首师大附中2019-2020 学年第一学期期中考试
2019-2020学年北京市首师大附中高二(上)期中数学试卷

2019-2020学年北京市首师大附中高二(上)期中数学试卷一、选择题1. 抛物线x2=4y的焦点坐标为()A.(1, 0)B.(−1, 0)C.(0, 1)D.(0, −1)【答案】C【考点】抛物线的性质【解析】先根据标准方程求出p值,判断抛物线x2=4y的开口方向及焦点所在的坐标轴,从而写出焦点坐标.【解答】∵抛物线x2=4y中,p=2,p2=1,焦点在y轴上,开口向上,∴焦点坐标为(0, 1 ),2. “a=2”是“直线2x+ay−1=0与直线ax+3y−2=0垂直”()A.充分必要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件【答案】D【考点】充分条件、必要条件、充要条件【解析】先求出直线2x+ay−1=0与直线ax+3y−2=0垂直时,a满足的条件,即可判断.【解答】当直线2x+ay−1=0与直线ax+3y−2=0垂直时,2a+3a=0即a=0,所以“a=2”是“直线2x+ay−1=0与直线ax+3y−2=0垂直”的既不充分又不必要条件.3. 若双曲线E:x29−y216=1的左、右焦点分别为F1,F2,点P在双曲线E上,且|PF1|=3,则|PF2|等于()A.11B.9C.5D.3【答案】B【考点】双曲线的离心率【解析】确定P在双曲线的左支上,由双曲线的定义可得结论.【解答】由题意,双曲线E:x29−y216=1中a=3.∵|PF1|=3,∴P在双曲线的左支上,∴ 由双曲线的定义可得|PF 2|−|PF 1|=6, ∴ |PF 2|=9.4. 直线l:x +y +3=0被圆C:{x =−1+4cosθy =2+4sinθ (θ为参数)截得的弦长为( )A.2√2B.4√2C.4√3D.8【答案】 B【考点】 圆的参数方程 【解析】利用平方关系把圆C 的参数方程化为标准方程,求出圆心C 到直线l 的距离d ,利用直线l 被圆C 截得的弦长=2√r 2−d 2即可得出. 【解答】圆C:{x =−1+4cosθy =2+4sinθ (θ为参数)化为:(x +1)2+(y −2)2=16, 可得:圆心C(−1, 2),半径r =4. ∴ 圆心C 到直线l 的距离d =√2=2√2.∴ 直线l 被圆C 截得的弦长=2√r 2−d 2=2√16−(2√2)2=4√2.5. 如图,在平面直角坐标系xOy 中,F 是椭圆x 2a2+y 2b 2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90∘,则该椭圆的离心率为( )A.√63B.2√33C.12D.√22【答案】 A【考点】 椭圆的离心率 椭圆的定义两条直线垂直与倾斜角、斜率的关系 【解析】设右焦点F(c, 0),将y =b2代入椭圆方程求得B ,C 的坐标,运用两直线垂直的条件:斜率之积为−1,结合离心率公式,计算即可得到所求值. 【解答】解:设右焦点F(c, 0), 将y =b2代入椭圆方程可得x=±a√1−b24b2=±√32a,可得B(−√32a, b2),C(√32a, b2),由∠BFC=90∘,可得k BF⋅k CF=−1,b2−√32a−cb2√32a−c=−1,化简为b2=3a2−4c2,由b2=a2−c2,即有3c2=2a2,由e=ca ,可得e2=c2a=23,可得e=√63.故选A.6. 设α,β为两个不同的平面,m,n为两条不同的直线,则下列命题中正确的为()A.若m // n,n⊂α,则m // αB.若m // α,n⊂α,则m // nC.若α⊥β,m⊂α,则m⊥βD.若m⊥β,m⊂α,则α⊥β【答案】D【考点】平面与平面之间的位置关系空间中直线与平面之间的位置关系【解析】在A中,m与α相交、平行或m⊂α;在B中,m与n平行或异面;在C中,m与β相交、平行或m⊂β;由面面垂直的判定定理得α⊥β.【解答】由α,β为两个不同的平面,m,n为两条不同的直线,得:在A中,若m // n,n⊂α,则m与α相交、平行或m⊂α,故A错误;在B中,若m // α,n⊂α,则m与n平行或异面,故B错误;在C中,若α⊥β,m⊂α,则m与β相交、平行或m⊂β,故C错误;在D中,若m⊥β,m⊂α,则由面面垂直的判定定理得α⊥β,故D正确.7. 已知抛物线C:y2=8x的焦点为F,准线与x轴的交点为K,点A在C上且|AK|=√2|AF|,则△AFK的面积为()A.4B.8C.16D.32【答案】B【考点】抛物线的性质【解析】根据抛物线的方程可知焦点坐标和准线方程,进而可求得K的坐标,设A(x0, y0),过A 点向准线作垂线AB,则B(−2, y0),根据|AK|=√2|AF|及AF=AB=x0−(−2)=x0+ 2,进而可求得A点坐标,进而求得△AFK的面积.【解答】∵抛物线C:y2=8x的焦点为F(2, 0),准线为x=−2∴ K(−2, 0)设A(x 0, y 0),过A 点向准线作垂线AB ,则B(−2, y 0) ∵ |AK|=√2|AF|,又AF =AB =x 0−(−2)=x 0+2∴ 由BK 2=AK 2−AB 2得y 02=(x 0+2)2,即8x 0=(x 0+2)2,解得A(2, ±4) ∴ △AFK 的面积为12|KF|⋅|y 0|=12×4×4=88. 已知F 1,F 2是椭圆和双曲线的公共焦点,P 是他们的一个公共点,且∠F 1PF 2=π3,则椭圆和双曲线的离心率的倒数之和的最大值为( )A.4√33B.2√33C.3D.2【答案】A【考点】圆锥曲线的共同特征 双曲线的定义 椭圆的定义 正弦定理 【解析】根据双曲线和椭圆的性质和关系,结合余弦定理即可得到结论. 【解答】解:设椭圆的长半轴为a 1,双曲线的实半轴为a 2(a 1>a 2),半焦距为c , 设|PF 1|=m ,|PF 2|=n , 则{m +n =2a 1,m −n =2a 2, 得a 1+a 2=m , ∴ 1e 1+1e 2=a 1+a 2c=mc ,由正弦定理得msin(120∘−∠PF 2F 1)=2csin60∘, 即mc=2sin(120∘−∠PF 2F 1)sin60∘=3∘−∠PF 2F 1)≤3=4√33.故选A .二、填空题已知直线的参数方程为{x =1+12ty =1+√32t(t 为参数),则其倾斜角为________. 【答案】 π3【考点】参数方程与普通方程的互化 【解析】把直线的参数方程化为普通方程,求出它的斜率和倾斜角的大小. 【解答】直线的参数方程为{x =1+12ty =1+√32t(t 为参数), 消去参数t ,化为普通方程是y −1=√3(x −1), 则该直线的斜率为√3,倾斜角为π3.若圆O:x 2+y 2=1与圆C:x 2+y 2+6x +8y +m =0相切,则实数m =________. 【答案】 −11或9 【考点】圆与圆的位置关系及其判定 【解析】由题意,两个圆相内切,根据两圆的圆心距等于两圆的半径之差的绝对值,两个圆相外切,两圆的圆心距等于半径之和,求得m 的值. 【解答】圆x 2+y 2+6x +8y +m =0 即(x +3)2+(y +4)2=25−m , 表示以(3, 4)为圆心,半径等于√25−m 的圆.由题意,两个圆相内切,两圆的圆心距等于半径之差的绝对值, 可得5=|√25−m −1|, 解得m =−11.两个圆相外切,两圆的圆心距等于半径之和,可得5=√25−m +1, 解得m =9, 若方程x 2k−2+y 25−k=1表示的是焦点在x 轴上的椭圆,则k 的取值范围是________.【答案】(72, 5) 【考点】 椭圆的离心率 【解析】焦点在x 轴上的椭圆,满足x 2的分母大于y 2的分母并且大于0,建立不等式可求k 的取值范围. 【解答】 由题意方程x 2k−2+y 25−k=1表示的是焦点在x 轴上的椭圆,k −2>5−k >0, ∴ 72<k <5.直线l 与双曲线x 2−4y 2=4相交于A 、B 两点,若点P(4, 1)为线段AB 的中点,则直线l 的方程是________. 【答案】 x −y −3=0 【考点】直线与双曲线的位置关系【解析】设出A ,B 的坐标,代入双曲线方程,两式相减,根据中点的坐标可知x 1+x 2和y 1+y 2的值,进而求得直线AB 的斜率,根据点斜式求得直线的方程. 【解答】设A(x 1, y 1),B(x 2, y 2),则x 1+x 2=8,y 1+y 2=2,∵ x 12−4y 12=4,x 22−4y 22=4, 两式相减可得:(x 1+x 2)(x 1−x 2)−4(y 1+y 2)(y 1−y 2)=0, ∴ 8(x 1−x 2)−8(y 1−y 2)=0, ∴ k AB =1,∴ 直线的方程为y −1=1(x −4),即x −y −3=0.已知圆C 1:(x +2)2+(y −1)2=1,圆C 2与圆C 1关于直线y =x +1对称,则圆C 2的标准方程是________. 【答案】x 2+(y +1)2=1 【考点】关于点、直线对称的圆的方程 【解析】求出圆C 2的圆心坐标,又圆C 1和圆C 2的半径相等,即可得到其方程. 【解答】依题意,设圆C 2的圆心坐标为(a, b),则因为圆C 1:(x +2)2+(y −1)2=1,的圆心为(−2, 1),所以{b+12=−2+a2+1,b−1a+2=−1,解得{a =0b =−1 ,所以圆C 2的标准方程是:x 2+(y +1)2=1,已知椭圆G:x 26+y 2b 2=1(0<b <√6)的两个焦点分别为F 1和F 2,短轴的两个端点分别为B 1和B 2,点P 在椭圆G 上,且满足|PB 1|+|PB 2|=|PF 1|+|PF 2|.当b 变化时,给出下列三个命题:①点P 的轨迹关于y 轴对称;②存在b 使得椭圆G 上满足条件的点P 仅有两个; ③|OP|的最小值为2,其中,所有正确命题的序号是________. 【答案】 ①③ 【考点】 椭圆的离心率 【解析】运用椭圆的定义可得P 也在椭圆y 26+x 26−b 2=1上,分别画出两个椭圆的图形,即可判断①正确;通过b 的变化,可得②不正确;由图象可得当P 的横坐标和纵坐标的绝对值相等时,|OP|的值取得最小,即可判断③. 【解答】 椭圆G:x 26+y 2b 2=1(0<b <√6)的两个焦点分别为F1(√6−b2, 0)和F2(−√6−b2, 0),短轴的两个端点分别为B1(0, −b)和B2(0, b),设P(x, y),点P在椭圆G上,且满足|PB1|+|PB2|=|PF1|+|PF2|,由椭圆定义可得,|PB1|+|PB2|=2a=2√6>2b,即有P在椭圆y26+x26−b=1上.对于①,将x换为−x方程不变,则点P的轨迹关于y轴对称,故①正确;对于②,由图象可得轨迹关于x,y轴对称,且0<b<√6,则椭圆G上满足条件的点P有4个,不存在b使得椭圆G上满足条件的点P仅有两个,故②不正确;对于③,由图象可得,当P满足x2=y2,即有6−b2=b2,即b=√3时,|OP|取得最小值,可得x2=y2=2,即有|OP|的最小值为2,故③正确.三、解答题已知动点P与平面上点A(−1, 0),B(1, 0)的距离之和等于2√2.(1)试求动点P的轨迹方程C.(2)设直线l:y=kx+1与曲线C交于M、N两点,当|MN|=4√23时,求直线l的方程.【答案】由|AB|=2<|PA|+|PB|=2√2,根据椭圆的第一定义,可得P的轨迹为以A,B为焦点的椭圆,且2a=2√2,即a=√2,c=1,b=√a2−c2=1,则动点P的轨迹方程C为x22+y2=1;将直线l:y=kx+1代入椭圆方程x2+2y2=2,可得(1+2k2)x2+4kx=0,解得x1=0,x2=−4k1+2k2,可得M(0, 1),N(−4k1+2k2, 1−2k21+2k2),由题意可得|MN|=√16k2(1+2k2)2+(1−2k21+2k2−1)2=4√23,解得k=±1,即有直线l的方程为y=±x+1.【考点】椭圆的离心率直线与椭圆的位置关系椭圆的应用轨迹方程【解析】(1)由椭圆的第一定义,可得P的轨迹为以A,B为焦点的椭圆,求得a,b,c,即可你到底所求轨迹方程;(2)将直线方程代入椭圆方程,解方程可得M,N的坐标,再由两点的距离公式解方程可得斜率k,进而得到直线方程.【解答】由|AB|=2<|PA|+|PB|=2√2,根据椭圆的第一定义,可得P 的轨迹为以A ,B 为焦点的椭圆, 且2a =2√2,即a =√2,c =1, b =√a 2−c 2=1,则动点P 的轨迹方程C 为x 22+y 2=1;将直线l:y =kx +1代入椭圆方程x 2+2y 2=2, 可得(1+2k 2)x 2+4kx =0, 解得x 1=0,x 2=−4k1+2k 2, 可得M(0, 1),N(−4k 1+2k 2, 1−2k 21+2k 2),由题意可得|MN|=√16k 2(1+2k 2)2+(1−2k 21+2k 2−1)2=4√23, 解得k =±1,即有直线l 的方程为y =±x +1.如图,在四棱锥P −ABCD 中,PB ⊥底面ABCD ,底面ABCD 为梯形,AD // BC ,AD ⊥AB ,且PB =AB =AD =3,BC =1.(Ⅰ)若点F 为PD 上一点且PF =13PD ,证明:CF // 平面PAB ; (Ⅱ)求二面角B −PD −A 的大小.【答案】证明:(Ⅰ)过点F 作FH // AD ,交PA 于H ,连接BH , 因为PF =13PD ,所以HF =13AD =BC .….又FH // AD ,AD // BC ,所以HF // BC .…. 所以BCFH 为平行四边形,所以CF // BH .…. 又BH ⊂平面PAB ,CF 平面PAB ,….(一个都没写的,则这不给) 所以CF // 平面PAB .….(2)因为梯形ABCD 中,AD // BC ,AD ⊥AB ,所以BC ⊥AB . 因为PB ⊥平面ABCD ,所以PB ⊥AB ,PB ⊥BC ,如图,以B 为原点,BC ,BA ,BP 所在直线为x ,y ,z 轴建立空间直角坐标系,…. 所以C(1, 0, 0),D(3, 3, 0),A(0, 3, 0),P(0, 0, 3).设平面BPD 的一个法向量为n →=(x, y, z),平面APD 的一个法向量为m →=(a, b, c), 因为PD →=(3, 3, −3),BP →=(0, 0, 3)所以{n →⋅PD →=3x +3y −3z =0n →⋅BP →=3z =0,….取x =1得到n →=(1, −1, 0),….同理可得m →=(0, 1, 1),…. 所以cos <m →,n →>=m →⋅n→|m →|⋅|n →|=−12,….因为二面角B −PD −A 为锐角, 所以二面角B −PD −A 为π3.….【考点】直线与平面平行二面角的平面角及求法 【解析】(Ⅰ)过点F 作FH // AD ,交PA 于H ,连接BH ,证明HF // BC ,CF // BH ,然后证明CF // 平面PAD .(Ⅱ)说明BC ⊥AB .PB ⊥AB ,PB ⊥BC ,以B 为原点,BC ,BA ,BP 所在直线为x ,y ,z 轴建立空间直角坐标系,求出平面BPD 的一个法向量,平面APD 的一个法向量,通过向量的数量积求解二面角B −PD −A 的大小. 【解答】证明:(Ⅰ)过点F 作FH // AD ,交PA 于H ,连接BH , 因为PF =13PD ,所以HF =13AD =BC .….又FH // AD ,AD // BC ,所以HF // BC .…. 所以BCFH 为平行四边形,所以CF // BH .…. 又BH ⊂平面PAB ,CF 平面PAB ,….(一个都没写的,则这不给) 所以CF // 平面PAB .….(2)因为梯形ABCD 中,AD // BC ,AD ⊥AB ,所以BC ⊥AB . 因为PB ⊥平面ABCD ,所以PB ⊥AB ,PB ⊥BC ,如图,以B 为原点,BC ,BA ,BP 所在直线为x ,y ,z 轴建立空间直角坐标系,…. 所以C(1, 0, 0),D(3, 3, 0),A(0, 3, 0),P(0, 0, 3).设平面BPD 的一个法向量为n →=(x, y, z),平面APD 的一个法向量为m →=(a, b, c), 因为PD →=(3, 3, −3),BP →=(0, 0, 3)所以{n →⋅PD →=3x +3y −3z =0n →⋅BP →=3z =0,….取x =1得到n →=(1, −1, 0),….同理可得m →=(0, 1, 1),…. 所以cos <m →,n →>=m →⋅n→|m →|⋅|n →|=−12,….因为二面角B −PD −A 为锐角, 所以二面角B −PD −A 为π3.….在平面直角坐标系xOy中,已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√22,点(2, 1)在椭圆C上.(1)求椭圆C的方程;(2)设直线l与圆O:x2+y2=2相切,与椭圆C相交于P,Q两点,求证:∠POQ是定值.【答案】由题得e=ca =√22,所以c2=12a2,则b2=12a2,再将点(2, 1)带入方程得4a2+112a2=1,解得a2=6,所以b2=3,则椭圆C的方程为:x2 6+y23=1;①当直线PQ斜率不存在时,则直线PQ的方程为x=√2或x=−√2,当x=√2时,P(√2, √2),Q(√2, −√2),此时OP→⋅OQ→=0,所以OP⊥OQ,即∠POQ=90∘,当x=−√2时,同理可得OP⊥OQ,∠POQ=90∘;②当直线PQ斜率存在时,不妨设直线PQ的方程为y=kx+m,即kx−y+m=0,因为直线与圆相切,所以√k2+1=√2,即m2=2k2+2,联立{kx−y+m=0x26+y23=1,得(1+2k2)x2+4kmx+2m2−6=0,设P(x1, y1),Q(x2, y2),则有x1+x2=−4km1+2k2,x1x2=2m2−61+2k2,此时OP→⋅OQ→=x1x2+y1y2=x1x2+(kx1+m)(kx2+m)=(1+k2)x1x2+km(x1+x2)+m2=(1+k2)×2m2−61+k2+km×(−4km1+2k2)+m2,将m2=2k2+2代入上式可得OP→⋅OQ→=0,所以OP⊥OQ,则∠POQ=90∘;综上:∠POQ是定值为90∘.【考点】椭圆的应用直线与椭圆的位置关系【解析】(1)由题得e=ca =√22得到a,b,c的关系,再将点(2, 1)代入可解得a2=6,进而得到方程;(2)考虑PQ斜率不存在和存在两种情况,分别计算出OP→⋅OQ→=0,可得∠POQ=90∘为定值.【解答】由题得e=ca =√22,所以c2=12a2,则b2=12a2,再将点(2, 1)带入方程得4a2+112a2=1,解得a2=6,所以b2=3,则椭圆C的方程为:x2 6+y23=1;①当直线PQ斜率不存在时,则直线PQ的方程为x=√2或x=−√2,当x=√2时,P(√2, √2),Q(√2, −√2),此时OP→⋅OQ→=0,所以OP⊥OQ,即∠POQ=90∘,当x=−√2时,同理可得OP⊥OQ,∠POQ=90∘;②当直线PQ斜率存在时,不妨设直线PQ的方程为y=kx+m,即kx−y+m=0,因为直线与圆相切,所以√k2+1=√2,即m2=2k2+2,联立{kx−y+m=0x26+y23=1,得(1+2k2)x2+4kmx+2m2−6=0,设P(x1, y1),Q(x2, y2),则有x1+x2=−4km1+2k2,x1x2=2m2−61+2k2,此时OP→⋅OQ→=x1x2+y1y2=x1x2+(kx1+m)(kx2+m)=(1+k2)x1x2+km(x1+x2)+m2=(1+k2)×2m2−61+k2+km×(−4km1+2k2)+m2,将m2=2k2+2代入上式可得OP→⋅OQ→=0,所以OP⊥OQ,则∠POQ=90∘;综上:∠POQ是定值为90∘.设A、B分别为椭圆x24+y23=1的左右顶点,设点P为直线x=4上不同于点(4, 0)的任意一点,若直线AP、BP分别与椭圆相交于异于A、B的点M、N.(1)判断B与以MN为直径的圆的位置关系(内、外、上)并证明.(2)记直线x=4与轴的交点为H,在直线x=4上,求点P,使得S△APN=S△APH.【答案】点B在以MN为直径的圆内.证明如下:由已知可得A(−2, 0),B(2, 0).设M(x0, y0).∵M点在椭圆上,∴y02=34(4−x02).①又点M异于顶点A、B,∴−2<x0<2.由P、A、M三点共线可得y P4−(−2)=y0x0+2,即P(4, 6y0x0+2).从而BM →=(x 0−2, y 0),BP →=(2, 6yx 0+2).∴ BM →⋅BP →=2x 0−4+6y 02x 0+2=2x 0+2(x 02−4+3y 02). ②将①代入②,化简得BM →⋅BP →=52(2−x 0).∵ 2−x 0>0,∴ BM →⋅BP →>0,于是∠MBP 为锐角,从而∠MBN 为钝角, 故点B 在以MN 为直径的圆内.可得A(−2, 0),B(2, 0).设N(x 0, y 0).P(4, t), 由P 、B 、N 三点共线可以得t4−2=y 0x−2,即t =2y 0x 0−2.又S △APN =S △APH 等价于S △ABN =S △BPH . 即12×4×|y 0|=12×2×|t|=|2y 0x 0−2|⇒x 0=1.∴ 14+y 023=1,∴ y 0=±32,∴ t =±3. 故点P(4, ±3)【考点】 椭圆的应用直线与椭圆的位置关系 【解析】(1)由已知得A(−2, 0),B(2, 0).设M(x 0, y 0).又点M 异于顶点A 、B ,可得−2<x 0<2.由P 、A 、M 三点共线可以得P .可得BM →⋅BP →>0,即可证明. (2)设N(x 1, y 1).P(4, t)由P 、B 、N 三点共线可得t =2y 0x 0−2.由S △APN =S △APH .等价于S △ABN =S △BPH .解得x 0=1.即可. 【解答】点B 在以MN 为直径的圆内.证明如下:由已知可得A(−2, 0),B(2, 0).设M(x 0, y 0).∵ M 点在椭圆上,∴ y 02=34(4−x 02). ① 又点M 异于顶点A 、B ,∴ −2<x 0<2. 由P 、A 、M 三点共线可得y P4−(−2)=y 0x 0+2,即P(4, 6y 0x0+2).从而BM →=(x 0−2, y 0),BP →=(2, 6y0x 0+2).∴ BM →⋅BP →=2x 0−4+6y 02x+2=2x 0+2(x 02−4+3y 02). ②将①代入②,化简得BM →⋅BP →=52(2−x 0). ∵ 2−x 0>0,∴ BM →⋅BP →>0,于是∠MBP 为锐角,从而∠MBN 为钝角, 故点B 在以MN 为直径的圆内.可得A(−2, 0),B(2, 0).设N(x 0, y 0).P(4, t), 由P 、B 、N 三点共线可以得t4−2=y 0x−2,即t =2y 0x 0−2.又S △APN =S △APH 等价于S △ABN =S △BPH . 即12×4×|y 0|=12×2×|t|=|2y 0x 0−2|⇒x 0=1.∴ 14+y 023=1,∴ y 0=±32,∴ t =±3. 故点P(4, ±3)。
北京市首都师范大学附属中学2019-2020年初二上期中数学试卷

北京市首都师范大学附属中学2019-2020年初二上期中数学试卷第I 卷(共24分)一、选择题(本题共8小题,每小题3分,共24分。
每题所列选项只有一个最符合题意)1.下图中的轴对称图形有()A.(1),(2)B.(1),(4)C.(2),(3)D.(3),(4)2.点P (4,5)关于x 轴对称点的坐标是()A.(-4,-5)B.(-4,5)C.(4,-5)D.(5,4)3.下面计算正确的是()A.633)(x x B.2446aaa C.2224)()(n m mn mn D.2523aa a4.已知,,65xyy x则22y x 的值是()A.1B.13C.17D.255.如图,在△ABE 中,∠A=105°,AE 的垂直平分线MN 交BE 于点C ,且AB=CE ,则∠B的度数是()A.45°B.60°C.50°D.55°6.已知2)8()16(ya y y ,则a 的值是()A.8B.16C.32D.647.如图,点P 为∠AOB 内一点,点M ,N 分别是射线OA ,OB 上一点,当△PMN 的周长最小时,∠OPM=50°,则∠AOB 的度数是()A.55°B.50°C.40°D.45°8.如图,在等腰Rt △ABC 中,∠BAC=90°,AD ⊥BC 于点D ,∠ABC 的平分线分别交AC 、AD 于点E 、F 两点,M 为EF 的中点,延长AM 交BC 于点N ,连接DM 。
下列结论:DF=DN ;AE=CN ;△DMN 是等腰三角形;④∠BMD=45°,其中正确的结论个数是()A.1个B.2个C.3个D.4个第II 卷二、填空题(本大题共6小题,每小题3分,共18分)9.已知1y x ,则222121y xyx =____________ 10.若12kxx是完全平方式,则k=_________11.已知,22n x 则nnx x2223)()(的值为________12.若)()3(2q xxx的乘积中不含2x 项,则q =______13.如图,已知△ABC 为等边三角形,点D 、E 在BC 的延长线上,G 是AC 上一点,且CG=CD ,F 是GD 上一点,且DF=DE ,则∠E=_______14.如图,在平面直角坐标系中,点A 的横坐标为-1,点B 在X 轴的负半轴上,AB=AO ,∠ABO=30°,直线MN 经过原点O ,点A 关于直线MN 的对称点A 1在x 轴的正半轴上,点B 关于直线MN 的对称点为B 1,则∠AOM 的度数为_____;点B 1的纵坐标为_______三、解答题(本大题共6小题,每小题5分,共30分)15.计算(1))2()48(2342y x y x yx (2)2)1()32()23(x x x16因式分解(1)yx xyy22396(2)3)2()2(a a 17.化简求值(1)若02910422b baa,求22ab ba 的值(2)先化简,再求值:2)12()1(5)23()23(x x x x x ,其中31x四、解答题(本大题共2答题,18题4分,19题6分,共10分)18.△ABC 在平面直角坐标系中的位置如图所示(1)作出△ABC 关于y 轴对称的△AB 1C 1;(2)点P 在x 轴上,且点P 到点B 与点C 1的距离之和最小,直接写出点P 的坐标为______19.已知x ≠1,计算4323221)1)(1(1)1)(1(1)1)(1(xx xx x x x x x x x ,,(1)观察以上各式并猜想:__________)1)(1(2nx xxx (n 为正整数)(2)根据你的猜想计算:_______)222221)(21(5432_________222232n (n 为正整数)________)1)(1(2979899xxxxxx (3)通过以上规律请你进行下面的探索:______))((b a b a ________))((22b ab a b a _______))((3223b abba ab a五、解答题(共3大题,20题5分,21题6分,22题7分,共18分)20.阅读下面材料:小聪遇到这样一个有关角平分线的问题:如图1,在△ABC 中,∠A=2∠B ,CD 平分∠ACB ,AD=2.2,AC=3.6求BC 的长.A小聪思考:因为CD 平分∠ACB ,所以可在BC 边上取点E ,使EC=AC ,连接DE. 这样很容易得到△DEC ≌△DAC ,经过推理能使问题得到解决(如图2). 请回答:(1)△BDE 是_________三角形.(2)BC 的长为__________.参考小聪思考问题的方法,解决问题:如图3,已知△ABC 中,AB=AC, ∠A=20°,BD 平分∠ABC,BD=2.3,BC=2.求AD 的长.21.在等边△ABC 外侧作直线AP ,点B 关于直线AP 的对称点为D ,连接BD,CD ,其中CD交直线AP 于点E .(1)依题意补全图1;(2)若∠PAB=30°,求∠ACE 的度数;(3)如图2,若60°<∠PAB <120°,判断由线段AB,CE,ED 可以构成一个含有多少度角的三角形,并证明.22.如图1,已知A (0,a ),B (b ,0)且228204b b a a (1)A 、B 两点的坐标为A________、B________;(2)如图2,连接AB ,若点D (0,-6),DE ⊥AB 于点E ,B 、C 关于y 轴对称,M 是线段DE 上的一点,且DM=AB ,连接AM ,试判断AC 与AM 之间的位置和数量关系,并证明你的结论;(3)如图3,在(2)的条件下,若N 是线段DM 上的一个动点,P 是MA 延长线上的一点,且DN=AP ,连接PN 交y 轴于点Q ,过点N 作NH ⊥y 轴于点H ,当N 点在线段DM 上运动时,△MQH 的面积是否为定值?若是,请写出这个值;若不是,请说明理由。
2019-2020学年北京市首师大附中高一(上)期中数学试卷B(含答案解析)

2019-2020学年北京市首师大附中高一(上)期中数学试卷B选择题(本大题共10小题,共50.0分)设集^ = {x|x>l}, B = {X \X 2-2X -3<0}.则AHB =()A. {x\x < —1}B. {x\x < 1}C. {x| — 1 < % < 1}D. {x|l < % < 3}已知命题p : 3% > sinx > 1,则卡为()A. Vx > 7, sinx< 1 B ・ Vx <sinx < 1 C ・ 3% > 7, sinx < 1 D ・ V £ sinx < 1函数几幻=疋一5的零点所在的区间是()A. (1,2)B. (2,3)C. (3,4)D.(勺5)下列函数中,既是偶函数,又在(-QO.0)上单调递减的函数是()命题 7 G [-1,2], %2-a> 0”是真命题的一个充分不必要条件是()A. a > 4 B ・ a < -1 C ・ a S 0 D ・ a S 1 已知函数门咒)为偶函数,且函数f(x)与8(幻的图象关于直线y =兀对称,若g(2) = 3,贝0/(-3)= ()A. —2B. 2C. —3D. 3已知函数/'(x)=x — 占,g(x) =x 2 - 2ax + 4,若任意七 G [0,1],存在x 2 £ [X2], (x x ) > 0(牝),则实数“的取值范围为()•9 A. a > 3 B ・ a >- C ・ a > 2D ・ a >44 已知函数Z(x)=xk —2|,直线y = a 与函数f(x)的图象有三个交点A 、B 、C,它们的横坐标分 别为X], x 2f x 3 ,则%! + %2 + x 3的取值范围是()A. (3,4 + 血)B. (4,3+ V2)C. (3,4+ V2]D. R填空题(本大题共6小题,共30.0分) 计算:(扌)丄 + 8:+ (2019)0 = ______函数y = (% + 2)° — <2 + X 的泄义域是 _ .函数f(x) = -X 2 + 6% - 10在区间[0,4]的最大值是 ________1. 2. 3. 4. 5.6.7.& 9. 10. —\11. 12.13. A. y = -%2 B ・ y = 2"|x| c. y = 已知a VO, bV —「那么下列不等式成立的是()A. a>£>2 B ・-A* > - > a C ・-> a > -^ 若% < 0,则函数y = x + ?有()A.最小值4B.最大值4C.最小值-4 D ・ y = lg|%|D ・ l>^>aD.最大值-414.若关于A-的方程cos?% - sinx + a = 0在[0,兀]内有解,则实数"的取值范国是______ •15.已知函(x) =e x-x, g(X)=x2-bx+4,若对任意G (-1,1),存在巾G [1,2],使/(%!)>0(X2),则实数b的取值范围为________ •16.已知函数/'(%) = {蔦;;'I 1若直线卩=皿与函数/'(x)的图象只有一个交点,则实数加的取值范围是 _____ .三、解答题(本大题共4小题,共40.0分)17.设集合力={咒哙<2-”<4}, B = {x\x2 - 3mx + 2m2 - m - 1 < 0}・(1)当%GZ时,求人的非空真子集的个数;(2)若3 = 0,求m的取值范I科:(3)若求〃】的取值范用・18.已知函^(/(%) = 2%2 - 4% - 5.⑴当xW[_2,2]时,求函数f(x)的最值;(2)当x G [t,t+ 1]时,求函数fU)的最小值g(t);(3)在第(2)问的基础上,求的最小值.19.某海滨城市坐落在一个三角形海域的顶点O处(如图),一条海岸线AO{£城市O的正东方向, 另一条海岸线0B在城市0北偏东0(tan8 =扌)方向,位于城市0北偏东f 一a(cosa =春)方向15如2的P 处有一个美丽的小岛.旅游公司拟开发如下一条旅游观光线路:从城市。
2019-2020学年北京市首师大附中高一(上)期中数学试卷(含答案解析)

2019-2020学年北京市首师大附中高一(上)期中数学试卷一、选择题(本大题共10小题,共30.0分) 1. 已知集合,,则A ∩B 为( )A. B.C.D.2. 设0<a <b ,则下列不等式中正确的是( )A. a <b <√ab <a+b 2B. a <√ab <a+b 2<bC. a <√ab <b <a+b 2D. √ab <a <a+b 2<b3. 下列函数中,为奇函数的是( )A. y =2x +12x B. y =x ,x ∈{0,1}C. y =x ⋅sinxD. y ={1,x <00,x =0−1,x >04. 已知条件p:(x −m)(x −m −3)>0;条件若p 是q 的必要不充分条件,则实数m 的取值范围是( )A. (−∞,−7)∪(1,+∞)B. (−∞,−7]∪[1,+∞)C. (−7,1)D. [−7,1]5. 把函数y =1x 的图象向右平移1个单位,再向上平移1个单位后,所得函数的图象是( )A.B.C.D.6. 关于x 的方程x 2+mx +1=0有两个不相等的正实根,则实数m 的取值范围是 ( )A. m <−2B. m <0C. m <1D. m >07. 把集合{x|x 2−4x −5=0}用列举法表示为( )A. {x =−1,x =5}B. {x|x =−1或x =5}C. {x 2−4x −5=0}D. {−1,5} 8. 设集合M ={x|x ≤2√3},a =√11+b ,其中b ∈(0,1),则下列关系中正确的是( )A. a ⫋MB. a ∉MC. {a}∈MD. {a}⫋M9. 下列不等式:①a 2+1>2a ;√ab ≤2;③x 2+1x +1≥1,其中正确的个数是( )A. 0B. 1C. 2D. 310. 已知不等式m −1<x <m +1成立的充分条件是13<x <12,则实数m 的取值范围是( )A. (−∞,−12)∪(43,+∞) B. (−∞,−12)∪[43,+∞) C. (−12,43)D. [−12,43]二、填空题(本大题共10小题,共30.0分)11. 若集合M ={x|x 2+x −6=0},N ={x|ax +1=0},且N ⊆M ,则由a 的可取值组成的集合为________.12. 已知函数f(x)={xlnx −2x,x >0,x 2+32x,x ≤0,函数g(x)=f(x)−kx +1有四个零点,则实数k 的取值范围是______.13. f(x)={cos π4x,x <0f(x −2),x ≥0,则f(2017)=______.14. 不等式ax 2+bx +c >0的解集是{x|−3<x <2},则ab+c = . 15. 给出下列四个结论:①函数f(x)=√2−x 2为奇函数;②函数y =2 √x 的值域是(1,+∞); ③函数y =1x 在定义域内是减函数;④若函数f(2x )的定义域为[1,2],则函数y =f (x2)的定义域为[4,8]. 其中正确结论的序号是________.(填上所有正确结论的序号)16. 有15人进家电超市,其中有8人买了电视,有7人买了电脑,两种均买了的有2人,则这两种都没买的有__________人17. 已知函数f(x)={(a +1)x −1,x ≥112ax 2−ax −1,x <1在(−∞,+∞)上单调递增,则a 的取值范围是________.18. 若P =√a +7−√a +6,Q =√a +10−√a +3(a ≥0),则P ,Q 的大小关系是________. 19. 已知集合U ={1,2,3,4,5},A ={1,3},B ={2,3},则A⋂(∁U B)= ________ . 20. 若正实数a ,b 满足2a +b =1,则1a +12b 的最小值为_________.三、解答题(本大题共12小题,共60.0分)21.已知全集U=R,集合A={x|−1≤x<2},B={x|(x−2)(x−k)≥0}.(1)若k=1,求A∩∁U B;(2)若A∩B=⌀,求实数k的取值范围.22.已知函数y=f(x)(x>0)满足:f(xy)=f(x)+f(y),当x<1时,f(x)>0,且f(12)=1;(1)证明:y=f(x)是定义域上的减函数;(2)解不等式f(x−3)>f(1x)−2.23.(1)已知x>0,y>0,1x +2y+1=2,求2x+y的最小值.(2)已知a>0,b>0,a+b=1,比较8−1a 与1b+1ab的大小,并说明理由.24.已知不等式ax2+bx+c>0的解集为{x|α0,β>0},求不等式cx2+bx+a<0的解集.25.(1)求函数y=x2+8x−1(x>1)的最小值.(2)求函数y=x2+2021x+4042x+2的值域.26.(1)已知,求4a+1+a的最小值;(2)已知,且2a+b=1,求1a +1b的最小值.27.(1)若x,y>0,且2x+8y−xy=0,求x+y的最小值;(2)若−4<x<1,求x2−2x+22x−2的最大值.28. (1)已知x >1,y =x +1x−1,求函数的最小值;(2)已知a >0,b >0,函数f(x)=alog 2x +b 的图象经过点(4,12),求1a +2b 的最小值.29. 求下列不等式的解集:(1)−x 2+4x +5<0; (2)2x−13x+1>0.30. (1)设x,y 是正实数,且1x +9y =1,求x +y 的最小值.(2)已知x <54,求函数y =4x −2+14x−5的最大值.31.已知关于x的不等式ax2−3x+2>0(a∈R).(1)若ax2−3x+2>0在区间[1 , 3]上恒成立,求a的取值范围;(2)求不等式ax2−3x+2>5−ax的解集.32.已知关于的一元二次方程x2−(m+1)x+(2m−1)=0.(1)若x=4是方程的一个实数根,求方程的另一个实数根;(2)若该方程有两个不相等的实数根x1,x2,且1x12+1x22=3,求实数m的值;(3)若m=0,求x3−1x3的值.-------- 答案与解析 --------1.答案:A解析:【分析】本题考查集合的交集运算,属于基础题.根据交集的定义即可求解.【解答】解:因为集合,,所以,故选A.2.答案:B解析:【分析】本题考查不等式性质的运用,属于基础题.因为0<a<b,作差得到a−√ab=√a(√a−√b)<0,得到a<√ab;b−a+b2=b−a2>0,得到b>a+b 2;由基本不等式得到a+b2>√ab,从而得到大小关系.【解答】解:因为0<a<b,所以a−√ab=√a(√a−√b)<0,故a<√ab;因为b−a+b2=b−a2>0,所以b>a+b2;由基本不等式知a+b2>√ab,综上所述,a<√ab<a+b2<b,故选B.3.答案:D解析:解:A.设f(x)=2x+12x=2x+2−x,则f(−x)=f(x)为偶函数.B.定义域关于原点不对称,∴函数为非奇非偶函数函数.C.y=xsinx为偶函数.D .满足f(0)=0,且f(−x)=−f(x),∴函数为奇函数. 故选:D .根据函数奇偶性的定义进行判断.本题主要考查函数奇偶性的判断,根据奇偶性的定义和常见函数的奇偶性的性质是解决本题的关键,比较基础.4.答案:B解析: 【分析】分别解出p ,q 的不等式,根据p 是q 的必要不充分条件,即可得出.本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题. 【解答】解:条件p :(x −m)(x −m −3)>0;解得:m +3<x ,或x <m . 条件q :x 2+3x −4<0.解得−4<x <1,∵p 是q 的必要不充分条件,∴1≤m ,或m +3≤−4,解得m ≥1或m ≤−7. 则实数m 的取值范围是(−∞,−7]∪[1,+∞). 故选:B .5.答案:A解析: 【分析】本题考查函数图象的平移规律和平移的方法,体现了数形结合的数学思想.把函数y =1x 的图象先经过左右平移得到y =1x−1的图象,再经过上下平移得到y =1x−1+1的图象. 【解答】解:将函数y =1x 的图象向右平移1个单位,得到y =1x−1的图象, 再把y =1x−1的图象向上平移一个单位,即得到y =1x−1+1的图象, 图象关于点(1,1)对称,当x =0时,y =0, 故选项A 的图象符合, 故选A .6.答案:A解析:【分析】本题考查一元二次方程解的问题,属于基础题.方程x2+mx+1=0有两个不相等的正实根,则解得m的取值范围即可.【解答】解:方程x2+mx+1=0有两个不相等的正实根,则解得m<−2.故选A.7.答案:D解析:解:根据题意,解x2−4x−5=0可得x=−1或5,用列举法表示可得{−1,5};故选:D.根据题意,解x2−4x−5=0可得x=−1或5,即可得{x|x2−4x−5=0}={−1,5},即可得答案.本题考查集合的表示法,注意正确求解一元二次方程.8.答案:D解析:【分析】本题考查元素与集合的关系,属基础题.由,所以a∉M.【解答】解:判断一个元素是否属于某个集合,关键是看这个元素是否具有这个集合中元素的特征,若具有就是,否则不是.,∴a∈M,故{a}⫋M.故选D.9.答案:B解析:【分析】本题考查基本不等式,属于基础题.利用基本不等式逐项分析判断即可.【解答】解:①a =1时,a 2+1>2a 不成立,①错误; ②a >0,b >0时,√ab≥√ab √ab =2,当且仅当a =b 时取等号,故②错误;③x 2+1x 2+1=(x 2+1)+1x 2+1−1≥2−1=1,当且仅当x =0时,等号成立,③正确;因此正确的个数是1. 故选B .10.答案:D解析:由题意可知m −1≤13且12≤m +1,解得m ∈[−12,43].11.答案:{0,−12,13}解析: 【分析】本题考查集合关系中参数取值问题,集合M ={x|x 2+x −6=0},分别解出集合M 最简单的形式,然后再根据N ⊆M ,求出k 的值,属基础题. 【解答】解:∵集合M ={x|x 2+x −6=0},∴集合M ={2,−3}, ∵N ⊆M ,N ={x|ax +1=0},∴有N =Φ或N ={2}或N ={−3}三种情况, 当N =Φ时,可得a =0,此时N =Φ;当N ={2}时,∵N ={x|ax +1=0},∴a =−12; 当N ={−3}时,a =13,∴a 的可能取值组成的集合为{0,−12,13}, 故答案为{0,−12,13}.12.答案:(−1,−12)解析: 【分析】本题考查了函数的性质的判断与应用,同时考查了学生的作图能力及数形结合的思想应用,属于难题.根据函数与方程的关系,利用参数分离法转化为两个函数的交点个数问题,利用数形结合进行求解即可.解:∵函数f(x)={xlnx −2x,x >0,x 2+32x,x ≤0,函数g(x)=f(x)−kx +1有四个零点,∴令g(x)=0,则f (x )−kx +1=0,即f (x )=kx −1, 对于f (x )=xlnx −2x (x >0),f ′(x )=lnx −1, 当0<x <e 时,f ′(x )<0,f (x )单调递减, 当x >e 时,f ′(x )>0,f (x )单调递增, 易知直线y =kx −1恒过点A(0,−1),如图,设直线AC 与y =xlnx −2x 相切于点C(x 0,x 0lnx 0−2x 0), 又y ′=lnx −1,所以直线AC 的方程为y −(x 0lnx 0−2x 0)=(lnx 0−1)(x −x 0), 直线AC 经过A(0,−1),所以x 0=1,此时k AC =ln1−1=−1,设直线AB 与y =x 2+32x (x ≤0)相切于点B(x,x 2+32x),y ′=2x +32, 故2x +32=x 2+32x+1x−0,解得,所以k AB =2×(−1)+32=−12, 所以若要f (x )=kx −1有四个零点,结合函数图象,可得实数k 的取值范围是(−1,−12), 故答案为(−1,−12).13.答案:√22解析: 【分析】本题考查的知识点是函数求值,分段函数的应用,函数的周期性的应用,难度不大,属于基础题. 由已知中f(x)={cos π4x,x <0f(x −2),x ≥0,得到函数的周期,将x =2017代入可得答案.解:∵f(x)={cosπ4x,x<0f(x−2),x≥0,x≥0时,函数是周期函数,周期为2,∴f(2017)=f(2015)=f(2013)=⋯=f(1)=f(−1)=cos(−π4)=√22,故答案为:√22.14.答案:−15解析:【分析】本题考查了一元二次不等式的解法、一元二次方程的根与系数的关系,属于基础题.关于x的不等式ax2+bx+c>0的解集为{x|−3<x<2},可得−3,2是一元二次方程ax2+bx+c=0的两个实数根,且a<0,再利用根与系数的关系即可得出.【解答】解:∵关于x的不等式ax2+bx+c>0的解集为{x|−3<x<2},∴−3,2是一元二次方程ax2+bx+c=0的两个实数根,且a<0,∴{−3+2=−ba −3×2=ca,即ba =1,ca=−6.则b+ca =ba+ca=1−6=−5,∴ab+c =−15.故答案为−15.15.答案:①④解析:【分析】本题考查函数的奇偶性、函数的定义域值域、函数的单调性,根据条件逐项判断真假即可,属中档题.【解答】解:①由2−x2>0,得−√2<x<√2,则函数f(x)的定义域为(−√2,√2),所以函数f(x)=√2−x2=√2−x2,则f(−x)=√2−x 2=−f(x),所以函数f(x)为奇函数,故①正确; ②y =2√x ≥20=1,即函数的值域是[1,+∞),故②错误; ③函数y =1x 在定义域内不是单调函数,故③错误;④若函数f(2x)的定义域为[1,2],则1≤x ≤2,则2≤2x ≤4,即函数f(x)的定义域为[2,4], 由2≤x2≤4,得4≤x ≤8,即函数y =f (x2)的定义域为[4,8],故④正确. 故答案为①④.16.答案:2解析:设两种都没买的有x 人,由题意知,只买电视的有6人,只买电脑的有5人,两种均买了的有2人,∵6+5+2+x =15,∴x =2.17.答案:[−23,0)解析: 【分析】本题考查分段函数的单调性,注意函数单调性的定义,属于中档题.根据题意,由函数单调性的定义分析可得{a +1>0a <0a2−a −1≤(a +1)−1,解可得a 的取值范围,即可得答案. 【解答】解:根据题意,函数f(x)={(a +1)x −1,x ≥112ax 2−ax −1,x <1在(−∞,+∞)上单调递增,则有{a +1>0a <0a2−a −1≤(a +1)−1, 解可得:−23≤a <0, 即a 的取值范围为[−23,0); 故答案为:[−23,0).18.答案:P <Q解析: 【分析】本题考查了平方作差比较两个数的大小,考查了计算能力,属于基础题.【解答】解:因为a≥0,所以P2−Q2=(√a+7−√a+6)2−(√a+10−√a+3)2=−2√a+7×√a+6+2√a+10×√a+3=2(√a2+13a+30−√a2+13a+42),因为a2+13a+30−(a2+13a+42)=−12<0,所以P<Q.故答案为P<Q.19.答案:{1}解析:【分析】本题主要考查了集合的分类,元素与集合的关系的应用,解题的关键是熟练掌握集合的分类,元素与集合的关系的计算,根据已知及集合的分类,元素与集合的关系的计算,求出C U B的值,求出的A∩(C U B)的值.【解答】解:∵集合U={1,2,3,4,5},A={1,3},B={2,3},∴C U B={1,4,5},∴A⋂(∁U B)={1}.故答案为{1}.20.答案:92解析:【分析】本题考查了利用基本不等式求最值,关键是对“1”的代换,利用基本不等式求最值要注意:“一正、二定、三相等”,是基础题.把1a +12b看作(1a+12b)⋅1,然后把1换为2a+b,展开后利用基本不等式求最值.【解答】解:1a +12b=(1+1)(2a+b)=2+12+ba+ab=52+ba+ab.∵a,b是正实数,∴52+ba+ab≥52+2√ba⋅ab=92.即1a +12b的最小值为92.当且仅当{ba=ab2a+b=1,即a=b=13时“=”成立.故答案为92.21.答案:解:(1)∵k=1时,全集U=R,集合A={x|−1≤x<2},B={x|(x−2)(x−1)≥0}={x|x≥2或x≤1}.∴C U B={x|1<x<2},∴A∩∁U B={x|1<x<2}.(2)当k≥2时,集合A={x|−1≤x<2},B={x|(x−2)(x−k)≥0}.A∩B=⌀,当k<2时,集合A={x|−1≤x<2},B={x|(x−2)(x−k)≥0}={x|x≤k,或x≥2},∵A∩B=⌀,∴k<−1.∴实数k的取值范围是(−∞,−1)∪[2,+∞).解析:(1)k=1时,求出B={x≥2或x≤1},C U B={x|1<x<2},由此能求出A∩∁U B={x|1< x<2}.(2)当k≥2时,A∩B=⌀,当k<2时,B={x|x≤k,或x≥2},由A∩B=⌀,得k<−1.由此能求出实数k的取值范围.本题考查补集、交集的求法,考查实数值的求法,是基础题,解题时要认真审题,注意交集性质的合理运用.22.答案:解:(1)证明:设0<x1<x2,则0<x1x2<1,由题意当x<1时,f(x)>0,可得f(x 1)−f(x 2)=f(x 1x 2⋅x 2)−f(x 2)=f(x 1x 2)+f(x 2)−f(x 2)=f(x1x 2)>0,即f(x 1)>f(x 2),所以y =f(x)是(0,+∞)上的减函数;(2)由f(12)=1,则f(14)=f(12×12)=f(12)+f(12)=1+1=2, 由f(x −3)>f(1x )−2得f(x −3)+2>f(1x ), 即f(x −3)+f(14)>f(1x ),即有f(x−34)>f(1x),由y =f(x)是(0,+∞)上的减函数, 得0<x−34<1x,解得3<x <4. 则原不等式的解集为(3,4).解析:(1)应用单调性的定义证明,注意取值,作差,变形和运用已知条件,定符号,下结论; (2)由f(12)=1,可得f(14)=2,原不等式即为即f(x −3)+f(14)>f(1x ),即有f(x−34)>f(1x ),由y =f(x)是(0,+∞)上的减函数,可得0<x−34<1x ,解不等式即可得到所求解集.本题考查函数的单调性的证明和应用,考查赋值法和分式不等式的解法,属于中档题和易错题.23.答案:解:(1)由x ,y >0,可得2x +y +1=(2x +y +1)(12x +1y+1)=2+y+12x+2xy+1≥4(x =y =1等号成立),可得2x +y ≥3,即2x +y 的最小值为3; (2)8−1a ≤1b +1ab .理由:由a >0,b >0,a +b =1≥2√ab , 即有ab ≤14, 则1a +1b +1ab =a+b+1ab =2ab ≥8则8−1a ≤1b +1ab .解析:(1)由题意可得12x +1y+1=1(a,y >0),运用乘1法和基本不等式可得2x +y +1的最小值,进而得到2x +y 的最小值;(2)结论:8−1a ≤1b +1ab .运用基本不等式可得ab 的范围,再由作差法,得到1a +1b +1ab ≥8,即可得到结论.本题考查基本不等式的运用:求最值和比较大小,注意乘1法和满足的条件:一正二定三等,考查化简整理的运算能力,属于中档题.24.答案:解:∵ax 2+bx +c >0的解集为{x|α<x <β},∴a <0,且α,β是方程ax 2+bx +c =0的两根,∴αβ=c a ,α+β=−ba ,∴c =a ·αβ,b =−a(α+β),代入cx 2+bx +a <0,得a ·αβx 2−a(α+β)x +a <0, 即αβx 2−(α+β)x +1>0,∵αβ>0,∴x 2−(1α+1β)x +1αβ>0, ∵方程x 2−(1α+1β)x +1αβ=0的两根为1α,1β, 且1α>1β,∴不等式cx 2+bx +a <0的解集为 {x|x >1α或x <1β}.解析:本题考查一元二次不等式的解法,由于不等式ax 2+bx +c >0的解集为{x|α<x <β,α>0,β>0},通过韦达定理,将b c ,ac 用α,β表示,得出 1α,1β为方程x 2−(1α+1β)x +1αβ=0的两根,可解不等式.25.答案:解:(1)y =x 2+8x−1=x 2−1+9x−1=(x +1)+9x−1=(x −1)+9x−1+2.∵x >1,∴x −1>0.∴(x −1)+9x−1+2≥2√(x −1)·9x−1+2=8. 当且仅当x −1=9x−1,即x =4时等号成立,所以函数y =x 2+8x−1(x >1)的最小值为8.(2)y =x 2+2021x+4042x+2=(x+2)2+2017(x+2)+4x+2=x +2+4x+2+2017.当x >−2时,y ≥2√(x +2)·4x+2+2017=2021,当x <−2时,y =−[−(x +2)+4−(x+2)]+2017≤2013, 故y =x 2+2021x+4042x+2的值域为:y ≤2013或y ≥2021.解析:本题考查基本不等式在最值中的应用,注意基本不等式成立的条件,属于中档题.26.答案:解(1)∵a > −1,∴a +1>0.由基本不等式,得4a+1+a =4a+1+a +1−1≥ 2√4a+1·(a +1)−1=2√4−1=3.当且仅当4a+1=a +1,即a =1时,等号成立. ∴4a+1+a 的最小值为3.(2)∵a、,且2a+b=1,∴1a +1b=2a+ba+2a+bb=3+(ba+2ab)≥3+2√2.当且仅当ba =2ab,即a=1−√22,b=√2−1时等号成立.∴1a +1b的最小值为3+2√2.解析:本题主要考查了基本不等式的应用,注意等号成立的条件,属于基础题.(1)由题意得4a+1+a=4a+1+a+1−1,再利用基本不等式的性质求出最小值即可;(2)灵活利用2a+b=1,1a +1b=2a+ba+2a+bb,再利用基本不等式的性质求出最小值即可.27.答案:解:(1)∵2x+8y−xy=0,∴2y +8x=1.∴x+y=(x+y)(2y +8x)=10+8yx+2xy≥10+2√8yx×2xy=18,当且仅当x=2y=12时取等号,∴x+y的最小值是18.(2)∵−4<x<1,∴x2−2x+22x−2=−12[(1−x)+11−x]≤−12×2√(1−x)×11−x=−1,当且仅当x=0时取等号,∴x2−2x+22x−2的最大值是−1.解析:本题考查基本不等式求最值,熟练掌握基本不等式的性质及其应用是解题的关键.(1)由题意得,2y +8x=1,则x+y=(x+y)(2y+8x)=10+8yx+2xy,利用基本不等式即可求解;(2)由题意,x2−2x+22x−2=−12[(1−x)+11−x],利用基本不等式即可求解.28.答案:解:(1)因为x>1,所以x−1>0,从而y=x+1x−1=x−1+1x−1+1≥2√(x−1)⋅1x−1+1=3,当且仅当x=2时取的最小值3;(2)∵a>0,b>0,函数的图象经过点(4,12),∴2a+b=12,则1a+2b=2(1a+2b)(2a +b)=8+2(b a+4a b)≥8+4√b a⋅4a b=16,当且仅当b =2a =14时取最小值为16.解析:本题主要考查了利用基本不等式求解最值,解题的关键是应用条件的配凑. (1)由已知可得,y =x +1x−1=x −+1x−1+1,利用基本不等式即可求解;(2)由已知可得,2a +b =12,从而可得1a +2b =2(1a +2b )(2a +b),利用基本不等式即可求解.29.答案:解:(1)−x 2+4x +5<0,即x 2−4x −5>0,即(x −5)(x +1)>0, 解得x <−1或x >5,故不等式的解集为(−∞,−1)∪(5,+∞), (2)由2x−13x+1>0可得(2x −1)(3x +1)>0, 即(x −12)(x +13)>0, 解得x <−13或x >12,故不等式的解集为(−∞,−13)∪(12,+∞)解析:分别用因式分解法即可求出不等式的解集.本题考查了利用因式分解法解一元二次不等式,属于基础题.30.答案:解:(1)x +y =(x +y)(1x +9y )=10+9x y+y x ≥10+2√9x y ×yx =16,当9xy =yx 时即x =4,y =12等号成立, 所以x +y 的最小值为16. (2)因为x <54,所以5−4x >0,y =4x −2+14x−5=4x −5+14x−5+3=−[(5−4x)+15−4x ]+3≤−2√(5−4x)×15−4x +3=1, 当5−4x =15−4x 时即x =1时等号成立, 所以函数y =4x −2+14x−5的最大值为1.解析:本题考查利用基本不等式求函数的最值,关键要注意条件“一正二定三等”. (1)x +y =(x +y)(1x +9y )=10+9x y+yx 再利用基本不等式即可.(2)注意函数解析式的分母为4x −5,所以前面要配成4x −5,得到y =4x −5+14x−5+3,但4x −5<0,所以填上负号得y =−[(5−4x)+15−4x ]+3再用基本不等式求解即可.31.答案:解:(1)由化简得,令,则原问题等价于在上恒成立,则,设,当时,取得最大值,故的取值范围是.(2)不等式为,即,当时,原不等式解集为; 当时,方程的根为,.①当时,,原不等式解集为;②时,,原不等式解集为;③当时,,原不等式解集为;④当时,,原不等式解集为.解析:本题考查一元二次不等式的解与分类讨论思想,属于中档题.(1)分离变量,转化为求函数y =−2t 2+3t 的最大值,求出最大值,即可得到答案; (2)对a 分类讨论,解不等式即可.32.答案:解:(1)设另一个根为x 0,由{4+x 0=m +14x 0=2m −1,得x 0=52 (2)由Δ>0得m <1或m >5, 因为{x 1+x 2=m +1x 1x 2=2m −1, 所以1x 12+1x 22=(x 1+x 2)2−2x 1x 2x 12x 22=(m+1)2−2(2m−1)(2m−1)2=3,解得m =0或m =1011,(3)当m =0时,x 2−x −1=0,且x ≠0, 所以x −1x =1,则x 3−1x 3=(x −1x )(x 2+1+1x 2) =(x −1x )[(x −1x )2+3]=4.解析:本题考查一元二次方程,考查推理能力和计算能力,属于中档题.(1)利用韦达定理求解即可;(2)根据一元二次方程根与系数的关系求解即可;(3)利用立方差公式求解即可得结果.第21页,共21页。
2019-2020学年北京市海淀区首都师大附中八年级(上)期中数学试卷

2019-2020学年北京市海淀区首都师大附中八年级(上)期中数学试卷一、选择题(每小题2分,共16分)1.(2分)手机界面中有一些美观的图标,以下图标为轴对称的是()A.B.C.D.2.(2分)下列计算正确的是()A.a2•a3=a5B.(a2)3=a5C.a8÷a2=a4D.2x+3y=5xy 3.(2分)将多项式a2﹣6a﹣5变为(x+p)2+q的形式,结果正确的是()A.(a+3)2﹣14B.(a﹣3)2﹣14C.(a+3)2+4D.(a﹣3)2+4 4.(2分)如图的方格纸中有若干个点,若AB两点关于过某点的直线对称,这个点可能是()A.P1B.P2C.P3D.P45.(2分)下列说法正确的是()A.不论x取何值时,(x﹣1)0=1B.的值比大C.多项式x2+x+1是完全平方式D.4×3100﹣399是11的倍数6.(2分)在平面直角坐标系xOy中,已知点A(0,8),点B(6,8),若点P同时满足下列条件:①点P到A,B两点的距离相等;②点P到∠xOy的两边距离相等.则点P 的坐标为()A.(3,5)B.(6,6)C.(3,3)D.(3,6)7.(2分)点P(﹣2,3)关于x轴对称的点的坐标是()A.(2,3)B.(2,﹣3)C.(﹣2,﹣3)D.(3,﹣2)8.(2分)已知等边△ABC中AD⊥BC,AD=12,若点P在线段AD上运动,当AP+BP 的值最小时,AP的长为()A.4B.8C.10D.12二、填空题(每小题3分,共24分)9.(3分)等腰三角形的一个外角是100°,则这个等腰三角形的底角为.10.(3分)如图,已知AE平分∠BAC,点D是AE上一点,连接BD,CD.请你添加一个适当的条件,使△ABD≌△ACD.添加的条件是:.(写出一个即可)11.(3分)已知:4x•9x=612,则x=.12.(3分)已知x m=2,x n=3,则x m+n=.13.(3分)如图,以等边△ABC的边AC为腰作等腰△CAD,使AC=AD,连接BD,若∠DBC=41°,∠CAD=°.14.(3分)有一个边长为a的大正方形和四个边长为b的全等的小正方形(其中a>2b),按如图方式摆放,并顺次连接四个小正方形落入大正方形内部的顶点,得到四边形ABCD.下面有四种说法:①阴影部分周长为4a;②阴影部分面积为(a+2b)(a﹣2b);③四边形ABCD四位周长为8a﹣4b;④四边形ABCD的面积为a2﹣4ab+4b2.所有合理说法的序号是.15.(3分)如图,在△ABC中,∠B=30°,AD⊥BC于点D,如果AB=8,BC=10,则△ABC的面积是.16.(3分)如图,在△ABC中,AB=BC,∠ABC=30°,BD平分∠ABC交AC于点D,BC的垂直平分线EF交BC于点E,交BD于点F,若BF=6,则AC的长为.三、解答题(本大题共60分,其中17题4分;18题8分;19-24题,每题5分;第25-27题,每题6分)17.(4分)计算:(π﹣3)018.(8分)因式分解(1)x2﹣y2(2)ax2+4ax+4a19.(5分)已知4a2﹣b2=6,2a+b=1.(1)求2a﹣b的值.(2)化简代数式[a2+b2+2b(a﹣b)﹣(a﹣b)2]÷4b20.(5分)如图,在△ABC中,∠B=∠ACB,D是边AB上一点,E是边AC的中点,作CF∥AB交DE的延长线于点F,DB=3,CF=7,求AE.21.(5分)先化简,再求值.(a+b)2﹣(a+b)(a﹣b)﹣2b(b+3a),其中a=2,b=﹣1.22.(5分)在△ABC的边AC上取一点,使得AB=AD,若点D恰好在BC的垂直平分线上,写出∠ABC与∠C的数量关系,并证明.23.(5分)双十一购物节即将到来,某商场设计了两种的促销方案,并有以下两种销售量预期.预期一:第1步,销售量扩大为原来的a倍.第2步,再扩大为第1步销售量的b倍.预期二:第1步,销售量扩大为原来的倍.第2步,再扩大为第1步销售量的倍.其中a,b为不相等的正数,请问两种预期中,哪种销售量更多?试说明理由.24.(5分)如图,已知△ABC中,AB=AC,AD为中线,点P是AD上一点,点Q是AC 上一点,且∠BPQ+∠BAQ=180°.(1)若∠ABP=α,求∠PQC的度数(用含α的式子表示);(2)求证:BP=PQ.25.(6分)对于多项式A=x2+bx+c(b,c为常数),作如下探究:(1)不论x取何值,A都是非负数,求b与c满足的条件;(2)若A是完全平方式,①当c=9时,b=;当b=3时,c=;②若多项式B=x2﹣dx﹣c与A有公因式,求d的值.26.(6分)如图,△ABC中,AB=BC,∠ABC=120°,点E是AC上一点,连接BE,且∠BEC=50°,D为点B关于直线AC的对称点,连接CD,将线段EB绕点E顺时针旋转40°得到线段EF,连接DF.(1)请你在图中补全图形;(2)请写出∠EFD的大小,并说明理由;(3)连接CF,求证:DF=CF.27.(6分)在平面直角坐标系xOy中,对于点P与图形W,若点Q为图形W上任意一点,点Q关于第一、三象限角平分线的对称点为Q′,且线段PQ′的中点为M(m,0),则称点P是图形W关于点M(m,0)的“关联点”.(1)如图1,若点P是点Q(0,)关于原点的关联点,则点P的坐标为;(2)如图2,在△ABC中,A(2,2),B(﹣2,0),C(0,﹣2),①将线段AO向右平移d(d>0)个单位长度,若平移后的线段上存在两个△ABC关于点(2,0)的关联点,则d的取值范围是.②已知点S(n+2,0)和点T(n+4,0),若线段ST上存在△ABC关于点N(n,0)的关联点,求n的取值范围.2019-2020学年北京市海淀区首都师大附中八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题2分,共16分)1.(2分)手机界面中有一些美观的图标,以下图标为轴对称的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.2.(2分)下列计算正确的是()A.a2•a3=a5B.(a2)3=a5C.a8÷a2=a4D.2x+3y=5xy 【解答】解:A、a2•a3=a5,故原题计算正确;B、(a3)2=a6,故原题计算错误;C、a8÷a2=a6,故原题计算错误;D、2x与3y不是同类项,不能合并,故原题计算错误;故选:A.3.(2分)将多项式a2﹣6a﹣5变为(x+p)2+q的形式,结果正确的是()A.(a+3)2﹣14B.(a﹣3)2﹣14C.(a+3)2+4D.(a﹣3)2+4【解答】解:根据题意得:a2﹣6a﹣5=(a2﹣6a+9)﹣14=(a﹣3)2﹣14,故选:B.4.(2分)如图的方格纸中有若干个点,若AB两点关于过某点的直线对称,这个点可能是()A.P1B.P2C.P3D.P4【解答】解:如图所示:AB两点关于过点P3的直线对称.故选:C.5.(2分)下列说法正确的是()A.不论x取何值时,(x﹣1)0=1B.的值比大C.多项式x2+x+1是完全平方式D.4×3100﹣399是11的倍数【解答】解:当x=1时,(x﹣1)0无意义,故选项A错误;∵,,∴的值与的值一样,故选项B错误;多项式x2+x+1=(x+)2+,故选项C错误;4×3100﹣399=399×(4×3﹣1)=399×11,则4×3100﹣399是11的倍数,故选项D正确;故选:D.6.(2分)在平面直角坐标系xOy中,已知点A(0,8),点B(6,8),若点P同时满足下列条件:①点P到A,B两点的距离相等;②点P到∠xOy的两边距离相等.则点P 的坐标为()A.(3,5)B.(6,6)C.(3,3)D.(3,6)【解答】解:∵点A(0,8),点B(6,8),点P到A,B两点的距离相等,∴点P在线段AB的垂直平分线x=3上,∵点P到∠xOy的两边距离相等,∴点P的坐标为(3,3)故选:C.7.(2分)点P(﹣2,3)关于x轴对称的点的坐标是()A.(2,3)B.(2,﹣3)C.(﹣2,﹣3)D.(3,﹣2)【解答】解:根据轴对称的性质,得点P(﹣2,3)关于x轴对称的点的坐标为(﹣2,﹣3).故选:C.8.(2分)已知等边△ABC中AD⊥BC,AD=12,若点P在线段AD上运动,当AP+BP 的值最小时,AP的长为()A.4B.8C.10D.12【解答】解:如图,作BE⊥AC于点E,交AD于点P,∵△ABC是等边三角形,AD⊥BC,∴∠DAC=30°∴PE=AP当BP⊥AC时,AP+BP=PE+BP的值最小,此时,AP=AD=8.故选:B.二、填空题(每小题3分,共24分)9.(3分)等腰三角形的一个外角是100°,则这个等腰三角形的底角为50°或80°.【解答】解:①若100°的外角是此等腰三角形的顶角的邻角,则此顶角为:180°﹣100°=80°,则其底角为:=50°;②若100°的外角是此等腰三角形的底角的邻角,则此底角为:180°﹣100°=80°;故这个等腰三角形的底角为:50°或80°.故答案为:50°或80°.10.(3分)如图,已知AE平分∠BAC,点D是AE上一点,连接BD,CD.请你添加一个适当的条件,使△ABD≌△ACD.添加的条件是:AB=AC(答案不唯一).(写出一个即可)【解答】解:∵AE平分∠BAC,∵AD=AD,添加AB=AC,利用SAS可得△ABD≌△ACD,添加∠B=∠C,利用AAS可得△ABD≌△ACD,添加∠ADB=∠ADC,利用ASA可得△ABD≌△ACD,故答案为:AB=AC(答案不唯一)11.(3分)已知:4x•9x=612,则x=6.【解答】解:∵4x•9x=612,∴22x•32x=62x=612,∴2x=12,解得:x=6.故答案为:6.12.(3分)已知x m=2,x n=3,则x m+n=6.【解答】解:∵x m=2,x n=3,∴x m+n=x m•x n=2×3=6.故答案为:6.13.(3分)如图,以等边△ABC的边AC为腰作等腰△CAD,使AC=AD,连接BD,若∠DBC=41°,∠CAD=82°.【解答】解:∵△ABC是等边三角形,∴∠ACB=60°,∵AC=AD,设∠ACD=∠ADC=α,则∠BCD=60°+α,∵∠DBC=41°,∴∠ABD=60°﹣41°=19°,∵AB=AC=AD,∴∠ADB=∠ABD=19°,∴∠BDC=180°﹣41°﹣(60°+α)=α﹣19°,∴α=49°,∴∠ACD=∠ADC=49°,∴∠CAD=180°﹣∠ACD﹣∠ADC=82°,故答案为:82.14.(3分)有一个边长为a的大正方形和四个边长为b的全等的小正方形(其中a>2b),按如图方式摆放,并顺次连接四个小正方形落入大正方形内部的顶点,得到四边形ABCD.下面有四种说法:①阴影部分周长为4a;②阴影部分面积为(a+2b)(a﹣2b);③四边形ABCD四位周长为8a﹣4b;④四边形ABCD的面积为a2﹣4ab+4b2.所有合理说法的序号是①②④.【解答】解:阴影部分周长=大正方形的周长=4a,所以①正确;阴影部分面积=大正方形的面积﹣4个小正方形的面积=a2﹣4b2=(a+2b)(a﹣2b),所以②正确;四边形ABCD的周长=2(a﹣2b)+2(a﹣2b)=4a﹣8b,所以③错误;四边形ABCD的面积=(a﹣2b)2=a2﹣4ab+4b2.所以④正确.故答案为①②④.15.(3分)如图,在△ABC中,∠B=30°,AD⊥BC于点D,如果AB=8,BC=10,则△ABC的面积是20.【解答】解:∵在△ABC中,AD⊥BC于点D,∴∠ADB=90°,∵∠B=30°,AB=8,∴AD=,∴△ABC的面积=,故答案为:2016.(3分)如图,在△ABC中,AB=BC,∠ABC=30°,BD平分∠ABC交AC于点D,BC的垂直平分线EF交BC于点E,交BD于点F,若BF=6,则AC的长为6.【解答】解:连接CF,如图所示:∵在△ABC中,AB=BC,BD平分∠ABC交AC于点D,∴AD=DC,BD⊥AC,∵BC的垂直平分线EF交BC于点E,∴BF=CF=6,∴∠DFC=2∠DBC=∠ABC=30°,∵BD⊥AC,∴∠BDC=90°,∴DC=,∴AC=2DC=6,故答案为:6.三、解答题(本大题共60分,其中17题4分;18题8分;19-24题,每题5分;第25-27题,每题6分)17.(4分)计算:(π﹣3)0【解答】解:(π﹣3)0=1+=1+=1+(﹣1)=0.18.(8分)因式分解(1)x2﹣y2(2)ax2+4ax+4a【解答】解:(1)原式=(x+y)(x﹣y);(2)原式=a(x2+4x+4)=a(x+2)2.19.(5分)已知4a2﹣b2=6,2a+b=1.(1)求2a﹣b的值.(2)化简代数式[a2+b2+2b(a﹣b)﹣(a﹣b)2]÷4b【解答】解:(1)∵4a2﹣b2=(2a+b)(2a﹣b)=6,2a+b=1,∴2a﹣b=6;(2)原式=(a2+b2+2ab﹣2b2﹣a2+2ab﹣b2)÷4b=(4ab﹣2b2)÷4b=a﹣b=(2a﹣b),当2a﹣b=6时,原式=3.20.(5分)如图,在△ABC中,∠B=∠ACB,D是边AB上一点,E是边AC的中点,作CF∥AB交DE的延长线于点F,DB=3,CF=7,求AE.【解答】解:∵E是边AC的中点,∴AE=CE.又∵CF∥AB,∴∠A=∠ACF,∠ADF=∠F,在△ADE与△CFE中,,∴△ADE≌△CFE(AAS).∴CF=AD=7,∴AB=AD+BD=10,又∵∠B=∠ACB,∴AB=AC=10,∵E是边AC的中点,∴AE=AC=5.21.(5分)先化简,再求值.(a+b)2﹣(a+b)(a﹣b)﹣2b(b+3a),其中a=2,b=﹣1.【解答】解:原式=a2+2ab+b2﹣a2+b2﹣2b2﹣6ab=﹣4ab,当a=2,b=﹣1时,原式=8.22.(5分)在△ABC的边AC上取一点,使得AB=AD,若点D恰好在BC的垂直平分线上,写出∠ABC与∠C的数量关系,并证明.【解答】解:结论:∠ABC=3∠C.理由:设∠C=x.∵点D在BC的垂直平分线上,∴DB=DC,∴∠C=∠CBD=x,∴∠ADB=∠C+∠CBD=2x,∵AB=AD,∴∠ADB=∠ABD=2x,∴∠ABC=∠ABD+∠C=3x,∴∠ABC=3∠C.23.(5分)双十一购物节即将到来,某商场设计了两种的促销方案,并有以下两种销售量预期.预期一:第1步,销售量扩大为原来的a倍.第2步,再扩大为第1步销售量的b倍.预期二:第1步,销售量扩大为原来的倍.第2步,再扩大为第1步销售量的倍.其中a,b为不相等的正数,请问两种预期中,哪种销售量更多?试说明理由.【解答】解:预期二的销售量更多,理由为:根据题意得:设原来的销售量为“1”,预期一的销售量为:ab;预期二的销售量为:()2,∵a≠b,且()2﹣ab=﹣ab==>0,∴()2>ab,则预期二的销售量更多.24.(5分)如图,已知△ABC中,AB=AC,AD为中线,点P是AD上一点,点Q是AC 上一点,且∠BPQ+∠BAQ=180°.(1)若∠ABP=α,求∠PQC的度数(用含α的式子表示);(2)求证:BP=PQ.【解答】解:(1)∵在四边形ABPQ中,∠BPQ+∠BAQ=180°,∴∠ABP+∠AQP=180°,∵∠AQP+∠CQP=180°,∴∠CQP=∠ABP,∵∠ABP=α,∴∠CQP=α;(2)连接PC,∵AB=AC,AD为中线,∴AD⊥BC,∴AD垂直平分BC,∵点P是AD上一点,∴PB=PC,∵AP=AP,AB=AC,PB=PC,∴△ABP≌△ACP(SSS),∴∠ABP=∠ACP,由(1)知∠CQP=∠ABP,∴∠ACP=∠CQP,∴PQ=PC,∴PB=PQ.25.(6分)对于多项式A=x2+bx+c(b,c为常数),作如下探究:(1)不论x取何值,A都是非负数,求b与c满足的条件;(2)若A是完全平方式,①当c=9时,b=±6;当b=3时,c=;②若多项式B=x2﹣dx﹣c与A有公因式,求d的值.【解答】解:(1)A=x2+bx+c=﹣+c=+,∵≥0,不论x取何值,A都是非负数,∴≥0,∴4c﹣b2≥0;(2)①当c=9时,∵A是完全平方式,即x2+bx+9=x2+bx+32是完全平方式,∴b=±2×3=±6;当b=3时,∵A是完全平方式,即x2+3x+c是完全平方式,∴c=.故答案为:±6;.②∵A是完全平方式,∴设A=x2+bx+c=(x+y)2=x2+2xy+y2①,∵B=x2﹣dx﹣c与A有公因式,∴设B=x2﹣dx﹣c=(x+y)(x+z)=x2+(y+z)x+yz②,由①式可得:c=y2,由②式可得:﹣d=y+z,﹣c=yz,∴z=﹣y,∴﹣d=y+z=0,∴d=0.∴d的值为0.26.(6分)如图,△ABC中,AB=BC,∠ABC=120°,点E是AC上一点,连接BE,且∠BEC=50°,D为点B关于直线AC的对称点,连接CD,将线段EB绕点E顺时针旋转40°得到线段EF,连接DF.(1)请你在图中补全图形;(2)请写出∠EFD的大小,并说明理由;(3)连接CF,求证:DF=CF.【解答】(1)解:图形如图1中所示:(2)解:如图2中,连接DE.∵B,D关于AC对称,∴EB=ED,∠BEC=∠DEC=50°,∵EB=EF,∠BEF=40°,∴∠FEC=∠BEC﹣∠BEF=50°﹣40°=10°,DE=EF,∴∠DEF=∠DEC+∠FEC=60°,∴△DEF是等边三角形,∴∠EFD=60°.(3)证明:如图2中,连接BD.∵B,D关于AC对称,∴CB=CD,∠BCA=∠ACD,∵BA=BC,∠ABC=120°,∴∠A=∠BCA=30°,∴∠ACB=∠ACD=30°,∴∠BCD=60°,∴△BCD是等边三角形,∴DB=DC,∠BDC=60°,∵△DEF是等边三角形,∴DE=DF,∠EDF=60°,∴∠EDF=∠BDC,∴∠EDB=∠FDC,∴△EDB≌△FDC(SAS),∴∠EBD=∠FCD,∵B,D关于AC对称,∴∠EDC=∠EBC=180°﹣50°﹣30°=100°,∵∠EDF=60°,∴∠FDC=40°,∵EB=ED,∠BED=100°,∴∠EBD=∠EDB=40°,∴∠FCD=∠EBD=40°,∴∠FDC=∠FCD=40°,∴FD=FC.27.(6分)在平面直角坐标系xOy中,对于点P与图形W,若点Q为图形W上任意一点,点Q关于第一、三象限角平分线的对称点为Q′,且线段PQ′的中点为M(m,0),则称点P是图形W关于点M(m,0)的“关联点”.(1)如图1,若点P是点Q(0,)关于原点的关联点,则点P的坐标为(﹣,0);(2)如图2,在△ABC中,A(2,2),B(﹣2,0),C(0,﹣2),①将线段AO向右平移d(d>0)个单位长度,若平移后的线段上存在两个△ABC关于点(2,0)的关联点,则d的取值范围是2<d≤3.②已知点S(n+2,0)和点T(n+4,0),若线段ST上存在△ABC关于点N(n,0)的关联点,求n的取值范围.【解答】解:(1)∵点P是点Q(0,)关于原点的关联点,∴Q′(,0),∵P,Q′关于原点对称,∴P(﹣,0),故答案为(﹣,0).(2)①如图2中,作△ABC关于点(2,0)对称的△A′B′C′,当平移后的线段OA与△A′B′C′的边有两个交点时,满足条件,观察图象可知当平移后的线段OA经过C′(4,2)时,平移的距离d=2,当平移后的线段OA经过点(3,0)时,平移的距离d=3,∴当2<d≤3时,平移后的线段上存在两个△ABC关于点(2,0)的关联点,故答案为:2<d≤3.②由题意AC与x轴的交点(1,0),(1,0)关于N(n,0)的对称点坐标为(2n﹣1),B(﹣2,0)关于N(n,0)的对称点坐标(2n+2,0),∵线段ST上存在△ABC关于点N(n,0)的关联点,∴n+2≤2n﹣1≤n+4或n+2≤2n+2≤n+4,解得3≤n≤5或0≤n≤2,。
【解析】北京市首都师范大学附属中学2019-2020学年高一上学期期中考试(5-11班)数学试题

首都师大附中2019—2020学年第一学期期中考试高一数学(5-11班)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|2}A x x =>,{|(1)(3)0}B x x x =--<,则A B =I ( ) A. {|1}x x >B. {|23}x x <<C. {|13}x x <<D.{| 2 x x >或1}x <【答案】B 【分析】计算{}{|(1)(3)0}=13B x x x x x =--<<<,再计算A B I 得到答案. 【详解】{}{|(1)(3)0}=13B x x x x x =--<<<,{|2}A x x =>,故{|23}A B x x ⋂=<<.故选:B .【点睛】本题考查了交集运算,属于简单题.2.已知命题p :∃c >0,方程x 2-x +c =0有解,则¬p 为( ) A. ∀c >0,方程x 2-x +c =0无解 B. ∀c ≤0,方程x 2-x +c =0有解 C. ∃c >0,方程x 2-x +c =0无解 D. ∃c ≤0,方程x 2-x +c =0有解【答案】A 【分析】利用特称命题的否定是全称命题,可得结果.【详解】命题p :∃c >0,方程x 2-x +c =0有解,则¬p 为∀c >0,方程x 2-x +c =0无解, 故选:A.【点睛】本题考查特称命题否定,是基础题.3.已知定义在R 上的函数f (x )的图像是连续不断的,且有如下对应值表:那么函数f (x )一定存在零点的区间是( ) A. (-∞,1) B. (1,2) C. (2,3) D. (3,4)【答案】C 【分析】由表中数据,结合零点存在性定理可得出结果.【详解】由表可知(1)(2)0,(2)(3)0,(3)(4)0f f f f f f ><>, 由零点存在性定理可知f (x )一定存在零点的区间是(2,3), 故选:C.【点睛】本题考查零点存在性定理,理解零点存在性定理是关键,是基础题. 4.下列函数中,在其定义域上既是偶函数,又在(0,+∞)上单调递减的( ) A. y =x 2B. y =3xC. y =x +1D. y【答案】B 【分析】运用函数的奇偶性和单调性对每个选项进行判断.【详解】对A. y =x 2在(0,+∞)上单调递增,故排除;对B. y =3x,其定义域上既是偶函数,又在(0,+∞)上单调递减;对C. y =x +1,其为非奇非偶函数,故排除;对D. y 故选:B.【点睛】本题考查了函数的奇偶性和单调性的判断,是基础题.5.若a >b ,则下列四个不等式中必成立的是( ) A. ac >bc B. a c >b cC. a 2>b 2D.21ac +>21b c + 【答案】D 【分析】根据不等式的基本性质,逐一分析选项是否恒成立. 【详解】A.当0c =时,不等式不成立; B.当0c <时,不等式不成立; C.当1,2a b ==-时,不等式不成立; D.因为210c +>,故不等式必成立, 故选:D.【点睛】本题以命题的真假判断为载体,考查了不等式恒成立,不等式的基本性质,是基础题. 6.函数f (x )=1x +的最大值为 ( ) A. 2 5B. 1 2C.2D. 1【答案】B本小题主要考查均值定理.11()112f x x ==≤+=,即1x =时取等号.故选B .7.5a ≥是命题“[]1,2x ∀∈,20x a -≤”为真命题的( ) A. 充分而不必要条件 B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【分析】“[]1,2x ∀∈,20x a -≤”等价于a 大于等于2x 的最大值,由x 的范围求得2x 的范围,可得a 的取值范围,然后结合充分条件、必要条件的定义可得结果.【详解】因为“[]1,2x ∀∈,20x a -≤”等价于a 大于等于2x 的最大值, 而[]x 1,2∀∈,有[]21,4x ∈,所以4a ≥,由5a ≥,可得4a ≥成立,即[]1,2x ∀∈,20x a -≤成立; 反之,[]1,2x ∀∈,20x a -≤成立,可得4a ≥,不能推出5a ≥.5a ∴≥是命题“[]1,2x ∀∈,20x a -≤”为真命题的充分而不必要条件,故选A .【点睛】本题主要考查恒成立问题的求解方法,考查充分必要条件的判定,是基础题.判断充分条件与必要条件应注意:首先弄清条件p 和结论q 分别是什么,然后直接依据定义、定理、性质尝试,p q q p ⇒⇒.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题;对于范围问题也可以转化为包含关系来处理.8.已知奇函数()y f x =的图像关于直线2x =对称,且()3f m =,则(4)f m -的值为( ) A. 3 B. 0C. -3D.13【答案】C 【分析】由函数()y f x =的图象关于直线2x =对称,可得()(4)f m f m =-,再结合()y f x =为奇函数,求得(4)f m -的值.【详解】解:由函数()y f x =的图象关于直线2x =对称,可得()(4)f m f m =-, 再结合()y f x =为奇函数,可得()(4)(4)3f m f m f m =-=--=, 求得(4)3f m -=-, 故选:C.【点睛】本题主要考查函数的奇偶性的性质,函数的图象的对称性,属于基础题.9.已知函数()2f x ax x =-,若对任意[)12,2,x x ∈+∞,且12x x ≠,不等式()()1212f x f x x x ->-恒成立,则实数a 的取值范围是 A. 1,2⎛⎫+∞⎪⎝⎭B. 1,2⎡⎫+∞⎪⎢⎣⎭C. 1,4⎛⎫+∞⎪⎝⎭D. 1,4⎡⎫+∞⎪⎢⎣⎭【答案】D 【分析】 对不等式()()1212f x f x x x --进行化简,转化为a (x 1+x 2)﹣1>0恒成立,再将不等式变形,得到a >121x x +恒成立,从而将恒成立问题转变成求121x x +的最大值,即可求出a 的取值范围.【详解】不妨设x 2>x 1≥2,不等式()()1212f x f x x x --=22112212ax x ax x x x --+- =()()()12121212a x x x x x x x x -+---=a (x 1+x 2)﹣1,∵对任意x 1,x 2∈[2,+∞),且x 1≠x 2,不等式()()1212f x f x x x -->0恒成立,∴x 2>x 1≥2时,a (x 1+x 2)﹣1>0,即a >121x x +恒成立∵x 2>x 1≥2∴121x x +<14∴a≥14,即a 的取值范围为[14,+∞); 故选:D .【点睛】本题考查了函数恒成立求参数取值范围,也是常考题型,本题以“任性函数”的形式考查函数恒成立求参数取值范围,一种方法,可以采用参变分离的方法,将恒成立转化为求函数的最大值和最小值,二种方法,将不等式整理为()0F x <的形式,即求()max 0F x < ,或是()0F x >的形式,即求()min 0F x < ,求参数取值.10.给定条件:①∃x 0∈R ,f (-x 0)=-f (x 0);②∀x ∈R ,f (1-x )=-f (1+x ).下列三个函数:y =x 3,y =|x -1|,y =221,143,1x x x x x ⎧-<⎨-+≥⎩中,同时满足条件①②的函数个数是( )A. 0B. 1C. 2D. 3【答案】B 【分析】根据条件②得函数图象关于(1,0)对称,故可判断y =x 3;根据00110x x --+-=的解的情况,可判断y =|x -1|;最后验证y =221,143,1x x x x x ⎧-<⎨-+≥⎩满足①②.【详解】解:令()(1)g x f x =+,则()(1)(1)()g x f x f x g x -=-=+=, 所以()g x 为偶函数,关于(0,0)对称,将()(1)g x f x =+的图象向右平移一个单位可得()f x 的图象,故()f x 图象关于(1,0)对称,故可排除3y x =;若存在一个0x 使得0011x x --=--,即00110x x --+-=,该方程无解,故|1|y x =-不满足②,排除;对于221,143,1x x y x x x ⎧-<=⎨-+≥⎩,当1x =时,2(1)(1)10,(1)(143)0f f -=--=-=--+=,其满足①, 画出图象如下:由图象可知,满足②. 故选:B.【点睛】本题考查函数的基本性质,根据条件能判断出函数关于(1,0)对称是关键,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分. 把答案填在答题卡中的横线上.11.计算210.00013427--【答案】134【分析】化小数为分数,化根式为分数指数幂,再由有理指数幂的运算性质化简求值.【详解】原式()()23123443339130.13109244-⎡⎤⎛⎫=-+=-+=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,故答案为:134. 【点睛】本题考查有理指数幂的运算性质,是基础的计算题.12.函数y 11x -的定义域为____________. 【答案】[12,1)∪(1,+∞) 【分析】令被开方数大于等于0,同时分母非0,列出不等式组,求出x 的范围.【详解】解:要使函数有意义需要21010x x -≥⎧⎨-≠⎩解得12x ≥且1x ≠,故答案为:[12,1)∪(1,+∞). 【点睛】求函数的定义域,要保证开偶次方根的被开方数大于等于0;分母非0;对数的底数大于0且不为1,真数大于0等方面考虑.13.若函数f (x )=x 2-2x +1在区间[a ,a +2]上的最大值为4,则a 的值为____________. 【答案】-1或1【分析】对a 分类讨论,利用函数f (x )=x 2-2x +1在区间[a ,a +2]上的最大值为4,建立方程,即可求得a 的值.【详解】解:由题意,当0a ≥时,(2)4f a +=,即22)2(2)4(1a a +-++=,2(1)4,1a a ∴+=∴=;当0a <时,()4f a =,即2214a a -+=,2(1)4,1a a ∴-=∴=-;综上知,a 的值为1或−1. 故答案为:1或−1.【点睛】本题考查二次函数在闭区间上的最值,考查分类讨论的数学思想,考查学生的计算能力,属于中档题.14.如果关于x 的方程x 2+(m -1)x -m =0有两个大于12的正根,则实数m 的取值范围为____________. 【答案】(-∞,-12) 【分析】 方程有两个大于12的根,据此可以列出不等式组求得m 的取值范围即可. 【详解】解:根据题意,m 应当满足条件2(1)40112211(1)042m m m m m ⎧⎪∆=-+>⎪-⎪->⎨⎪⎪+-->⎪⎩即:2210012m m m m ⎧⎪++>⎪<⎨⎪⎪<-⎩,解得:12m <-, 实数m 的取值范围:(-∞,-12). 故答案为:(-∞,-12). 【点睛】本题考查根的判别式及根与系数的关系,解题的关键是正确的运用判别式及韦达定理,是中档题.15.能说明“若()()f x g x f 对任意的[0,2]x ∈都成立,则()f x 在[0,2]上的最小值大于()g x 在[0,2]上的最大值”为假命题的一对函数可以是()f x =____,()g x =_______. 【答案】 (1). ()f x x = (2). ()1g x x =- 【分析】由不等式恒成立可设()f x x =,()1g x x =-,结合单调性求出其在[]0,2上的最大值,即可得到符合题意.【详解】“若()()f x g x >对任意的[02]x ∈,都成立, 则()f x 在[]0,2上的最小值大于()g x 在[]0,2上的最大值”, 可设()f x x =,()1g x x =-,显然()()f x g x >恒成立,且()f x 在[]0,2的最小值为0,()g x 在[]0,2的最大值为1, 显然不成立,故答案为()f x x =,()1g x x =-.【点睛】本题主要考查了函数恒成立问题解法,注意运用函数的单调性,考查运算能力,熟练掌握初等函数的性质是解题的关键,属于基础题.16.已知函数22,(),x x x af x x x a ⎧-+≤=⎨>⎩.(1)当a =1时,函数()f x 的值域是___________;(2)若函数()f x 的图像与直线y a =只有一个公共点,则实数a 的取值范围是_______________. 【答案】 (1). R (2). []0,1 【分析】(1)根据分段函数单调性求值域,(2)先根据分段函数解+析式关系确定讨论点,再结合图象确定满足条件的参数范围.【详解】(1)当a =1时,22,1(),1x x x f x x x ⎧-+≤=⎨>⎩当1x >时,()1f x x =>当1x ≤时,22()2(1)11f x x x x =-+=--+≤所以函数()f x 的值域是(1,)(,1]R +∞-∞=U(2)因为当x a >时,()f x x a =>,所以只需函数2()2,()f x x x x a =-+≤的图像与直线y a =只有一个公共点,当22x x x -+≥,即01x ≤≤时,所以当01a ≤≤时,函数2()2,()f x x x x a =-+≤的图像与直线y a =只有一个公共点,当22x x x -+<,即1x >或0x <时,所以当1a >或0a <,即2a x x >-+,从而函数2()2,()f x x x x a =-+≤的图像与直线y a =无公共点, 因此实数a 的取值范围是[]0,1 故答案为:(1). R (2). []0,1【点睛】本题考查分段函数值域以及根据函数图象交点个数求参数,考查综合分析判断与求解能力,属中档题.三、解答题:共40分.17.设关于x 的不等式2x a -<的解集为A ,不等式2112x x -<+的解集为B . (1)求集合A ,B ;(2)若A B ⊆,求实数a 的取值范围.【答案】(1){}|22A x a x a =-<<+,{|23}B x x =-<<(2)[0]1,【分析】(1)解绝对值不等式和分式不等式得解;(2)由题得22a -≥-且23a +≤,解不等式得解. 【详解】(1)||2x a -<Q22x a ∴-<-<{|22}A x a x a ∴=-<<+∵2112x x -<+ ∴302x x -<+∴(2)(3)0x x +-<∴23x -<<{|23}B x x ∴=-<<(2)∵A B ⊆22a ∴-≥-且23a +≤,01a ∴≤≤即a 取值范围为[0]1,【点睛】本题主要考查绝对值不等式和分式不等式的解法,考查集合的关系,意在考查学生对这些知识的理解掌握水平.18.已知函数()()223f x x bx b =-+∈R .⑴若函数()f x 的图象经过点()4,3,求实数b 的值.⑵当[]1,2x ∈-时,函数()y f x =的最小值为1,求当[]1,2x ∈-时,函数()y f x =最大值.【答案】⑴b =2;⑵见解+析.【分析】(1)把点的坐标代入f (x )计算;(2)对f (x )的对称轴与区间[﹣1,2]的关系进行分情况讨论,判断f (x )的单调性,利用单调性解出b ,再求出最大值.【详解】解:(1)把(4,3)代入f (x )得16﹣8b +3=3,∴b =2.(2)f (x )的图象开口向上,对称轴为x =b .①若b ≤﹣1,则f (x )在[﹣1,2]上是增函数,∴f min (x )=f (﹣1)=4+2b =1,解得b =﹣32. ∴f max (x )=f (2)=7﹣4b =13.②若b ≥2,则f (x )在[﹣1,2]上是减函数,∴f min (x )=f (2)=7﹣4b =1,解得b =32(舍). ③若﹣1<b <2,则f (x )在[﹣1,b ]上是减函数,在(b ,2]上增函数.∴f min (x )=f (b )=﹣b 2+3=1,解得b 或b (舍).∴f max (x )=f (﹣1)=4+2b =4+22.综上,当b ≤﹣1时,f (x )的最大值为13,当﹣1<b <2时,f (x )最大值为4+22.【点睛】本题考查了二次函数的单调性与对称轴的关系,考查了分类讨论思想,属于中档题. 19.如图,建立平面直角坐标系xoy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程221(1)(0)20y kx k x k =-+>表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.【答案】(1)炮的最大射程是10千米.(2)当a 不超过6千米时,炮弹可以击中目标.试题分析:(1)求炮的最大射程即求()221120y kx k x =-+(k >0)与x 轴的横坐标,求出后应用基本不等式求解.(2)求炮弹击中目标时的横坐标的最大值,由一元二次方程根的判别式求解试题详细分析:(1)令y =0,得kx -120(1+k 2)x 2=0, 由实际意义和题设条件知x >0,k >0,故x =2201k k +=201k k+≤202=10,当且仅当k =1时取等号.所以炮的最大射程为10千米. (2)因为a >0,所以炮弹可击中目标⇔存在k >0,使3.2=ka -120(1+k 2)a 2成立 ⇔关于k 的方程a 2k 2-20ak +a 2+64=0有正根⇔判别式Δ=(-20a )2-4a 2(a 2+64)≥0⇔a≤6.所以当a 不超过6(千米)时,可击中目标.考点:函数模型的选择与应用20.如果f (x )是定义在R 上的函数,且对任意的x ∈R ,均有f (-x )≠-f (x ),则称该函数是“X —函数”.(1)分别判断下列函数:①y =211x +;②y =x +1;③y =x 2+2x -3是否为“X —函数”?(直接写出结论)(2)若函数f (x )=x -x 2+a 是“X —函数”,求实数a 的取值范围; (3)设“X —函数”f (x )=21,,x x A x x B ⎧+∈⎨∈⎩在R 上单调递增,求所有可能的集合A 与B . 【答案】(1)①②是“X —函数”,③不是“X —函数”.(2)(0,+∞)(3)A =[0,+∞),B =(-∞,0)【分析】(1)直接利用信息判断结果;(2)利用信息的应用求出参数的取值范围;(3)利用函数的单调性的应用和应用的例证求出结果.【详解】(1)①②是“X —函数”,③不是“X —函数”;(2)∵f (-x )=-x -x 2+a ,-f (x )=-x +x 2-a ,f (x )=x -x 2+a 是“X —函数”,∴f (-x )=-f (x )无实数解,即x 2+a =0无实数解,∴a >0,∴a 的取值范围为(0,+∞);(3)对任意的x ≠0, 若x ∈A 且-x ∈A ,则-x ≠x ,f (-x )=f (x ),与f (x )在R 上单调增矛盾,舍去;若x ∈B 且-x ∈B ,f (-x )=-f (x ),与f (x )是“X —函数”矛盾,舍去;∴对任意的x ≠0,x 与-x 恰有一个属于A ,另一个属于B ,∴(0,+∞)⊆A,(-∞,0)⊆B,假设0∈B,则f(-0)=-f(0),与f(x)是“X—函数”矛盾,舍去;∴0∈A,经检验,A=[0,+∞),B=(-∞,0)符合题意.【点睛】本题考查的知识要点:信息题型的应用,反证法的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题型.。
2019-2020学年北京市首师大附中高二(上)期中数学试卷

2019-2020学年北京市首师大附中高二(上)期中数学试卷试题数:18.满分:01.(单选题.3分)抛物线x2=4y的焦点坐标是()A.(1.0)B.(0.1)C.(2.0)D.(0.2)2.(单选题.3分)“a=2”是“直线2x+ay-1=0与直线ax+3y-2=0垂直”()A.充分必要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件3.(单选题.3分)若双曲线E:x29−y216=1的左、右焦点分别为F1.F2.点P在双曲线E上.且|PF1|=3.则|PF2|等于()A.11B.9C.5D.34.(单选题.3分)直线l:x+y+3=0被圆C:{x=−1+4cosθy=2+4sinθ(θ为参数)截得的弦长为()A. 2√2B. 4√2C. 4√3D.85.(单选题.3分)如图.在平面直角坐标系xOy中.F是椭圆x2a2+y2b2=1(a>b>0)的右焦点.直线y=b2与椭圆交于B.C两点.且∠BFC=90°.则该椭圆的离心率为()A. √63B. 2√33C. 12D. √226.(单选题.3分)设α.β为两个不同的平面.m.n为两条不同的直线.则下列命题中正确的为()A.若m || n.n⊂α.则m || αB.若m || α.n⊂α.则m || nC.若α⊥β.m⊂α.则m⊥βD.若m⊥β.m⊂α.则α⊥β7.(单选题.3分)已知抛物线C:y2=8x的焦点为F.准线与x轴的交点为K.点A在C上且|AK|=√2|AF| .则△AFK的面积为()A.4B.8C.16D.328.(单选题.3分)已知F1.F2是椭圆和双曲线的公共焦点.P是它们的一个公共点.且∠F1PF2= π3.则椭圆和双曲线的离心率的倒数之和的最大值为()A. 4√33B. 2√33C.3D.29.(填空题.3分)已知直线的参数方程为{x=1+12ty=1+√32t(t为参数).则其倾斜角为___ .10.(填空题.3分)若圆O:x2+y2=1与圆C:x2+y2+6x+8y+m=0相切.则实数m=___ .11.(填空题.3分)若方程x2k−2+y25−k=1表示的是焦点在x轴上的椭圆.则k的取值范围是___ .12.(填空题.3分)直线l与双曲线x2-4y2=4相交于A、B两点.若点P(4.1)为线段AB的中点.则直线l的方程是___ .13.(填空题.3分)已知圆C1:(x+2)2+(y−1)2=1 .圆C2与圆C1关于直线y=x+1对称.则圆C2的标准方程是___ .14.(填空题.3分)已知椭圆G:x26+y2b2=1(0<b<√6)的两个焦点分别为F1和F2.短轴的两个端点分别为B1和B2.点P在椭圆G上.且满足|PB1|+|PB2|=|PF1|+|PF2|.当b变化时.给出下列三个命题:① 点P的轨迹关于y轴对称;② 存在b使得椭圆G上满足条件的点P仅有两个;③ |OP|的最小值为2.其中.所有正确命题的序号是___ .15.(问答题.0分)已知动点P与平面上点A(-1.0).B(1.0)的距离之和等于2 √2.(1)试求动点P的轨迹方程C.(2)设直线l:y=kx+1与曲线C交于M、N两点.当|MN|= 4√23时.求直线l的方程.16.(问答题.0分)如图.在四棱锥P-ABCD中.PB⊥底面ABCD.底面ABCD为梯形.AD ||BC.AD⊥AB.且PB=AB=AD=3.BC=1.(Ⅰ)若点F为PD上一点且PF= 13PD.证明:CF || 平面PAB;(Ⅱ)求二面角B-PD-A的大小.17.(问答题.0分)在平面直角坐标系xOy中.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√22.点(2.1)在椭圆C上.(1)求椭圆C的方程;(2)设直线l与圆O:x2+y2=2相切.与椭圆C相交于P.Q两点.求证:∠POQ是定值.18.(问答题.0分)设A、B分别为椭圆x24+y23=1的左右顶点.设点P为直线x=4上不同于点(4.0)的任意一点.若直线AP、BP分别与椭圆相交于异于A、B的点M、N.(1)判断B与以MN为直径的圆的位置关系(内、外、上)并证明.(2)记直线x=4与轴的交点为H.在直线x=4上.求点P.使得S△APN=S△APH.2019-2020学年北京市首师大附中高二(上)期中数学试卷参考答案与试题解析试题数:18.满分:01.(单选题.3分)抛物线x2=4y的焦点坐标是()A.(1.0)B.(0.1)C.(2.0)D.(0.2)【正确答案】:B【解析】:把抛物线方程化成标准方程.根据抛物线的焦点坐标公式得出焦点坐标.【解答】:解:把抛物线方程化为标准方程为:x2=4y.=1.∴抛物线的焦点在y轴的正半轴.p=2. p2∴抛物线的焦点坐标为(0.1).故选:B.【点评】:本题考查了抛物线的简单性质.属于基础题.2.(单选题.3分)“a=2”是“直线2x+ay-1=0与直线ax+3y-2=0垂直”()A.充分必要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件【正确答案】:D【解析】:先求出直线2x+ay-1=0与直线ax+3y-2=0垂直时.a满足的条件.即可判断.【解答】:解:当直线2x+ay-1=0与直线ax+3y-2=0垂直时.2a+3a=0即a=0.所以“a=2”是“直线2x+ay-1=0与直线ax+3y-2=0垂直”的既不充分又不必要条件.故选:D.【点评】:本题主要考查充分、必要条件的判断以及直线垂直的等价条件应用.属于基础题. 3.(单选题.3分)若双曲线E : x 29−y 216 =1的左、右焦点分别为F 1.F 2.点P 在双曲线E 上.且|PF 1|=3.则|PF 2|等于( ) A.11 B.9 C.5 D.3【正确答案】:B【解析】:确定P 在双曲线的左支上.由双曲线的定义可得结论.【解答】:解:由题意.双曲线E : x 29−y 216=1中a=3.∵|PF 1|=3.∴P 在双曲线的左支上. ∴由双曲线的定义可得|PF 2|-|PF 1|=6. ∴|PF 2|=9. 故选:B .【点评】:本题考查双曲线的标准方程.考查双曲线的定义.属于基础题. 4.(单选题.3分)直线l :x+y+3=0被圆C : {x =−1+4cosθy =2+4sinθ(θ为参数)截得的弦长为( ) A. 2√2 B. 4√2 C. 4√3 D.8【正确答案】:B【解析】:利用平方关系把圆C 的参数方程化为标准方程.求出圆心C 到直线l 的距离d.利用直线l 被圆C 截得的弦长=2 √r 2−d 2 即可得出.【解答】:解:圆C : {x =−1+4cosθy =2+4sinθ (θ为参数)化为:(x+1)2+(y-2)2=16.可得:圆心C (-1.2).半径r=4. ∴圆心C 到直线l 的距离d=√2=2 √2 .∴直线l 被圆C 截得的弦长=2 √r 2−d 2 =2 √16−(2√2)2=4 √2 .【点评】:本题考查了直线与圆相交弦长问题、点到直线的距离结论公式、平方关系.考查了推理能力与计算能力.属于中档题.5.(单选题.3分)如图.在平面直角坐标系xOy 中.F 是椭圆x 2a 2+y 2b 2=1(a >b >0) 的右焦点.直线 y =b2 与椭圆交于B.C 两点.且∠BFC=90°.则该椭圆的离心率为( )A. √63B.2√33C. 12 D. √22【正确答案】:A【解析】:设右焦点F (c.0).将 y =b2 代入椭圆方程求得B.C 的坐标.运用两直线垂直的条件:斜率之积为-1.结合离心率公式.计算即可得到所求值.【解答】:解:设右焦点F (c.0).将 y =b 2 代入椭圆方程可得x=±a √1−b 24b 2 =± √32 a. 可得B (- √32 a. b 2 ).C ( √32 a. b2 ). 由∠BFC=90°.可得k BF •k CF =-1. 即有b2−√32a−c • b 2√32a−c=-1.化简为b 2=3a 2-4c 2. 由b 2=a 2-c 2.即有3c 2=2a 2. 由e= ca .可得e 2= c 2a 2 = 23 . 可得e= √63 .【点评】:本题考查椭圆的离心率的求法.注意运用两直线垂直的条件:斜率之积为-1.考查化简整理的运算能力.属于中档题.6.(单选题.3分)设α.β为两个不同的平面.m.n为两条不同的直线.则下列命题中正确的为()A.若m || n.n⊂α.则m || αB.若m || α.n⊂α.则m || nC.若α⊥β.m⊂α.则m⊥βD.若m⊥β.m⊂α.则α⊥β【正确答案】:D【解析】:在A中.m与α相交、平行或m⊂α;在B中.m与n平行或异面;在C中.m与β相交、平行或m⊂β;由面面垂直的判定定理得α⊥β.【解答】:解:由α.β为两个不同的平面.m.n为两条不同的直线.得:在A中.若m || n.n⊂α.则m与α相交、平行或m⊂α.故A错误;在B中.若m || α.n⊂α.则m与n平行或异面.故B错误;在C中.若α⊥β.m⊂α.则m与β相交、平行或m⊂β.故C错误;在D中.若m⊥β.m⊂α.则由面面垂直的判定定理得α⊥β.故D正确.故选:D.【点评】:本题考查命题真假的判断.考查空间中线线、线面、面面间的位置关系等基础知识.考查运算求解能力.考查函数与方程思想.是中档题.7.(单选题.3分)已知抛物线C:y2=8x的焦点为F.准线与x轴的交点为K.点A在C上且|AK|=√2|AF| .则△AFK的面积为()A.4B.8C.16D.32【正确答案】:B【解析】:根据抛物线的方程可知焦点坐标和准线方程.进而可求得K的坐标.设A(x0.y0).过A点向准线作垂线AB.则B(-2.y0).根据|AK|=√2|AF|及AF=AB=x0-(-2)=x0+2.进而可求得A点坐标.进而求得△AFK的面积.【解答】:解:∵抛物线C:y2=8x的焦点为F(2.0).准线为x=-2∴K(-2.0)设A(x0.y0).过A点向准线作垂线AB.则B(-2.y0)∵ |AK|=√2|AF| .又AF=AB=x0-(-2)=x0+2∴由BK2=AK2-AB2得y02=(x0+2)2.即8x0=(x0+2)2.解得A(2.±4)∴△AFK的面积为12|KF|•|y0|=12×4×4=8故选:B.【点评】:本题抛物线的性质.由题意准确画出图象.利用离心率转化位置.在△ABK中集中条件求出x0是关键;8.(单选题.3分)已知F1.F2是椭圆和双曲线的公共焦点.P是它们的一个公共点.且∠F1PF2= π3.则椭圆和双曲线的离心率的倒数之和的最大值为()A. 4√33B. 2√33C.3D.2【正确答案】:A【解析】:根据双曲线和椭圆的性质和关系.结合余弦定理即可得到结论.【解答】:解:设椭圆的长半轴为a.双曲线的实半轴为a1.(a>a1).半焦距为c.由椭圆和双曲线的定义可知.设|PF1|=r1.|PF2|=r2.|F1F2|=2c.椭圆和双曲线的离心率分别为e1.e2∵∠F1PF2= π3.∴由余弦定理可得4c2=(r1)2+(r2)2-2r1r2cos π3. ①在椭圆中. ① 化简为即4c2=4a2-3r1r2.即 3r 1r 24c 2=1e 12−1 . ②在双曲线中. ① 化简为即4c 2=4a 12+r 1r 2.即 r 1r 24c 2=−1e 22+1 . ③联立 ② ③ 得. 1e 12+3e 22 =4.由柯西不等式得(1+ 13 )( 1e 12+3e 22 )≥(1× 1e 1+√3×√3e 2)2.即( 1e 1+1e 2) 2≤43×4 = 163即 1e 1+1e 2≤√163=4√33.d 当且仅当 e 1=√33,e 2=√3 时取等号.法2:设椭圆的长半轴为a 1.双曲线的实半轴为a 2.(a 1>a 2).半焦距为c. 由椭圆和双曲线的定义可知. 设|PF 1|=r 1.|PF 2|=r 2.|F 1F 2|=2c. 椭圆和双曲线的离心率分别为e 1.e 2 ∵∠F 1PF 2= π3 .∴由余弦定理可得4c 2=(r 1)2+(r 2)2-2r 1r 2cos π3 =(r 1)2+(r 2)2-r 1r 2. 由 {r 1+r 2=2a 1r 1−r 2=2a 2 .得 {r 1=a 1+a 2r 2=a 1−a 2 .∴ 1e 1+1e 2=a 1+a 2c=r1c .令m= r 12c 2=4r 12r 12+r 22−r 1r 2=41+(r 2r 1)2−r2r 1=4(r 2r 1−12)2+34.当 r2r 1=12 时. m max =163. ∴ (r1c )max =4√33. 即 1e 1+1e 2的最大值为4√33. 法3:设|PF 1|=m.|PF 2|=n.则 {m +n =2a 1m −n =2a 2 .则a 1+a 2=m. 则 1e 1+1e 2=a 1+a 2c=mc .由正弦定理得 msin (120°−θ) = 2csin60° . 即 mc =2sin (120°−θ)sin60° = √3 sin (120°-θ)≤ √3= 4√33 故选:A .【点评】:本题主要考查椭圆和双曲线的定义和性质.利用余弦定理和柯西不等式是解决本题的关键.难度较大.9.(填空题.3分)已知直线的参数方程为{x=1+12ty=1+√32t(t为参数).则其倾斜角为___ .【正确答案】:[1] π3【解析】:把直线的参数方程化为普通方程.求出它的斜率和倾斜角的大小.【解答】:解:直线的参数方程为{x=1+12ty=1+√32t(t为参数).消去参数t.化为普通方程是y-1= √3(x-1).则该直线的斜率为√3 .倾斜角为π3.故答案为:π3.【点评】:本题考查了直线的参数方程与普通方程的转化问题.是基础题.10.(填空题.3分)若圆O:x2+y2=1与圆C:x2+y2+6x+8y+m=0相切.则实数m=___ .【正确答案】:[1]-11或9【解析】:由题意.两个圆相内切.根据两圆的圆心距等于两圆的半径之差的绝对值.两个圆相外切.两圆的圆心距等于半径之和.求得m的值.【解答】:解:圆x2+y2+6x+8y+m=0 即(x+3)2+(y+4)2=25-m.表示以(3.4)为圆心.半径等于√25−m的圆.由题意.两个圆相内切.两圆的圆心距等于半径之差的绝对值.可得5=| √25−m -1|.解得m=-11.两个圆相外切.两圆的圆心距等于半径之和.可得5= √25−m +1.解得m=9.故答案为:-11或9.【点评】:本题主要考查圆的标准方程的特征.两点间的距离公式.两圆的位置关系的判定方法.属于中档题.11.(填空题.3分)若方程x2k−2+y25−k=1表示的是焦点在x轴上的椭圆.则k的取值范围是___ .【正确答案】:[1](72.5)【解析】:焦点在x轴上的椭圆.满足x2的分母大于y2的分母并且大于0.建立不等式可求k的取值范围.【解答】:解:由题意方程x 2k−2+y25−k=1表示的是焦点在x轴上的椭圆.k-2>5-k>0.∴ 72<k<5.故答案为:(72.5)【点评】:本题以椭圆的标准方程为载体.考查椭圆的性质.利用焦点在y轴上的椭圆.满足x2的分母大于y2的分母并且大于0.是解题的关键.12.(填空题.3分)直线l与双曲线x2-4y2=4相交于A、B两点.若点P(4.1)为线段AB的中点.则直线l的方程是___ .【正确答案】:[1]x-y-3=0【解析】:设出A.B的坐标.代入双曲线方程.两式相减.根据中点的坐标可知x1+x2和y1+y2的值.进而求得直线AB的斜率.根据点斜式求得直线的方程.【解答】:解:设A(x1.y1).B(x2.y2).则x1+x2=8.y1+y2=2.∵x12-4y12=4.x22-4y22=4.两式相减可得:(x1+x2)(x1-x2)-4(y1+y2)(y1-y2)=0.∴8(x1-x2)-8(y1-y2)=0.∴k AB=1.∴直线的方程为y-1=1(x-4).即x-y-3=0.故答案为:x-y-3=0.【点评】:涉及弦长的中点问题.常用“点差法”设而不求.将弦所在直线的斜率、弦的中点坐标联系起来.相互转化.13.(填空题.3分)已知圆C1:(x+2)2+(y−1)2=1 .圆C2与圆C1关于直线y=x+1对称.则圆C2的标准方程是___ .【正确答案】:[1]x2+(y+1)2=1【解析】:求出圆C2的圆心坐标.又圆C1和圆C2的半径相等.即可得到其方程.【解答】:解:依题意.设圆C 2的圆心坐标为(a.b ). 则因为圆 C 1:(x +2)2+(y −1)2=1 .的圆心为(-2.1).所以 {b+12=−2+a 2+1,b−1a+2=−1,解得 {a =0b =−1.所以圆C 2的标准方程是:x 2+(y+1)2=1. 故答案为:x 2+(y+1)2=1.【点评】:本题考查了圆的标准方程.考查了点关于直线的对称点的求法.属于基础题. 14.(填空题.3分)已知椭圆G : x 26+y 2b 2=1(0<b <√6) 的两个焦点分别为F 1和F 2.短轴的两个端点分别为B 1和B 2.点P 在椭圆G 上.且满足|PB 1|+|PB 2|=|PF 1|+|PF 2|.当b 变化时.给出下列三个命题:① 点P 的轨迹关于y 轴对称;② 存在b 使得椭圆G 上满足条件的点P 仅有两个; ③ |OP|的最小值为2.其中.所有正确命题的序号是___ . 【正确答案】:[1] ① ③【解析】:运用椭圆的定义可得P 也在椭圆 y 26 + x 26−b 2 =1上.分别画出两个椭圆的图形.即可判断 ① 正确;通过b 的变化.可得 ② 不正确;由图象可得当P 的横坐标和纵坐标的绝对值相等时.|OP|的值取得最小.即可判断 ③ .【解答】:解:椭圆G : x 26+y 2b 2=1(0<b <√6) 的两个焦点分别为F 1( √6−b 2 .0)和F 2(- √6−b 2 .0). 短轴的两个端点分别为B 1(0.-b )和B 2(0.b ).设P (x.y ).点P 在椭圆G 上.且满足|PB 1|+|PB 2|=|PF 1|+|PF 2|. 由椭圆定义可得.|PB 1|+|PB 2|=2a=2 √6 >2b. 即有P 在椭圆 y 26 + x 26−b 2 =1上.对于 ① .将x 换为-x 方程不变.则点P 的轨迹关于y 轴对称. 故 ① 正确;对于 ② .由图象可得轨迹关于x.y 轴对称.且0<b < √6 . 则椭圆G 上满足条件的点P 有4个.不存在b使得椭圆G上满足条件的点P仅有两个.故② 不正确;对于③ .由图象可得.当P满足x2=y2.即有6-b2=b2.即b= √3时.|OP|取得最小值.可得x2=y2=2.即有|OP|的最小值为2.故③ 正确.故答案为:① ③ .【点评】:本题考查椭圆的定义和方程的运用.以及对称性.考查数形结合的思想方法.以及运算能力.属于中档题.15.(问答题.0分)已知动点P与平面上点A(-1.0).B(1.0)的距离之和等于2 √2.(1)试求动点P的轨迹方程C.时.求直线l的方程.(2)设直线l:y=kx+1与曲线C交于M、N两点.当|MN|= 4√23【正确答案】:【解析】:(1)由椭圆的第一定义.可得P的轨迹为以A.B为焦点的椭圆.求得a.b.c.即可你到底所求轨迹方程;(2)将直线方程代入椭圆方程.解方程可得M.N的坐标.再由两点的距离公式解方程可得斜率k.进而得到直线方程.【解答】:解:(1)由|AB|=2<|PA|+|PB|=2 √2 .根据椭圆的第一定义.可得P的轨迹为以A.B为焦点的椭圆.且2a=2 √2 .即a= √2 .c=1.b= √a2−c2 =1.则动点P的轨迹方程C为x2+y2=1;2(2)将直线l:y=kx+1代入椭圆方程x2+2y2=2. 可得(1+2k2)x2+4kx=0.解得x1=0.x2=- 4k1+2k2.可得M(0.1).N(- 4k1+2k2 . 1−2k21+2k2).由题意可得|MN|= √16k2(1+2k2)2+(1−2k21+2k2−1)2= 4√23.解得k=±1.即有直线l的方程为y=±x+1.【点评】:本题考查轨迹方程的求法.注意运用椭圆的第一定义.考查弦长的求法.注意运用直线方程和椭圆方程联立.考查运算能力.属于中档题.16.(问答题.0分)如图.在四棱锥P-ABCD中.PB⊥底面ABCD.底面ABCD为梯形.AD ||BC.AD⊥AB.且PB=AB=AD=3.BC=1.(Ⅰ)若点F为PD上一点且PF= 13PD.证明:CF || 平面PAB;(Ⅱ)求二面角B-PD-A的大小.【正确答案】:【解析】:(Ⅰ)过点F作FH || AD.交PA于H.连接BH.证明HF || BC.CF || BH.然后证明CF || 平面PAD.(Ⅱ)说明BC⊥AB.PB⊥AB.PB⊥BC.以B为原点.BC.BA.BP所在直线为x.y.z轴建立空间直角坐标系.求出平面BPD的一个法向量.平面APD的一个法向量.通过向量的数量积求解二面角B-PD-A的大小.【解答】:证明:(Ⅰ)过点F作FH || AD.交PA于H.连接BH.因为PF= 13 PD.所以HF= 13AD=BC.….(1分)又FH || AD.AD || BC.所以HF || BC .….(2分) 所以BCFH 为平行四边形.所以CF || BH .….(3分)又BH⊂平面PAB.CF⊄平面PAB.….(4分)(一个都没写的.则这(1分)不给) 所以CF || 平面PAB .….(5分)解:(Ⅱ)因为梯形ABCD 中.AD || BC.AD⊥AB .所以BC⊥AB . 因为PB⊥平面ABCD.所以PB⊥AB .PB⊥BC .如图.以B 为原点.BC.BA.BP 所在直线为x.y.z 轴建立空间直角坐标系.….(6分) 所以C (1.0.0).D (3.3.0).A (0.3.0).P (0.0.3).设平面BPD 的一个法向量为 n ⃗ =(x.y.z ).平面APD 的一个法向量为 m ⃗⃗ =(a.b.c ). 因为 PD⃗⃗⃗⃗⃗ =(3.3.-3). BP ⃗⃗⃗⃗⃗ =(0.0.3) 所以 {n ⃗ •PD ⃗⃗⃗⃗⃗ =3x +3y −3z =0n ⃗ •BP ⃗⃗⃗⃗⃗ =3z =0 .….(7分)取x=1得到 n ⃗ =(1.-1.0).….(8分) 同理可得 m ⃗⃗ =(0.1.1).….(9分)所以cos < m ⃗⃗ ,n ⃗ >= m⃗⃗⃗ •n ⃗ |m ⃗⃗⃗ |•|n ⃗ | =- 12.….(10分) 因为二面角B-PD-A 为锐角.所以二面角B-PD-A 为 π3 .….(12分)【点评】:本题考查直线与平面平行的判定定理的应用.二面角的平面角的求法.向量的数量积的应用.考查空间想象能力以及计算能力. 17.(问答题.0分)在平面直角坐标系xOy中.已知椭圆 C :x 2a 2+y 2b 2=1(a >b >0) 的离心率为√22.点(2.1)在椭圆C 上.(1)求椭圆C 的方程;(2)设直线l 与圆O :x 2+y 2=2相切.与椭圆C 相交于P.Q 两点.求证:∠POQ 是定值.【正确答案】:【解析】:(1)由题得e= ca =√22得到a.b.c 的关系.再将点(2.1)代入可解得a 2=6.进而得到方程;(2)考虑PQ 斜率不存在和存在两种情况.分别计算出 OP ⃗⃗⃗⃗⃗ •OQ ⃗⃗⃗⃗⃗⃗ =0.可得∠POQ=90°为定值.【解答】:解:(1)由题得e= ca =√22 .所以c 2= 12a 2 .则b 2= 12a 2 .再将点(2.1)代入方程得 4a 2+112a 2=1 .解得a 2=6.所以b 2=3.则椭圆C 的方程为: x 26+y 23=1 ;(2) ① 当直线PQ 斜率不存在时.则直线PQ 的方程为x= √2 或x=- √2 .当x= √2 时.P ( √2 . √2 ).Q ( √2 .- √2 ).此时 OP ⃗⃗⃗⃗⃗ •OQ ⃗⃗⃗⃗⃗⃗ =0 .所以OP⊥OQ .即∠POQ=90°. 当x=- √2 时.同理可得OP⊥OQ .∠POQ=90°;② 当直线PQ 斜率存在时.不妨设直线PQ 的方程为y=kx+m.即kx-y+m=0. 因为直线与圆相切.所以√k 2+1=√2 .即m 2=2k 2+2.联立 {kx −y +m =0x 26+y 23=1 .得(1+2k 2)x 2+4kmx+2m 2-6=0.设P (x 1.y 1).Q (x 2.y 2).则有 x 1+x 2=−4km1+2k 2. x 1x 2=2m 2−61+2k 2. 此时 OP ⃗⃗⃗⃗⃗ •OQ ⃗⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2=x 1x 2+(kx 1+m )(kx 2+m ) = (1+k 2)x 1x 2+km (x 1+x 2)+m 2 = (1+k 2)×2m 2−61+2k 2+km ×(−4km1+2k 2)+m 2 .将m 2=2k 2+2代入上式可得 OP ⃗⃗⃗⃗⃗ •OQ ⃗⃗⃗⃗⃗⃗ =0 .所以OP⊥OQ .则∠POQ=90°; 综上:∠POQ 是定值为90°.【点评】:本题是直线与椭圆的综合.计算出 OP ⃗⃗⃗⃗⃗ •OQ ⃗⃗⃗⃗⃗⃗ =0时判断∠POQ 是否为定值的关键.属于中档题.18.(问答题.0分)设A 、B分别为椭圆 x 24+y 23=1 的左右顶点.设点P 为直线x=4上不同于点(4.0)的任意一点.若直线AP 、BP 分别与椭圆相交于异于A 、B 的点M 、N . (1)判断B 与以MN 为直径的圆的位置关系(内、外、上)并证明. (2)记直线x=4与轴的交点为H.在直线x=4上.求点P.使得S △APN =S △APH .【正确答案】:【解析】:(1)由已知得A (-2.0).B (2.0).设M (x 0.y 0).又点M 异于顶点A 、B.可得-2<x 0<2.由P 、A 、M 三点共线可以得P .可得 BM ⃗⃗⃗⃗⃗⃗ •BP ⃗⃗⃗⃗⃗ >0.即可证明. (2)设N (x 1.y 1).P (4.t )由P 、B 、N 三点共线可得t= 2y 0x 0−2.由S △APN =S △APH .等价于S △ABN =S △BPH .解得x 0=1.即可.【解答】:解:(1)点B 在以MN 为直径的圆内.证明如下: 由已知可得A (-2.0).B (2.0).设M (x 0.y 0). ∵M 点在椭圆上.∴y 02= 34 (4-x 02). ① 又点M 异于顶点A 、B.∴-2<x 0<2. 由P 、A 、M 三点共线可得 yP 4−(−2)=y 0x0+2. 即P (4.6y 0x 0+2). 从而 BM ⃗⃗⃗⃗⃗⃗ =(x 0-2.y 0). BP ⃗⃗⃗⃗⃗ =(2. 6y 0x0+2 ). ∴ BM ⃗⃗⃗⃗⃗⃗ •BP ⃗⃗⃗⃗⃗ =2x 0-4+ 6y 02x 0+2 = 2x 0+2(x 02-4+3y 02). ② 将 ① 代入 ② .化简得 BM ⃗⃗⃗⃗⃗⃗ •BP ⃗⃗⃗⃗⃗ = 52 (2-x 0).∵2-x 0>0.∴ BM ⃗⃗⃗⃗⃗⃗ •BP ⃗⃗⃗⃗⃗ >0.于是∠MBP 为锐角.从而∠MBN 为钝角. 故点B 在以MN 为直径的圆内.(2)可得A (-2.0).B (2.0).设N (x 0.y 0).P (4.t ). 由P 、B 、N 三点共线可以得t4−2=y 0x 0−2.即t=2y 0x 0−2. 又S △APN =S △APH 等价于S △ABN =S △BPH . 即 12×4× |y 0|= 12×2× |t|=| 2y 0x 0−2|⇒x 0=1. ∴ 14+y 023 =1.∴y 0= ±32 . ∴t=±3. 故点P (4.±3)【点评】:本题考查了椭圆的性质.直线与椭圆的位置关系.考查了转化思想.运用三点共线求点的坐标是关键.属于难题.。
2019-2020学年北京市首师大附中高一(上)期中化学试卷

2019-2020学年北京市首师大附中高一(上)期中化学试卷一、选择题(本大题共20小题,每小题2分,共40分.在每小题所列出的四个选项中,只有一项是最符合题目要求的)1. 下列反应一定属于氧化还原反应的是()A.化合反应B.分解反应C.置换反应D.复分解反应2. 下列变化中需要加入氧化剂才能实现的是()A.Mn2+→MnO4−B.Fe3+→Fe2+C.CuO→CuD.H2SO4→BaSO43. 氧化还原反应的实质是()A.化合价的升降B.分子中各原子重新组合C.电子的得失或偏移D.氧原子的得失4. 我国科技创新成果斐然,下列成果中获得诺贝尔奖的是()A.徐光宪建立稀土串级萃取理论B.屠呦呦发现抗疟新药青蒿素C.闵恩泽研发重油裂解催化剂D.侯德榜联合制碱法5. 下列说法中正确的是()①钠在空气中燃烧生成白色的氧化纳②钠投入硫酸铜溶液中有红色粉末产生③过氧化钠可在潜水艇和呼吸面具中作供氧剂④铁丝在氯气中燃烧生成FeCl3⑤钠、氢气在氯气中燃烧都能产生白烟A.①②B.②③C.③④D.④⑤6. 下列叙述中,正确的是()A.氯气不容于水,因此可用排水法收集氯气B.新制氯水可以使干燥的有色布条褪色C.因为氯气具有刺激性气味,所以可以杀灭细菌和病毒D.液氯比氯水的漂白作用更强7. 酸性氧化物不可能具有的性质是()A.与水反应生成酸B.与碱性氧化物反应生成盐C.与酸反应生成盐和水D.与碱反应生成盐和水8. 胶体与溶液的本质差异在于()A.是否稳定、透明B.是否有颜色C.分散质直径是否介于1−100mmD.是否具有丁达尔效应9. 下列关于酸、碱、盐的各种说法中正确的是()A.电离出的阳离子有H+的化合物叫酸,电离出OH−的化合物叫碱B.氧化纳溶液在电流的作用下电离出Na+和Cl−C.化合物电离时,生成金属阳离子(或铵根离子)和酸根阴离子的是盐D.NaHSO4可以电离出H+,因此NaHSO4属于酸10. 用N A表示阿伏德罗常数,下列叙述正确的是()A.标准状况下,22.4L H2O含有的分子数为N AB.常温常压下,1.06g Na2CO3溶于水形成的溶液中含有Na+离子数为0.02N AC.通常状况下,N A个CO2分子占有的体积为22.4LD.物质的量浓度为0.5mol⋅L−1的H2SO4溶液中,含有H+个数为N A11. 下列溶液中Cl−浓度由大到小的顺序是()①200mL 2mol⋅L−1 MgCl2溶液②1 000mL 2.5mol⋅L−1 NaCl溶液③300mL 5mol⋅L−1 KClO3溶液④250mL 1mol⋅L−1 FeCl3溶液。
北京市首都师范大学附属中学2019-2020学年第一学期高一数学期中考试

2019-2020学年第一学期高一年级上学期数学期中综合练习(满分:120分)一、单项选择题:认真审题,仔细想一想,然后选出唯一正确答案。
(每题3分,共30分) 1.设集合A ={a,a 2,0},B ={2,4},若A ∩B ={2},则实数a 的值为( )A . 2B . ±2C . √2D . ±√22.若0<a 1<a 2,0<b 1<b 2,且a 1+a 2=b 1+b 2=1,则下列代数式中值最大的是A .a 1b 1+a 2b 2B .a 1a 2+b 1b 2C .a 1b 2+a 2b 1D .213.下列函数中,是偶函数的是( )A . f(x)=1x B . f(x)=lgx C . f(x)=e x −e −x D . f(x)=|x| 4.已知p:|x-m|<1,q :x 2-8x+12<0,且q 是p 的必要不充分条件,则实数m 的取值范围为:A .(3,5)B .[3,5]C .(-∞,3)∪(5,+∞)D .(-∞,3]∪(5,+∞) 5.已知f(x +1)=√x ,则函数f(x)的大致图像是( )A .B .C .D . 6.关于x 的方程x 2+(m-3)x+7-m=0的两根都大于3,则m 的取值范围是A .(-∞,1-25)∪(1+25,+∞)B .(-27,1-25]C .(-∞,-27)∪(1-25,+∞) D .(-∞,1-25]7.用列举法可以将集合A={a|a 使方程ax 2+2x+1=0有唯一实数解}表示为 ( )A .A={1}B .A={0}C .A={0,1}D .A={0}或{1}8.已知集合M={m|m=a+b 2,a ,b ∈Q },则下列四个元素中属于M 的元素的个数是①1+2π;②2611+;③221+;④32-+32+( )A .4B .3C .2D .19.下列不等式正确的是 ( )A .x 2+23x ≥23 B .a 2+b 2≥4ab C .ab ≥2ba + D .a+a4≥410.“x >3”是“x 2-5x+6>0”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件二、填空题(每题3分,共30分)1.已知集合A ={x|x >1},B ={x|x >a},若A ⊆B ,则实数a 的取值范围是________。
2019~2020学年北京海淀区首师大附中初一上学期期中英语试卷

2019~2020学年北京海淀区首师大附中初一上学期期中英语试卷一、单项选择(共12小题)1. A.she; His B.he; Her C.Bob's; HisD.he; His —What's phone number?— phone number is 562-34.2. A.at B.in C.onD.under —Where are the balls?—Look! They're the floor.3. A.is B.are C.beD.was There two chairs beside the sofa in my room.4. A.How B.When C.WhereD.Why — do you spell your name?—J-A-C-K.5. A.so B.or C.andD.but Hurry up, you will be late for school.6. A.shouldn't B.can't C.mustn'tD.needn't —Must I find my ID card today?—No, you . You can look for it tomorrow.7.—My sister is ill in hospital.—I'm sorry that.8. A.waters B.is watering C.watered D.has watered—Have you seen Mr. Smith?—Yes. Look, he the flowers in the garden.9. A.Who's heB.Is it a computerC.Are you JaneD.Where's your eraser— ?—Yes, it is.10.A.wear B.wore C.wears D.wearing—Who are Tom and Bill?—The two boys blue school uniforms.11.A.why B.when C.how D.whereMom, have you seen my toy bear? I don't know I have left it.12.A.Thank youB.Good morningC.Nice to meet you, tooD.My name's Gina—Hello! Nice to meet you.— .二、完形填空(共16小题)13.I'm sure many great people think about how they can make a difference in the world. Infact, sometimes little things can make a really big difference. I learned this 1 one day five years ago with my father, when I was just acting like myself—a nine-year-old kid.Papa came home late from work after 9 p.m. and he looked even more tired than usual. His eyes were already half-closed. I followed him to his bedroom. Papa 2 up the stairs, slowly lifting his feet one after the other. I was afraid that I would have to start pushing him.Fortunately, he 3 it to the bedroom on his own.Papa sat down on the bed and started removing his shoes and socks. "How was work? " I asked cheerfully.1. 2. 3. 4. 5. 6. 7. 8."Oh, it was OK, " he replied. "It's just that I'm tired." "Oh, um…you want me to leave? " Papa gave me a tired 4 that made me more comfortable. I made me feel like hewasn't going to scold me, as he often did when I made some 5 ."No, " he said kindly, "of course I don't want you to leave."I opened my mouth and started 6 out the Disney movie Lilo & Stitch. Papa alwaysloved it when I did that, and he started laughing loudly. I was happy that I had made my father laugh so much."Did you like it? " I asked. "Of course I did, " he said. "Did you know that 7 you make me laugh, you make me feel a lot better? "I was 8 that I could really do a thing like that.A.classB.lessonC.subjectD.courseA.ranB.headedC.steppedD.rushedA.madeB.didC.tookD.gotA.shoutB.cryC.smileughA.facesB.progressC.mistakesD.troubleA.tryingB.actingC.sendingD.puttingA.wheneverB.howeverC.no matterD.whetherA.puzzledB.worriedC.wonderingD.surprised14. A kiwi is a strange bird because it cannot fly. It has no wings or tail. It 1 (not have)feathers like other birds. Its feathers look like hair. It 2 (sleep)during the day and it smells things 3 (good) than most birds do.The kiwi lives only in New Zealand and it's endangered(濒危的)now. Take the North Island brown kiwi for example. There 4 (be) about 35, 000 individuals left in the world.Many 5 (animal), such as dogs, cats, and so on, threaten this beautiful, small bird. In some areas, most 6 (kiwi)do not reach the age of breeding. So the brown kiwi population has gone down greatly.New Zealanders want their kiwis 7 (live). The government says that people 8 (can)kill kiwis. There is a picture of a kiwis on New Zealand money.Sometimes, people from New Zealand are called "kiwis".三、阅读理解(共15小题)15. A.Sunnyview Children's HospitalB.Home LoveC.Blue Water BeachD.Volunteer Help(1)A.555-9879 B.555-6669 C.555-6668 D.555-4663(2)A.cheer up sick childrenB.clean up the beachC.play games with othersD.fix up old buildings(3)A.1 B.3 C.6 D.8(4)Help NeededAre you good with children?We need two people to volunteer your time at Sunnyview Children'sHospital. You need to be friendly and cheerful—the children are sick andyou need to cheer them up. Your job is to set up a play group with fungames for the children.If you can spare an hour three times a week, come and join us! Pleasecall Mrs. Chan at 555-9879. Thanks!Are you interested in repairing things?We have set up a group. Home Love, to help older people who need tofix up their homes. If you have repair skills, join us for eight hours amonth.Call Home Love at 555-4663.Do you love clean beaches?We need people who are strong and can help clean up Blue WaterBeach. We don't want to put of this job until summer. We need your helpto collect and carry garbage.If you are available for six hours this Saturday, call Al at 555-6668 or555-6669.If you're good with children, you can go to .You like repairing things, so you could call at .On Blue Water Beach, you can .It will take you hours if you want to volunteer on the beach.16.As usual, Betty was sitting alone during break. As she sat, she heard a quiet "meow"nearby and found a little cat with a band showing the name "Lucky".A.TonyB.LuckyC.BettyD.Smith(1)A.B.C.D.(2)A.phoning the Animals' HomeB.putting up some signsC.calling the local newspaperD.drawing some posters(3)A.B.(4)She picked up the cat and went to ask her teacher if she could help thecat find his home as a class project."Are you willing to organize this project? " Mrs. Smith asked. She hadtried for months to get Betty to speak up in class, but Betty had stayed quiet.Maybe this was her chance to shine!Betty thought for a moment and then said, "Okay, we need to put upsigns around the neighborhood and call the local newspaper." Tony alsosuggested that they call the Animals' Home. Soon students were busy drawing posters.Two students were making phone calls. Mrs. Smith was surprised to find Betty was so confident and really showed an ability to lead.Betty, however, was not thinking about being a leader or being shy. Her mind was on finding this lost cat's home.The two students making phone calls came back and announced, "The Animals' Home said that a family reported a lost cat named Lucky! They said they'd call the family to come and get him! " The class cheered. Ten minutes later, a woman showed up and said with joy, "Thank you for returning Lucky! He was very "lucky" to have been found by such a caring group of students! "The class celebrated their success. Mrs. Smith celebrated, too. Betty sat comfortably with her classmates for the first time, laughing and joking. Mrs. Smith believed it was indeed lucky that Betty had found the cat — lucky for both of them!picked up a little cat during break.Betty was asked to organize the project because .Mrs. Smith wanted to help her changeMrs. Smith decided to look after hershe loved little animals like catsshe volunteered to be the leaderThe class finally found the owner of the cat by .Why did Mrs. Smith believe it was lucky for both of Betty and the cat?Because Betty was willing to organize the project.Because both Betty and the cat found a home at last.C.D.Because Betty worked together with her classmates to find the cat home.Because the cat was lucky to be found by such a caring group of students.17. A learning style is a way of learning. Your preferred learning style is the way in which YOUlearn best. Three learning styles that are often discovered in students are Type 1—the Auditory Learning Style , Type 2—the Tactile Learning Style, and Type 3—the VisualLearning Style. Read about each of these learning styles to find out YOUR preferred learning style.Type 1: Auditory Learners learn best when information is presented in an auditorylanguage form. Does listening to audio tapes help you learn better? Do you seem to learn best in classes in which special importance is given to teacher lectures and class discussions? Do you find yourself reading aloud or talking things out to get a better understanding? If YES, you are probably an Auditory Learner.Type 2: Tactile Learners learn best in hands-on learning settings in which they can physically control something in order to learn about it. Do you learn best when you can moveabout and handle things? Do you do well in classes in which there is a lab part? Do you learn better when you have a real object in your hands rather than a picture of the object or a spoken or written description of it? If YES, you are probably a Tactile Learner.Type 3: Visual Learners learn best when information is presented in a written language form or in another visual form such as pictures or maps. Do you do best in classes in which teachers do a lot of writing on the blackboard, provide clear handouts, and make wide use of an overhead projector (投影) ? Do you try to remember information by creating pictures in your mind? Do you take detailed written notes from your textbooks and in class? If YES, you are probably a Visual Learner.A.class discussionsB.clear handoutsC.written notesD.real objects(1)A.B.C.D.(2)A.B.C.D.(3)Your learning style is your strength. Go with it whenever you can. When you can choose a class, try to choose one that draws heaviest on your learning style. When you can choose a teacher, try to choose one whose teaching method best matches your learning style. When you choose a major and future career, keep your learning style firmly in mind.If you are an Auditory Learner, you are probably interested in .Which of the following statements is TRUE?Learners of Type 1 learn best when they listen more and talk less in class.Learners of Type 2 prefer written descriptions to real objects in their hands.Learners of Type 3 often create pictures with teachers in their minds in class.Learners of any type need to choose classes which match their learning styles.By writing this passage, the writer wants to tell us that .learning styles help us to realize our future dreamschoosing the best learning style really helps us a lotachieving goals depends on our correct learning stylesknowing about ourselves in learning styles is important 18.Studies have shown it takes a doctor about 18 seconds to stop a patient after he beginstalking.It was Sunday. I had one last patient to see. I came close to her room in a hurry and stood at the doorway. She was an older woman, sitting at the edge of the bed, trying to put socks on her swollen feet. I spoke quickly to the nurse, saw her chart saying she was in stable condition.I was almost in the clear.She asked if I could help put on her socks. Instead, I began a long speech that went something like this: "How are you feeling? Your blood sugar and blood pressure were high but they're better today. The nurse said you can't wait to see your son who's visiting you today. It's nice to have family visit from far away. I'm sure you really look forward to seeing him."She stopped me with a serious voice. "Sit down, doctor. This is my story, not your story."I was surprised and ashamed. I sat down. I helped her with the socks. She began to tell me that her only son lived around the corner from her, but she had not seen him in five years. She believed that the pressure of this caused greatly to her health problems. After hearing her storyA.describe a phenomenonB.present a surveyC.introduce a topicD.give an example(1)A.I thought everything was clearly.B.I was about to finish my work.C.I almost made myself understood.D.I was very quickly out of her sight.(2)A.showed her anger and impatienceB.refused to listen to the doctorC.liked giving orders to peopleD.could not wait to break in(3)A.Care—a key to treatmentB.An unforgettable experienceC.A lesson given by a patientD.Listening—a powerful medicine (4)and putting on her socks, I asked if there was anything else I could do for her. She shook her head and smiled. All she wanted me to do was to listen.Listening to someone's story costs less than expensive diagnostic testing but is key to healing. I often thought of what that woman taught me—the importance of stopping, sitting down and truly listening. And, not long after, unexpectedly, I became the patient, with a diagnosis of sclerosis at age 31. Now, 20 years later, I sit all the time—in a wheelchair.For as long as I could, I continued to see patients from my chair, but I had to give up my job when my hands were influenced. I still teach medical students and other health care professionals, but now from the view of doctor and patient.I tell them I believe in the power of listening. I tell them I know firsthand that huge healing takes place within me when someone stops, sits down and listens to my story.The first paragraph of the passage is intended to .What does the underlined part "I was almost in the clear." mean?From the 4th paragraph, we can infer the woman from the way she said.What is the best title of the passage?四、任务型阅读(共5小题)19.Can you remember a time when somebody was kind to you? Maybe a stranger allowedyou to go in front of him in queue. Or perhaps a friend helped you in a much deeper way. There are a million ways to offer kindness.Why should we be kind?Being kind is a win-win situation. It brings happiness to both the receiver and the doer of this kind action. Let's imagine you have a workmate who always does a very good job. How(1)(2)(3)(4)(5)praise, and you will probably feel good about yourself for having spread a little joy.What are "random acts of kindness" ?Many organizations encourage people to do kind acts whenever and wherever possible.Their idea is that it doesn't take any plan to be kind, just a little bit of effort. Perhaps the strongest supporters of this idea are the Random Acts of Kindness (RAK ) Foundation, who work with schools and companies to teach people kindness skills. They believe that kindness can be taught.How can I be kind?The RAK website suggests some ways to show kindness. Generally, they fall into three categories ( 类 别) . The first is interpersonal kindness, like donating old clothes to charity or writing a positive online comment about a restaurant. The second is environmental kindness,which could mean recycling or cleaning a local park. The third category is personal kindness,which means treating yourself kindly, such as taking a walk in nature or treating yourself to a big meal. By being kind to yourself, you will be kinder to the world around you.What is World Kindness Day?World Kindness Day takes place on 13 November. People in manycountries celebrate this day by being kind and having lots of fun. Onetypical event is to use "kindness cards" . You hand a kindness card tosomebody when you do a kind act for him. Then it is his turn to pass on the card by doing a kind act for another person.Being kind has a sort of ripple (涟漪) effect. This means that one kind action leads to more and more. So don't wait for kindness to find you, go and start a new ripple!Why is being kind a win-win situation?What do many organizations encourage people to do?What does personal kindness mean?How does a person pass on a kindness card?What's the writer's purpose of writing this passage?五、英语文化常识(共6小题)20.—How are you, Tom?— . I lost my wallet.21.A.nucleus B.extend C.nuclear D.extendedI live with 5 people. They are my grandparents, my parents, my uncle and me. I have a(an ) family.22.A.I do not understand.B.How do you spell that?C.I can speak Chinese.D.Please speak more slowly.What is not the power tool you can use in learning English?23.A.B.C.D.What do people usually do on Halloween?They dress up and ask for candies.They usually eat a turkey.They often have dumplings.They give Christmas cards to their friends.24.A.Merry Christmas! B.Happy birthday! C.Trick or treat!D.Happy New Year!What do people usually say on Halloween?25.A.An orange. B.A Hami melon. C.A watermelon.D.A pumpkin.What is a jack-o-lantern made of?六、完成句子(共12小题)26.这在英语里怎么说? 这是夹克。
北京市首师大附中2019-2020学年高一上学期期中化学试卷 (含答案解析)

北京市首师大附中2019-2020学年高一上学期期中化学试卷一、单选题(本大题共25小题,共50.0分)1.今年8月天津港发生爆炸,其爆炸品中含“TNT”,则在“TNT”包装袋上的标签上应印有的警示标记是()A. B. C. D.2.中华民族有着光辉灿烂的发展史,下列过程不涉及氧化还原反应的是()A. 用铁矿石炼铁B. 黑火药爆炸C. 石胆(石胆是硫酸铜)化铁为铜D. 点制豆腐3.下列各组物质,按酸、碱、盐的顺序排列的是()A. 硫酸、胆矾、氯化镁B. 硝酸、烧碱、干冰C. 醋酸、消石灰、明矾D. 盐酸、生石灰、石膏4.下列属于非电解质,但水溶液能导电的物质是()A. C2H5OHB. SO2C. HClD. CH3COOH5.胶体与其他分散系的本质区别在于()A. 均一稳定B. 丁达尔效应C. 分散质颗粒大小D. 能透过半透膜6.下列说法正确的是()A. 纯净物的组成元素可能为多种,混合物的组成元素可能为一种B. 非会属氧化物可能是酸性氧化物,也可能是碱性氧化物C. 由于胶体带电,因此在外电场的作用下,胶体粒子可以做定向运动D. 丁达尔效应是区分悬浊液和胶体最简单方法7.下列关于0.1mol/LBaCl2溶液的说法正确的是()A. 该溶液可由1L水中溶解0.1mol BaCl2制得B. 1L溶液中含有Ba2+和Cl−总数为3N AC. 0.5L溶液中Ba2+的物质的量浓度为0.2mol/LD. 0.5L溶液中Cl−的物质的量浓度为0.2mol/L8.下列反应中,盐酸作为氧化剂的是()A. Zn+2HCl=ZnCl2+H2↑B. FeS+2HCl=FeCl2+H2S↑C. NH 3+HCl =NH 4ClD. MnO 2+4HCl △ ̲̲̲̲̲̲ MnCl 2+2H 2O +Cl 2↑9. 在强酸性溶液中能大量共存的无色透明离子组是( )A. Mg 2+ Na + Cl − SO 42−B. K + Na + NO 3− CO 32−C. K + Na + Cl − Cu 2+D. Na + Ba 2+ OH − SO 42− 10. 对于下列反应的反应类型判断,不正确的是( )A. CO 2+H 2O =H 2CO 3 化合反应B. Cu(OH)2=ΔCuO +H 2O 分解反应C. Fe 2O 3+3CO =高温2Fe +3CO 2 置换反应 D. NaCl +AgNO 3=AgCl ↓+NaNO 3 复分解反应11. 分类法在化学学科发展中起到了非常重要的作用,下列分类依据合理的是( )①根据氧化物的组成将氧化物分成金属氧化物、非金属氧化物②根据物质在水中的溶解度,将物质分为可溶性物质、微溶性物质和难溶性物质③根据分散系的本质为是否有丁达尔现象,将分散系分为溶液、胶体和浊液④根据组成元素的种类将纯净物分为单质和化合物⑤根据物质溶于水或熔融状态下能否导电,将物质分为电解质和非电解质A. ①②④B. ②④⑤C. ①②③④D. ①②④⑤12. 下列离子方程式书写正确的是( )A. 氢氧化铁与盐酸反应:H ++OH −=H 2OB. NaHSO 4溶液与NaOH 反应:H ++OH −=H 2OC. 铁与H 2SO 4反应:Fe +2H +=Fe 3++H 2↑D. NaHCO 3溶于盐酸中:CO 32−+2H +=CO 2↑+H 2O13. 下列变化中需加入氧化剂才能发生的是A. 2Cl −→Cl 2B. Fe 3+→Fe 2+C. Cu 2+→CuD. MnO →MnO 214. 下列溶液中c(Cl −)与50mL 1mol ⋅L −1AlCl 3溶液中c(Cl −)相等的是( )A. 150 mL 1 mol ⋅L −1的NaCl 溶液B. 75 mL 2 mol ⋅L −1NH 4Cl 溶液C. 150 mL 2 mol ⋅L −1的KCl 溶液D. 100 mL 1.5 mol ⋅L −1FeCl 2溶液15. 某Al 2(SO 4)3溶液V mL 中含a g Al 3+,取出V 4mL 溶液稀释成4V mL 后,SO 42−的物质的量浓度为( )A. 12554V mol⋅L−1 B. 125a36Vmol⋅L−1C. 125a18V mol⋅L−1 D. 125aVmol⋅L−116.已知常温下在溶液里可发生如下两个离子反应:Ce4++Fe2+=Fe3++Ce3+Sn2++2Fe3+=2Fe2++Sn4+由此可以确定Fe3+、Ce4+、Sn4+三种离子的氧化性由强到弱的顺序()A. Sn4+、Fe3+、Ce4+B. Ce4+、Fe3+、Sn4+C. Sn4+、Ce4+、Fe3+D. Fe3+、Sn4+、Ce4+17.下列说法正确的是()A. 有单质参加又有单质生成的反应,一定属于氧化还原反应B. Ag++Cl−=AgCl↓的反应属于化合反应C. 从1L1mol/L的H2SO4溶液中取出10mL该溶液,取出液H+浓度为2mol/LD. 一种元素化合价升高时必然有另一种元素化合价降低18.制高效消毒剂ClO2的反应如下:2NaClO3+Na2SO3+H2SO4=2Na2SO4+2ClO2↑+H2O。
北京市首师大附中2019_2020学年高一物理上学期期中试题(含解析)

首师大附中2019-2020学年第一学期期中考试高一物理第Ⅰ卷(共36分)一、选择题(本大题共12小题,每小题3分,共36分。
所有题目均为不定项选择.....题,漏选得2分,错选、不选不得分。
答案填涂在答题卡上.........。
)1.研究下列现象,涉及的物体可看作质点的是()A. 研究地球绕太阳运动的轨迹时,可将地球看作质点B. 研究高铁从北京到上海的时间,可将列车看作质点C. 研究乒乓球的弧圈旋转方向,可将乒乓球看作质点D. 研究原子内部电子绕原子核的运动时,可将原子看作质点【答案】AB【解析】【详解】A.绕太阳公转的地球,由于两者距离很大,故地球形状、大小可以忽略,地球可以看做质点,故A正确;B.研究高铁从北京到上海的时间,由于高铁的形状和大小相对北京到上海的距离可以忽略,所以高铁可看成质点,故B正确;C.研究旋转的乒乓球旋转方向,涉及到球的旋转,故球不能看做质点,故C错误;D.研究原子中的电子围绕原子核运动时,我们已经将原子分为原子核和电子,原子的大小和形状不能忽略,不可以将原子看作质点,故D错误。
2.下列有关运动的描述中,参考系的选取符合描述的是()A. “飞流直下三千尺”是以“飞流”作为参考系的B. “人从桥上过,桥流水不流”中的“桥流”是以水为参考系的C. “钱塘观潮时,观众只觉得潮水扑面而来”是以“观众”为参考系的D. “升国旗时,观察到国旗冉冉升起”,观察者是以“国旗”为参考系的【答案】BC【解析】【详解】A.飞流是相对于山在动,故参考系是山,故A错误;B.研究对象应该是桥,以水为参考系,桥的位置发生了变化,则桥是运动的,故B正确;C.钱塘观潮时,潮水扑面而来是指潮水相对于我们来说的,故是以观察者为参考系的,故C正确;D.升国旗时,观察到国旗冉冉升起,观察者是以“地面”为参考系的,故D错误。
3.如图所示,一位同学从操场A点出发,向西走了30m,到达B点,然后又向北走了40m,达到C点。
北京市首师大附中2019-2020学年高一上学期期中物理试卷 (含答案解析)

北京市首师大附中2019-2020学年高一上学期期中物理试卷一、单选题(本大题共7小题,共28.0分)1.下列说法中正确的是()A. 只有体积很小或质量很小的物体才可以看成质点B. 质点运动的轨迹是直线还是曲线,与参考系的选取无关C. 时刻表示时间极短,时间表示时间较长D. 质点运动的位移大小不可能大于路程2.湖中O处有一观察站,一小船从O处出发向东行驶4km,又向北行驶3km,则下列说法中正确的是()A. 相对于小船,O处的观察员始终处于静止状态B. 相对于湖岸上的另一观察员,小船不可能是静止的C. 相对于O处的观察员,小船最终位于东偏北37°方向5 km处D. 相对于O处的观察员,小船最终位于东偏北37°方向7 km处3.一辆汽车沿直线运动,先以10m/s的速度驶完全程的四分之三,余下的路程以15m/s的速度行驶,则汽车从开始到驶完全程的平均速度大小为()A. 10m/sB. 10.9m/sC. 12.5m/sD. 11.25m/s4.一个加速运动的物体,其加速度是6m/s2,关于这个6m/s2理解正确的是()A. 某1s末的速度比该1s初的速度大6m/sB. 某1s末的速度比该1s初的速度大6倍C. 某1s初的速度与前1s末的速度相差6m/sD. 某1s末的速度与前1s初的速度总是相差6m/s5.汽车在平直公路上做初速度为零的匀加速直线运动途中用了10s的时间通过一座长120m的桥,过桥后汽车的速度为16m/s,汽车自身长度忽略不计,则()A. 汽车的加速度为1.6m/s2B. 汽车过桥头时的速度为12m/sC. 汽车从出发到过完桥所用时间为16sD. 汽车从出发点到桥头的距离为40m6.物理学发展史上,有一位科学家开创了实验与逻辑推理相结合的科学研究方法,并研究了落体运动的规律,这位科学家是()A. 伽利略B. 安培C. 库仑D. 焦耳7.一物体从高h处做自由落体运动,经时间t到达地面,落地速度为v,那么当物体下落时间为t时,3物体的速度和下落高度分别为()A. v3,8ℎ9B. v9,ℎ9C. v3,ℎ9D. v9,√33ℎ二、多选题(本大题共5小题,共20.0分)8.如图所示,沿同一直线运动的物体A、B,其相对同一参考系的位置x随时间变化的函数图象可知()A. 从第3s起,两物体运动方向相同,且A比B运动的快B. 两物体由同一位置开始运动,但物体A比B迟3s才开始运动C. 在5s内物体的位移不相同,5S末A、B相遇D. 5s内A、B的平均速度相等9.下列几种情况下,物体的运动状态一定发生变化的是()A. 汽车沿着有一定坡度的公路(直线)匀速前进时B. 运动员400m比赛中沿弯道跑时C. 气球被风刮着沿水平方向向正东匀速飘移时D. 箱子从斜面上匀加速滑下时10.如图所示是一个质点做匀变速直线运动的位置−时间(x−t)图象中的一段,关于该质点的运动以下说法正确的有()A. 质点做的是匀加速直线运动B. 质点在t=3.5s时的速度等于2m/sC. 质点在经过图线上P点所对应位置时的速度一定大于2m/sD. 质点在第4s内的路程大于2m11.如图所示,以8m/s匀速行驶的汽车即将通过路口,绿灯还有2s将熄灭,此时汽车距离停车线18m。
2019-2020学年北京市首都师范大学附属中学高一上学期期中考试数学试题及答案解析版

2019-2020学年北京市首都师范大学附属中学高一上学期期中考试数学试题及答案解析版一、单选题1.设集合{}2,,0A a a =,{}2,4B =,若{}2A B ⋂=,则实数a 的值为( ) A .2 B .2± C D .【答案】D【解析】由A ,B ,以及两集合的交集,确定出a 的值即可. 【详解】∵集合{}2,,0A a a =,{}2,4B =,{}2A B ⋂=, ∴a=2或a 2=2,即a=2或当a=2时,A={2,4,0},B={2,4},此时A∩B={2,4},不合题意; 当时,,2,0},满足题意, 当a=时,A={,2,0},满足题意故选:D . 【点睛】本题考查了交集及其运算,考查了元素的三要素,熟练掌握交集的定义是解本题的关键.2.若121212120,0,1a a b b a a b b <<<<+=+=且,则下列代数式中值最大的是A .1122a b a b +B .1212a a b b +C .1221a b a b +D .12【答案】A【解析】【详解】因为121212120,0,1a a b b a a b b <<<<+=+=22121212121()()222a ab b a a b b +++<+= 112212************()()()()()0a b a b a b a b a a b a a b a a b b +-+=-+-=--> 11221221()a b a b a b a b +>+12121122112112221()()2()a a b b a b a b a b a b a b a b =++=+++<+112212a b a b +>,综上可得1122a b a b +最大,故选A.3.下列函数中,是偶函数的是( ) A .()1f x x = B .()lg f x x = C .()x x f x e e -=- D .()f x x =【答案】D【解析】根据函数奇偶性的定义进行判断即可. 【详解】 对于A ,()1f x x-=-=- ()f x ,所以为奇函数,不满足题意; 对于B ,()lg f x x =的定义域为(0,+∞),为非奇非偶函数,不满足题意;对于C ,()()xx f x e e f x --=-=-,为奇函数,不满足题意;对于D ,()()f x x f x -==,为偶函数,满足题意. 故选:D 【点睛】本题主要考查函数奇偶性的判断,定义域关于原点对称是函数具有奇偶性的必要条件,比较基础.4.已知p :1x m -<,q :28120x x -+<,且q 是p 的必要不充分条件,则实数m 的取值范围为( ) A .()3,5 B .[]3,5 C .()(),35,-∞+∞ D .(](),35,-∞+∞【答案】B【解析】首先求两个命题表示的集合,A B ,由题意可知A B ,然后根据集合的包含关系求m 的取值范围.【详解】:p 111x m x m -<⇒-<-<解得:11m x m -<<+ ,{}11A x m x m ∴=-<<+,2:8120q x x -+< ,解得:26x <<,{}26B x x ∴=<<,q 是p 的必要不充分条件,∴A B∴ 1216m m -≥⎧⎨+≤⎩,解得35m ≤≤故选:B 【点睛】本题考查解不等式和根据命题的必要不充分条件求参数的取值范围,意在考查基本方法和计算,属于基础题型.5.已知()1f x +=()f x 的大致图像是()A .B .C .D .【答案】A【解析】利用平移变换即可得到函数()f x 的大致图像. 【详解】 ∵()1f x x +=∴函数()f x 的图象是由()1f x +向右平移一个单位得到, 故选:A 【点睛】本题考查了函数的图象变换知识,属于基础题. 6.关于x 的方程()2370x m x m +-+-=的两根都大于3,则m 的取值范围是( ) A .((),1251,25,-∞-++∞B .7,152⎛-- ⎝C .()7,125,2⎛⎫-∞--+∞⎪⎝⎭ D .(,125-∞-【答案】B【解析】由根的分布,列不等式求m 的取值范围. 【详解】设方程的两个实数根分别是12,x x ,且13x >,23x >设()()237f x x m x m =+-+-()033230m f ∆≥⎧⎪-⎪∴->⎨⎪>⎪⎩,即()()()2347033293370m m m m m ⎧--⨯-≥⎪-⎪->⎨⎪+-+->⎪⎩,解得:11372m m m m ⎧⎪≥+≤-⎪<-⎨⎪⎪>-⎩解得:712m -<≤-故选:B 【点睛】本题考查根据根的分布求参数m 的取值范围,意在考查转化与化归的思想和计算能力,属于基础题型.7.用列举法可以将集合{A a a =使方程221=0ax x ++有唯一实数解}表示为( ) A .{}1A =B .{}0A =C .{}0,1A =D .{}0A =或{}1【答案】C【解析】根据题意求当方程2210ax x ++=有唯一实数解时,求a 的取值范围,分0a =和0a ≠两种情况求a 的取值. 【详解】由题意可知集合A 的元素表示能使方程2210ax x ++=有唯一实数解的a 的值, 当0a =时,210x +=,解得12x =-,成立; 当0a ≠时,方程2210ax x ++=有唯一实数解,则440a ∆=-=, 解得:1a =,{}0,1∴=A .故选:C 【点睛】本题考查根据方程的实数根的个数求参数的取值,属于简单题型.8.已知集合{},M m m a a b Q==+∈,则下列四个元素中属于M 的元素的个数是( )①1+;A .4B .3C .2D .1【答案】C【解析】①②③都可以写成m a =+验证,a b 是否是有理数,④.【详解】 ①当1a +=+时,可得1,a b π==,这与,a b Q ∈矛盾,3==3a ∴+=,可得3,1a b == ,都是有理数,所以正确,2122==-,12a ∴+=-,可得11,2a b ==-,都是有理数,所以正确,④2426=+=而(22222a a b +=++,,a b Q ∈,(2a ∴+是无理数,不是集合M 中的元素,只有②③是集合M 的元素. 故选:C 【点睛】本题考查元素与集合的关系,意在考查转化与化归的思想,计算能力,属于基础题型. 9.下列不等式正确的是( )A .223x x+≥.224a b ab +≥ C 2a b+ D .44a a+≥ 【答案】A【解析】根据基本不等式的条件,公式依次判断选项,得到正确答案. 【详解】A.2230,0x x >>,223x x +≥=且仅当223x x =时,即2x =B.当1,1a b ==时,224a b ab +<,故不成立;C.当0,0a b >>2a b+≤,故不成立; D.当0a <时,44a a +≥不成立,只有当0a >时,44a a+≥成立,故不成立. 故选:A 【点睛】本题考查基本不等式的判断,属于基础概念题型.10.“3x>”是“2560-+>”的()x xA.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】首先解不等式2560-+>,再根据集合的包含关x x系判断充分必要条件.【详解】2560-+>x x解得:3x>或2x<“3x>或2x>”⇒“3x<”,但反过来不成立,∴“3x>”是“2560-+>”的充分不必要条件.x x故选:A【点睛】本题考查命题以集合形式时,判断充分不必要条件,意在考查基本的判断方法,属于基础题型.二、填空题11.已知集合{|1}=>,若A BB x x aA x x=>,{|}⊆,则实数a的取值范围是______.【答案】(,1]-∞【解析】在数轴上画出两个集合对应的范围,利用A B⊆可得实数a的取值范围.【详解】如图,在数轴表示,A B ,因为A B ⊆,故1a ≤,填(],1-∞.【点睛】含参数的集合之间的包含关系,应借助于数轴、韦恩图等几何工具直观地讨论参数的取值范围,解决此类问题时,还应注意区间端点处的值是否可取. 12.关于x的方程()()()221k x x x x x -=--的解集中只含有一个元素,k =______. 【答案】-1,3,0【解析】由方程可知1x ≠且0x ≠,得到220x x k +-=,解得1k =-,再分别将1x =和0x =代入220x x k +-=,得到k ,验证是否解集中只有一个元素,得到k . 【详解】()22211x k x k xx x x x x --==---1x ≠ ,化简为2k xx x-=, 0x ≠,变形为22220x k x x x k =-⇒+-= ①440k ∆=+=,解得:1k =- ,验证当1k =-时,2210x x ++= , 解得:1x =- 成立.∴1k =-.当1x =时,代入①21210k +⨯-=,解得:3k =代入原式,2321x x x x x -=--,1x ≠且0x ≠ ,化简得:2230x x +-= , 解得:1x =或3x =- ,1x ≠,∴方程只有一个解,成立,3k ∴= ,当0x =时,代入①20200k +⨯-=,解得0k = ,带代原式221x x x x x -=--,1x ≠且0x ≠ ,解得:2x =- ,成立,0k ∴=故答案为:-1,3,0 【点睛】本题考查根据分式方程的解集个数求参数,意在考查基本计算,属于基础题型,本题是一道易错题,易错的原因就是忽略将1x =和0x =代入220x x k +-=,验证k 的值. 13.已知()f x =21,1{1,1x x x x -≤-+>,则[(1)]f f -=_________;若()1f x =-,则x =________.【答案】-1 0或2【解析】根据自变量的范围选择合适的解析式计算函数值即可,分段讨论可得何时()1f x =-. 【详解】()()21110f -=--=,故()()101f f f ⎡⎤-==-⎣⎦,因为()1f x =-,故2111x x ≤⎧⎨-=-⎩或者111x x >⎧⎨-+=-⎩,解得0x =或2x =.综上,填1-,0或2. 【点睛】分段函数的求值问题,应该自变量的范围选择适当的解析式去求函数值,如果知道分段函数的函数值,则应分类讨论求出不同范围上的自变量的值,也可以先刻画出分段函数的函数图像,结合图像求函数值或相应的自变量的值. 14.若关于x的不等式220ax bx ++>的解集是11{}23x x -<<,则a b +=_________. 【答案】-14【解析】由不等式220ax bx ++>的解集求出对应方程的实数根,利用根与系数的关系求出,a b 的值,从而可得结果. 【详解】不等式220ax bx ++>的解集是11|23x x ⎧⎫-<<⎨⎬⎩⎭, 所以对应方程220ax bx ++=的实数根为12-和13,且0a <,由根与系数的关系得112311223b aa⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,解得12,2a b =-=-,14a b ∴+=-,故答案为14-.【点睛】本题主要考查一元二次不等式的解集与一元二次不等式的根之间的关系,以及韦达定理的应用,属于简单题.15.关于函数()11f x x =--的性质描述,正确的是__________.①()f x 的定义域为[)(]1,00,1-;②()f x 的值域为()1,1-;③()f x 的图象关于原点对称;④()f x 在定义域上是增函数. 【答案】①②③【解析】由被开方式非负和分母不为0,解不等式可得f (x )的定义域,可判断①;化简f (x ),讨论0<x ≤1,﹣1≤x <0,分别求得f (x )的范围,求并集可得f (x )的值域,可判断②;由f (﹣1)=f (1)=0,f(x)不是增函数,可判断④;由奇偶性的定义得f (x )为奇函数,可判断③. 【详解】①,由24110x x x ⎧-≥⎪⎨--≠⎪⎩,解得﹣1≤x ≤1且x ≠0,可得函数()f x =的定义域为[﹣1,0)∪(0,1],故①正确;②,由①可得f (x ,即f (x ,当0<x ≤1可得f (x(﹣1,0];当﹣1≤x <0可得f (x )=[0,1). 可得f (x )的值域为(﹣1,1),故②正确;③,由f (x )=﹣||x x的定义域为[﹣1,0)∪(0,1],关于原点对称,f (﹣x )=||x x=﹣f (x ),则f (x )为奇函数,即有f(x )的图象关于原点对称,故③正确.④,由f (﹣1)=f (1)=0,则f (x )在定义域上不是增函数,故④错误; 故答案为:①②③ 【点睛】本题考查函数的性质和应用,主要是定义域和值域的求法、单调性的判断和图象的特征,考查定义法和分类讨论思想,以及化简运算能力和推理能力,属于中档题. 16.有15人进家电超市,其中有9人买了电视,有7人买了电脑,两种均买了的有3人,则这两 种都没买的有 人. 【答案】【解析】【详解】试题分析:两种都买的有人,所以两种家电至少买一种有人.所以两种都没买的有人.或根据条件画出韦恩图:(人).【考点】元素与集合的关系. 17.已知函数3,? 0(){1,? 0x a x f x x x +>=+≤在R 上是增函数,则实数a 的取值范围是________. 【答案】[1,)+∞【解析】因为()f x 是分段函数且为增函数,故3010a +≤+,故可得实数a 的取值范围. 【详解】因为()f x 为R 上的增函数,故3010a +≤+,所以1a ≥,填[)1,+∞. 【点睛】如果一个分段函数在R 为增函数(或减函数),那么该函数除了在每个分段上都是增函数(或减函数),分段处的端点处的函数值也应有相应的大小关系,后者在解题中容易忽视. 18.设5x >,P =,Q =-则P 与Q 的大小关系是P ______Q . 【答案】>【解析】计算P Q -=-,利用分子有理化化简并判断,P Q 的大小关系. 【详解】P Q -=-=-=2=- ,5x > ,>>,0>> , 0∴<<,∴<,∴ 20->. 故答案为:> 【点睛】本题考查比较两个数的大小,意在考查化简,变形能力,属于计算题型.19.非空有限数集S 满足:若,a b S ∈,则必有ab S ∈.请写出一个..满足条件的二元数集S =________. 【答案】{0,1}或{-1,1},【解析】因S 中有两个元素,故可利用S 中的元素对乘法封闭求出这两个元素. 【详解】设{}(),S a b a b =<,根据题意有22,,a ab b S ∈,所以22,,a b ab 必有两个相等元素.若22a b =,则=-a b ,故2ab a =-,又2a a =或2a b a ==-,所以0a =(舎)或1a =或1a =-,此时{}1,1S =-. 若2a ab =,则0a =,此时2b b =,故1b =,此时{}0,1S =.若2b ab =,则0b =,此时2a a =,故1a =,此时{}0,1S =. 综上,{}0,1S =或{}1,1S =-,填{}0,1或{}1,1-. 【点睛】集合中元素除了确定性、互异性、无序性外,还有若干运算的封闭性,比如整数集,对加法、减法和乘法运算封闭,但对除法运算不封闭(两个整数的商不一定是整数),又如有理数集,对加法、减法、乘法和除法运算封闭,但对开方运算不封闭.一般地,若知道集合对某种运算封闭,我们可利用该运算探究集合中的若干元素.20.已知a ,b 是正实数,且2a b +=,则41a b +的最小值为______.【答案】92【解析】 ()411412a b a b a b ⎛⎫+=++ ⎪⎝⎭,展开后利用基本不等式求最值. 【详解】()4114114522b a a b a b a b a b ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭40,0,4b a a b a b >>∴+≥=, 4192a b ∴+≥ , 当4b aa b = ,即2a b =时等号成立.故答案为:92【点睛】本题考查基本不等式求最值,意在考查“1”的变形,属于基础题型.三、解答题21.已知集合2{|0}A x x x =-<,2{|20}B x x x m =--<. (1)求A R;(2)若A B =∅,求实数m 的取值范围.【答案】(1) (,0][1,)-∞⋃+∞ (2) (,1]-∞-【解析】(1)求出不等式20x x -<的解后可得R C A . (2)因为A B φ⋂=,故220x x m --≥对任意的01x <<恒成立,参变分离后可得实数m 的取值范围. 【详解】(1)由20x x -<得01x <<,故(0,1)A =,所以(,0][1,)R C A =-∞⋃+∞. (2)由题知,当x A ∈时,220x x m --≥恒成立, 即:当(0,1)x ∈时,22m x x ≤-恒成立.22x x -在区间(0,1)上的值域为(1,0)-,所以1m ≤-,即实数m 的取值范围是(,1]-∞-. 【点睛】集合的交并补运算往往和一元二次不等式结合在一起,解一元二次不等式时注意二次项系数的符号.另外,集合之间的关系往往蕴含着不等式恒成立或有解问题,此类问题可直接讨论对应的二次函数的图像性质或参变分离求参数的取值范围.22.已知函数()f x 的定义域是(0,)+∞,且满足()()()f xy f x f y =+,1()12f =,如果对于0x y <<,都有()()f x f y >. (1)求()1f 的值;(2)解不等式()(3)2f x f x -+-≥-.【答案】(1)()10f = (2){|10}x x -≤<.【解析】(1)根据()()()f xy f x f y =+,令1x y ==,即可得出()1f 的值;(2)由0x y <<,都有()()f x f y >知()f x 为()0,+∞上的减函数,根据()f x 的单调性,结合函数的定义域,列出不等式解出x 的范围即可. 【详解】(1)令1x y ==,则()()()111f f f =+,()10f =.(2)解法一:由x y <<,都有()()f x f y >知()f x 为()0,+∞上的减函数,且030x x ->⎧⎨->⎩,即0x <.∵()()()f xy f x f y =+,(),0,x y ∈+∞且112f ⎛⎫= ⎪⎝⎭, ∴()()32f x f x -+-≥-可化为()()1322f x f x f ⎛⎫-+-≥- ⎪⎝⎭,即()()113022f x f f x f ⎛⎫⎛⎫-++-+≥ ⎪ ⎪⎝⎭⎝⎭=()()()331112222x x x x f f f f f f --⎛⎫⎛⎫⎛⎫⇔-+≥⇔-⋅≥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 则03122x x x <⎧⎪⎨--⋅≤⎪⎩,解得10x -≤<. ∴不等式()()32f x f x -+-≥-的解集为{|10}x x -≤<. 【点睛】本题主要考查抽象函数的定义域、不等式的解法,属于中档题.定义域的三种类型及求法:(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解;(2) 对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解;(3) 若已知函数()f x 的定义域为[],a b ,则函数()()f g x 的定义域由不等式()a g x b ≤≤求出. 23.已知a ,b 为正实数,.≥【解析】2,根据条件判断其正负,得到大小关系.【详解】+=+()a b==-()a b-=2=0,0a b>>,>>,20≥,∴≥,≥【点睛】本题考查比较两个数的大小,意在考查计算化简,计算能力,属于基础题型.24.已知一元二次不等式20ax bx c++>的解集为{}x xαβ<<,且0αβ<<,求不等式20cx bx a++<的解集.【答案】1{x x α>或1}x β<【解析】首先根据条件可知0a <,b a αβ+=-,caαβ=,0c <,并知20cxbx a ++=的两个实数根分别是1α和1β,再比较根的大小,求不等式的解集. 【详解】因为不等式20ax bx c ++>(0a ≠)的解为x αβ<<,其中0βα>>,所以有ba αβ+=-,ca αβ=且0a <,0c <.设方程20cx bx a ++=的两根为m ,n ,且m n <.则11b m nc αβαβαβ++=-==+,111a mn c αβαβ===⋅所以可得1n α=,1m β=且11αβ>又因为0c <,∴不等式20cx bx a ++<的解集1{x x α>或1}x β<.【点睛】本题考查一元二次不等式的解法,意在考查一元二次方程和不等式的关系,以及解集形式和系数的关系,属于基础题型.25.(1)已知0x >,求函数254x x y x++=的最小值; (2)已知103x <<,求函数()13y x x =-的最大值. 【答案】(1)9(2)112【解析】(1)函数变形为25445x x y x x x++==++,再利用基本不等式求最值;(2)法一,2113612y x ⎛⎫=--+ ⎪⎝⎭,利用二次函数求最大值,法二:函数变形为()()1133133y x x x x =-=⨯-,利用基本不等式求最值. 【详解】 (1)25445x x y x x x++==++,0x,44x x ∴+≥= ,等号成立的条件是4x x=,即2x =时,459x x∴++≥, 254x x y x++∴=的最小值是9.(2)法一:2113612y x ⎛⎫=--+ ⎪⎝⎭当16x =时,函数取得最大值112, 法二:()()()23131111331333212x x y x x x x +-⎛⎫=-=⨯-≤≤=⎪⎝⎭,当且仅当313x x =-,即16x =时等号成立, ∴函数的最大值是112. 【点睛】本题考查利用基本不等式求最值,意在考查基本公式和计算能力,属于简单题型. 26.已知0,0,21a b a b >>+=,求11a b+的最小值. 【答案】3+【解析】变换得到2121a b a ba b a b++++=化简利用均值不等式计算得到答案. 【详解】223112a b a b a b b a a b a b +++=+++=3≥+3=+ 当2b a a b =即1,a b ==时等号成立.min113a b ⎛⎫∴+=+ ⎪⎝⎭【点睛】本题考查了利用均值不等式求最值,其中变换得到2121a b a b a b a b++++=是解题的关键. 27.(1)已知54x <,求14245y x x =-+-的最大值;(2)已知102x <<,求()1122y x x =-的最大值. 【答案】(1)1(2)116【解析】(1)函数变形为114533544554y x x x x ⎛⎫=-++=--+ ⎪--⎝⎭,再利用基本不等式求最值;(2)函数变形为()()111221224y x x x x =-=⨯-,利用基本不等式求最大值,法二,利用二次函数求最大值. 【详解】(1)114533544554y x x x x ⎛⎫=-++=--+ ⎪--⎝⎭,54x <,540x ∴-> 154254x x∴-+≥- ,当15454x x -=-时,等号成立,∴114533543214554y x x x x ⎛⎫=-++=--+≤-= ⎪--⎝⎭, ∴ 14245y x x =-+-的最大值是1.(2)法一:()()()2212111112212244216x x y x x x x +-⎛⎫=-=⨯-≤⨯= ⎪⎝⎭, 当212x x =-时,等号成立, 即14x =时,函数()1122y x x =-的最大值是116. 法二:222111111122161641616y x x x x x ⎛⎫⎛⎫=-=--++=--+≤ ⎪ ⎪⎝⎭⎝⎭, 当14x =时,函数取得最大值116. 【点睛】本题考查利用基本不等式求最值,意在考查基本公式和计算能力,属于简单题型.28.(1)已知0x >,0y >,且满足811x y +=.求2x y +的最小值. (2)若把(1)中的“811x y +=”改为“21x y +=”,其他条件不变,求81x y+的最小值. 【答案】(1)18(2)18【解析】(1)()8122x y x y x y ⎛⎫+=++ ⎪⎝⎭,展开变形,利用基本不等求最小值; (2)()81812x y x y x y ⎛⎫+=++ ⎪⎝⎭,展开变形,利用基本不等式求最小值. 【详解】(1)()811616228210102418y xy x x y x y x y x y xy ⎛⎫⎛⎫+=++=+++=++≥+⨯= ⎪⎪⎝⎭⎝⎭. 当16y xx y =时,即4x y = ,等号成立,2x y ∴+的最小值是18.(2)()8181161628210102418y xy x x y x y x y x y x y ⎛⎫⎛⎫+=++=+++=++≥+⨯= ⎪⎪⎝⎭⎝⎭. 当16y xx y =时,即4x y = ,等号成立,∴81x y +的最小值是18.【点睛】本题考查基本不等式求最值,意在考查“1”的妙用,基本不等式求最值使用的三个原则“一正,二定,三相等”,缺一不可,做题时需注意. 29.求下列不等式的解集.(1)213422x x -<---;(2)()()22312x x +≥-.(3)52321x x ->+【答案】(1){11x x -<<-(2)243x x ⎧⎫-≤≤⎨⎬⎩⎭(3)152x x ⎧⎫-<<-⎨⎬⎩⎭ 【解析】(1)变形为2250x x +-<,解不等式; (2)变形为231080x x --≤,解不等式;(3)变形为5253002121x x x x -+->⇒<++,等价于()()5210x x ++<解不等式. 【详解】(1)不等式变形为:2250x x +-<方程2250x x +-=的两个实数根是11x =-21x =-,11x ∴-<<-,∴不等式的解集是{11x x -<<-.(2)不等式变形为:231080x x --≤()()4320x x -+≤ ,解得243x -≤≤ ,∴不等式的解集是243x x ⎧⎫-≤≤⎨⎬⎩⎭. (3)5252633002121x x x x x ----->⇒>++55002121x x x x --+>⇒<++ ,即()()5210x x ++< , 解得:152x -<<- ,∴不等式的解集是152x x ⎧⎫-<<-⎨⎬⎩⎭.【点睛】本题考查一元二次不等式和分式不等式的解法,意在考查计算能力,本题第三问是分式不等式,再求解时,需注意步骤是移项,通分,再转化为一元二次不等式求解. 30.若x ,y 为正实数,且280x y xy +-=,求x y +的最小值. 【答案】18【解析】首先已知条件变形为821x y +=,再化简()82x y x y x y ⎛⎫+=++ ⎪⎝⎭,利用基本不等式求最小值.【详解】822801x y xy x y+-=⇒+= ()8282828210102418y xy x x y x y x y x y xy ⎛⎫⎛⎫+=++=+++=++≥+⨯= ⎪ ⎪⎝⎭⎝⎭(当82y xx y =时取“=”) 所以x y +的最小值是18. 【点睛】本题考查基本不等式求最值,意在考查“1”的妙用,基本不等式求最值使用的三个原则“一正,二定,三相等”,缺一不可,做题时需注意. 31.已知2210ax ax ++≥恒成立. (1)求a 的取值范围;(2)解关于x 的不等式220x x a a --+<. 【答案】(1)[]0,1(2)详见解析【解析】(1)当0a =时,验证成立,当0a ≠时,只需满足20440a a a >⎧⎨-≤⎩成立; (2)原不等式可化为()()10x a x a --⎡⎤⎣⎦->,对应方程两根为1x a =,21x a =-,在分 102a ≤<,112a <≤,12a =三种情况讨论不等式的解集. 【详解】(1)当0a =时,10≥恒成立,当0a ≠时,要使不等式2210ax ax ++≥对一切x ∈R 恒成立,则20440a a a >⎧⎨-≤⎩,解得01a <≤综上,a 的取值范围是[]0,1(2)原不等式可化为()()10x a x a --⎡⎤⎣⎦->,当102a ≤<时,不等式的解为:x a <,或1x a >-当12a =时,不等式的解为:12x ≠,当112a <≤时,不等式的解为:1x a <-,或x a >综上,当102a ≤<时,不等式的解集为:{x x a <或1}x a >-;当12a =时,不等式的解集为:12x x ⎧⎫≠⎨⎬⎩⎭;当112a <≤时,不等式的解集为:{1x x a <-或}x a >.【点睛】本题考查含参不等式的解法和根据函数恒成立求参数的取值范围,意在考查函数与方程的思想,属于基础题型. 32.已知1x ,2x 是一元二次方程()2620a x ax a -++=的两个实数根.(1)是否存在实数a ,使11224x x x x -+=+成立?若存在,求出a 的值;若不存在,请说明理由;(2)求使()()1211x x ++为负整数的实数a 的整数值. 【答案】(1)存在,24a = (2)7a =,8,9或12. 【解析】(1)由条件可知1226a x x a -+=-,126ax x a =-,代入方程12124x x x x =++,得到a ,并验证∆;(2)代入根与系数的关系求()()1211x x ++为负整数时,求a . 【详解】(1)方程()2620a x ax a -++=有两个实数根,则判别式()2446240a a a a ==-=≥,得:0a ≥因为二次项系数60a -≠,即6a ≠1226ax x a -+=-,126a x x a =-由11224x x x x -+=+,得:12124x x x x =++,代入得:2466a aa a -=+-- 4242a a a =--,24a =,故当24a =时,有11224x x x x -+=+成立(2)()()121212261111666a a x x x x x x a a a -++=+++=++=----要使上式为负整数,则有61a -=,2,3或6所以7a =,8,9或12. 【点睛】本题考查一元二次方程根与系数的关系求参数的取值,意在考查基本公式和计算能力,属于基础题型.。
2019-2020学年北京市首师大附中高二(上)期中数学试卷试题及答案

2019-2020学年北京市首师大附中高二(上)期中数学试卷一、选择题1.抛物线x2=4y的焦点坐标为()A.(1,0)B.(﹣1,0)C.(0,1)D.(0,﹣1)2.“a=2”是“直线2x+ay﹣1=0与直线ax+3y﹣2=0垂直”()A.充分必要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件3.若双曲线E:1的左、右焦点分别为F1,F2,点P在双曲线E上,且|PF1|=3,则|PF2|等于()A.11B.9C.5D.34.直线l:x+y+3=0被圆C:(θ为参数)截得的弦长为()A.B.C.D.85.如图,在平面直角坐标系xOy中,F是椭圆>>的右焦点,直线与椭圆交于B,C两点,且∠BFC=90°,则该椭圆的离心率为()A.B.C.D.6.设α,β为两个不同的平面,m,n为两条不同的直线,则下列命题中正确的为()A.若m∥n,n⊂α,则m∥αB.若m∥α,n⊂α,则m∥nC.若α⊥β,m⊂α,则m⊥βD.若m⊥β,m⊂α,则α⊥β7.已知抛物线C:y2=8x的焦点为F,准线与x轴的交点为K,点A在C上且,则△AFK的面积为()A.4B.8C.16D.328.已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点.且∠F1PF2,则椭圆和双曲线的离心率的倒数之和的最大值为()A.B.C.3D.2二、填空题9.已知直线的参数方程为(t为参数),则其倾斜角为.10.若圆O:x2+y2=1与圆C:x2+y2+6x+8y+m=0相切,则实数m=.11.若方程表示的是焦点在x轴上的椭圆,则k的取值范围是.12.直线l与双曲线x2﹣4y2=4相交于A、B两点,若点P(4,1)为线段AB的中点,则直线l的方程是.13.已知圆:,圆C2与圆C1关于直线y=x+1对称,则圆C2的标准方程是.14.已知椭圆G:<<的两个焦点分别为F1和F2,短轴的两个端点分别为B1和B2,点P在椭圆G上,且满足|PB1|+|PB2|=|PF1|+|PF2|.当b变化时,给出下列三个命题:①点P的轨迹关于y轴对称;②存在b使得椭圆G上满足条件的点P仅有两个;③|OP|的最小值为2,其中,所有正确命题的序号是.三、解答题15.已知动点P与平面上点A(﹣1,0),B(1,0)的距离之和等于2.(1)试求动点P的轨迹方程C.(2)设直线l:y=kx+1与曲线C交于M、N两点,当|MN|时,求直线l的方程.16.如图,在四棱锥P﹣ABCD中,PB⊥底面ABCD,底面ABCD为梯形,AD∥BC,AD⊥AB,且PB=AB=AD=3,BC=1.(Ⅰ)若点F为PD上一点且PF PD,证明:CF∥平面P AB;(Ⅱ)求二面角B﹣PD﹣A的大小.17.在平面直角坐标系xOy中,已知椭圆:>>的离心率为,点(2,1)在椭圆C上.(1)求椭圆C的方程;(2)设直线l与圆O:x2+y2=2相切,与椭圆C相交于P,Q两点,求证:∠POQ是定值.18.设A、B分别为椭圆的左右顶点,设点P为直线x=4上不同于点(4,0)的任意一点,若直线AP、BP分别与椭圆相交于异于A、B的点M、N.(1)判断B与以MN为直径的圆的位置关系(内、外、上)并证明.(2)记直线x=4与轴的交点为H,在直线x=4上,求点P,使得S△APN=S△APH.2019-2020学年北京市首师大附中高二(上)期中数学试卷参考答案与试题解析一、选择题1.抛物线x2=4y的焦点坐标为()A.(1,0)B.(﹣1,0)C.(0,1)D.(0,﹣1)【解答】解:∵抛物线x2 =4y中,p=2,1,焦点在y轴上,开口向上,∴焦点坐标为(0,1 ),故选:C.2.“a=2”是“直线2x+ay﹣1=0与直线ax+3y﹣2=0垂直”()A.充分必要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件【解答】解:当直线2x+ay﹣1=0与直线ax+3y﹣2=0垂直时,2a+3a=0即a=0,所以“a=2”是“直线2x+ay﹣1=0与直线ax+3y﹣2=0垂直”的既不充分又不必要条件.故选:D.3.若双曲线E:1的左、右焦点分别为F1,F2,点P在双曲线E上,且|PF1|=3,则|PF2|等于()A.11B.9C.5D.3【解答】解:由题意,双曲线E:1中a=3.∵|PF1|=3,∴P在双曲线的左支上,∴由双曲线的定义可得|PF2|﹣|PF1|=6,∴|PF2|=9.故选:B.4.直线l:x+y+3=0被圆C:(θ为参数)截得的弦长为()A.B.C.D.8【解答】解:圆C:(θ为参数)化为:(x+1)2+(y﹣2)2=16,可得:圆心C(﹣1,2),半径r=4.∴圆心C到直线l的距离d2.∴直线l被圆C截得的弦长=224.故选:B.5.如图,在平面直角坐标系xOy中,F是椭圆>>的右焦点,直线与椭圆交于B,C两点,且∠BFC=90°,则该椭圆的离心率为()A.B.C.D.【解答】解:设右焦点F(c,0),将代入椭圆方程可得x=±a±a,可得B(a,),C(a,),由∠BFC=90°,可得k BF•k CF=﹣1,即有•1,化简为b2=3a2﹣4c2,由b2=a2﹣c2,即有3c2=2a2,由e,可得e2,可得e,故选:A.6.设α,β为两个不同的平面,m,n为两条不同的直线,则下列命题中正确的为()A.若m∥n,n⊂α,则m∥αB.若m∥α,n⊂α,则m∥nC.若α⊥β,m⊂α,则m⊥βD.若m⊥β,m⊂α,则α⊥β【解答】解:由α,β为两个不同的平面,m,n为两条不同的直线,得:在A中,若m∥n,n⊂α,则m与α相交、平行或m⊂α,故A错误;在B中,若m∥α,n⊂α,则m与n平行或异面,故B错误;在C中,若α⊥β,m⊂α,则m与β相交、平行或m⊂β,故C错误;在D中,若m⊥β,m⊂α,则由面面垂直的判定定理得α⊥β,故D正确.故选:D.7.已知抛物线C:y2=8x的焦点为F,准线与x轴的交点为K,点A在C上且,则△AFK的面积为()A.4B.8C.16D.32【解答】解:∵抛物线C:y2=8x的焦点为F(2,0),准线为x=﹣2∴K(﹣2,0)设A(x0,y0),过A点向准线作垂线AB,则B(﹣2,y0)∵,又AF=AB=x0﹣(﹣2)=x0+2∴由BK2=AK2﹣AB2得y02=(x0+2)2,即8x0=(x0+2)2,解得A(2,±4)∴△AFK的面积为故选:B.8.已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点.且∠F1PF2,则椭圆和双曲线的离心率的倒数之和的最大值为()A.B.C.3D.2【解答】解:设椭圆的长半轴为a,双曲线的实半轴为a1,(a>a1),半焦距为c,由椭圆和双曲线的定义可知,设|PF1|=r1,|PF2|=r2,|F1F2|=2c,椭圆和双曲线的离心率分别为e1,e2∵∠F1PF2,∴由余弦定理可得4c2=(r1)2+(r2)2﹣2r1r2cos,①在椭圆中,①化简为即4c2=4a2﹣3r1r2,即,②在双曲线中,①化简为即4c2=4a12+r1r2,即,③联立②③得,4,由柯西不等式得(1)()≥(1)2,即()即,d当且仅当,时取等号,法2:设椭圆的长半轴为a1,双曲线的实半轴为a2,(a1>a2),半焦距为c,由椭圆和双曲线的定义可知,设|PF1|=r1,|PF2|=r2,|F1F2|=2c,椭圆和双曲线的离心率分别为e1,e2∵∠F1PF2,∴由余弦定理可得4c2=(r1)2+(r2)2﹣2r1r2cos(r1)2+(r2)2﹣r1r2,由,得,∴,令m,当时,,∴,即的最大值为,法3:设|PF1|=m,|PF2|=n,则,则a1+a2=m,则,由正弦定理得,即sin(120°﹣θ)故选:A.二、填空题9.已知直线的参数方程为(t为参数),则其倾斜角为.【解答】解:直线的参数方程为(t为参数),消去参数t,化为普通方程是y﹣1(x﹣1),则该直线的斜率为,倾斜角为.故答案为:.10.若圆O:x2+y2=1与圆C:x2+y2+6x+8y+m=0相切,则实数m=﹣11或9.【解答】解:圆x2+y2+6x+8y+m=0 即(x+3)2+(y+4)2=25﹣m,表示以(3,4)为圆心,半径等于的圆.由题意,两个圆相内切,两圆的圆心距等于半径之差的绝对值,可得5=|1|,解得m=﹣11.两个圆相外切,两圆的圆心距等于半径之和,可得51,解得m=9,故答案为:﹣11或9.11.若方程表示的是焦点在x轴上的椭圆,则k的取值范围是(,5).【解答】解:由题意方程表示的是焦点在x轴上的椭圆,k﹣2>5﹣k>0,∴<k<5.故答案为:(,5)12.直线l与双曲线x2﹣4y2=4相交于A、B两点,若点P(4,1)为线段AB的中点,则直线l的方程是x﹣y﹣3=0.【解答】解:设A(x1,y1),B(x2,y2),则x1+x2=8,y1+y2=2,∵x12﹣4y12=4,x22﹣4y22=4,两式相减可得:(x1+x2)(x1﹣x2)﹣4(y1+y2)(y1﹣y2)=0,∴8(x1﹣x2)﹣8(y1﹣y2)=0,∴k AB=1,∴直线的方程为y﹣1=1(x﹣4),即x﹣y﹣3=0.故答案为:x﹣y﹣3=0.13.已知圆:,圆C2与圆C1关于直线y=x+1对称,则圆C2的标准方程是x2+(y+1)2=1.【解答】解:依题意,设圆C2的圆心坐标为(a,b),则因为圆:,的圆心为(﹣2,1),所以,,解得,所以圆C2的标准方程是:x2+(y+1)2=1,故答案为:x2+(y+1)2=1,14.已知椭圆G:<<的两个焦点分别为F1和F2,短轴的两个端点分别为B1和B2,点P在椭圆G上,且满足|PB1|+|PB2|=|PF1|+|PF2|.当b变化时,给出下列三个命题:①点P的轨迹关于y轴对称;②存在b使得椭圆G上满足条件的点P仅有两个;③|OP|的最小值为2,其中,所有正确命题的序号是①③.【解答】解:椭圆G:<<的两个焦点分别为F1(,0)和F2(,0),短轴的两个端点分别为B1(0,﹣b)和B2(0,b),设P(x,y),点P在椭圆G上,且满足|PB1|+|PB2|=|PF1|+|PF2|,由椭圆定义可得,|PB1|+|PB2|=2a=2>2b,即有P在椭圆1上.对于①,将x换为﹣x方程不变,则点P的轨迹关于y轴对称,故①正确;对于②,由图象可得轨迹关于x,y轴对称,且0<b<,则椭圆G上满足条件的点P有4个,不存在b使得椭圆G上满足条件的点P仅有两个,故②不正确;对于③,由图象可得,当P满足x2=y2,即有6﹣b2=b2,即b时,|OP|取得最小值,可得x2=y2=2,即有|OP|的最小值为2,故③正确.故答案为:①③.三、解答题15.已知动点P与平面上点A(﹣1,0),B(1,0)的距离之和等于2.(1)试求动点P的轨迹方程C.(2)设直线l:y=kx+1与曲线C交于M、N两点,当|MN|时,求直线l的方程.【解答】解:(1)由|AB|=2<|P A|+|PB|=2,根据椭圆的第一定义,可得P的轨迹为以A,B为焦点的椭圆,且2a=2,即a,c=1,b1,则动点P的轨迹方程C为y2=1;(2)将直线l:y=kx+1代入椭圆方程x2+2y2=2,可得(1+2k2)x2+4kx=0,解得x1=0,x2,可得M(0,1),N(,),由题意可得|MN|,解得k=±1,即有直线l的方程为y=±x+1.16.如图,在四棱锥P﹣ABCD中,PB⊥底面ABCD,底面ABCD为梯形,AD∥BC,AD⊥AB,且PB=AB=AD=3,BC=1.(Ⅰ)若点F为PD上一点且PF PD,证明:CF∥平面P AB;(Ⅱ)求二面角B﹣PD﹣A的大小.【解答】证明:(Ⅰ)过点F作FH∥AD,交P A于H,连接BH,因为PF PD,所以HF AD=BC.….(1分)又FH∥AD,AD∥BC,所以HF∥BC.….(2分)所以BCFH为平行四边形,所以CF∥BH.….又BH⊂平面P AB,CF⊄平面P AB,….(4分)(一个都没写的,则这(1分)不给)所以CF∥平面P AB.….(5分)解:(Ⅱ)因为梯形ABCD中,AD∥BC,AD⊥AB,所以BC⊥AB.因为PB⊥平面ABCD,所以PB⊥AB,PB⊥BC,如图,以B为原点,BC,BA,BP所在直线为x,y,z轴建立空间直角坐标系,….(6分)所以C(1,0,0),D(3,3,0),A(0,3,0),P(0,0,3).设平面BPD的一个法向量为(x,y,z),平面APD的一个法向量为(a,b,c),因为(3,3,﹣3),(0,0,3)所以,….(7分)取x=1得到(1,﹣1,0),….(8分)同理可得(0,1,1),….(9分)所以cos<,>,….因为二面角B﹣PD﹣A为锐角,所以二面角B﹣PD﹣A为.….17.在平面直角坐标系xOy中,已知椭圆:>>的离心率为,点(2,1)在椭圆C上.(1)求椭圆C的方程;(2)设直线l与圆O:x2+y2=2相切,与椭圆C相交于P,Q两点,求证:∠POQ是定值.【解答】解:(1)由题得e,所以c2,则b2,再将点(2,1)带入方程得,解得a2=6,所以b2=3,则椭圆C的方程为:;(2)①当直线PQ斜率不存在时,则直线PQ的方程为x或x,当x时,P(,),Q(,),此时,所以OP⊥OQ,即∠POQ =90°,当x时,同理可得OP⊥OQ,∠POQ=90°;②当直线PQ斜率存在时,不妨设直线PQ的方程为y=kx+m,即kx﹣y+m=0,因为直线与圆相切,所以,即m2=2k2+2,联立,得(1+2k2)x2+4kmx+2m2﹣6=0,设P(x1,y1),Q(x2,y2),则有,,此时x1x2+y1y2=x1x2+(kx1+m)(kx2+m),将m2=2k2+2代入上式可得,所以OP⊥OQ,则∠POQ=90°;综上:∠POQ是定值为90°.18.设A、B分别为椭圆的左右顶点,设点P为直线x=4上不同于点(4,0)的任意一点,若直线AP、BP分别与椭圆相交于异于A、B的点M、N.(1)判断B与以MN为直径的圆的位置关系(内、外、上)并证明.(2)记直线x=4与轴的交点为H,在直线x=4上,求点P,使得S△APN=S△APH.【解答】解:(1)点B在以MN为直径的圆内.证明如下:由已知可得A(﹣2,0),B(2,0).设M(x0,y0).∵M点在椭圆上,∴y02(4﹣x02).①又点M异于顶点A、B,∴﹣2<x0<2.由P、A、M三点共线可得,即P(4,).从而(x0﹣2,y0),(2,).∴2x0﹣4(x02﹣4+3y02).②将①代入②,化简得(2﹣x0).∵2﹣x0>0,∴>0,于是∠MBP为锐角,从而∠MBN为钝角,故点B在以MN为直径的圆内.(2)可得A(﹣2,0),B(2,0).设N(x0,y0).P(4,t),由P、B、N三点共线可以得,即t.又S△APN=S△APH等价于S△ABN=S△BPH.即|y0||t|=||⇒x0=1.∴1,∴y0,∴t=±3.故点P(4,±3)。
2019-2020学年首都师范大学附属中学高三英语上学期期中试卷及答案

2019-2020学年首都师范大学附属中学高三英语上学期期中试卷及答案第一部分阅读(共两节,满分40分)第一节(共15小题;每小题2分,满分30分)阅读下列短文,从每题所给的A、B、C、D四个选项中选出最佳选项AThe history ofpop art begins with abstract art. Pop art emerged from the foundation of abstract art in the 1950s, first gaining recognition in Great Britain, then establishing itself in the United States in the 1960s.In the 1930s and 1940s, abstract art was greatly popular, but people began to hate this art form. Most abstract art produced in this era could be found in art galleries or the homes of the elite(名流), not in the homes of everyday people. Pop art sprung onto the scene as the people's art.Some art critics say pop art is a rebellion against abstract art; others say it is an extension of abstract art. You can see elements of abstract art in many pop art prints, especially those that consist of a collage(拼贴画)of images. However, some pop art pieces have nothing to do with abstract art, looking more like a photo of a popular consumer item, which impressed people deeply.Richard Hamilton and Eduardo Paolozzi were two of the first contemporary pop art pioneers recognised in Great Britain. They were a part of the Independent Group, an organised group of British artists who wanted to challenge ruling modernist approaches to culture. They recognised the value of modern advertising and comic book images. They used these popular images in art as a social commentary, often building irony and humour into their artworks, thus creating a new form of art. These pieces were mass-produced and sold at affordable prices.When pop art took off in the United States, it expanded to include a celebration of kitsch and the common images found in movies and television. Andy Wharhol is perhaps the most famous American pop art artist, known for his prints of the actress Marilyn Monroe, the singer Elvis Presley and of Campbell's soup cans. Andy Wharhol was inspired by images from advertisements and common consumer items. He also made a series of paintings which showed images of car accidents.1. Why did people dislike abstract art?A. People found it hard to understand.B. Ordinary people couldn't afford it.C. People disliked enjoying it in galleries.D. It wasn't based on everyday life.2. What impression do pop art works leave on people?A. They are a rebellion against abstract art.B. They have many elements of abstract art.C. They are created so real.D. They are products of advertisers.3. The Independent Group was set up to ________.A. introduce a new art form to the worldB. develop modern advertising furtherC. create new comic book imagesD. make British culture better knownBThe English language is changing, and you are responsible! Whether we consider changes in grammar, spelling, pronunciation, or the very vocabulary of the language, you have played your part and continue to do so.When we first learned basic grammar and spelling, perhaps in elementary school, we might have gotten the impression that these things were sacred. The rules that apply to such things might have been presented as unchanging and unchangeable. While this way might be helpful for teaching children, it is far from accurate.The English language, like many others, is a living, growing, ever-evolving thing. Like it or not, you are involved in this change. These changes take many forms. Grammar and spelling have changed greatly over the years and centuries, with the spelling differences in different countries today a reflection of this. While the language of a thousand years ago might be called English, most of us would hardly recognize it today as the same language.The first involves changes in the pronunciation of words. Many are familiar with the differences between the British and American ways of pronouncing certain words. In addition to these differences, the pronunciation of many words has changed over the years because of how you have decided to pronounce them. For example, consider the word "err." The traditional pronunciation of this word rhymes with the word "her." Older dictionaries show this to be the primary or only pronunciation. However, in recent years, more and more people have been pronouncing it so that it sounds like "air." Another change in the language involves the addition and removal of words. The makers of dictionaries decide which words deserve to be officially adopted as part of the English language. Through the centuries, many words have come from other languages. In fact, English has probably done this more than any other language in the world, which is why spelling and pronunciation rules for English have so many exceptions.Of course, many slang words have been just short-lived fashions that have died out quickly. Others, though, have been adopted by mainstream society and become respectable, as have many technical terms. So then remember, the next time you repeat the newest expression to hit the street, or make up your own words, you may be contributing to the future of the English language.4. When we begin to learn English, we think _________.A. it is interesting to pick up a new languageB. English rules are wrongly presented in factC. grammar and spelling rules are unchangeableD. only adults have the ability to affect a language5. From paragraph 3 we can know that_________.A. we can change the English languageB. many languages are changing over yearsC. English has changed little in the past 1,000 yearsD. there were main changes in grammar and pronunciation6. Why is the pronunciation of words changing?A. people speak in different waysB. people have adopted foreign wordsC. it has been affected by American EnglishD. makers of dictionaries often change them7. Which of the following is the best title for the passage?A. Foreign words involved in English.B. The British speaks differently from Americans.C. English language is changing over years.D. You can change the English language.CHowdo you turn “dumb” headphones into smart ones? Rutgers engineers have invented a cheap and easy way by transforming headphones into sensors that can be plugged into (插入) smartphones, identify their users monitor their heart rates and perform other services.Their invention, called HeadFi, is based on a small plug-in headphone adapter that turns a regular headphone into a sensing device (装置). Unlike smart headphones, regular headphones lack sensors. HeadFi would allow users to avoid having to buy a new pairof smart headphones with sensors to enjoy sensing features.“HeadFi could turn hundreds of millions of existing, regular headphones worldwide into intelligent ones with a simple upgrade (升级),” said Xiaoran Fan, a HeadFi primary inventor.A Rutgers-led paper on the invention, which results in "earable intelligence", will be formally published in October at MobiCom 2021, the top international conference on mobile computing and mobile and wireless networking. Headphones are among the most popular wearable devices worldwide and they continue to become; more intelligent as new functions appear, such as touch-based gesture control, the paper notes. Such functions usually rely on aiding sensors, such as accelerometers, gyroscopes and microphones that are availableon many smart headphones.HeadFi turns the two drivers already inside all headphones into a versatile (多功能的) sensor, and it works by connecting headphones to a pairing device, such as a smartphone. It doesn't require adding aiding sensors andavoids changes to headphone hardware or the need to customize headphones, both of which may increase their weight and size. By plugging into HeadFi, a converted headphone can perform sensing tasks and play music at the same time.The engineers conducted experiments with 53 volunteers using 54 pairs of headphones with prices ranging from $2. 99 to $15 ,000. HeadFi can achieve 97. 2 percent to 99. 5 percent accuracy on user identification, 96.8 percent to 99. 2 percent on heart rate monitoring and 97. 7 percent to 99. 3 percent on gesture recognition.8. What does Xiaoran Fan think of HeadFi?A. Secure to operate.B. Simple to use.C. Easy to substitute.D. Convenient to store.9. What can we know about HeadFi according to the text?A. It can't work with headphones alone.B. It actually functions as a versatile sensor.C. It makes headphones larger and heavier than usual.D. It doesn't work when headphones are playing music.10. The figures are listed in the last paragraph mainly to show_________.A. the various functions of HeadFiB. the wide popularity of headphonesC. the great complexity of headphonesD. the excellent performance of HeadFi11. What can be the best title for the text?A. How to Use Headphones AppropriatelyB. Headphones Can Be Upgraded InstantlyC. How to Make Regular Headphones IntelligentD. New Uses Have Been Found in HeadphonesDWe have most friends at the age of 26 afterhaving spent the first quarter of our lives building up our friendship circle, new research has claimed.The research into friendship shows that our social circle peaks at 26 years and 7 months, at which we typically have five close friends. Women are most popular at 25 years and 10 months, with men hitting the highest friendship point a little later at 27 years and 3 months.The research, by Forever Friends, shows that about a third of adults meet their closest friends while at school, with about a fifth saying they meet them at work.Social networks such as Facebook and Twitter now also play a major role in building new friendship. The research points out that 25 to 34-year-olds make 22 friends via Facebook, compared to 18 to 24-year-olds who make 12, and 35 to 44-year-olds who make just four.Forever Friends' relationship coach Sam Owen says, “It is no coincidence that over a third of us meet our best friends at school. It is a key time in our lives when friendship is growing through sharing notes, giving gifts, seeing each other regularly and laughing a lot. As adults we can often forget how powerful these small things are and how the little things can make a difference."Later in life we find ourselves losing friends. Over half of us lose friendship through moving, while 36% say that over time they grow apart from close pals. Having children also causes 19% todrift away fromchildhood friends.With growing pressure being put on friendship these days, it's important to make time for our friendship.12. How many friends can a 20-year-old college student make via Facebook?A. 22.B. 18.C. 12.D. 4.13. In Paragraph 5, the author is trying to tell the readers ________.A. how important making friends isB. school time is an important period to develop friendshipC. how much has been done to keep friendshipD. that friendship is not easy to keep14. The underlined phrase "drift away from" in Paragraph 6 means ________.A. make sense ofB. make up withC. feel sorry forD. lose touch with15. This passage is mostprobably taken from ________.A. a newspaperB. an advertisementC. a textbookD. Facebook or Twitter第二节(共5小题;每小题2分,满分10分)阅读下面短文,从短文后的选项中选出可以填入空白处的最佳选项。
2019-2020学年首都师范大学附属中学高三英语上学期期中试题及答案

2019-2020学年首都师范大学附属中学高三英语上学期期中试题及答案第一部分阅读(共两节,满分40分)第一节(共15小题;每小题2分,满分30分)阅读下列短文,从每题所给的A、B、C、D四个选项中选出最佳选项AVail Marriott Mountain ResortVail Winter Weather GuideCovered in grand mountains,flashing lights and snowy pines, Vail is perfect for explorers and people who love adventures alike. Whether skiing down the slopes for the first time or the hundredth, this guide will ensure that you're ready for everything this city has to offer.Best Time to VacationDecember through to March tends to be the best time for those interested in skiing down the slopes in style.Know Before You GoMake the necessary preparations and reservations in advance:• Ski and Snowboard Rentals(租赁):Don't have your own equipment! Vail Sports rents out a variety of skis and snowboards for all ages and abilities, as well as snow shoes and helmets.• Clothing Rentals:For those not interested in purchasing hundreds of dollars of ski clothing for one vacation. Mountain Threads has a rental program just for you, where you can get mountain necessities like coats, pants and goggles(护目镜).• Suncream:You might not think about getting sunburn, but it happens to skiers and snowboarders every day.• Difficulty levels:It's important to know what level you're at before jumping on a ski lift and heading up the mountain. Use a free trail map and plan the slopes you're going to ski down ahead of time based on the following levels you'll find up the mountain:• Green Circle:These are the easiest slopes.• Blue Square:These indicate average to medium levels.• Black Diamond:The most advanced slopes. Some mountains will feature double black diamonds, indicating even higher difficulty.While Vail is famous for snow sports, you'll find plenty of other fun things to do once the sun goes down oryou are tired. Explore the rest of our website for more information!1. When is the best time to visit Vail if you like skiing?A. In March, April June and DecemberB. In December, February, April and MarchC. In January, February, March and DecemberD. In September, October, November and December2. Before you go to the Vail Marriott Mountain Resort, you will have to take ________with you.A. helmetsB. gogglesC. suncreamD. a trail map3. What will a skiing beginner who wants to enjoy himself prefer to choose?A. Blue SquareB. Black DiamondC Double Black Diamonds D. Green CircleBThis is Scientific America's 60-Second Science. I am Christopher Intagliata.The Apollo missions brought back 842 pounds of rock and soil from the moon, that's nearly 2200 different samples. But the most interesting one, according to a scientist Meenakshi Wadhwa, is a sample named "Apollo 1-0-0-8-5collected by Neil Armstrong on Apollo 11.“He was about to step back into the lunar module(登月舱) when he turned around and saw there were little spaces in the rock box. He knew that geologists on earth would be just so excited to study these materials, so he just scooped up nine scoops(勺) of soil and put it into the box." Wadhwa explained.It was one of the most well studied samples of the Apollo missions. And a geologist named John Wood noticed white flecks(微粒) of rock in the soil, which inspired him to dig deeper into the moon's ancient past.“This was quite a leap of imagination — he proposed that the whole of the moon had been almost covered with a magma(岩浆) ocean nearly 4.5 billion years ago. This was a revolutionary idea at the time, because people had thought the moon had formed cold, so it completely changed our idea how the moon formed.”But Wadhwa has a more personal reason to appreciate this sample. She met her husband Scott Parazynski also because of this rock sample. Scott, a mountaineer at that time, wanted to climbMount Everestwith a moon rock while Wadhwa was the chairman of the NASA committee that gives access to the samples for scientific purposes.Neil Armstrong's last-minute scoop of moon dust brought two people together here on Earth and upturnedour understanding of how the moon — and the Earth itself-got here.Thank you for listening for Scientific American's 60-Second Science.4. It can be learned from Paragraph 3 that ________ .A. Neil Armstrong was excited to find the soilB. the spaceship was about to land on the moonC. Sample "Apollo1-008-5" was collected at the last minuteD. scientists were not satisfied with the samples brought back by Neil5. Which of the following statements is TRUE according to the text?A. Scott made a new proposal about the moon's origin.B. The Apollo missions brought back 842 rock samples.C. "Apollo 1-0-0-8-5" brought new evidence to the moon's formation.D. Wadhwa and her husband climbedMount Everestwith a moon rock.6. What is this text?A. A short interview.B. An introduction to a scientist.C. An inspiring speech.D. A broadcast story of a program.7. What is the text mainly about?A. A romantic story of a moon rock.B. A big leap made by Neil Armstrong.C. An unusual task for Apollo missions.D. An unexpected discovery in moon exploration.CHave you ever been on social media and seen your favorite celebrity talking about a product? These promotions might not be totally random, and are actually seen as a vital part of the marketing process. The question is: How do social media influencers ‘influence’ what you buy?Human desire for status and making friends, combined with our need to belong to a group, makes us receptive to being ‘socially influenced’. Companies often use that desire to have a similar lifestyle to a celebrity we admire to sell or launch a product. So, what do these promotions actually do?Firstly, they can be used to build brand awareness. A social media influencer should have a strong understanding of the platform they operate on, and therefore can create appealing content that not only sticks to the brand image, but sparks their followers’ interests in a product they might never have seen before.Secondly, influencers can improve a company or product’s relationship with their customer base. According to InMoment’s 2018 US Retail CX Trends Report on customer loyalty, 77% of buyers have been brand loyal for more than ten years. This is also true of 60% of millennials. A popular celebrity can target key customers and talk or blog about a product, which can create an instant and lasting bond with them.Lastly, influencers can improve customer buying habits with seemingly ‘unbiased opinions’. We are more likely to respond to ‘peer recommendation’ than traditional ads, meaning the fact we see an influencer as a ‘friend’ can make us less likely to be doubtful about what we are seeing.So, the next time you see a celebrity talking about a product, you might want to consider that this could be a carefully worked-out marketing strategy designed to target your core needs. If you find yourself examining a product you’ve seen on social media, you may well have been influenced.8. Why do companies invite celebrities to launch products?A. Because celebrities can improve the companies’ public images.B. Because consumers like to share similarity with celebrities.C. Because celebrities want to make more money.D. Because consumers can make friends with celebrities.9. According to the passage, which strategy is often used by influencers?A. Setting up operation platforms.B. Sending gifts to customers.C. Improving relationship with the company.D. Taking advantage of their popularity.10. To customers, the recommendations of influencers seem to be ________.A. offensiveB. subjectiveC. objectiveD. misleading11. The passage is mainly about ________.A. how social media make adsB. how social media influence our lifestyleC. how social influencers affect our buyingD. how celebrities earn fameDSince I was born and brought up in a rural town, I have a great interest in nature. Using the chance of studying abroad in my second year at college, I decided to go toCanadajust because I wanted to see the beautiful phenomena there So after I finished the study program, I went toYellowknifein theNorthwest Territories.I clearly remember the sixth night inYellowknife. Suddenly my host mother came to my room around 8 p.m. and told me to change clothes and go outside quickly carrying her camera.The northern lights were flickering (闪烁) in the sky! I was shocked and just stood there with my mouth open.I forgot to take pictures of the mysterious lights.Since that night, whenever it was sunny, I went outside at night and looked at the sky. It was so cold that I lost all feeling in myhands and feet.As I took pictures of the northern lights, I came to find a characteristic movement of the lights. They first appear in the north part of the sky and then they gradually come down to the south part of the sky. After that, suddenly, they come in the middle of the north and south only for a while, which is the time when the best northern lights can be seen. Since it is only a few seconds for the northern lights to come down to the middle of the sky, it is very hard to get good pictures.The stronger the sun acts, the better and stronger the northern lights flicker in the sky. That’s because they come about from the collisions (碰撞) between atmospheric gases and the solar wind. Much more solar wind comes to the earth when the sun is active, whichleads to the best northern lights. And the color1 s of the northern lights depend on the height of the collisions and the kinds of gases.12. Why did the host mother ask the author to go out?A. She wanted to take a picture of him.B. She wanted to take a walk with him.C. She wanted to tell him something important.D. She wanted him to see the northern lights.13. The author forgot to take pictures after going out because ______.A. the host mother didn’t remind him to take the cameraB. he was shocked by the wonderful sightC. the lights flickering in the sky disappeared too soonD. he lost all feeling in his hands and feet14. When is the best time to see the northern lights?A. When they appear in the north part of the sky.B. When they come down to the south part of the sky.C. When they are between the north and south.D. When they rise in the east part of the sky.15. What does the last paragraph mainly tell us?A. Waysto take good pictures.B. The relationship between the sun and the northern lights.C.The color1 s of the northern lights.D. The time of the best northern lights.第二节(共5小题;每小题2分,满分10分)阅读下面短文,从短文后的选项中选出可以填入空白处的最佳选项。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(4)另一位同学用下述方法计算小车运动的加速度:该同学用刻度尺测出 OB=x1,OD=x2,如图 4 所示.纸带 上相邻计数点(O 与 A、A 与 B、B 与 C……)的计时间隔为 T.请利用 x1、x2、T 三个量表示小车运动的加 速度,a=__________.
B. 研究高铁从北京到上海的时间,可将列车看作质点
C. 研究乒乓球的弧圈旋转方向,可将乒乓球看作质点
D. 研究原子内部电子绕原子核的运动时,可将原子看作质点
2.下列有关运动的描述中,参考系的选取符合描述的是( ) A. “飞流直下三千尺”是以“飞流”作为参考系的 B. “人从桥上过,桥流水不流”中的“桥流”是以水为参考系的 C. “钱塘观潮时,观众只觉得潮水扑面而来”是以“观众”为参考系的 D. “升国旗时,观察到国旗冉冉升起”,观察者是以“国旗”为参考系的 3.如图所示,一位同学从操场 A 点出发,向西走了 30m ,到达 B 点,然后又向北走了 40m ,达到 C 点.在 从 A 点到 C 点的过程中,该同学的位移大小是( )
13.某同学用图 1 所示的实验装置研究小车做匀变速直线运动的特点.
(1)实验中,除打点计时器(含交流电源、纸带)、小车、平板和重物外,在下面的器材中,必须使用的是_____
(选填选项前的字母).
A.刻度尺 B.秒表
C.天平
(2)下列实验步骤的正确顺序是_____(用字母填写).
A.关闭电源,取下纸带
A. ∝h
C. t∝ h
1
B. t∝
h
D. t∝h2
2
9.伽利略在研究运动的过程中,创造了一套科学方法,给出了科学研究过程的基本要素,这些要素包含以下 几点,如下框图所示:
其中与方框 4 相对应的是( )
A. 提出猜想
B. 交流与合作
10.某物体运动的 v-t 图像如图,根据图像可知(
C. 实验检验 )
7.
【答案】A
【解析】
【详解】A.设最大速度为 v,则加速位移为
v 8m 4vm 2
减速度位移为
v 4m 2vm 2
所以加速、减速中的位移大小之比 2:1,故 A 正确;
10
B.加速度过程的加速度为
a1
v 8
减速过程的加速度大小
a2
v 4
所以
a1 a2
1 2
,故
B
错误;
C.加速、减速中的平均速度都为 v v ,所以加速、减速中的平均速度大小之比 1:1,故 C 错误; 2
B.当加速度的方向与速度方向相反时,加速度增大,但速度减小,故 B 错误;
C.由公式
a
v t
可知,加速度很大,物体速度的变化量不一定很大,还与时间有关,故
C
错误;
D.加速度等于速度的变化率,即加速度大的物体,速度变化率大,故 D 正确.
5.
【答案】A
【解析】 【详解】A.由公式 v gt 可知,物体自由落体时间为 t 时,其速度变化量为 gt,故 A 正确; B.羽毛轻飘飘的落下,由于受到空所阻力,所以不是自由落体运动,故 B 错误; C.重力加速度与纬度和离地面高度有关,所以重力加速度不是一个常量,故 C 错误;
D. x=40m,v=10m/s
7.一质点由静止开始运动,前 8 秒为匀加速直线运动,后 4 秒为匀减速直线运动,第 12 秒末时,物体恰好 停止运动.下列说法正确的是( ) A. 加速、减速中的位移大小之比 x1:x2=2:1 B. 加速、减速中的加速度大小之比 a1:a2=2:1 C. 加速、减速中的平均速度大小之比 v1:v2=2:1 D. 质点前 12 秒内的平均速度等于第 6 秒末的瞬时速度 8.用图所示的方法可以测出一个人的反应时间,设直尺从开始自由下落,到直尺被受测者抓住,直尺下落的 距离 h,受测者的反应时间为 t,则下列说法正确的是( )
A. 电梯在第 1 秒内做匀加速运动,加速度大小为 1m/s2 B. 电梯在第 1 秒末到第 10 秒末之间的位移大小为 9m C. 电梯从第 11 秒末到第 30 秒末做匀速运动,速度大小 为10m/s D. 第 41 秒末时,电梯回到原先所在的出发点
二、填空题(本大题共 1 小题,每空 2 分,共 12 分。答.案.写.在.答.题.纸.上.。)
8
一、选择题 1.
【答案】AB 【解析】 【详解】A.绕太阳公转的地球,由于两者距离很大,故地球形状、大小可以忽略,地球可以看做质点,故 A 正确; B.研究高铁从北京到上海的时间,由于高铁的形状和大小相对北京到上海的距离可以忽略,所以高铁可看 成质点,故 B 正确; C.研究旋转的乒乓球旋转方向,涉及到球的旋转,故球不能看做质点,故 C 错误; D.研究原子中的电子围绕原子核运动时,我们已经将原子分为原子核和电子,原子的大小和形状不能忽略, 不可以将原子看作质点,故 D 错误. 2. 【答案】BC 【解析】 【详解】A.飞流是相对于山在动,故参考系是山,故 A 错误; B.研究对象应该是桥,以水为参考系,桥的位置发生了变化,则桥是运动的,故 B 正确; C.钱塘观潮时,潮水扑面而来是指潮水相对于我们来说的,故是以观察者为参考系的,故 C 正确; D.升国旗时,观察到国旗冉冉升起,观察者是以“地面”为参考系的,故 D 错误. 3. 【答案】B 【解析】
5
三、计算与论证(本大题共 5 小题,共 52 分。解.答.过.程.及.答.案.写.在.答.题.卡.上.。)
14.物体做匀加速直线运动,初速度 v0=10m/s,加速度 a=2m/s2. (1)求第 5 秒末的速度 v 的大小; (2)求前 5 秒内的位移 x 的大小.
15.一个物体由静止开始向右做直线运动,它的 v-t 图像如下图所示. (1)在下图中画出 a-t 图像. (2)计算前 6 秒内的位移.
g
D.月球表面做自由落体运动的物体,其加速度为 ,故 D 错误.
6
6.
【答案】C
【解析】
【详解】汽车从开始刹车到停止所用的时间为
t0
20 5
s
4s
所以前 6s 的位移与前 4s 的位移相同,即为
x 20 4m 40m 2
由于汽车运动 4s 停止,所以汽车在第 6s 末的速度为 0,故 C 正确.
7
18.随着信息技术的发展,中学物理的实验手段也在不断进步.用“位移传感器”把物体运动的位移、时间转 换成电信号,经过计算及的处理,可以立刻在屏幕上显示物体运动的速度. 如图是利用位移传感器测量速度的示意图.这个系统由发射器 A 与接收器 B 组成,发射器 A 能够发射红外 线(一种特殊的光线)和超声波(一种特殊的声波)信号,接收器 B 可以接收红外线和超声波信号.发射 器 A 固定在被测的运动物体上,接收器 B 固定在桌面上或滑轨上.测量时 A 向 B 同时发射一个红外线脉冲 和一个超声波脉冲(即持续时间很短的一束红外线和一束超声波).B 接收到红外线脉冲开始计时,接收到 超声波脉冲时停止计时.根据两者的时差和空气中的声速,计算机自动算出 A 与 B 的距离. 当小车运动到 P 位置时,由 A 向 B 同时发射一个红外线脉冲和一个超声波脉冲,B 端接收到两个脉冲的时 间差为△t1.经过 t 时间小车由 P 位置运动至 Q 位置,此时再由 A 向 B 同时发射一个红外线脉冲和一个超 声波脉冲,B 端接收到两个脉冲的时间差为△t2.超声波在空气中的传播速度为 u.通过计算机的自动运算, 可以计算出小车从 P 到 Q 的平均速度的大小.根据以上信息解决下列问题: (1)在该问题中,是否需要考虑红外线的传播时间?请简述理由. (2)求小车从 P 运动至 Q 的平均速度 v 的表达式. (3)实际上利用该传感器,我们更希望测得小车瞬时速度的大小.为了测量 P 点的瞬时速度,那么我们选定 的“时间间隔”应当尽量的小.然而本题中有三个时间间隔,△t1、t、△t2.请判断这三个时间间隔中,哪个 或者哪几个应当尽量短一些,才能获得更为准确的瞬时速度?请简述理由.
【详解】位移的大小等于首末位置的距离,所以总位移是大小为 402 302 m=50m .
A.470m,与结论不相符,选项 A 错误; B.50m,与结论相符,选项 B 正确; C.40m,与结论不相符,选项 C 错误; D.30m,与结论不相符,选项 D 错误; 4. 【答案】D 【解析】
9
【详解】A.当加速度为正,速度为负时,物体做减速运动,速度减小,故 A 错误;
6
16.一个物体做匀变速直线运动,初速度为 v0,加速度为 a,运动时间为 t,末速度为 v,位移为 x.请完成
下列问题.
(1)根据加速度的定义式,推导匀变速直线运动的 v-t 关系:v=v0+at
(2)根据匀变速直线运动的 v-t 关系以及 x-t 关系,推导匀变速运动速度-位移关系式:v2-v02=2ax
A. 470m
B. 50m.
C. 40m
4.关于物体的加速度,下列说法正确的是( )
A. 加速度为正,物体的速率一定增加 B. 加速度增大,物体的速率一定增大 C. 加速度很大,物体速度的变化量一定很大 D. 加速度越大,物体速度的变化率一定越大
D. 30m
1
5.实验表明,在地球上同一地点、一切物体自由下落的加速度都相同,这个加速度叫自由落体加速度,通常 用 g 表示.关于自由落体加速度,下列说法正确的是( ) A. 物体自由落体时间为 t 时,其速度变化量为 gt B. 羽毛轻飘飘的落下,说明它自由落体的加速度不是 g C. 在地球表面附近,g 始终是个常量,大小为 9.8m/s2 D. 月球表面做自由落体运动的物体,其加速度也为 g 6.一辆汽车以 20m/s 的速度沿平直公路行驶,突然发现前方有障碍物,立即刹车,汽车做匀减速直线运动, 加速度大小为 5m/s2.那么从刹车开始计时,前 6 秒内的位移大小与第 6 秒末的速度大小分别为( ) A. x=30m,v=0m/s B. x=30m,v=10m/s C. x=40m,v=0m/s