钢板各多少块?(2)若A、B 型钢板共100 块,现需C 型钢板至多150 块,D 型钢板不超过204 块,共有几种方案?(3)若需C 型钢板80 块,D 型钢板不多于45 块(A 型、B 型钢板都要使用).求A、B 型钢板各需多少块?【分析】(1)设恰好用A 型钢板x 块,B 型钢板y 块,根据要制成150 块C 型钢板、180 块D 型钢板,即可得出关于x,y 的二元一次方程组,解之即可得出结论;(2)设A 型钢板有m 块,则B 型钢板有(100﹣m)块,根据“现需C 型钢板至多150 块,D 型钢板不超过204 块”,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,再结合m 为正整数即可得出方案的种数;(3)设需要a 块A 型钢板,则需要块B 型钢板,根据D 型钢板不多于45 块,即可得出关于a 的一元一次不等式,解之即可得出a 的取值范围,再结合a 和均为正整数,即可得出结论.【解答】解:(1)设恰好用A 型钢板x 块,B 型钢板y 块,依题意,得:,解得:.答:恰好用A 型钢板42 块,B 型钢板54 块.(2)设A 型钢板有m 块,则B 型钢板有(100﹣m)块,依题意,得:,解得:50≤m≤52,又∵m 为正整数,∴m 可以取50,51,52,∴共有3 种方案.(3)设需要a 块A 型钢板,则需要块B 型钢板,依题意,得:3a+ ≤45,解得:a≤2,又∵a 和均为正整数,∴a=2,∴=39.答:需要2 块A 型钢板,39 块B 型钢板.24.如图1,在平面直角坐标系中,A(a,0),B(b,3),C(4,0),且满足(a+b)2+|a﹣b+6| =0,线段AB 交y 轴于F 点.(1)求点A、B 的坐标.(2)点D 为y 轴正半轴上一点,若ED∥AB,且AM,DM 分别平分∠CAB,∠ODE,如图2,求∠AMD 的度数.(3)如图3,(也可以利用图1)①求点F 的坐标;②点P 为坐标轴上一点,若△ABP 的三角形和△ABC 的面积相等?若存在,求出P 点坐标.【分析】(1)根据非负数的性质得a+b=0,a﹣b+6=0,然后解方程组求出a 和 b 即可得到点A 和B 的坐标;(2)由AB∥DE 得∠ODE+∠DFB=180°,而∠DFB=∠AFO=90°﹣∠FAO,所以∠ODE+90°﹣∠FAO=180°,再根据角平分线定义得∠OAN=∠FAO,∠NDM=∠ODE,则∠NDM﹣∠OAN=45°,接着利用∠OAN=90°﹣∠ANO=90°﹣∠DNM,得到∠NDM﹣(90°﹣∠DNM)=45°,所以∠NDM+∠DNM=135°,然后根据三角形内角和定理得180°﹣∠NMD=135°,所以∠NMD=45°;(3)①连接OB,如图3,设F(0,t),根据△AOF 的面积+△BOF 的面积=△AOB 的面积得到•3•t+ •t•3=•3•3,解得t=,则可得到F 点坐标为(0,);②先计算△ABC 的面积=,分类讨论:当P 点在y 轴上时,设P(0,y),利用△ABP 的三角形=△APF 的面积+△BPF 的面积得到•|y﹣|•3+ •|y﹣|•3=,解得y=5 或y=﹣2,所以此时P 点坐标为(0,5)或(0,﹣2);当P 点在x 轴上时,设P(x,0),根据三角形面积公式得•|x+3|•3=,解得x=﹣10 或x=4,从而得到此时P 点坐标.【解答】解:(1)∵(a+b)2+|a﹣b+6|=0,∴a+b=0,a﹣b+6=0,∴a=﹣3,b=3,∴A(﹣3,0),B(3,3);(2)如图2,∵AB∥DE,∴∠ODE+∠DFB=180°,而∠DFB=∠AFO=90°﹣∠FAO,∴∠ODE+90°﹣∠FAO=180°,∵AM,DM 分别平分∠CAB,∠ODE,∴∠OAN=∠FAO,∠NDM=∠ODE,∴∠NDM﹣∠OAN=45°,而∠OAN=90°﹣∠ANO=90°﹣∠DNM,∴∠NDM﹣(90°﹣∠DNM)=45°,∴∠NDM+∠DNM=135°,∴180°﹣∠NMD=135°,∴∠NMD=45°,即∠AMD=45°;(3)①连接OB,如图3,设F(0,t),∵△AOF 的面积+△BOF 的面积=△AOB 的面积,∴•3•t+ •t•3=•3•3,解得t=,∴F 点坐标为(0,);②存在.△ABC 的面积=•7•3=,当P 点在y 轴上时,设P(0,y),∵△ABP 的三角形=△APF 的面积+△BPF 的面积,∴•|y﹣|•3+ •|y﹣|•3=,解得y=5 或y=﹣2,∴此时P 点坐标为(0,5)或(0,﹣2);当P 点在x 轴上时,设P(x,0),则•|x+3|•3=,解得x=﹣10 或x=4,∴此时P 点坐标为(﹣10,0),(4,0)综上所述,满足条件的P 点坐标为(0,5);(0,﹣2);(﹣10,0),(4,0).。
新人教版七年级数学下册期中考试卷及答案【完整版】
新人教版七年级数学下册期中考试卷及答案【完整版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211xx-+的值为0,则x的值为()A.0B.1C.﹣1D.±1 2.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°3.已知x+y=﹣5,xy=3,则x2+y2=()A.25 B.﹣25 C.19 D.﹣19 4.一5的绝对值是()A.5 B.15C.15-D.-55.若关于x的不等式组()2213x x ax x<⎧-⎪⎨-≤⎪⎩恰有3个整数解,则a的取值范围是()A.12a≤<B.01a≤<C.12a-<≤D.10a-≤<6.如图,∠1=70°,直线a平移后得到直线b,则∠2-∠3()A.70°B.180°C.110°D.80°7.《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问若每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34 685个字,设他第一天读x 个字,则下面所列方程正确的是( ).A .x +2x +4x =34 685B .x +2x +3x =34 685C .x +2x +2x =34 685D .x +12x +14x =34 685 8.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A .图①B .图②C .图③D .图④9.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对10.下列等式变形正确的是( )A .若﹣3x =5,则x =35B .若1132x x -+=,则2x+3(x ﹣1)=1 C .若5x ﹣6=2x+8,则5x+2x =8+6D .若3(x+1)﹣2x =1,则3x+3﹣2x =1二、填空题(本大题共6小题,每小题3分,共18分)1.有理数a 、b 、c 在数轴上的位置如图所示,化简|a+b|﹣|c ﹣a|+|b ﹣c|的结果是________.2.如图,DA⊥CE于点A,CD∥AB,∠1=30°,则∠D=________.3.如图,点E是AD延长线上一点,如果添加一个条件,使BC∥AD,则可添加的条件为__________.(任意添加一个符合题意的条件即可)4.如果方程(m-1)x|m|+2=0是表示关于x的一元一次方程,那么m的取值是________.5.如图,在△ABC和△DEF中,点B、F、C、E在同一直线上,BF = CE,AC∥DF,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是________.(只需写一个,不添加辅助线)6.已知|x|=3,则x的值是________.三、解答题(本大题共6小题,共72分)1.解下列方程:(1)2(x+3)=5(x-3)2123x-()=435x--x2.解不等式组:3(1)72323x xxx x--<⎧⎪-⎨-≤⎪⎩,并把解集在数轴上表示出来.3.如图,直线AB 、CD 相交于点O ,OE 把BOD ∠分成两部分,(1)直接写出图中AOC ∠的对顶角为________,BOE ∠的邻补角为________;(2)若AOC 70∠=︒,且BOE EOD ∠∠:=2:3,求AOE ∠的度数.4.如图,已知∠ACD =70°,∠ACB =60°,∠ABC =50°.试说明:AB ∥CD .5.为了解学生对“垃圾分类”知识的了解程度,某学校对本校学生进行抽样调查,并绘制统计图,其中统计图中没有标注相应人数的百分比.请根据统计图回答下列问题:(1)求“非常了解”的人数的百分比.(2)已知该校共有1200名学生,请估计对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有多少人?6.小明某天上午9时骑自行车离开家,15时回家,他有意描绘了离家的距离与时间的变化情况(如图).(1)图象表示了哪两个变量的关系?哪个是自变量?哪个是因变量?(2)10时和13时,他分别离家多远?(3)他到达离家最远的地方是什么时间?离家多远?(4)11时到12时他行驶了多少千米?(5)他可能在哪段时间内休息,并吃午餐?(6)他由离家最远的地方返回时的平均速度是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、C4、A5、A6、C7、A8、A9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)1、-2a2、60°3、∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE4、-15、AC=DF(答案不唯一)6、±3三、解答题(本大题共6小题,共72分)1、(1)x=7;(2)x=1 2.2、x≥3 53、(1)∠BOD;∠AOE;(2)152°.4、证明略5、(1)20%;(2)6006、(1) 自变量是时间,因变量是距离;(2) 10时他距家10千米,13时他距家30千米;(3) 12:00时他到达离家最远的地方,离家30千米;(4)13千米;(5) 12:00~13:00休息并吃午餐;(6) 15千米/时。
新人教版七年级数学下册期中试卷(附答案)
新人教版七年级数学下册期中试卷(附答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知直角三角形两边的长为3和4,则此三角形的周长为()A.12 B.7+7C.12或7+7D.以上都不对2.如图,将一张含有30角的三角形纸片的两个顶点叠放在矩形的两条对边上,若244∠=,则1∠的大小为()A.14 B.16 C.90α- D.44α-3.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是( )秒A.2.5 B.3 C.3.5 D.44.已知5x=3,5y=2,则52x﹣3y=()A.34B.1 C.23D.985.如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是()A .﹣2B .0C .1D .46.若一个直角三角形的两直角边的长为12和5,则第三边的长为( )A .13或119B .13或15C .13D .15 7.明月从家里骑车去游乐场,若速度为每小时10km ,则可早到8分钟,若速度为每小时8km ,则就会迟到5分钟,设她家到游乐场的路程为xkm ,根据题意可列出方程为( )A .851060860x x -=- B .851060860x x -=+ C .851060860x x +=- D .85108x x +=+ 8.若0ab <且a b >,则函数y ax b =+的图象可能是( )A .B .C .D .9.下列说法不一定成立的是( )A .若a b >,则a c b c +>+B .若a c b c +>+,则a b >C .若a b >,则22ac bc >D .若22ac bc >,则a b >10.如图,宽为50cm 的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为( )A .400cm 2B .500cm 2C .600cm 2D .300cm 2二、填空题(本大题共6小题,每小题3分,共18分)1.一个n 边形的内角和为1080°,则n=________.2.已知关于x ,y 的二元一次方程组2321x y k x y +=⎧⎨+=-⎩的解互为相反数,则k 的值是_________.3.已知|x|=5,|y|=4,且x>y ,则2x +y 的值为____________.4.一个等腰三角形的两边长分别为4cm 和9cm ,则它的周长为______cm .5.一只小蚂蚁停在数轴上表示﹣3的点上,后来它沿数轴爬行5个单位长度,则此时小蚂蚁所处的点表示的数为________.6.木工师傅在锯木料时,一般先在木料上画出两个点,然后过这两个点弹出一条墨线,这是因为______________.三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)430210x y x y -=⎧⎨-=-⎩ (2)134342x y x y ⎧-=⎪⎨⎪-=⎩2.已知5a 2+的立方根是3,3a b 1+-的算术平方根是4,c分.(1)求a ,b ,c 的值;(2)求3a b c -+的平方根.3.如图,直线AB ,CD 相交于点O ,OA 平分∠EOC .(1)若∠EOC =70°,求∠BOD 的度数;(2)若∠EOC :∠EOD =2:3,求∠BOD 的度数.4.如图,∠1=70°,∠2 =70°. 说明:AB∥CD.5.中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对七年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如下所示:(1)统计表中的a=________,b=___________,c=____________;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校七年级共有1200名学生,请你分析该校七年级学生课外阅读7本及以上的人数.6.某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A 型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B 型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、D4、D5、C6、C7、C8、A9、C10、A二、填空题(本大题共6小题,每小题3分,共18分)1、82、-13、6或144、225、2或﹣8.6、两点确定一条直线.三、解答题(本大题共6小题,共72分)1、(1)1010xy=⎧⎨=⎩(2)64xy=⎧⎨=⎩2、(1)a=5,b=2,c=3 ;(2)±4.3、(1)35°;(2)36°.4、略.5、(1)a=10,b=0.28,c=50;(2)补图见解析;(3)6.4本;(4)528人.6、(1)A型空调和B型空调每台各需9000元、6000元;(2)共有三种采购方案,方案一:采购A型空调10台,B型空调20台,方案二:采购A型空调11台,B型空调19台,案三:采购A型空调12台,B型空调18台;(3)采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.。
新人教版七年级数学下册期中试卷及答案【完美版】
新人教版七年级数学下册期中试卷及答案【完美版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.计算(-2)1999+(-2)2000等于( )A .-23999B .-2C .-21999D .219992.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A .30°B .25°C .20°D .15°3.已知直线a ∥b ,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为( )A .80°B .70°C .85°D .75°4.已知整式252x x -的值为6,则整式2x 2-5x+6的值为( ) A .9 B .12 C .18 D .245.下列说法,正确的是( )A .若ac bc =,则a b =B .两点之间的所有连线中,线段最短C .相等的角是对顶角D .若AC BC =,则C 是线段AB 的中点6.下列方程组中,是二元一次方程组的是( )A .4237x y x y +=⎧⎨+=⎩B .2311546a b b c -=⎧⎨-=⎩C .292x y x ⎧=⎨=⎩D .284x y x y +=⎧⎨-=⎩7.把1a a -根号外的因式移入根号内的结果是( ) A .a - B .a -- C .a D .a -8.(-9)2的平方根是x ,64的立方根是y ,则x+y 的值为( )A .3B .7C .3或7D .1或79.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x 名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( )A .22x=16(27﹣x )B .16x=22(27﹣x )C .2×16x=22(27﹣x )D .2×22x=16(27﹣x )10.将一个四边形截去一个角后,它不可能是( )A .六边形B .五边形C .四边形D .三角形二、填空题(本大题共6小题,每小题3分,共18分)1.若0abc >,化简ac b abc a b c abc+++结果是________. 2.如图,已知AB ∥CD ,BE 平分∠ABC ,DE 平分∠ADC ,∠BAD =70°,∠BCD =40°,则∠BED 的度数为________.3.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________4.若单项式32m x y 与3m n xy +2m n +的值是_______________.5.对于任意实数a 、b ,定义一种运算:a ※b=ab ﹣a+b ﹣2.例如,2※5=2×5﹣2+5﹣2=ll .请根据上述的定义解决问题:若不等式3※x <2,则不等式的正整数解是________.6.化简: 43ππ-+-=________三、解答题(本大题共6小题,共72分)1.解方程(1)37322x x +=- (2)31322322510x x x +-+-=-2.若关于x 的不等式组152(3)3()>22x x x a x +>-⎧⎨++⎩只有4个整数解,求a 的取值范围.3.已知坐标平面内的三个点A (1,3),B (3,1),O (0,0),求△ABO 的面积.4.已知直线l 1∥l 2,l 3和11,l 2分别交于C ,D 两点,点A ,B 分别在线l 1,l 2上,且位于l 3的左侧,点P 在直线l 3上,且不和点C ,D 重合.(1)如图1,有一动点P 在线段CD 之间运动时,试确定∠1、∠2、∠3之间的关系,并给出证明.(2)如图2,当动点P在射线DC上运动时,上述的结论是否成立?若不成立,请写出∠1、∠2、∠3的关系并证明.5.某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分别直方图和扇形统计图:根据图中提供的信息,解答下列问题:(1)补全频数分布直方图(2)求扇形统计图中m的值和E组对应的圆心角度数(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数6.华联超市购进一批四阶魔方,按进价提高40%后标价,为了让利于民,增加销量,超市决定打八折出售,这时每个魔方的售价为28元.(1)求魔方的进价?(2)超市卖出一半后,正好赶上双十一促销,商店决定将剩下的魔方以每3个80元的价格出售,很快销售一空,这批魔方超市共获利2800元,求该超市共购进魔方多少个?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、B3、A4、C5、B6、A7、B8、D9、D10、A二、填空题(本大题共6小题,每小题3分,共18分)1、4或02、55°3、15°4、25、16、1三、解答题(本大题共6小题,共72分)1、(1)x=5;(2)811 x=2、14 53a-<≤-3、4.4、(1)∠2=∠1+∠3;(2)不成立,应为∠3=∠1+∠2,证明略.5、略;m=40, 14.4°;870人.6、25元超市一共购进1200个魔方。
部编人教版七年级数学下册期中测试卷(带答案)
部编人教版七年级数学下册期中测试卷(带答案)班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. 用科学记数法表示2350000正确的是()A. 235×104B. 0.235×107C. 23.5×105D. 2.35×1062.实数a、b在数轴上的位置如图所示, 且|a|>|b|, 则化简的结果为()A. 2a+bB. -2a+bC. bD. 2a-b3.已知平面内不同的两点A(a+2, 4)和B(3, 2a+2)到x轴的距离相等, 则a的值为()A. ﹣3B. ﹣5C. 1或﹣3D. 1或﹣54.若ax=6, ay=4, 则a2x﹣y的值为()A. 8B. 9C. 32D. 405.若关于x的不等式组恰有3个整数解, 则a的取值范围是()A. B. C. D.6.如图所示, 圆的周长为4个单位长度, 在圆的4等分点处标上数字0, 1, 2, 3, 先让圆周上数字0所对应的点与数轴上的数-2所对应的点重合, 再让圆沿着数轴按顺时针方向滚动, 那么数轴上的数-2017将与圆周上的哪个数字重合()A. 0B. 1C. 2D. 37.如图, △ABC的面积为3, BD:DC=2:1, E是AC的中点, AD与BE相交于点P, 那么四边形PDCE的面积为()A. B. C. D.8.如图, , 平分, 若, 则的度数为()A. B. C. D.9. 如图,在△ABC中,P为BC上一点,PR⊥AB,垂足为R,PS⊥AC,垂足为S,∠CAP=∠APQ,PR=PS,下面的结论:①AS=AR;②QP∥AR;③△BRP≌△CSP.其中正确的是()A. ①②B. ②③C. ①③D. ①②③10.若x﹣m与x+3的乘积中不含x的一次项, 则m的值为()A. 3B. 1C. 0D. ﹣3二、填空题(本大题共6小题, 每小题3分, 共18分)1. 若a-b=1, 则的值为____________.2.若关于x、y的二元一次方程组的解是, 则关于a、b的二元一次方程组的解是________.3. 分解因式: x3y﹣2x2y+xy=________.4. 多项式﹣3x+7是关于x的四次三项式, 则m的值是________.5. 如图, 直线a, b与直线c相交, 给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠3=180°;⑤∠6=∠8, 其中能判断a∥b的是________(填序号)6.将一副三角板如图放置, 若, 则的大小为________.三、解答题(本大题共6小题, 共72分)1. 解方程:(1)(2)2. 若关于x、y的二元一次方程组的解都为正数.(1)求a的取值范围;(2)化简|a+1|﹣|a﹣1|;(3)若上述二元一次方程组的解是一个等腰三角形的一条腰和一条底边的长, 且这个等腰三角形的周长为9, 求a的值.3. 如图, 在Rt△ABC中, ∠ACB=90°, ∠A=40°, △ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE, 交AC的延长线于点F, 求∠F的度数.4. 如图, △ABC中, ∠ACB=90°, AD平分∠BAC, DE⊥AB于E,(1)若∠BAC=50°, 求∠EDA的度数;(2)求证:直线AD是线段CE的垂直平分线.5. 某校为加强学生安全意识, 组织全校学生参加安全知识竞赛. 从中抽取部分学生成绩(得分取正整数值, 满分为100分)进行统计, 绘制以下两幅不完整的统计图.请根据图中的信息, 解决下列问题:(1)填空:a=_____, n=_____;(2)补全频数直方图;(3)该校共有2000名学生. 若成绩在70分以下(含70分)的学生安全意识不强, 则该校安全意识不强的学生约有多少人?6. 某商场计划用元从厂家购进台新型电子产品, 已知该厂甲型乙型丙型家生产甲、乙、丙三种不同型号的电子产品, 设甲、乙型设备应各买入台, 其中()1购买丙型设备台(用含,x y的代数式表示) ;若商场同时购进三种不同型号的电子产品(每种型号至少有一台), 恰好用了元, 则商场有哪几种购进方案?在第题的基础上, 为了使销售时获利最多, 应选择哪种购进方案?此时获利为多少?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、D2、C3、A4、B5、A6、B7、B8、B9、A10、A二、填空题(本大题共6小题, 每小题3分, 共18分)1、12、3212 ab⎧=⎪⎪⎨⎪=-⎪⎩3.xy(x﹣1)24、55.①③④⑤.6.160°三、解答题(本大题共6小题, 共72分)1.(1);(2).2.(1)a>1;(2)2;(3)a的值是2.3、(1) 65°;(2) 25°.4.(1)65°(2)证明略5、(1)75, 54;(2)补图见解析;(3)600人.6、(1) ; (2) 购进方案有三种, 分别为:方案一:甲型台, 乙型台, 丙型台;方案二:甲型台, 乙型台, 丙型台;方案三:甲型台, 乙型台, 丙型台;(3) 购进甲型台, 乙型台, 丙型台, 获利最多, 为元。
完整版人教(完整版)七年级数学下册期中试卷及答案 - 百度文库
完整版人教(完整版)七年级数学下册期中试卷及答案 - 百度文库 一、选择题1.16的算术平方根是() A .4 B .4- C .2 D .2- 2.下列运动中,属于平移的是( )A .冷水加热过程中,小气泡上升成为大气泡B .急刹车时汽车在地面上的滑动C .随手抛出的彩球运动D .随风飘动的风筝在空中的运动 3.如图,小手盖住的点的坐标可能为( )A .()2,3B .()2,3-C .()2,3--D .()2,3-4.给出以下命题:①对顶角相等;②在同一平面内, 垂直于同一条直线的两条直线平行;③相等的角是对顶角;④内错角相等.其中假命题有( ) A .1个B .2个C .3个D .4个5.下列几个命题中,真命题有( ) ①两条直线被第三条直线所截,内错角相等; ②如果1∠和2∠是对顶角,那么12∠=∠; ③一个角的余角一定小于这个角的补角; ④三角形的一个外角大于它的任一个内角. A .1个 B .2个 C .3个 D .46.下列各式中,正确的是( )A .16=±4B .±16=4C .3273-=-D .2(4)4-=-7.如图,ABCD 为一长方形纸片,AB ∥CD ,将ABCD 沿E 折叠,A 、D 两点分别与A ′、D ′对应,若∠CFE =2∠CFD ′,则∠AEF 的度数是( )A .60°B .80°C .75°D .72°8.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O 出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点1A ,第二次移动到点2A ……,第n 次移动到点n A ,则点2021A 的坐标是( )A .()1010,0B .()1010,1C .()1011,0D .()1011,1二、填空题9.若a 、b 为实数,且满足|a ﹣2|+3b -=0,则a ﹣b 的立方根为_____. 10.若()1,1A m n +-与点()-3,2B 关于y 轴对称,则()2019m n +的值是___________;11.如图中,36B ∠=︒,76C ∠=︒,AD 、AF 分别是ABC 的角平分线和高,DAF ∠=________.12.如图,将三角板与直尺贴在一起,使三角板的直角顶点C (C ∠=90°)在直尺的一边上,若2∠=63°,则1∠的度数是__________.13.如图所示,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D ′,C ′的位置.若∠EFB =72°,则∠AED ′=__.14.当1x ≠-时,我们把11x -+称为x 为“和1负倒数”.如:1的“和1负倒数”为11112-=-+;-3的“和1负倒数”为11312-=-+.若134x =-,2x 是1x 的“和1负倒数”,3x 是2x 的“和1负倒数”…依次类推,则4x =______;123•••x x x …•2021x = _____. 15.如图,在平面直角坐标系中,已知点(,0)A a ,(,)C b c ,连接AC ,交y 轴于B ,且3125a -23(7)0b c --=,则点B 坐标为__.16.育红中学八五班的数学社团在做如下的探究活动:在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向上、向右、向下、向右的方向依次移动,每次移动1个单位长度,其移动路线如图所示,第1次移动到点A 1,第2次移动到点A 2…第n 次移动到点A n ,则△OA 2A 2021的面积是 __________________.三、解答题17.计算: (1)()()2201730.042731+-+--- (2)()231664532-----18.求下列各式中的x : (1)x 2﹣12149=0. (2)(x ﹣1)3=64. 19.填充证明过程和理由.如图,已知∠B +∠BCD =180°,∠B =∠D .求证:∠E =∠DFE . 证明:∵∠B +∠BCD =180°(已知), ∴AB ∥CD ( ). ∴∠B = ( ). 又∵∠B =∠D (已知), ∴∠D =∠ . ∴AD ∥BE ( ). ∴∠E =∠DFE ( ).20.如图所示正方形网格中,每个小正方形的边长均为1个单位,ABC 的三个顶点都在格点上.(1)分别写出点A 、B 、C 的坐标;(2)将ABC 向右平移6个单位长度,再向下平移4个单位长度,得到A 1B 1C 1,其中点A 的对应点是A 1,点B 的对应点是B 1,点C 的对应点是C 1,请画出A 1B 1C 1,并分别写出点A 1、B 1、C 1的坐标; (3)求ABC 的面积.21.阅读下面的文字,解答问题:大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部地写出来,于是小明用21-来表示2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的.因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分.根据以上内容,请解答:已知103x y +=+,其中x 是整数,01y <<,求x y -的值. 22.观察下图,每个小正方形的边长均为1, (1)图中阴影部分的面积是多少?边长是多少? (2)估计边长的值在哪两个整数之间.23.已知:直线AB ∥CD ,M ,N 分别在直线AB ,CD 上,H 为平面内一点,连HM ,HN . (1)如图1,延长HN 至G ,∠BMH 和∠GND 的角平分线相交于点E .求证:2∠MEN ﹣∠MHN =180°;(2)如图2,∠BMH 和∠HND 的角平分线相交于点E . ①请直接写出∠MEN 与∠MHN 的数量关系: ;②作MP 平分∠AMH ,NQ ∥MP 交ME 的延长线于点Q ,若∠H =140°,求∠ENQ 的度数.(可直接运用①中的结论)【参考答案】一、选择题1.A解析:A【分析】根据算术平方根的意义求解即可.【详解】解:16的算术平方根为4,故选:A.【点睛】本题考查了算术平方根,理解算术平方根的意义是解决问题的关键.2.B【详解】解:A、气泡在上升的过程中变大,不属于平移;B、急刹车时汽车在地面上的滑动属于平移;C、随手抛出的彩球运动既发生了平移,也发生了旋转,不属于平移;D、随风飘动的树叶在空中的运动,解析:B【详解】解:A、气泡在上升的过程中变大,不属于平移;B、急刹车时汽车在地面上的滑动属于平移;C、随手抛出的彩球运动既发生了平移,也发生了旋转,不属于平移;D、随风飘动的树叶在空中的运动,既发生了平移,也发生了旋转.故选B.【点睛】此题主要考查了平移,关键是掌握平移时图形中所有点移动的方向一致,并且移动的距离相等.3.C【分析】根据平面直角坐标系的象限内点的特点判断即可;【详解】∵盖住的点在第三象限, ∴()2,3--符合条件; 故答案选C . 【点睛】本题主要考查了平面直角坐标系象限内点的特征,准确分析判断是解题的关键. 4.B 【分析】根据对顶角的性质、平行线的判定和性质进行判断即可. 【详解】解:①对顶角相等,是真命题;②在同一平面内,垂直于同一条直线的两条直线平行,是真命题; ③相等的角不一定是对顶角,原命题是假命题; ④两直线平行,内错角相等,原命题是假命题. 故选:B . 【点睛】考查了命题与定理的知识,解题的关键是了解对顶角的性质、平行线的判定和性质,难度较小. 5.B 【分析】根据平行线的性质对①进行判断;根据对顶角的性质对②进行判断;根据余角与补角的定义对③进行判断;根据三角形外角性质对④进行判断. 【详解】解:两条平行直线被第三条直线所截,内错角相等,所以①错误; 如果∠1和∠2是对顶角,那么∠1=∠2,所以②正确; 一个角的余角一定小于这个角的补角,所以③正确;三角形的外角大于任何一个与之不相邻的一个内角,所以④错误. 故选:B . 【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理. 6.C 【分析】根据算术平方根与平方根、立方根的定义逐项判断即可得. 【详解】A 4,此项错误; B、4±,此项错误;C 3-,此项正确;D 4,此项错误; 故选:C . 【点睛】本题考查了算术平方根与平方根、立方根,熟记各定义是解题关键. 7.D 【分析】先根据平行线的性质,由AB ∥CD ,得到∠CFE =∠AEF ,再根据翻折的性质可得∠DFE =∠EFD ′,由平角的性质可求得∠CFD ′的度数,即可得出答案. 【详解】 解:∵AB ∥CD , ∴∠CFE =∠AEF ,又∵∠DFE =∠EFD ′,∠CFE =2∠CFD ′, ∴∠DFE =∠EFD ′=3∠CFD ′,∴∠DFE +∠CFE =3∠CFD ′+2∠CFD ′=180°, ∴∠CFD ′=36°,∴∠AEF =∠CFE =2∠CFD ′=72°. 故选:D . 【点睛】本题主要考查了平行线的性质,翻折变换等知识,熟练应用平行线的性质进行求解是解决本题的关键.8.B 【分析】根据题意可得 ,,,,,, ,由此得出纵坐标规律:以1,1,0,0的顺序,每4个为一个循环,可求出点的纵坐标,然后根据,,,,可得:,即可求解. 【详解】 解:由题意得: ,,,,解析:B 【分析】根据题意可得1(0,1)A ,2(1,1)A ,3(1,0)A ,4(2,0)A ,5(2,1)A ,6(3,1)A ,,由此得出纵坐标规律:以1,1,0,0的顺序,每4个为一个循环,可求出点2021A 的纵坐标,然后根据4(2,0)A ,8(4,0)A ,12(6,0)A ,,可得:2020(1010,0)A ,即可求解.【详解】 解:由题意得:1(0,1)A ,2(1,1)A ,3(1,0)A ,4(2,0)A ,5(2,1)A ,6(3,1)A ,,由此得出纵坐标规律:以1,1,0,0的顺序,每4个为一个循环,∵202145051÷= ,∴点2021A 的纵坐标为1, ∵4(2,0)A ,8(4,0)A ,12(6,0)A ,,由此得:2020(1010,0)A ,∴2021(1010,1)A . 故选:B 【点睛】本题主要考查了平面直角坐标系中点的坐标规律题——坐标与旋转,解题的关键是理解题意找出规律解答问题.二、填空题 9.-1 【分析】根据非负数的性质,求出a 、b 的值,再进而计算所给代数式的立方根. 【详解】解:∵|a ﹣2|+=0,|a ﹣2|≥0,≥0 ∴a ﹣2=0,3﹣b =0 ∴a =2,b =3 ∴, 故答案为:解析:-1 【分析】根据非负数的性质,求出a 、b 的值,再进而计算所给代数式的立方根. 【详解】解:∵|a ﹣0,|a ﹣2|≥0 ∴a ﹣2=0,3﹣b =0 ∴a =2,b =3 ∴1==-,故答案为:﹣1. 【点睛】本题主要考查了非负数的性质,立方根的性质,关键是根据“两个非负数和为0,则这两个数都为0”列出方程求得a 、b 的值.10.1 【分析】根据关于y 轴对称的点,纵坐标相同,横坐标互为相反数,可得m 、n 的值,代入计算可得答案. 【详解】由点与点的坐标关于y 轴对称,得:,, 解得:,, ∴.故答案为:. 【点睛】 本题解析:1 【分析】根据关于y 轴对称的点,纵坐标相同,横坐标互为相反数,可得m 、n 的值,代入计算可得答案. 【详解】由点()11A m n +-,与点()32B -,的坐标关于y 轴对称,得: 13m +=,12n -=,解得:2m =,1n =-, ∴20192019()(21)1m n +=-=. 故答案为:1. 【点睛】本题考查了关于y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.11.【分析】根据三角形内角和定理及角平分线的性质求出∠BAD 度数,再由三角形内角与外角的性质可求出∠ADF 的度数,由AF ⊥BC 可求出∠AFD=90°,再由三角形的内角和定理即可解答. 【详解】 ∵A 解析:20︒【分析】根据三角形内角和定理及角平分线的性质求出∠BAD 度数,再由三角形内角与外角的性质可求出∠ADF 的度数,由AF ⊥BC 可求出∠AFD=90°,再由三角形的内角和定理即可解答. 【详解】∵AF 是ABC 的高,∴90AFB ∠=︒, 在Rt ABF 中,36B ∠=︒,∴90BAF B ∠=︒-∠9036=︒-︒54=︒. 又∵在ABC 中,36B ∠=︒,76C ∠=︒, ∴18068BAC B C ∠=︒-∠-∠=︒, 又∵AD 平分BAC ∠,∴11683422BAD CAD BAC ∠=∠=∠=⨯=︒,∴DAF BAF BAD ∠=∠-∠5434=︒-︒20=︒.故答案为:20︒. 【点睛】本题考查了三角形内角和定理、三角形的高线、及三角形的角平分线等知识,难度中等.12.27° 【分析】根据直尺的两边是平行的,从而可以得到CD ∥EF ,然后根据平行线的性质,可以得到∠2和∠DCE 的关系,再根据∠ACB=∠1+∠DCE ,从而可以求得∠1的度数,本题得以解决. 【详解】解析:27° 【分析】根据直尺的两边是平行的,从而可以得到CD ∥EF ,然后根据平行线的性质,可以得到∠2和∠DCE 的关系,再根据∠ACB =∠1+∠DCE ,从而可以求得∠1的度数,本题得以解决. 【详解】解:∵CD //EF ,∠2=63°, ∴∠2=∠DCE =63°, ∵∠DCE +∠1=∠ACB =90°, ∴∠1=27°, 故答案为:27°.【点睛】本题考查平行线的性质,解答本题的关键是明确题意,利用平行线的性质和数形结合的思想解答.13.36° 【分析】根据平行线的性质可知∠DEF =∠EFB =72°,由折叠的性质求出∠D′EF72°,然后可求∠AED′的值.【详解】解:∵四边形ABCD为长方形,∴AD//BC,∴∠DEF=解析:36°【分析】根据平行线的性质可知∠DEF=∠EFB=72°,由折叠的性质求出∠D′EF72°,然后可求∠AED′的值.【详解】解:∵四边形ABCD为长方形,∴AD//BC,∴∠DEF=∠EFB=72°,又由折叠的性质可得∠D′EF=∠DEF=72°,∴∠AED′=180°﹣72°﹣72°=36°,故答案为:36°.【点睛】本题考查了平行线的性质,折叠的性质,熟练掌握折叠的性质是解答本题的关键.14.【分析】根据“和1负倒数”的定义分别计算、、、…,可得到数字的变化规律:从开始每3个数为一周期循环,由此即可解答.【详解】解:由“和1负倒数”定义和可得:,,,……由此可得出从开解析:3 4 -【分析】根据“和1负倒数”的定义分别计算2x、3x、4x、5x…,可得到数字的变化规律:从1x开始每3个数为一周期循环,由此即可解答.【详解】解:由“和1负倒数”定义和13 4x=-可得:214314x =-=--+, 311413x =-=-+, 4131413x =-=-+,514314x =-=--+ ……由此可得出从1x 开始每3个数为一周期循环,∵2021÷3=673…2,∴20214x =-,202034x =-,又1x ·2x .3x = 31(4)43-⨯-⨯=1, ∴123•••x x x …•2021x =3(4)4-⨯-=3, 故答案为:34-;3. 【点睛】本题考查新定义的实数运算、数字型规律探究,理解新定义的运算法则,正确得出数字的变化规律是解答的关键.15.【分析】由立方根及算术平方根、完全平方式求出,的值,得出,两点的坐标,连接,设,根据三角形的面积可求出的值,则答案可求出.【详解】解:(1),,,,,,,.如图,连接,设,,, 解析:358(0,) 【分析】由立方根及算术平方根、完全平方式求出,,a b c ,的值,得出A ,C 两点的坐标,连接OC ,设OB x =,根据三角形AOC 的面积可求出x 的值,则答案可求出.【详解】解:(1)3125a =-,30b -=,70c -=5a ∴=-,3b =,7c =, (5,0)A -,(3,7)C ,5OA ∴=. 如图,连接OC ,设OB x =,(3,7)C ,15717.52AOC S ∆∴=⨯⨯=, AOC AOB COB S S S ∆∆∆=+,115317.522xx ∴+⨯=, 358x ∴=, ∴点D 的坐标为358(0,),故答案是:358(0,).【点睛】 本题考查了立方根及算术平方根、完全平方公式、三角形的面积、坐标与图形的性质,解题的关键是利用分割的思想解答.16.【分析】由题意知OA4n =2n ,图形运动4次一个循环,横坐标对应一个循环增加2,计算出A2A2021,由此即可解决问题.【详解】解:由题意知OA4n =2n (n 为正整数),图形运动4次一个循环解析:10092【分析】由题意知OA 4n =2n ,图形运动4次一个循环,横坐标对应一个循环增加2,计算出A 2A 2021,由此即可解决问题.【详解】解:由题意知OA 4n =2n (n 为正整数),图形运动4次一个循环,横坐标对应一个循环增加2∵2021÷4=505…1,∴A2021与A1是对应点,A2020与A0是对应点∴OA2020=505×2=1010,A1A2021=1010∴A2A2021=1010-1=1009则△OA2A2019的面积是12×1×1009=10092,故答案为:10092.【点睛】本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得.三、解答题17.(1)1.2;(2)【解析】试题分析:(1)、根据算术平方根、立方根以及-1的奇数次幂的计算法则得出各式的值,然后进行求和得出答案;(2)、根据算术平方根、立方根以及绝对值的计算法则得出各式的值,解析:(1)1.2;(27【解析】试题分析:(1)、根据算术平方根、立方根以及-1的奇数次幂的计算法则得出各式的值,然后进行求和得出答案;(2)、根据算术平方根、立方根以及绝对值的计算法则得出各式的值,然后进行求和得出答案.试题解析:(1)原式()()0.23310.2331 1.2=+-+--=-++=(2)原式(445244527=---=---=18.(1);(2)【分析】(1)用求平方根的方法解方程即可得到答案;(2)用求立方根的方法解方程即可得到答案.【详解】解:(1)∵,∴,∴;(2)∵,∴,∴.【点睛】本题主要考查解析:(1)117x=±;(2)5x=【分析】(1)用求平方根的方法解方程即可得到答案;(2)用求立方根的方法解方程即可得到答案.【详解】解:(1)∵21210 49x-=,∴212149x=,∴117x=±;(2)∵()3164x-=,∴14x-=,∴5x=.【点睛】本题主要考查了平方根和立方根,解题的关键在于能够熟练掌握平方根和立方根的求解方法.19.同旁内角互补,两直线平行;∠DCE;两直线平行,同位角相等;DCE;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据平行线的判定得出AB∥CD,根据平行线的性质得出∠B=∠DCE,求出解析:同旁内角互补,两直线平行;∠DCE;两直线平行,同位角相等;DCE;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据平行线的判定得出AB∥CD,根据平行线的性质得出∠B=∠DCE,求出∠DCE=∠D,根据平行线的判定得出AD∥BE,根据平行线的性质得出即可.【详解】证明:∵∠B+∠BCD=180°(已知),∴AB∥CD(同旁内角互补,两直线平行),∴∠B=∠DCE(两直线平行,同位角相等),又∵∠B=∠D(已知),∴∠D=∠DCE(等量代换),∴AD∥BE(内错角相等,两直线平行),∴∠E=∠DFE(两直线平行,内错角相等).故答案为:同旁内角互补,两直线平行;∠DCE;两直线平行,同位角相等;DCE;内错角相等,两直线平行;两直线平行,内错角相等.【点睛】本题主要考查平行线的判定和性质,掌握同旁内角互补,两直线平行;内错角相等,两直线平行;两直线平行,内错角相等是解题的关键.20.(1)A(﹣3,4),B(﹣5,2),C(﹣2,0);(2)见解析,A1(3,0),B1(1,﹣2),C1(4,﹣4);(3)5【分析】(1)根据点的坐标的表示方法求解;(2)根据点平移的坐标解析:(1)A(﹣3,4),B(﹣5,2),C(﹣2,0);(2)见解析,A1(3,0),B1(1,﹣2),C1(4,﹣4);(3)5【分析】(1)根据点的坐标的表示方法求解;(2)根据点平移的坐标变换规律写出点A1、B1、C1的坐标,然后描点即可;(3)用一个矩形的面积分别减去三个直角三角形的面积去计算△ABC的面积.【详解】解:(1)由题意得:A(﹣3,4),B(﹣5,2),C(﹣2,0);(2)如图,△A1B1C1为所作,∵A1是经过点A(-3,4)右平移6个单位长度,再向下平移4个单位长度得到的,∴A1(-3+6,4-4)即(3,0)同理得到B1(1,﹣2),C1(4,﹣4);(3)△ABC的面积=3×4﹣12×2×3﹣12×4×1﹣12×2×2=5.【点睛】本题主要考查了平移作图,坐标与图形,根据平移方式确定点的坐标,解题的关键在于能够熟练掌握相关知识进行求解.21.同意;【分析】找出的整数部分与小数部分.然后再来求.【详解】解:同意小明的表示方法.无理数的整数部分是,即,无理数的小数部分是,即,,【点睛】本题主要考查了无理数的大小.解题解析:同意;12-【分析】x y-.【详解】解:同意小明的表示方法.111012<+∴无理数1011,即11x=,∴无理数10(1011 1-,即1y=,)11112x y∴-=-=【点睛】本题主要考查了无理数的大小.解题关键是确定无理数的整数部分即可解决问题.22.(1)图中阴影部分的面积17,边长是;(2)边长的值在4与5之间【分析】(1)由图形可以得到阴影正方形的面积等于原来大正方形的面积减去周围四个直角三角形的面积,由正方形的面积等于边长乘以边长,可解析:(1)图中阴影部分的面积17;(2)边长的值在4与5之间【分析】(1)由图形可以得到阴影正方形的面积等于原来大正方形的面积减去周围四个直角三角形的面积,由正方形的面积等于边长乘以边长,可以得到阴影正方形的边长;(2【详解】(1)由图可知,图中阴影正方形的面积是:5×5−1442=17答:图中阴影部分的面积17(2)∵所以45∴边长的值在4与5之间;【点睛】本题主要考查了无理数的估算及算术平方根的定义,解题主要利用了勾股定理和正方形的面积求解,有一定的综合性,解题关键是无理数的估算.23.(1)见解析;(2)①2∠MEN+∠MHN=360°;②20°【分析】(1)过点E作EP∥AB交MH于点Q,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等即解析:(1)见解析;(2)①2∠MEN+∠MHN=360°;②20°【分析】(1)过点E作EP∥AB交MH于点Q,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等即可得证.(2)①过点H作GI∥AB,利用(1)中结论2∠MEN﹣∠MHN=180°,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等得出∠AMH+∠HNC=360°﹣(∠BMH+∠HND),进而用等量代换得出2∠MEN+∠MHN=360°.②过点H作HT∥MP,由①的结论得2∠MEN+∠MHN=360°,∠H=140°,∠MEN=110°.利用平行线性质得∠ENQ+∠ENH+∠NHT=180°,由角平分线性质及邻补角可得∠ENQ+∠ENH+140°﹣12(180°﹣∠BMH)=180°.继续使用等量代换可得∠ENQ度数.【详解】解:(1)证明:过点E作EP∥AB交MH于点Q.如答图1∵EP∥AB且ME平分∠BMH,∴∠MEQ=∠BME=12∠BMH.∵EP∥AB,AB∥CD,∴EP∥CD,又NE平分∠GND,∴∠QEN=∠DNE=12∠GND.(两直线平行,内错角相等)∴∠MEN=∠MEQ+∠QEN=12∠BMH+12∠GND=12(∠BMH+∠GND).∴2∠MEN=∠BMH+∠GND.∵∠GND+∠DNH=180°,∠DNH+∠MHN=∠MON=∠BMH.∴∠DHN=∠BMH﹣∠MHN.∴∠GND+∠BMH﹣∠MHN=180°,即2∠MEN﹣∠MHN=180°.(2)①:过点H作GI∥AB.如答图2由(1)可得∠MEN=12(∠BMH+∠HND),由图可知∠MHN=∠MHI+∠NHI,∵GI∥AB,∴∠AMH=∠MHI=180°﹣∠BMH,∵GI∥AB,AB∥CD,∴GI∥CD.∴∠HNC=∠NHI=180°﹣∠HND.∴∠AMH+∠HNC=180°﹣∠BMH+180°﹣∠HND=360°﹣(∠BMH+∠HND).又∵∠AMH+∠HNC=∠MHI+∠NHI=∠MHN,∴∠BMH+∠HND=360°﹣∠MHN.即2∠MEN+∠MHN=360°.故答案为:2∠MEN+∠MHN=360°.②:由①的结论得2∠MEN+∠MHN=360°,∵∠H=∠MHN=140°,∴2∠MEN=360°﹣140°=220°.∴∠MEN=110°.过点H作HT∥MP.如答图2∵MP∥NQ,∴HT∥NQ.∴∠ENQ+∠ENH+∠NHT=180°(两直线平行,同旁内角互补).∵MP平分∠AMH,∴∠PMH=12∠AMH=12(180°﹣∠BMH).∵∠NHT=∠MHN﹣∠MHT=140°﹣∠PMH.∴∠ENQ+∠ENH+140°﹣12(180°﹣∠BMH)=180°.∵∠ENH=12∠HND.∴∠ENQ+12∠HND+140°﹣90°+12∠BMH=180°.∴∠ENQ+12(HND+∠BMH)=130°.∴∠ENQ+12∠MEN=130°.∴∠ENQ=130°﹣110°=20°.【点睛】本题考查了平行线的性质,角平分线的性质,邻补角,等量代换,角之间的数量关系运算,辅助线的作法,正确作出辅助线是解题的关键,本题综合性较强.。
完整版人教(完整版)七年级数学下册期中试卷及答案 - 百度文库
完整版人教(完整版)七年级数学下册期中试卷及答案 - 百度文库一、选择题1.9的算术平方根为()A .9B .9±C .3D .3±2.在下面的四幅图案中,能通过图案(1)平移得到的是( )A .B .C .D . 3.在平面直角坐标系中,在第三象限的点是( )A .(-3,5)B .(1,-2)C .(-2,-3)D .(1,1) 4.下列命题中属假命题的是( )A .两直线平行,内错角相等B .a ,b ,c 是直线,若a ⊥b ,b ⊥c ,则a ⊥cC .a ,b ,c 是直线,若a //b ,b //c ,则a //cD .无限不循环小数是无理数,每一个无理数都可以用数轴上的一个点表示5.把一块直尺与一块含30的直角三角板如图放置,若134∠=︒,则2∠的度数为( )A .114︒B .126︒C .116︒D .124°6.若23a =-,2b =--,()332c =--,则a ,b ,c 的大小关系是( )A .a b c >>B .c a b >>C .b a c >>D .c b a >> 7.如图,直线a ∥b ,∠1=74°,∠2=34°,则∠3的度数是( )A .75°B .55°C .40°D .35°8.如图,动点P 在平面直角坐标系xOy 中,按图中箭头所示方向运动,第1次从原点运动到点()1,2,第2次接着运动到点()20,,第3次接着运动到点()3,1,第4次接着运动到点()4,0,……,按这样的运动规律,经过第2021次运动后,动点P 的坐标是( )A .()2020,0B .()2020,1C .()2021,1D .()2021,2二、填空题9.若a 、b 为实数,且满足|a ﹣2|+3b -=0,则a ﹣b 的立方根为_____.10.已知点A (2a +3b ,﹣2)和点B (8,3a +1)关于y 轴对称,那么a +b =_____. 11.如图,在△ABC 中,∠A=50°,∠C=72°,BD 是△ABC 的一条角平分线,求∠ADB=__度.12.如图,a ∥b ,∠1=68°,∠2=42°,则∠3=_____________.13.如图,将长方形纸片沿CD 折叠,CF 交AD 于点E ,得到图1,再将纸片沿CD 折叠.得到图2,若36AEC ∠=︒,则图2中的CDG ∠为_______14.a ※b 是新规定的这样一种运算法则:a ※b=a+2b ,例如3※(﹣2)=3+2×(﹣2)=﹣1.若(﹣2)※x=2+x ,则x 的值是_____.15.第二象限内的点()P x,y 满足x =9,2y =4,则点P 的坐标是___.16.如图:在平面直角坐标系中,已知P 1(﹣1,0),P 2(﹣1,﹣1),P 3(1,﹣1),P 4(1,1),P 5(﹣2,1),P 6(﹣2,﹣2)…,依次扩展下去,则点P 2021的坐标为 _____________.三、解答题17.计算:(1)3840.04---(2)23(2)279-+-18.求下列各式中的x 的值.(1)21(1)24x -=; (2)32(2)160x --=.19.如图//EF AD ,12∠=∠,110AGD ∠=︒,求BAC ∠度数.完成说理过程并注明理由. 解:∵//EF AD ,∴2∠=________( )又∵12∠=∠,∴13∠=∠,∴//AB __________( )∴______180AGD ∠+=︒( )∵110AGD ∠=︒,∴BAC ∠=______度.20.将△ABO 向右平移4个单位,再向下平移1个单位,得到三角形A ′B ′O ′(1)请画出平移后的三角形A ′B ′O ′.(2)写出点A ′、O ′的坐标.21.数学张老师在课堂上提出一个问题:“通过探究知道:2 1.414≈,它是个无限不循环小数,也叫无理数,它的整数部分是1,那么有谁能说出它的小数部分是多少”,小明举手回答:它的小数部分我们无法全部写出来,但可以用2-1来表示它的小数部分,张老师夸奖小明真聪明,肯定了他的说法.现请你根据小明的说法解答:(1)3的小数部分是多少,请表示出来.(2)a 为3的小数部分,b 为5的整数部分,求-3a b +的值.(3)已知8+3=x+y ,其中x 是一个正整数,0<y <1,求()20202-3x y +的值.22.如图,这是由8个同样大小的立方体组成的魔方,体积为64.(1)求出这个魔方的棱长;(2)图中阴影部分是一个正方形ABCD ,求出阴影部分的边长.23.如图1,把一块含30°的直角三角板ABC 的BC 边放置于长方形直尺DEFG 的EF 边上. (1)根据图1填空:∠1= °,∠2= °;(2)现把三角板绕B 点逆时针旋转n °.①如图2,当n =25°,且点C 恰好落在DG 边上时,求∠1、∠2的度数;②当0°<n <180°时,是否会存在三角板某一边所在的直线与直尺(有四条边)某一边所在的直线垂直?如果存在,请直接写出所有n 的值和对应的那两条垂线;如果不存在,请说明理由.【参考答案】一、选择题1.C解析:C【分析】根据算术平方根的定义即可得.【详解】解:239=,∴的算术平方根为3,9故选:C.【点睛】本题考查了算术平方根,熟记定义是解题关键.2.C【分析】平移前后形状与大小没有改变,并且对应点的连线平行且相等的图形即可.【详解】解:A、对应点的连线相交,不能通过平移得到,不符合题意;B、对应点的连线相交,不能通过平移得到,不符合题解析:C【分析】平移前后形状与大小没有改变,并且对应点的连线平行且相等的图形即可.【详解】解:A、对应点的连线相交,不能通过平移得到,不符合题意;B、对应点的连线相交,不能通过平移得到,不符合题意;C、可通过平移得到,符合题意;D、对应点的连线相交,不能通过平移得到,不符合题意;故选:C.【点睛】本题考查了平移变换,解题的关键是熟练掌握平移变换的性质,属于中考常考题型.3.C【分析】根据第三象限点的特征0x <,0y <依次判断即可.【详解】解:A :0x <,0y >,因此在第二象限,故错误;B :0x >,0y <,,因此在第四象限,故错误;C :0x <,0y <,,因此在第三象限,故正确;D :0x >,0y >,,因此在第一象限,故错误;故答案为:C【点睛】本题主要考查了平面直角坐标系象限的特征,熟悉掌握各象限的横纵坐标的取值范围是解题的关键.4.B【分析】根据平行线的性质对A 、C 进行判断;根据平行线的性质对B 进行判断;根据无理数的定义和数轴上的点与实数一一对应对D 进行判断.【详解】解:A 、两直线平行,内错角相等,所以A 选项为真命题;B 、a ,b ,c 是直线,若a ⊥b ,b ⊥c ,则a ∥c ,所以B 选项为假命题;C 、a ,b ,c 是直线,若a ∥b ,b ∥c ,则a ∥b ,所以C 选项为真命题;D 、无限不循环小数是无理数,每一个无理数都可以用数轴上的一个点表示,所以D 选项为真命题.故选:B .【点睛】此题考查了平行线的性质和无理数及数轴表示实数,难度一般,认真理解判断即可. 5.D【分析】根据角的和差可先计算出∠AEF ,再根据两直线平行同旁内角互补即可得出∠2的度数.【详解】解:由题意可知AD//BC ,∠FEG=90°,∵∠1=34°,∠FEG=90°,∴∠AEF=90°-∠1=56°,∵AD//BC ,∴∠2=180°-∠AEF=124°,故选:D .【点睛】本题考查平行线的性质.熟练掌握两直线平行,同旁内角互补并能正确识图是解题关键. 6.D【分析】根据乘方运算,可得平方根、立方根,根据绝对值,可得绝对值表示的数,根据正数大于负数,可得答案.【详解】解:∵233a =-=-,2b =-,()()33222c =--=--=,∴c b a >>,故选:D .【点睛】本题考查了实数比较大小,先化简,再比较,解题的关键是掌握乘方运算,绝对值的化简.7.C【分析】根据平行线的性质得出∠4=∠1=74°,然后根据三角形外角的性质即可求得∠3的度数.【详解】解:∵直线a ∥b ,∠1=74°,∴∠4=∠1=74°,∵∠2+∠3=∠4,∴∠3=∠4-∠2=74°-34°=40°.故选:C .【点睛】本题考查了平行线的性质和三角形外角的性质,熟练掌握性质定理是解题的关键. 8.D【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数,纵坐标为2,0,1,0,2,0,1,0…,每4次一轮这一规律,进而求出即可.【详解】解:由图可知:横坐标1,2,3,4…依解析:D【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数,纵坐标为2,0,1,0,2,0,1,0…,每4次一轮这一规律,进而求出即可.【详解】解:由图可知:横坐标1,2,3,4…依次递增,则第2021个点的横坐标为2021; 纵坐标2,0,1,0,2,0,1,0…4个一循环,2021÷4=505…1,∴经过第2021次运动后,P (2021,2).故选D .【点睛】此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键.二、填空题9.-1【分析】根据非负数的性质,求出a、b的值,再进而计算所给代数式的立方根.【详解】解:∵|a﹣2|+=0,|a﹣2|≥0,≥0∴a﹣2=0,3﹣b=0∴a=2,b=3∴,故答案为:解析:-1【分析】根据非负数的性质,求出a、b的值,再进而计算所给代数式的立方根.【详解】解:∵|a﹣0,|a﹣2|≥0∴a﹣2=0,3﹣b=0∴a=2,b=3∴==-,1故答案为:﹣1.【点睛】本题主要考查了非负数的性质,立方根的性质,关键是根据“两个非负数和为0,则这两个数都为0”列出方程求得a、b的值.10.-3.【分析】关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.据此可得a,b 的值.【详解】解:∵点A(2a+3b,﹣2)和点B(8,3a+1)关于y轴对称,∴,解得,∴a+b=解析:-3.【分析】关于y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.据此可得a ,b 的值.【详解】解:∵点A (2a +3b ,﹣2)和点B (8,3a +1)关于y 轴对称,∴238312a b a +=-⎧⎨+=-⎩, 解得12a b =-⎧⎨=-⎩, ∴a +b =﹣3,故答案为:﹣3.【点睛】本题考查的是关于y 轴对称的两个点的坐标关系,掌握以上知识是解题的关键. 11.101【分析】直接利用三角形内角和定理得出∠ABC 的度数,再利用角平分线的性质结合三角形内角和定理得出答案.【详解】∵在△ABC 中,∠A=50°,∠C=72°,∴∠ABC=180°−50°解析:101【分析】直接利用三角形内角和定理得出∠ABC 的度数,再利用角平分线的性质结合三角形内角和定理得出答案.【详解】∵在△ABC 中,∠A=50°,∠C=72°,∴∠ABC=180°−50°−72°=58°,∵BD 是△ABC 的一条角平分线,∴∠ABD=29°,∴∠ADB=180°−50°−29°=101°.故答案为:101.【点睛】此题考查三角形内角和定理,解题关键在于掌握其定理.12.110°【分析】如图,利用平行线的性质,求得∠4=∠5=∠1,计算∠2+∠5,再次利用平行线的性质,得到∠3=∠2+∠5.【详解】如图,∵a ∥b ,∴∠4=∠1=68°,∴∠5=∠4=68解析:110°【分析】如图,利用平行线的性质,求得∠4=∠5=∠1,计算∠2+∠5,再次利用平行线的性质,得到∠3=∠2+∠5.【详解】如图,∵a∥b,∴∠4=∠1=68°,∴∠5=∠4=68°,∵∠2=42°,∴∠5+∠2=68°+42°=110°,∵a∥b,∴∠3=∠2+∠5,∴∠3=110°,故答案为:110°.【点睛】本题考查了平行线的性质,对顶角相等,熟练掌握平行线的性质,对顶角相等是解题的关键.13.126°【分析】在图1中,求出∠BCE,根据折叠的性质和外角的性质得到∠EDG,在图2中结合折叠的性质,利用∠CDG=∠EDG-∠CDE可得结果.【详解】解:在图1中,∠AEC=36°,∵解析:126°【分析】在图1中,求出∠BCE,根据折叠的性质和外角的性质得到∠EDG,在图2中结合折叠的性质,利用∠CDG=∠EDG-∠CDE可得结果.【详解】解:在图1中,∠AEC=36°,∵AD∥BC,∴∠BCE=180°-∠AEC=144°,由折叠可知:∠ECD=(180°-144°)÷2=18°,∴∠CDE=∠AEC-∠ECD=18°,∵∠DEF=∠AEC=36°,∴∠EDG=180°-36°=144°,在图2中,∠CDG=∠EDG-∠CDE=126°,故答案为:126°.【点睛】本题考查了平行线的性质,折叠问题以及三角形的外角性质,利用三角形的外角性质,找出∠EDG的度数是解题的关键.14.4【解析】根据题意可得(﹣2)※x=﹣2+2x,进而可得方程﹣2+2x=2+x,解得:x=4.故答案为:4.点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根解析:4【解析】根据题意可得(﹣2)※x=﹣2+2x,进而可得方程﹣2+2x=2+x,解得:x=4.故答案为:4.点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根据新定义的代数式计算即可.15.(-9, 2)【分析】点在第二象限内,那么其横坐标小于,纵坐标大于,进而根据所给的条件判断具体坐标.【详解】∵点在第二象限,∴,,又∵,,∴,,∴点的坐标是.【点睛】本题主要考查解析:(-9, 2)【分析】点在第二象限内,那么其横坐标小于0,纵坐标大于0,进而根据所给的条件判断具体坐标.【详解】∵点()P x y ,在第二象限,∴0x <,0y >,又∵9x =,24y =,∴9x =-,2y =,∴点P 的坐标是()92-,. 【点睛】本题主要考查了绝对值的性质和有理数的乘方以及平面直角坐标系中第二象限的点的坐标的符号特点,记住各象限内点的坐标的符号是解决的关键.16.(﹣506,505)【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D 第三象限,被4除余3的点在第四象限,点P2021的在第二象限,且解析:(﹣506,505)【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D 第三象限,被4除余3的点在第四象限,点P 2021的在第二象限,且纵坐标=2020÷4,再根据第二项象限点的规律即可得出结论.【详解】解:∵P 1(﹣1,0),P 2(﹣1,﹣1),P 3(1,﹣1),P 4(1,1),P 5(﹣2,1),P 6(﹣2,﹣2)…,∴下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在第三象限,被4除余3的点在第四象限,∵2021÷4=505…1,∴点P 2021在第二象限,∵点P 5(﹣2,1),点P 9(﹣3,2),点P 13(﹣4,3),∴点P 2021(﹣506,505),故答案为:(﹣506,505).【点睛】本题考查了规律型:点的坐标,是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定点所在的大致位置,该位置处点的规律,然后就可以进一步推得点的坐标.三、解答题17.(1);(2).【分析】直接利用立方根以及算术平方根的定义化简得出答案.【详解】(1)(2)【点睛】此题主要考查了实数运算,正确化简各数是解题关键.解析:(1) 4.2-;(2)2.【分析】直接利用立方根以及算术平方根的定义化简得出答案.【详解】(1220.2=---4.2=-(2233=+-2=【点睛】此题主要考查了实数运算,正确化简各数是解题关键.18.(1)或;(2).【分析】(1)两边开平方即可得出两个一元一次方程,求出方程的解即可;(2)先整理变形为(x﹣2)3=8,开立方根得出x﹣2=2,求出即可.【详解】解:(1),,,或解析:(1)52x=或12x=-;(2)4x=.【分析】(1)两边开平方即可得出两个一元一次方程,求出方程的解即可;(2)先整理变形为(x﹣2)3=8,开立方根得出x﹣2=2,求出即可.【详解】解:(1)29(1)4x-=,312x-=±,312x =±, 52x =或12x =-; (2)32(2)160x --=,32(2)16x -=,3(2)8x -=,22x -=,4x =.【点睛】本题是根据平方根和立方根的定义解方程,将方程系数化为1变形为:x 2=a (a ≥0)或x 3=b 的形式,再根据定义开平方或开立方,注意开平方时,有两个解.19.∠3;两直线平行,同位角相等;DG ;内错角相等,两直线平行;∠BAC ;两直线平行,同旁内角互补;70【分析】根据两直线平行,同位角相等可得∠2=∠3,通过等量代换得出∠1=∠3,再根据内错角相等解析:∠3;两直线平行,同位角相等;DG ;内错角相等,两直线平行;∠BAC ;两直线平行,同旁内角互补;70【分析】根据两直线平行,同位角相等可得∠2=∠3,通过等量代换得出∠1=∠3,再根据内错角相等,两直线平行,得出AB ∥DG ,然后根据两直线平行,同旁内角互补解答即可.【详解】解:∵EF ∥AD ,∴∠2=∠3(两直线平行,同位角相等).又∵∠1=∠2,∴∠1=∠3,∴AB ∥DG (内错角相等,两直线平行).∴∠AGD +∠BAC =180°(两直线平行,同旁内角互补).∵∠AGD =110°,∴∠BAC =70度.故答案为:∠3;两直线平行,同位角相等;DG ;内错角相等,两直线平行;∠BAC ;两直线平行,同旁内角互补;70.【点睛】本题考查了平行线的判定与性质,熟记性质与判定方法,并判断出AB ∥DG 是解题的关键.20.(1)见解析;(2)A′,O′【分析】(1)分别作出A ,B ,O 的对应点A′,B′,O′即可.(2)根据点的位置写出坐标即可.【详解】解:(1)如图,△A′B′O′即为所求作.(2)A′(解析:(1)见解析;(2)A ′()2,1,O ′()41-,【分析】(1)分别作出A ,B ,O 的对应点A ′,B ′,O ′即可.(2)根据点的位置写出坐标即可.【详解】解:(1)如图,△A ′B ′O ′即为所求作.(2)A ′(2,1),O ′(4,−1).【点睛】本题考查作图−平移变换,解题的关键是熟练掌握基本知识,属于中考常考题型. 21.(1)-1;(2)1;(3)19【分析】(1)先求出的整数部分,即可求出结论;(2)先求出和的整数部分,即可求出a 和b 的值,从而求出结论; (3)求出的小数部分即可求出y ,从而求出x 的值,代入解析:(131;(2)1;(3)19【分析】(13(235a 和b 的值,从而求出结论;(33y ,从而求出x 的值,代入求值即可.【详解】解:(1)∵132 ∴31 ∴331;(2)∵12,23 ∴12∴1;∴1,b=2∴a b +-12+-=1(3)∵1∴1∴1)=9∴(20202x y +-=2020291⨯+-=181+=19 【点睛】本题主要考查了无理数大小的估算,根据估算求得无理数的整数部分和小数部分是解答本题的关键.22.(1)棱长为4;(2)边长为:(或)【分析】(1)由立方体的体积为棱长的立方可以得到答案;(2)用勾股定理直接计算得到答案.【详解】解:(1)设正方体的棱长为,则,所以,即正方体的棱长为4.解析:(1)棱长为4;(2【分析】(1)由立方体的体积为棱长的立方可以得到答案;(2)用勾股定理直接计算得到答案.【详解】解:(1)设正方体的棱长为x ,则364x =,所以4x =,即正方体的棱长为4.(2)因为正方体的棱长为4,所以AB =【点睛】本题考查的是立方根与算术平方根的理解与计算,由实际的情境去理解问题本身就是求一个数的立方根与算术平方根是关键.23.(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②见解析【分析】(1)根据邻补角的定义和平行线的性质解答;(2)①根据邻补角的定义求出∠ABE,再根据两直线平行,同位角相解析:(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②见解析【分析】(1)根据邻补角的定义和平行线的性质解答;(2)①根据邻补角的定义求出∠ABE,再根据两直线平行,同位角相等可得∠1=∠ABE,根据两直线平行,同旁内角互补求出∠BCG,然后根据周角等于360°计算即可得到∠2;②结合图形,分A B、B C、AC三条边与直尺垂直讨论求解.【详解】解:(1)∠1=180°-60°=120°,∠2=90°;故答案为:120,90;(2)①如图2,∵∠ABC=60°,∴∠ABE=180°-60°-n°=120°-n°,∵DG∥EF,∴∠1=∠ABE=120°-n°,∠BCG=180°-∠CBF=180°-n°,∵∠ACB+∠BCG+∠2=360°,∴∠2=360°-∠ACB-∠BCG=360°-90°-(180°-n°)=90°+n°;②当n=30°时,∵∠ABC=60°,∴∠ABF=30°+60°=90°,AB⊥DG(EF);当n=90°时,∠C=∠CBF=90°,∴BC⊥DG(EF),AC⊥DE(GF);当n=120°时,∴AB⊥DE(GF).【点睛】本题考查了平行线角的计算,垂线的定义,主要利用了平行线的性质,直角三角形的性质,读懂题目信息并准确识图是解题的关键.。
人教版七年级数学下学期期中测试卷含答案
七年级数学下学期期中测试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1、两条直线的位置关系有()A、相交、垂直B、相交、平行C、垂直、平行D、相交、垂直、平行2、如图所示,是一个“七”字形,与∠1是同位角的是()A、∠2B、∠3C、∠4D、∠53、经过一点A画已知直线a的平行线,能画()A、0条B、1条C、2条D、不能确定4、如图4,下列条件中,不能判断直线a//b的是()A、∠1=∠3B、∠2=∠3C、∠4=∠5D、∠2+∠4=180°5、下列图形中有稳定性的是()A.正方形 B.长方形 C.直角三角形 D.平行四边形6、一个正数x的平方根是2a-3与5-a,则x的值是()。
A.64B.36C.81D.497、如图,已知:∠1=∠2,∠3=∠4,∠A=80°,则∠BOC等于()A、95°B、120°C、130°D、无法确定8、若a*=1.1062,b*=0.947是经过舍入后作为的近似值,问a*+b*有几位有效数字?()A、4B、5C、6D、79、下列说法正确的是()A、符号相反的数互为相反数B、符号相反绝对值相等的数互为相反数C、绝对值相等的数互为相反数D、符号相反的数互为倒数10、在平面直角坐标系中,已知点A(-4,0)、B(0,2),现将线段AB向右平移,使A 与坐标原点0重合,则B平移后的坐标是()。
A.(0,-2)B.(4,2)C.(4,4)D.(2,4)二、填空题(本大题共7小题,每小题4分,共28分)11、用科学记数法表示9349000(保留2个有效数字)为________________.12、如图1直线AB,CD,EF相交与点O,图中∠AOE的对顶角是_________,∠COF的补角是__________。
13、如图2,要把池中的水引到D处,可过C点引CD⊥AB于D,然后沿CD开渠,可使所开渠道最短,试说明设计的依据:______________________________14、多项式4x²+4mx+36是一个完全平方式,则m=_____________.15、如图,AC平分∠BAD,∠DAC=∠DCA,填空:因为AC平分∠BAD,所以∠DAC= _______,又因为∠DAC=∠DCA,所以∠DCA= _______,所以AB∥_______。
2024年最新人教版初一数学(下册)期中考卷及答案(各版本)
2024年最新人教版初一数学(下册)期中考卷一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. 3B. 0C. 1/2D. 1/22. 一个数的绝对值是它本身的数是?A. 正数B. 负数C. 零D. 正数和零3. 下列哪个数是分数?A. 0.5B. 3/4C. 0.333D. 14. 下列哪个数是无理数?A. 3B. 2/3C. √2D. 0.255. 下列哪个数是整数?A. 1/2B. 0.5C. 3D. 0.3336. 下列哪个数是正整数?A. 0B. 1C. 1D. 1/27. 下列哪个数是负整数?A. 0B. 1C. 1D. 1/28. 下列哪个数是奇数?A. 0B. 2C. 3D. 49. 下列哪个数是偶数?A. 1B. 2C. 3D. 410. 下列哪个数是质数?A. 0B. 1C. 2D. 4二、填空题(每题4分,共20分)1. 5的绝对值是______。
2. 2的相反数是______。
3. 3/4的倒数是______。
4. 5的平方是______。
5. 2的立方根是______。
三、解答题(每题10分,共50分)1. 解方程:2x 3 = 7。
2. 解不等式:3x + 4 > 11。
3. 解方程组:x + y = 5, x y = 1。
4. 解不等式组:x > 2, x < 5。
5. 计算下列表达式的值:(3 + 4) × (5 2) ÷ 2。
四、应用题(每题15分,共30分)1. 小明买了5本书,每本书的价格是8元。
他付了50元,应该找回多少元?2. 一个长方形的长是6厘米,宽是4厘米。
求这个长方形的面积。
五、附加题(每题10分,共20分)1. 证明:对于任意实数a,a的平方总是非负的。
2. 解析几何:在平面直角坐标系中,点A(2, 3),点B(5, 1)。
求线段AB的长度。
选择题答案:1. C2. D3. B4. C5. C6. C7. C8. C9. B10. C填空题答案:1. 52. 23. 4/34. 255. 1.2599210498948732(约等于1.26)解答题答案:1. x = 52. x > 33. x = 3, y = 24. 2 < x < 55. 13应用题答案:1. 找回的金额为10元。
2023-2024学年全国初中七年级下数学人教版期中考试试卷(含答案解析)
20232024学年全国初中七年级下数学人教版期中考试试卷一、选择题(每题2分,共20分)1.下列各数中,是整数的是()A. 0.5B. 2C. 3/4D. 1.52.下列各数中,是负数的是()A. 0B. 3C. 2D. 1/23.下列各数中,是正数的是()A. 3B. 0C. 1/2D. 1.54.下列各数中,是正分数的是()A. 3/4B. 0C. 1/2D. 1.55.下列各数中,是负分数的是()A. 3/4B. 0C. 1/2D. 1.56.下列各数中,是正整数的是()A. 2B. 0C. 1/2D. 37.下列各数中,是负整数的是()A. 2B. 0C. 1/2D. 38.下列各数中,是正无理数的是()A. √2B. 0C. √3D. 1.59.下列各数中,是负无理数的是()A. √2B. 0C. √3D. 1.510.下列各数中,是分数的是()A. √2B. 0C. 3/4D. 1.5二、填空题(每题2分,共20分)1.若a是正数,b是负数,则a+b的值()2.若a是正数,b是负数,则ab的值()3.若a是正数,b是负数,则ab的值()4.若a是正数,b是负数,则a/b的值()5.若a是正数,b是负数,则a+b的绝对值()6.若a是正数,b是负数,则ab的绝对值()7.若a是正数,b是负数,则ab的绝对值()8.若a是正数,b是负数,则a/b的绝对值()9.若a是正数,b是负数,则a+b的平方()10.若a是正数,b是负数,则ab的平方()三、解答题(每题5分,共30分)1.解方程:3x5=2x+72.解方程:2x+3=5x43.解方程:4x3=2x+94.解方程:5x+4=3x85.解方程:6x5=4x+76.解方程:7x+6=5x9四、应用题(每题10分,共20分)1.某水果店有苹果和香蕉两种水果,苹果每斤5元,香蕉每斤3元。
小明想买3斤苹果和2斤香蕉,一共需要多少钱?2.某学校组织了一次运动会,参加跑步的学生有男生和女生两种,男生有20人,女生有15人。
新人教版七年级数学下册期中测试卷(及答案)
新人教版七年级数学下册期中测试卷(及答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知|x|=5,|y|=2,且|x+y|=﹣x﹣y,则x﹣y的值为()A.±3B.±3或±7C.﹣3或7D.﹣3或﹣7 2.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为A.32B.3 C.1 D.433.已知|m-2|+(n-1)2=0,则关于x的方程2m+x=n的解是()A.x=-4 B.x=-3 C.x=-2 D.x=-14.如图,直线a,b被直线c所截,下列条件中,不能判定a∥b()A.∠2=∠4 B.∠1+∠4=180° C.∠5=∠4 D.∠1=∠35.已知a b3132==,,则a b3+的值为()A.1 B.2 C.3 D.276.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我7.如图,两条直线l 1∥l 2,Rt △ACB 中,∠C=90°,AC=BC ,顶点A 、B 分别在l 1和l 2上,∠1=20°,则∠2的度数是( )A .45°B .55°C .65°D .75°8.设[x]表示最接近x 的整数(x ≠n+0.5,n 为整数),则[1]+[2]+[3]+…+[36]=( )A .132B .146C .161D .6669.如图,直线l 1∥l 2 ,且分别与直线l 交于C,D 两点,把一块含30°角的三角尺按如图所示的位置摆放.若∠1=52°,则∠2的度数为( )A .92°B .98°C .102°D .108°10.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店( )A .不盈不亏B .盈利20元C .亏损10元D .亏损30元二、填空题(本大题共6小题,每小题3分,共18分)1.4的算术平方根是________.2.如图,将长方形纸片ABCD 的∠C 沿着GF 折叠(点F 在BC 上,不与B,C 重合),使点C 落在长方形内部的点E 处,若FH 平分∠BFE,则∠GFH 的度数是________.3.若2a b +=,3ab =-,则代数式32232a b a b ab ++的值为__________.4.已知4x =,12y =,且0xy <,则x y 的值等于_________. 5.若x=2是关于x 的方程2x+3m ﹣1=0的解,则m 的值等于_________.6.若323m x --21n y - =5是二元一次方程,则m =________,n =________.三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)430210x y x y -=⎧⎨-=-⎩ (2)134342x y x y ⎧-=⎪⎨⎪-=⎩2.先化简,再求值:(x +2y )(x ﹣2y )+(20xy 3﹣8x 2y 2)÷4xy ,其中x =2018,y =2019.3.已知△ABC 中,∠A =60°,∠ACB =40°,D 为BC 边延长线上一点,BM 平分∠ABC ,E 为射线BM 上一点.(1)如图1,连接CE ,①若CE ∥AB ,求∠BEC 的度数;②若CE 平分∠ACD ,求∠BEC 的度数.(2)若直线CE 垂直于△ABC 的一边,请直接写出∠BEC 的度数.4.如图1,P点从点A开始以2厘米/秒的速度沿A→B→C的方向移动,点Q从点C开始以1厘米/秒的速度沿C→A→B的方向移动,在直角三角形ABC中,∠A=90°,若AB=16厘米,AC=12厘米,BC=20厘米,如果P、Q同时出发,用t(秒)表示移动时间,那么:(1)如图1,若P在线段AB上运动,Q在线段CA上运动,试求出t为何值时,QA=AP(2)如图2,点Q在CA上运动,试求出t为何值时,三角形QAB的面积等于三角形ABC面积的14;(3)如图3,当P点到达C点时,P、Q两点都停止运动,试求当t为何值时,线段AQ的长度等于线段BP的长的1 45.“校园手机”现象越来越受到社会的关注.“寒假”期间,某校小记者随机调查了某地区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:(1)求这次调查的家长人数,并补全图1;(2)求图2中表示家长“赞成”的圆心角的度数;(3)已知某地区共6500名家长,估计其中反对中学生带手机的大约有多少名家长?6.为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B 两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B 型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、A3、B4、D5、B6、D7、C8、B9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2.2、90°3、-124、8-5、﹣16、2 1三、解答题(本大题共6小题,共72分)1、(1)1010xy=⎧⎨=⎩(2)64xy=⎧⎨=⎩2、(x﹣y)2;1.3、(1)①40°;②30°;(2)50°,130°,10°4、(1) 4s;(2) 9s;(3) t=323s或16s5、(1)答案见解析(2)36°(3)4550名6、(1)本次试点投放的A型车60辆、B型车40辆;(2)3辆;2辆。
人教版数学七年级下册期中测试题(含答案)
最新人教版数学七年级下册期中测试题(含答案)班级___________姓名___________ 得分_______一、选择题(本大题共8小题,共24分)1. 下列各图中,∠1与∠2是对顶角的是( )A. B.C.D.2.4的平方根是( )A. 2B.C.2D.±23. 在下列所给出坐标的点中,在第二象限的是( )A. (2,3)B. (-2,3)C. (-2,-3)D. (2,3)4. 在实数5,227,38-,0,,2π,36,0.1010010001中,无理数有( )A. 2个B. 3个C. 4个D. 5个5.如图,直线AB ,CD 被直线EF 所截,则∠3的同旁内角是( )A.∠1B.∠2C.∠4D.∠5 6. 若a ,b 为实数,且229943a ab a -+-=++,则a b +的值为( )A .-1B .1C .1或7D .77. 已知∠AOB ,P 是任一点,过点P 画一条直线与OA 平行,则这样的直线( )A. 有且仅有一条B. 有两条C. 不存在D. 有一条或不存在 8. 下列语句中是命题的有( )①如果两个角都等于70°,那么这两个角是对顶角; ②三角形内角和等于180°; ③画线段AB=3 cm .A 、0个B 、1个C 、2个D 、3个二、填空题(本大题共8小题,共24分)9. 若3m-12与12-3m 都有平方根,则m 的平方根为 10.如图,直线AB ,CD ,EF 交于点O ,OG 平分,且,,则∠DOG= 。
11.把9的平方根和立方根按从小到大的顺序排列为______.12. 从新华书店向北走100 m ,到达购物广场,从购物广场向西走250 m 到达体育馆,若体育馆所在位置的坐标是(-250,0),则选取的坐标原点是_ __ 13. 在如图所示的长方体中,与AB 垂直且相交的棱有__ _条. 14. 如果,其中为有理数,则a+b=______.15. 若两个连续整数x ,y 满足,则x+y 的值是_____16. 如图,在平面直角坐标系中,一动点从原点O 出发,按向上,向右,向下,向右的方向不断地移动,每次移动一个单位,得到点,,,,那么点为自然数的坐标为______用n 表示.三、 解答题(本大题共9小题,共72分)17.计算:(每小题4分,共8分)求下列各式中x 的值:(每小题4分,共8分) (1)2x 2=4;; (2)64x 3+27=019.如图,直线a ∥b,点B 在直线b 上,AB ⊥BC ,∠1=55°,求∠2的度数.(6分)20.完成下面的证明(8分)如图,点E 在直线DF 上,点B 在直线AC 上,若∠AGB=∠EHF, ∠C=∠D . 求证:∠A=∠F . 证明:∵∠AGB=∠EHF∠AGB =______对顶角相等 ∴∠EHF=∠DGF∴DB ∥EC ( )∴∠ =∠DBA ( ) 又∵∠C=∠D ∴∠DBA=∠DDF ∥ ( ) ∴∠A=∠F( )21.已知a+2的立方根是3,3a+b-1算术平方根是4,c 是 整数部分.(9分)(1)求a,b,c 的值; (2)求3a - b+c 的平方根。
新人教版七年级数学下册期中测试卷及答案
新人教版七年级数学下册期中测试卷及答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a=255,b=344,c=533,d=622 ,那么a,b,c,d大小顺序为()A.a<b<c<d B.a<b<d<c C.b<a<c<d D.a<d<b<c 2.如图,直线AB∥CD,则下列结论正确的是()A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180° D.∠3+∠4=180°3.关于x的方程32211x mx x-=+++无解,则m的值为()A.﹣5 B.﹣8 C.﹣2 D.5 4.已知5x=3,5y=2,则52x﹣3y=()A.34B.1 C.23D.985.如图在正方形网格中,若A(1,1),B(2,0),则C点的坐标为()A.(-3,-2) B.(3,-2) C.(-2,-3) D.(2,-3) 6.如图所示,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字0所对应的点与数轴上的数-2所对应的点重合,再让圆沿着数轴按顺时针方向滚动,那么数轴上的数-2017将与圆周上的哪个数字重合()A.0 B.1 C.2 D.37.下列各组线段不能组成三角形的是 ( )A.4cm、4cm、5cm B.4cm、6cm、11cmC.4cm、5cm、6cm D.5cm、12cm、13cm8.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.20{3210x yx y+-=--=,B.210{3210x yx y--=--=,C.210{3250x yx y--=+-=,D.20{210x yx y+-=--=,9.如图,在△ABC中,AB=AC,D是BC的中点,AC的垂直平分线交AC,AD,AB于点E,O,F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对10.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店()A.不盈不亏B.盈利20元C.亏损10元D.亏损30元二、填空题(本大题共6小题,每小题3分,共18分)1.三角形三边长分别为3,2a1-,4.则a的取值范围是________.2.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为_____________.3.有4根细木棒,长度分别为2cm 、3cm 、4cm 、5cm ,从中任选3根,恰好能搭成一个三角形的概率是__________.4.若()2320m n -++=,则m+2n 的值是________.5.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.6.已知一组从小到大排列的数据:2,5,x ,y ,2x ,11的平均数与中位数都是7,则这组数据的众数是________.三、解答题(本大题共6小题,共72分)1.解下列方程.(1)910109x x -=- (2)45153x x x +-+=-2.已知关于x 的不等式组5x 13(x-1),13x 8-x 2a 22+>⎧⎪⎨≤+⎪⎩恰有两个整数解,求实数a 的取值范围.3.如图,直线AB //CD ,BC 平分∠ABD ,∠1=54°,求∠2的度数.4.在△ABC 中,AB=AC ,点D 是直线BC 上一点(不与B 、C 重合),以AD 为一边在AD 的右侧..作△ADE ,使AD=AE ,∠DAE =∠BAC ,连接CE . (1)如图1,当点D 在线段BC 上,如果∠BAC=90°,则∠BCE=________度;(2)设BAC α∠=,BCE β∠=.①如图2,当点在线段BC 上移动,则α,β之间有怎样的数量关系?请说明理由;②当点在直线BC 上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.5.为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了 名学生;(2)补全条形统计图;(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为 ;(4)设该校共有学生2000名,请你估计该校有多少名学生喜欢书法?6.在做解方程练习时,学习卷中有一个方程“2y–12=12y+■”中的■没印清晰,小聪问老师,老师只是说:“■是一个有理数,该方程的解与当x=2时代数式5(x–1)–2(x–2)–4的值相同.”小聪很快补上了这个常数.同学们,你们能补上这个常数吗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、D3、A4、D5、B6、B7、B8、D9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、1a 4<<2、10.3、344、-15、40°6、5三、解答题(本大题共6小题,共72分)1、(1)1x =-;(2)27x =.2、-4≤a<-3.3、72°4、(1)90;(2)①180αβ+=︒,理由略;②当点D 在射线BC.上时,a+β=180°,当点D 在射线BC 的反向延长线上时,a=β.5、(1)100;(2)补全图形见解析;(3)36°;(4)估计该校喜欢书法的学生人数为500人.6、略。
新人教版七年级数学下册期中试卷【及参考答案】
新人教版七年级数学下册期中试卷【及参考答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.对于任何有理数a ,下列各式中一定为负数的是( ).A .(3)a --+B .a -C .1a -+D .1a --2.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .803.8的相反数的立方根是( )A .2B .12C .﹣2D .12- 4.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )A .120元B .100元C .80元D .60元5.下列说法,正确的是( )A .若ac bc =,则a b =B .两点之间的所有连线中,线段最短C .相等的角是对顶角D .若AC BC =,则C 是线段AB 的中点6101的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间7.如图,AB ∥CD ,BP 和CP 分别平分∠ABC 和∠DCB ,AD 过点P ,且与AB 垂直.若AD =8,则点P 到BC 的距离是( )A .8B .6C .4D .28.一个几何体的表面展开图如图所示,则这个几何体是( )A .四棱锥B .四棱柱C .三棱锥D .三棱柱9.下面四个图形中,∠1=∠2一定成立的是( )A .B .C .D .10.如图,△ABC 中,AD 为△ABC 的角平分线,BE 为△ABC 的高,∠C=70°,∠ABC=48°,那么∠3是( )A .59°B .60°C .56°D .22°二、填空题(本大题共6小题,每小题3分,共18分)1. 3-5的相反数为______,|1-2|=_______,绝对值为327的数为________.2.如图,//AB EF ,设90C ∠=︒,那么x ,y ,z 的关系式________.3.关于x的不等式组430340a xa x+>⎧⎨-≥⎩恰好只有三个整数解,则a的取值范围是_____________.4.已知2a﹣3b=7,则8+6b﹣4a=________.5.若一个多边形的内角和是900º,则这个多边形是________边形.6.木工师傅在锯木料时,一般先在木料上画出两个点,然后过这两个点弹出一条墨线,这是因为______________.三、解答题(本大题共6小题,共72分)1.(1)解方程组:425x yx y-=⎧⎨+=⎩(2)解不等式:2132x x->-2.(1)若a2=16,|b|=3,且ab<0,求a+b的值.(2)已知a、b互为相反数且a≠0,c、d互为倒数,m的绝对值是3,且m位于原点左侧,求22015 (1)()2016m a b cd--++-的值.3.如图,O,D,E三点在同一直线上,∠AOB=90°.(1)图中∠AOD的补角是_____,∠AOC的余角是_____;(2)如果OB平分∠COE,∠AOC=35°,请计算出∠BOD的度数.4.如图,在平面直角坐标系中,点A、C分别在x轴上、y轴上,CB//OA,OA=8,若点B的坐标为(a,b),且b444a a--.(1)直接写出点A、B、C的坐标;(2)若动点P从原点O出发沿x轴以每秒2个单位长度的速度向右运动,当直线PC把四边形OABC分成面积相等的两部分停止运动,求P点运动时间;(3)在(2)的条件下,在y轴上是否存在一点Q,连接PQ,使三角形CPQ的面积与四边形OABC的面积相等?若存在,求点Q的坐标;若不存在,请说明理由.5.某校为加强学生安全意识,组织全校学生参加安全知识竞赛.从中抽取部分学生成绩(得分取正整数值,满分为100分)进行统计,绘制以下两幅不完整的统计图.请根据图中的信息,解决下列问题:(1)填空:a=_____,n=_____;(2)补全频数直方图;(3)该校共有2000名学生.若成绩在70分以下(含70分)的学生安全意识不强,则该校安全意识不强的学生约有多少人?6.某工厂计划在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数.(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、C4、C5、B6、C7、C8、A9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)11 ±32、90x y z +-=︒3、4332a ≤≤ 4、-65、七6、两点确定一条直线. 三、解答题(本大题共6小题,共72分)1、(1)31x y =⎧⎨=-⎩;(2)x >125.2、(1)1±;(2)9.3、(1)∠AOE ,∠BOC ;(2)125°4、(1)A (8,0),B (4,4),C (0,4);(2)t =3;(3)存在;点Q 坐标(0,12)或(0,−4)5、(1)75,54;(2)补图见解析;(3)600人.6、(1)2400个, 10天;(2)480人.。
新人教版七年级数学下册期中试卷及答案【必考题】
新人教版七年级数学下册期中试卷及答案【必考题】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.多项式2mx m -与多项式221x x -+的公因式是( )A .1x -B .1x +C .21x -D .()21x - 2.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于( )A .150°B .180°C .210°D .225°3.实数a 、b 、c 在数轴上的位置如图所示,化简:||||+||a b c a b c a -----的结果是( )A .a –2cB .–aC .aD .2b –a4.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )A .120元B .100元C .80元D .60元5.如图,有一块含有30°角的直角三角形板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )A .14°B .15°C .16°D .17°6.如果23a b -=22()2a b a b a a b+-⋅-的值为( )A .3B .23C .33D .437.如图,有一块直角三角形纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2cmB .3cmC .4cmD .5cm8.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 9.数轴上点A 表示的数是3-,将点A 在数轴上平移7个单位长度得到点B .则点B 表示的数是( )A .4B .4-或10C .10-D .4或10-10.如图是一个计算程序,若输入a 的值为﹣1,则输出的结果应为( )A .7B .﹣5C .1D .5二、填空题(本大题共6小题,每小题3分,共18分)1.若2x =5,2y =3,则22x+y =________.2.如图是一个三级台阶,它的每一级的长、宽和高分别为20 dm,3 dm,2 dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点的最短路程是__________dm.323a,小数部分为b,则a-b=________.4+x x-有意义,+1x=___________.5.若a+b=4,a﹣b=1,则(a+1)2﹣(b﹣1)2的值为________.6.把5×5×5写成乘方的形式__________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)252x yx y-=⎧⎨--=⎩(2)3()2()7x y x yx y x y-=+⎧⎨-++=⎩2.先化简,再求值:(x+2y)(x﹣2y)+(20xy3﹣8x2y2)÷4xy,其中x=2018,y=2019.3.如图,正比例函数y=2x的图象与一次函数y=kx+b的图象交于点A(m,2),一次函数图象经过点B(﹣2,﹣1),与y轴的交点为C,与x轴的交点为D.(1)求一次函数解析式;(2)求C点的坐标;(3)求△AOD的面积.4.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足4a +|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)a= ,b= ,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.5.某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图.学生读书数量统计表阅读量/本学生人数1 152 a3 b4 5(1)直接写出m、a、b的值;(2)估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?6.为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路.其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米.已知甲工程队每天比乙工程队多掘进2米,按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、C4、C5、C6、A7、B8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、752、253、4、15、126、35三、解答题(本大题共6小题,共72分)1、(1)=13xy⎧⎨=-⎩;(2)=21xy⎧⎨=-⎩2、(x﹣y)2;1.3、(1)y=x+1;(2)C(0,1);(3)14、(1)4,6,(4,6);(2)点P在线段CB上,点P的坐标是(2,6);(3)点P移动的时间是2.5秒或5.5秒.5、(1)m的值是50,a的值是10,b的值是20;(2)1150本.6、甲乙两个工程队还需联合工作10天.。
2024—2025学年最新人教版七年级下学期数学期中考试试卷(含参考答案)
最新人教版七年级下学期数学期中考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、9的算术平方根是()A.±3B.3C.﹣3D.2、下列数是无理数的有()A.B.﹣1C.0D.3、点M在第二象限,距离x轴5个单位长度,距离y轴3个单位长度,则M点的坐标为()A.(5,﹣3)B.(﹣5,3)C.(3,﹣5)D.(﹣3,5)4、下列是真命题的是()A.有理数与数轴上的点一一对应B.内错角相等C.同一平面内,垂直于同一条直线的两条直线互相平行D.负数没有立方根5、如图,下列各组条件中,能得到AB∥CD的是()A.∥1=∥3B.∥2=∥4C.∥B=∥D D.∥B+∥2=180°6、中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五、羊二,直金十两,牛二、羊五,直金八两.问牛、羊各直金几何?“译文:今有牛5头,羊2头,共值金10两;牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?设牛、羊每头各值金x两、y两,依题意,可列出方程组为()A.B.C.D.7、若正数a的两个平方根是3m﹣2与3﹣2m,则m为()A.0B.1C.﹣1D.1或﹣18、如图,将∥ABC沿BC方向平移3cm得到∥DEF,若∥ABC的周长为24cm,则四边形ABFD的周长为()A.30cm B.24cm C.27cm D.33cm9、如图,直线m∥n,∥1=70°,∥2=30°,则∥A等于()A.30°B.35°C.40°D.50°10、已知关于x、y的方程组的解满足x+y=6,则a的值为()A.1B.2C.﹣2D.11第8题第9题第15题二、填空题(每小题3分,满分18分)11、设n为正整数,且,则n的值为.12、若y=+2,则y=.13、若是二元一次方程ax+by=﹣1的一个解,则3a﹣2b+2024的值为.14、已知=1.038,=2.237,=4.820,则=.15、如图,a∥b,M,N分别在a,b上,P为两平行线间一点,那么∥1+∥2+∥3=°.16、如果,其中m,n为有理数,那么m+n=.最新人教版七年级下学期数学期中考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:(﹣1)2023+|1﹣|+﹣.18、已知2a﹣1的算术平方根是3,b是﹣1的立方根,c是的整数部分,求a+b+c的值.19、已知方程组的解和方程组的解相同,求(2a+b)2024.20、∥ABC与∥A'B'C'在平面直角坐标系中的位置如图所示.(1)分别写出下列各点的坐标:A(,),B(,),C(,);(2)若∥A'B'C'是由∥ABC平移得到的,点P(x,y)是∥ABC内部一点,则∥A'B'C'内与点P相对应点P'的坐标为(,);(3)求∥A'B'C'的面积.21、已知:如图,DE∥BC,BD平分∥ABC,EF平分∥AED.(1)求证:EF∥BD;(2)若BD∥AC,∥C=2∥2,求∥A的度数.22、在平面直角坐标系xOy中,已知点P(a﹣1,4a),分别根据下列条件进行求解.(1)若点P在y轴上,求此时点P坐标;(2)若点P在过点A(2,8)且与x轴平行的直线上,求此时a值;(3)若点P的横纵坐标相等,Q为x轴上的一个动点,求此时PQ的最小值.23、水果店2月份购进甲种水果50千克、乙种水果80千克,共花费1600元,其中甲种水果以20元/千克,乙种水果以15元/千克全部售出;3月份又以同样的价格购进甲种水果30千克、乙种水果40千克,共花费880元,由于市场不景气,3月份两种水果均以2月份售价的9折全部售出.(1)求甲、乙两种水果的进价每千克分别是多少元?(2)请计算该水果店2月和3月甲、乙两种水果总赢利多少元?24、规定:若P(x,y)是以x,y为未知数的二元一次方程ax+by=c的正整数解,则称此时点P为二元一次方程ax+by=c的“理想点”.请回答以下关于x,y的二元一次方程的相关问题.(1)方程x+2y=3的“理想点”P的坐标为.(2)已知m,n为非负整数,且,若是方程2x+ y=13的“理想点”,求的值;(3)“郡园点”P(x,y)满足关系式:,其中m为整数,求“理想点”P的坐标.25、如图,在平面直角坐标系中,A,B坐标分别为A(0,a)、B(b,a),且a,b满足:,现同时将点A,B分别向下平移3个单位,再向左平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,AB.(1)求C,D两点的坐标及四边形ABDC的面积;(2)点P是线段BD上的一个动点,连接P A,PO,当点P在BD上移动时(不与B,D重合),的值是否发生变化,并说明理由;(3)已知点M在y轴上,连接MB、MD,若∥MBD的面积与四边形ABDC 的面积相等,求点M的坐标.最新人教版七年级下学期数学期中考试试卷(参考答案)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、7 12、2 13、2023 14、22.37 15、360 16、5三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、﹣218、119、720、解:(1)A(1,3),B(2,0),C(3,1)(2)答案为:x﹣4,y﹣2 (3)2.21、(1)略(2)60°22、(1)P(0,4)(2)a=2 (3)P(﹣,﹣),最小值为.23、(1)甲种水果的进价为每千克16元,乙种水果的进价为每千克10元.(2)该水果店2月和3月甲、乙两种水果共赢利800元.24、(1)P的坐标为(1,1)(2)m=25,n=3(3)P(1,1)25、(1)四边形ABDC的面积是15(2)值为1,值不发生变化(3)M的坐标为(0,18)或(0,﹣42)。
人教版七年级数学下册期中考试卷及答案【精品】
人教版七年级数学下册期中考试卷及答案【精品】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知两个有理数a ,b ,如果ab <0且a+b >0,那么( )A .a >0,b >0B .a <0,b >0C .a 、b 同号D .a 、b 异号,且正数的绝对值较大2.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .13.已知x+y =﹣5,xy =3,则x 2+y 2=( )A .25B .﹣25C .19D .﹣194.已知5x =3,5y =2,则52x ﹣3y =( )A .34B .1C .23D .985.如图在正方形网格中,若A (1,1),B (2,0),则C 点的坐标为( )A .(-3,-2)B .(3,-2)C .(-2,-3)D .(2,-3)6.如图,∠1=70°,直线a 平移后得到直线b ,则∠2-∠3( )A .70°B .180°C .110°D .80°7.下列各组数中,能作为一个三角形三边边长的是( )A .1,1,2B .1,2,4C .2,3,4D .2,3,58.若长度分别为,3,5a 的三条线段能组成一个三角形,则a 的值可以是( )A .1B .2C .3D .89.如图,a ,b ,c 在数轴上的位置如图所示,化简22()a a c c b -++-的结果是( )A .2c ﹣bB .﹣bC .bD .﹣2a ﹣b10.已知实数a 、b 、c 满足2111(b)(c)(b-c)0a a 4+++=.则代数式ab+ac 的值是( ).A .-2B .-1C .1D .2二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x 的代数式()2x -1x 9a ++是完全平方式,则a =_________.2.一艘船从甲码头到乙码头顺流行驶,用了2个小时,从乙码头返回甲码头逆流行驶,用了2.5小时,已知水流的速度是3千米/时,则船在静水中的速度是________千米/时.3.在关于x 、y 的方程组2728x y m x y m +=+⎧⎨+=-⎩中,未知数满足x ≥0,y >0,那么m 的取值范围是_________________.4.方程()()()()32521841x x x x +--+-=的解是_________.5.若264a =3a =________.6.已知13aa+=,则221+=aa__________;三、解答题(本大题共6小题,共72分)1.解方程:(1)x﹣7=10﹣4(x+0.5) (2)512136x x+--=12.已知方程组3247x ymx ny-=⎧⎨+=⎩与231953mx nyy x-=⎧⎨-=⎩有相同的解,求m,n的值.3.如图,在平面直角坐标系中,已知点A(0,4),B(8,0),C(8,6)三点.(1)求△ABC的面积;(2)如果在第二象限内有一点P(m,1),且四边形ABOP的面积是△ABC的面积的两倍;求满足条件的P点的坐标.4.如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,BD=CE,BE、CD相交于点0;求证:(1)DBC ECB∆≅∆(2)OB OC=5.学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表借阅图书的次数0次1次2次3次4次及以上人数7 13 a 10 3请你根据统计图表中的信息,解答下列问题:()1a=______,b=______.()2该调查统计数据的中位数是______,众数是______.()3请计算扇形统计图中“3次”所对应扇形的圆心角的度数;()4若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.6.某水果批发市场苹果的价格如表(1)小明分两次共购买40千克,第二次购买的数量多于第一次购买的数量,共付出216元,小明第一次购买苹果_____千克,第二次购买_____千克.(2)小强分两次共购买100千克,第二次购买的数量多于第一次购买的数量,且两次购买每千克苹果的单价不相同,共付出432元,请问小强第一次,第二次分别购买苹果多少千克?(列方程解应用题)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、B3、C4、D5、B6、C7、C8、C9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、5或-72、273、-2≤m <34、3x =.5、±26、7三、解答题(本大题共6小题,共72分)1、(1)3x =;(2)x=38.2、m=4,n=﹣1.3、(1)24;(2)P (﹣16,1)4、(1)略;(2)略.5、()117、20;()22次、2次;()372;()4120人.6、(1)16,4;(2)第一次购买16千克苹果,第二次购买84千克苹果或第一次购买32千克苹果,第二次购买68千克苹果.。
人教版七年级数学下册期中考试卷及答案【完整版】
人教版七年级数学下册期中考试卷及答案【完整版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知直角三角形两边的长为3和4,则此三角形的周长为( ) A .12B .7+7C .12或7+7D .以上都不对2.如图,函数y=2x 和y=ax+4的图象相交于A(m ,3),则不等式2x ax+4<的解集为( )A .3x 2>B .x 3>C .3x 2<D .x 3<3.关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( ) A .9B .8C .5D .44.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( ) A .120元B .100元C .80元D .60元5.如图,过A 点的一次函数的图象与正比例函数y=2x 的图象相交于点B ,则这个一次函数的解析式是( )A .y=2x+3B .y=x ﹣3C .y=2x ﹣3D .y=﹣x+36.弹簧挂上物体后会伸长,测得一弹簧的长度y (cm)与所挂的物体的质量x(kg)之间有下面的关系:x /kg 0 1 2 3 4 5 y /cm 1010.51111.51212.5下列说法不正确的是( )A .x 与y 都是变量,且x 是自变量,y 是因变量B .弹簧不挂重物时的长度为0 cmC .物体质量每增加1 kg ,弹簧长度y 增加0.5 cmD .所挂物体质量为7 kg 时,弹簧长度为13.5 cm 7.把1a a-根号外的因式移入根号内的结果是( ) A .a -B .a --C .aD .a -8.248162(31)(31)(31)(31)(31)⨯+++++的计算结果的个位数字是( ) A .8B .6C .2D .09.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对10.如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD 为( )A .50°B .70°C .75°D .80°二、填空题(本大题共6小题,每小题3分,共18分)1.三角形三边长分别为3,2a1-,4.则a的取值范围是________.2.如图,将长方形纸片ABCD的∠C沿着GF折叠(点F在BC上,不与B,C重合),使点C落在长方形内部的点E处,若FH平分∠BFE,则∠GFH的度数是________.3.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________4.如果关于x的不等式组232x ax a>+⎧⎨<-⎩无解,则a的取值范围是_________.5.已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则a的值是______________.6.将一副三角板如图放置,若20AOD∠=,则BOC∠的大小为________.三、解答题(本大题共6小题,共72分)1.解方程:(1)3(2x﹣1)=15 (2)711 32x x-+-=2.已知关于x的不等式组5x13(x-1),13x8-x2a22+>⎧⎪⎨≤+⎪⎩恰有两个整数解,求实数a的取值范围.3.如图①,已知AD∥BC,∠B=∠D=120°.(1)请问:AB与CD平行吗?为什么?(2)若点E、F在线段CD上,且满足AC平分∠BAE,AF平分∠DAE,如图②,求∠FAC的度数.(3)若点E在直线CD上,且满足∠EAC=12∠BAC,求∠ACD:∠AED的值(请自己画出正确图形,并解答).4.如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,BD=CE,BE、CD相交于点0;求证:(1)DBC ECB∆≅∆(2)OB OC=5.为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?6.周末,小明和爸爸在400米的环形跑道上骑车锻炼,他们在同一地点沿着同一方向同时出发,骑行结束后两人有如下对话:(1)他们的对话内容,求小明和爸爸的骑行速度,(2)一次追上小明后,在第二次相遇前,再经过多少分钟,小明和爸爸相距50m?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、C4、C5、D6、B7、B8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)<<1、1a42、90°3、135°4、a≤2.5、±46、160°三、解答题(本大题共6小题,共72分)1、(1)x=3;(2)x=-23.2、-4≤a<-3.3、(1)平行,理由略;(2)∠FAC =30°;(3)∠ACD:∠AED=2:3或2:1.4、(1)略;(2)略.5、(1)本次调查共抽取了120名学生;(2)补图见解析;(3)估计该中学最喜爱国画的学生有320名.6、(1)小明骑行速度为200m/分钟,爸爸骑行速度为400m/分钟;(2)爸爸第一次追上小明后,在第二次相遇前,再经过14分或74钟,小明和爸爸相距50m.。
新人教版七年级数学下册期中测试卷及答案【完整版】
新人教版七年级数学下册期中测试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知m ,n 为常数,代数式2x 4y +mx |5-n|y +xy 化简之后为单项式,则m n 的值共有( )A .1个B .2个C .3个D .4个2.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .13.如图,在△ABC 中,AB=20cm ,AC=12cm ,点P 从点B 出发以每秒3cm 速度向点A 运动,点Q 从点A 同时出发以每秒2cm 速度向点C 运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ 是以PQ 为底的等腰三角形时,运动的时间是( )秒A .2.5B .3C .3.5D .44.已知5x =3,5y =2,则52x ﹣3y =( )A .34B .1C .23D .985.若数a 使关于x 的不等式组232x a x a ->⎧⎨-<-⎩无解,且使关于x 的分式方程5355ax x x-=---有正整数解,则满足条件的整数a 的值之积为( ) A .28 B .﹣4 C .4 D .﹣26.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q7.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为( )A .-3B .-2C .-1D .18.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 9.如图,在△ABC 中,AB=AC ,∠A=30°,E 为BC 延长线上一点,∠ABC 与∠ACE 的平分线相交于点D ,则∠D 的度数为( )A .15°B .17.5°C .20°D .22.5° 10.计算()233a a ⋅的结果是( )A .8aB .9aC .11aD .18a二、填空题(本大题共6小题,每小题3分,共18分)1.27-的立方根是________.2.如图,AB ∥CD ,FE ⊥DB ,垂足为E ,∠1=50°,则∠2的度数是_____.3.正五边形的内角和等于______度.4.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.5.如图,所有三角形都是直角三角形,所有四边形都是正方形,已知S 1=4,S 2=9,S 3=8,S 4=10,则S=________.6.已知13a a +=,则221+=a a__________; 三、解答题(本大题共6小题,共72分)1.解下列方程组(1)257320x y x y -=⎧⎨-=⎩ (2)33255(2)4x y x y +⎧=⎪⎨⎪-=-⎩2.已知关于x 的方程9x 3kx 14-=+有整数解,求满足条件的所有整数k 的值.3.如图,将边长为m的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n的小正方形纸板后,将剩下的三块拼成新的矩形.(1)用含m或n的代数式表示拼成矩形的周长;(2)m=7,n=4,求拼成矩形的面积.4.如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE与DF有什么关系?请说明理由.5.近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?6.在一次实验中,小明把一根弹簧的上端固定、在其下端悬挂物体,下面是测得的弹簧的长度y与所挂物体质量x的一组对应值.所挂物体质量0 1 2 3 4 5x/kg弹簧长度18 20 22 24 26 28y/cm①上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?②当所挂物体重量为3千克时,弹簧多长?不挂重物时呢?③若所挂重物为7千克时(在允许范围内),你能说出此时的弹簧长度吗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、D4、D5、B6、C7、A8、D9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、-3.2、40°3、5404、50°5、316、7三、解答题(本大题共6小题,共72分)1、(1)55xy⎧=⎨=⎩;(2)25xy⎧=⎪⎨=⎪⎩2、k=26,10,8,-8.3、(1)矩形的周长为4m;(2)矩形的面积为33.4、(1)∠1+∠2=90°;略;(2)(2)BE∥DF;略.5、(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名.6、①上表反映了弹簧长度与所挂物体质量之间的关系;其中所挂物体质量是自变量,弹簧长度是因变量;②当所挂物体重量为3千克时,弹簧长24厘米;当不挂重物时,弹簧长18厘米;③32厘米.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、如图所示,已知∠xOy=90°,点A,B分别在射线Ox,Oy上移动,BE是∠ABy的平分线,BE的反向延长线与∠OAB的平分线交于点C,试问∠ACB的大小是否发生变化?
2、△ABC中,∠A=68°,
(1)如图1,∠ABC和∠ACB的平分线相交于点P. 求∠P的度数.
(2)如图2,∠ABC的平分线和∠ACB的外角平分线交于P. 求∠P的度数.
(3)如图3,∠ABC和∠ACB的外角平分线交于P. 求∠P的度数.
(4) 分别猜想∠P与∠A的关系并说明理由.
3、如图(1),在△ABC中,AD是△ABC外角∠EAC的平分线,且AD∥BC,你能比较∠ACB 与∠ABC的大小吗?
如图(2),在△ABC中,AD是△ABC外角∠EAC的平分线,且交BC的延长线于D,你能比较∠ACB与∠ABC的大小吗?
如图(3),在△ABC中,AF是△ABC外角∠EAC的平分线,AF的反向延长线交CB的延
ACB与∠ABC的大小吗?
E
A 2
1
B
C D
4、如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3。
(1)观察每次变换前后的三角形的变化规律,若将△OA3B3变换成△OA4B4,则A4的坐标是___________________,B4的坐标是___________________。
(2)若按第(1)题找到的规律将△OAB进行n次变换,得到△OA n B n,比较每次变换中三角形顶点坐标有何变化,找出规律,推测A n的坐标是___________________,B n的坐标是___________________。
5、如图,AD为△ABC的中线,BE为△ABD的中线。
(1)∠ABE=15°,∠BAD=40°,求∠BED的度数;
(2)在△BED中作BD边上的高;
(3)若△ABC的面积为40,BD=5,则△BDE 中BD边上的高为多少?
6、如图,在直角三角形ABC中,∠ACB=90°,CD是AB边上的高,AB=13cm,BC=12cm,AC=5cm,
求: (1)△ABC的面积;
(2)CD的长;
(3)作出△ABC的边AC上的中线BE,并求出△ABE的面积;
(4)作出△BCD的边BC边上的高DF,当BD=11cm 时,试求出DF的长。
A B
7、如图,△ABC 中,角平分线AD 、BE 、CF 交于点H ,过H 点作HG ⊥AC 垂足为G ,
求证:∠AHE =∠CHG 。
8、 已知:如图,AM ,CM 分别平分∠BAD 和∠BCD ,
①若∠B=320,∠D=380,求∠M 的大小
②若∠B=0m ,∠D=0n ,试说明∠M=21
(∠B+∠D)
M D C B A。