高中数学学业水平考试模拟试题一

合集下载

广东省2024年普通高中合格性学业水平考试数学模拟数学试题一

广东省2024年普通高中合格性学业水平考试数学模拟数学试题一

一、单选题1. 在棱长为2的正方体中,点,分别是线段,(不包括端点)上的动点,且线段平行于平面,则四面体的体积的最大值为( )A .2B.C.D.2. 若集合,则集合可能为( )A.B.C.D.3.设是定义域为的奇函数,且,当时,,.将函数的正零点从小到大排序,则的第4个正零点为( )A.B.C.D.4.已知变量关于的回归方程为,若对两边取自然对数,可以发现与线性相关.现有一组数据如下表所示:12345则当时,预测的值为( )A.B.C.D.5. 函数在区间(,)内的图象是( )A.B.C.D.6. 若,且a 为整数,则“b 能被5整除”是“a 能被5整除”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.已知,则( )A.B.C.D.8.已知函数满足函数恰有5个零点,则实数的取值范围为( )A.B.C.D.9. 已知P为所在平面内一点,且满足,,则A.B.C.D.10. 已知数列的首项,且,,则满足条件的最大整数( )A .2022B .2023C .2024D .202511.在区间与内各随机取1个整数,设两数之和为,则成立的概率为( )广东省2024年普通高中合格性学业水平考试数学模拟数学试题一二、多选题A.B.C.D.12.如图,在正四棱柱中,是线段上的动点,有下列结论:①;②,使;③三棱锥体积为定值;④三棱锥在平面上的正投影的面积为常数.其中正确的是( )A .①②③B .①③C .②③④D .①④13. 已知,分别为随机事件A ,B 的对立事件,,,则( )A.B.C .若A ,B独立,则D .若A ,B互斥,则14.已知非常数函数及其导函数的定义域均为R ,若为奇函数,为偶函数,则( ).A.B.C.D.15. 我国居民收入与经济同步增长,人民生活水平显著提高.“三农”工作重心从脱贫攻坚转向全面推进乡村振兴,稳步实施乡村建设行动,为实现农村富强目标而努力.年年某市城镇居民、农村居民年人均可支配收入比上年增长率如图所示.根据下面图表,下列说法正确的是()A .对于该市居民年人均可支配收入比上年增长率的中位数,城镇比农村的大B .对于该市居民年人均可支配收入比上年增长率的极差,城镇比农村的大C .年该市农村居民年人均可支配收入比年有所下降D .年该市农村居民年人均可支配收入比年有所上升16. 若直线与两曲线、分别交于、两点,且曲线在点处的切线为,曲线在点处的切线为,则下列结论正确的有( )A .存在,使B .当时,取得最小值三、填空题四、填空题五、解答题C.没有最小值D.17. 蜚英塔俗称宝塔,地处江西省南昌市,建于明朝天启元年(1621年),为中国传统的楼阁式建筑.蜚英塔坐北朝南,砖石结构,平面呈六边形,是江西省省级重点保护文物,已被列为革命传统教育基地.某学生为测量蜚英塔的高度,如图,选取了与蜚英塔底部D 在同一水平面上的A ,B两点,测得米,,,,则蜚英塔的高度是_______米.18. 在复平面内,复数所对应的点的坐标为,则_____________.19.已知、分别为椭圆的左、右焦点,为椭圆上的动点,点关于直线的对称点为,点关于直线的对称点为,则当最大时,的面积为__________.20. 如图,在棱长为2的正方体中,点是侧面内的一个动点.若点满足,则的最大值为__________,最小值为__________.21.椭圆的左、右焦点分别为,,过焦点的直线交椭圆于,两点,则的周长为______;若,两点的坐标分别为和,且,则的内切圆半径为______.22. 计算求值:(1);(2)已知,均为锐角,,,求的值.23. 某校高中“数学建模”实践小组欲测量某景区位于“观光湖”内两处景点,之间的距离,如图,处为码头入口,处为码头,为通往码头的栈道,且,在B 处测得,在处测得(均处于同一测量的水平面内)(1)求两处景点之间的距离;(2)栈道所在直线与两处景点的连线是否垂直?请说明理由.六、解答题七、解答题八、解答题九、解答题24. 1995年联合国教科文组织宣布每年的4月23日为世界读书日,主旨宣言为“希望散居在全球各地的人们,都能享受阅读带来的乐趣,都能尊重和感谢为人类文明作出巨大贡献的文学、文化、科学思想的大师们,都能保护知识产权.”为了解大学生课外阅读情况,现从某高校随机抽取100名学生,将他们一年课外阅读量(单位:本)的数据,分成7组,,…,,并整理得到如图频率分布直方图:(1)求其中阅读量小于60本的人数;(2)已知阅读量在,,内的学生人数比为2:3:5.为了解学生阅读课外书的情况,现从阅读量在内的学生中随机选取3人进行调查座谈,用表示所选学生阅读量在内的人数,求的分布列和数学期望;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计100名学生该年课外阅读量的平均数在第几组(只需写出结论).25. 已知.(1)求不等式的解集;(2)令的最小值为,若正数满足,证明:.26. 如图,在四棱锥P A BCD 中,PA ⊥平面ABCD ,底面ABCD 为菱形,E 为CD的中点.(1)求证:BD ⊥平面PAC ;(2)若∠ABC =60°,求证:平面PAB ⊥平面PAE .27. 在一次猜灯速的活动中,共有20道灯谜,甲同学知晓其中16道灯谜的谜底,乙同学知晓其中12道灯谜的谜底,两名同学之间独立竞猜,假设猜对每道灯谜都是等可能的.(1)任选一道灯谜,求甲和乙各自猜对的概率;(2)任选一道灯谜,求甲和乙至少一人猜对的概率.28.已知等比数列的前n 项和为,,.(1)求;(2)若数列的前n项和为,,且,试写出满足上述条件的数列的一个通项公式,并说明理由.。

2024年广东省普通高中学业水平合格性考试模拟(一)数学试题

2024年广东省普通高中学业水平合格性考试模拟(一)数学试题

一、单选题1.已知函数的部分图象如图所示,则下列判断错误的是A.函数的最小正周期为2B .函数的值域为C.函数的图象关于对称D.函数的图象向左平移个单位后得到的图象2. 大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中国传统文化中隐藏着的世界数学史上第一道数列题.其前项依次是、、、、、、、、、、…,则下列说法正确的是( )A .此数列的第项是B .此数列的第项是C.此数列偶数项的通项公式为D .此数列的前项和为3. 已知圆柱的高为1,它的外接球的直径为2,则该圆柱的表面积( )A.B.C.D.4. 已知首项为,公差为的等差数列的前n 项和为,若存在,使得:,,则下列说法不正确的是( )A.B.C.D.5. 已知双曲线与双曲线,若以四个顶点为顶点的四边形的面积为,以四个焦点为顶点的四边形的面积为,则取到最大值时,双曲线的一条渐近线方程为( )A.B.C.D.6. 设函数f (x )=x 2+x +a (a >0),已知f (m )<0,则( )A .f (m +1)≥0B .f (m +1)≤0C .f (m +1)>0D .f (m +1)<07. 已知全集,集合,集合,则阴影部分表示的集合为A.B.C.D.8.在正方体中,点E为线段上的动点,现有下面四个命题:①直线DE 与直线AC 所成角为定值;②点E 到直线AB 的距离为定值;③三棱锥的体积为定值;④三棱锥外接球的体积为定值.2024年广东省普通高中学业水平合格性考试模拟(一)数学试题2024年广东省普通高中学业水平合格性考试模拟(一)数学试题二、多选题三、填空题四、解答题其中所有真命题的序号是( )A .①③B .②③C .①④D .①③④9. 已知复数的共轭复数为,则下列命题正确的是( )A.B .为纯虚数C.D.10.已知函数满足,其图象向右平移个单位后得到函数的图象,且在上单调递减,则( )A.B.函数的图象关于对称C .可以等于5D .的最小值为211. 设a ,b ,c都是正数,且,则下列结论正确的是( )A.B.C.D.12. 在棱长为1的正方体中,为底面的中心,是棱上一点,且,,为线段 的中点,给出下列命题,其中正确的是()A.与 共面;B.三棱锥 的体积跟的取值无关;C .当时, ;D .当时,过,, 三点的平面截正方体所得截面的周长为.13. 甲,乙,丙,丁,戊共5名同学进行劳动技术比赛,决出第一名到第五名的名次.甲和乙去询问成绩,回答者对甲说:“很遗憾,你不是第一名.”对乙说:“你和甲都不是最后一名.”从这两个回答分析,5人的名次排列有________种不同情况;14.已知随机变量的分布列为1若成等差数列,且,则b 的值是___________,的值是________.15. 某双曲线的实轴长为4,且经过,则该双曲线的离心率为_______________.16. 已知函数.(Ⅰ)求函数的单调递减区间;(Ⅱ)若关于x的不等式恒成立,求整数的最小值.17. 如图,在三棱锥中,是正三角形,是的重心,,,分别是,,的中点,点在上,且.(Ⅰ)求证:平面平面;(Ⅱ)若,,,求二面角的余弦值.18. 已知为曲线上任意一点,直线与圆相切,且分别与交于两点,为坐标原点.(1)若为定值,求的值,并说明理由;(2)若,求面积的取值范围.19. 已知抛物线的焦点为为上异于原点的任意一点,过作直线的垂线,垂足为为轴上点.且四边形为平行四边形.直线与抛物线的另一个交点分别为(1)求抛物线的方程;(2)求三角形面积的最小值.20. 已知动圆过定点,且与直线相切,其中.(1)求动圆圆心的轨迹的方程;(2)设是轨迹C上异于原点O的两个不同点,直线和的倾斜角分别为和,当变化且为定值时,证明直线恒过定点,并求出该定点的坐标.21.已知在平面直角坐标系中,点,,的周长为定值.(1)设动点P的轨迹为曲线C,求曲线C的方程;(2)过点A作直线l交C于M、N两点,连接BM、BN分别与y轴交于D、E两点,若,求直线l的方程.。

2024年广东省普通高中学业水平合格性考试模拟(一)数学试题

2024年广东省普通高中学业水平合格性考试模拟(一)数学试题

一、单选题二、多选题1. 命题“对任意直线l ,有平面与其垂直”的否定是A .对任意直线l ,没有平面与其垂直B .对任意直线l ,没有平面与其不垂直C .存在直线,有平面与其不垂直D .存在直线,没有平面与其不垂直2. 已知椭圆C:的左、右焦点分别为,,A 是C上一点,,则的最大值为( )A .7B .8C .9D .113. 在(1-x )5-(1-x )6的展开式中,含x 3的项的系数是( )A .-5B .5C .-10D .104.如图,直三棱柱中,,点分别是棱的中点,点在棱上,且,截面内的动点满足,则的最小值是()A.B.C.D .25.设集合,则( )A.B.C.D.6. 在长方体中,,与平面所成的角为,则该长方体的体积为A.B.C.D.7. 某公司为了促进技术部门之间良好的竞争风气,公司决定进行一次信息化技术比赛,三个技术部门分别为麒麟部,龙吟部,鹰隼部,比赛规则如下:①每场比赛有两个部门参加,并决出胜负;②每场比赛获胜的部门与未参加此场比赛的部门进行下一场的比赛;③在比赛中,若有一个部门首先获胜两场,则本次比赛结束,该部门就获得此次信息化比赛的“优胜部门”.已知在每场比赛中,麒麟部胜龙吟部的概率为,麒麟部胜鹰隼部的概率为,龙吟部胜鹰隼部的概率为.当麒麟部与龙吟部进行首场比赛时,麒麟部获得“优胜部门”的概率是( )A.B.C.D.8. 在下列条件中,可判断平面与平行的是( )A .都垂直于平面B .内存在不共线的三点到的距离相等C .l ,m 是内两条直线,且D .l ,m是两条异面直线,且9.已知三棱柱为正三棱柱,且,,是的中点,点是线段上的动点,则下列结论正确的是( )A.正三棱柱外接球的表面积为B .若直线与底面所成角为,则的取值范围为C .若,则异面直线与所成的角为2024年广东省普通高中学业水平合格性考试模拟(一)数学试题三、填空题四、填空题五、填空题六、解答题七、解答题D .若过且与垂直的截面与交于点,则三棱锥的体积的最小值为10. 已知函数(,,)的部分图象如图所示,则下列结论正确的是()A .,B.C .点为函数图象的一个对称中心D .函数在上单调递减11. 已知,且,则( )A.B.C.D.12.设函数,若存在实数m ,使得关于x 的方程有4个不相等的实根,且这4个根的平方和存在最小值,则实数a 的取值范围是______.13. 计算:___________.14.在中,已知,若点为的中点,且,则__________.15.展开式中的系数为___;所有项的系数和为____.16.已知数列的前项和为,且,记,则________;若数列满足,则的最小值是________.17. 直线与轴交于点,交圆于,两点,过点作圆的切线,轴上方的切点为,则__________;的面积为__________.18.已知(1)求的值;(2)若是第三象限的角,化简三角式,并求值.19. 如图所示,在四棱锥中,平面平面,,且,设平面与平面的交线为.八、解答题九、解答题十、解答题(1)作出交线(写出作图步骤),并证明平面;(2)记与平面的交点为,点S 在交线上,且,当二面角的余弦值为,求的值.20. 已知函数,是的导函数,且有两个零点.(1)讨论的单调性;(2)若,求证:.21. 随着科技发展的日新月异,人工智能融入了各个行业,促进了社会的快速发展.其中利用人工智能生成的虚拟角色因为拥有更低的人工成本,正逐步取代传统的真人直播带货.某公司使用虚拟角色直播带货销售金额得到逐步提升,以下为该公司自2023年8月使用虚拟角色直播带货后的销售金额情况统计.年月2023年8月2023年9月2023年10月2023年11月2023年12月2024年1月月份编号123456销售金额/万元15.425.435.485.4155.4195.4若与的相关关系拟用线性回归模型表示,回答如下问题:(1)试求变量与的样本相关系数(结果精确到0.01);(2)试求关于的经验回归方程,并据此预测2024年2月份该公司的销售金额.附:经验回归方程,其中,,样本相关系数;参考数据:,.22. 在中,角,,的对边分别为,,,且.(1)求;(2)若为锐角三角形,求的取值范围.。

2024年广东省普通高中学业水平合格性考试模拟一数学试题

2024年广东省普通高中学业水平合格性考试模拟一数学试题

一、单选题1. 新冠肺炎疫情发生以来,医用口罩成为抗疫急需物资.某医用口罩生产厂家生产A 、B 、C 三种不同型号的N 95口罩,A 、B 、C 三种型号的口罩产量之比为.为了提高这三种口罩的质量,用分层抽样的方法抽取一个容量为n 的样本.在样本中B 种口罩数量比A 种口罩数量多40只,比C 种口罩数量多80只,则n =( )A .240B .280C .320D .3602. 设全集,,,则( )A.B.C.D.3. 已知各项都为正数的等比数列,满足,若存在两项,,使得,则最小值为( )A .2B.C.D .14. 六氟化硫,化学式为,在常压下是一种无色、无臭、无毒、不燃的稳定气体,有良好的绝缘性,在电器工业方面具有广泛用途.六氟化硫结构为正八面体结构,如图所示,硫原子位于正八面体的中心,6个氟原子分别位于正八面体的6个顶点,若相邻两个氟原子之间的距离为m ,则该正八面体结构的内切球表面积为()A.B.C.D.5.数列满足,,现求得的通项公式为,,若表示不超过的最大整数,则的值为( )A .43B .44C .45D .466. 在第十三届女排世界杯赛中,中国女排以不败战绩夺得冠军,女排精神一直激励着全国人民在各行各业为祖国的腾飞而努力拼搏.在女排世界杯赛闭幕后,某收视调查机构对某社区内名居民收看比赛的情况用随机抽样方式进行调查,样本容量为,将数据分组整理后,列表如下:观看场数01234567891011观看人数占调查人数的百分比2%2%4%6%m %12%8%10%12%16%12%10%从表中可以得出正确的结论为( )A .表中的值为B .估计观看比赛不低于场的人数是人C.估计观看比赛场数的众数为D .估计观看比赛不高于场的人数是人7. 已知复数满足(其中为虚数单位),则( )A .5B .1C .D.8. 函数(且)的图象恒过定点,若对任意正数、都有,则的最小值是( )A.B.C.D.9. 在正方形ABCD 中,O 为BD 中点,将平面ABD 沿对角线BD 翻折,使得平面平面BCD ,则直线AB 与CD 所成角的大小为( )2024年广东省普通高中学业水平合格性考试模拟一数学试题二、多选题A .30°B .45°C .60°D .90°10. 已知双曲线的一条渐近线方程是,它的一个焦点坐标为,则双曲线的方程为( )A.B.C.D.11. 已知直线和平面满足,则( )A.B .或C.D .或12. 已知集合,则( )A.B.C.D.13. 已知直线l :过抛物线C :的焦点F ,且与抛物线C 交于A ,B 两点(点A 在第一象限),则下列结论正确的有( )A .抛物线C的方程为B .线段AB 的长度为8C .以AF 为直径的圆和抛物线的准线相切D.14.已知正方体的棱长为,点是的中点,点是侧面内的动点,且满足,下列选项正确的是()A .动点轨迹的长度是B .三角形在正方体内运动形成几何体的体积是C .直线与所成的角为,则的最小值是D .存在某个位置,使得直线与平面所成的角为15. 下列说法正确的是( )A.函数的单调增区间为B .函数为奇函数C .幂函数是减函数D .图像关于点成中心对称16. 已知中,,,为边上的高,且,沿将折起至的位置,使得,则( )三、填空题四、填空题五、解答题六、解答题A .平面平面B .三棱锥的体积为8C.D.三棱锥外接球的表面积为17. 函数,若关于x的不等式的解集为,则实数a 的取值范围为__________.18. 已知直线与直线垂直,则实数a 的值为____________.19. 已知的展开式的第7项为常数项,则正整数的值为_________.20. 曲率在数学上是表明曲线在某一点的弯曲程度的数值.对于半径为的圆,定义其曲率.对于一般曲线,我们可通过曲线上某点处的密切圆半径来描述该点的曲率,其中对于曲线在点处的密切圆半径计算公式为.已知函数,椭圆:,则曲线在点处的曲率为____________;上任一点处曲率的最大值为____________.21. 在我国古代,是数字之极,代表尊贵之意,所以中国古代皇家建筑中包含许多与相关的设计.例如,北京天坛丘的地面由扇环形的石板铺成,如图,最高一层的中心是一块天心石,围绕它的第一圈有块石板,从第二圈开始,每一圈比前一圈多块,共圈,则第圈的石板数为___________,前圈的石板总数为___________.22. 求值.(1);(2).23. 化简求值:(1)(2)已知,,求的值;24. 把函数的图象向左平移个单位,得到函数的图象,函数的图象关于直线对称,记函数.七、解答题八、解答题九、解答题(1)求函数的最小正周期和单调增区间;(2)画出函数在区间上的大致图象.25. 已知数列{}满足∈N *,为该数列的前n 项和.(1)求证:数列{}为递增数列;(2)求证:.26.小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面是边长为8(单位:)的正方形,均为正三角形,且它们所在的平面都与平面垂直.(1)证明:平面;(2)求该包装盒的容积(不计包装盒材料的厚度).27. 为丰富社区群众的文化生活,某社区利用周末举办羽毛球比赛.经过抽签,甲乙两人进行比赛,比赛实行三局两胜制(若某人胜了两局则为获胜方,比赛结束).根据以往数据统计,甲乙两人比赛时,甲每局获胜的概率为,每局比赛相互独立.(1)求甲获胜的概率;(2)比赛规则规定:比赛实行积分制,胜一局得3分,负一局得1分;若连胜两局,则还可获得5分的加分.用X 表示甲乙比赛结束后甲获得的积分,求X 的分布列和数学期望.28. 某企业从生产的一批产品中抽取个作为样本,测量这些产品的一项质量指标值,由测量结果制成如图所示的频率分布直方图.(1)求这件产品质量指标值的样本平均数(同一组数据用该区间的中点值作代表)和中位数;(2)已知某用户从该企业购买了件该产品,用表示这件产品中质量指标值位于内的产品件数,用频率代替概率,求的分布列和数学期望.。

2023-2024学年重庆市普通高中学业水平合格性考试模拟试题(一)数学模拟试题(含解析)

2023-2024学年重庆市普通高中学业水平合格性考试模拟试题(一)数学模拟试题(含解析)

2023-2024学年重庆市普通高中学业水平合格性考试模拟试题(一)数学模拟试题一、单项选择题(共28小题,每小题3分,共84分)在每小题给出的三个选项中,只有一项是符合题目要求的.1.设集合{}2,3,4M =,{}3,4,5N =,则M N ⋂=()A.{}2 B.{3,4}C.{2,3,4,5}【正确答案】B【分析】根据交集运算法则即可计算得出M N ⋂.【详解】由{}2,3,4M =,{}3,4,5N =,利用交集运算可得{}3,4M N ⋂=.故选:B2.已知函数3()23f x x x =-+,那么(2)f 的值()A.3B.5C.7【正确答案】C【分析】把2x =代入解析式即可求解.【详解】3(2)22237f =-⨯+=.故选:C3.下列函数是奇函数的是()A.sin y x =B.cos y x= C.ln y x=【正确答案】A【分析】根据函数奇偶性定义判断.【详解】对()sin ,R f x x x =∈,()()sin f x x f x -=-=-,故()sin f x x =为奇函数,故A 正确;对()cos ,R g x x x =∈,()()cos g x x g x -==,故()cos g x x =为偶函数,故B 错误;对()()ln ,0,h x x x =∈+∞,因为定义域没有对称性,故()ln h x x =既不是奇函数也不是偶函数,故C 错误.故选:A4.22log l 00og 81-=()A.70B.2log 70C.3【正确答案】C【分析】根据对数运算公式求解.【详解】2322228080108231log log log log 0log ====-.故选:C5.若实数a ,b ,c 满足a b >,0c <,则()A.ac bc >B.ac bc< C.a c b c+<+【正确答案】B【分析】根据不等式性质判断.【详解】因为a b >,0c <,所以ac bc <,故A 错误,B 正确;根据不等式可加性知a c b c +>+,故C 错误.故选:B6.下列值域是[)0,∞+的是()A.y x= B.1y x=C.y =【正确答案】C【分析】分别求出各函数的值域.【详解】对A :y x =值域为R ,故A 错误;对B :1y x=值域为(),0(0,)-∞⋃+∞,故B 错误;对C :y =的定义域为1,2⎡⎫+∞⎪⎢⎣⎭-,在定义域上为增函数,故值域为[)0,∞+,故C 正确.故选:C.7.圆柱的底面直径和高都等于球的直径,则球的表面积与圆柱的侧面积的比值为()A.1:1B.1:2C.2:1【正确答案】A【分析】按圆柱侧面积和球的表面积公式计算即可.【详解】设球的半径的r ,依题意圆柱的底面半径也是r ,高是2r ,圆柱的侧面积=22π24πr r r ⋅=,球的表面积为24πr ,其比例为1:1,故选:A.8.已知圆锥的体积是3π,其侧面积是底面积的2倍,则其底面半径是()A. B.C.3【正确答案】B【分析】设底面半径为r ,高为h ,母线为l ,根据圆锥的体积公式可得29h r =,根据圆锥的侧面积公式可得2l r =,再结合h =即可求解.【详解】设底面半径为r ,高为h ,母线为l ,如图所示:则圆锥的体积21π3π3V r h ==,所以29r h =,即29h r=,又212π2π2S rl r =⋅=侧,则2l r =,又h ==39=,故r =.故选:B9.如图,在长方体1111ABCD A B C D -中,3AB AD ==,12AA =,则四棱锥11A BB D D -的体积是()A.6B.9C.18【正确答案】A【分析】根据题意证得AC ⊥平面11BDD B ,得到四棱锥11A BB D D -的高为2h =,结合体积公式,即可求解.【详解】在长方体1111ABCD A B C D -中,3AB AD ==,连接AC 交BD 于点O ,可得AC BD ⊥,又由1BB ⊥平面ABCD ,且AC ⊂面ABCD ,所以1AC BB ⊥,因为1BD BB B ⋂=,且1,BD BB ⊂平面11BDD B ,可得AC ⊥平面11BDD B ,所以四棱锥11A BB D D -的高为322h AO ==,所以11A BB D D -的体积11113226332BB D D V S h =⋅=⨯⨯=.故选:A.10.若实数a ,b 满足i i(1i)a b +=-,则a b +=()A.2B.2- C.1【正确答案】A【分析】利用复数相等求出,a b 即可.【详解】因为i i(1i)1i a b +=-=+,所以1,1a b ==,所以2a b +=,故选:A.11.点(1,1)到直线3420x y +-=的距离是()A.1B.2C.【正确答案】A【分析】直接利用点到直线的距离公式得到答案.【详解】515d ===,故选:A12.已知圆C 的一条直径的两个端点是分别是(1,1)O 和(3,3)A ,则圆的标准方程是()A.()222(2)1x y -+-=B.()222(2)2x y -++=C.()222(2)2x y -+-=【正确答案】C【分析】根据条件求出圆心与半径写出圆的方程.【详解】因为圆C 的一条直径的两个端点是分别是(1,1)O 和(3,3)A ,所以圆心为(2,2)M ,直径为2R ==,所以圆的标准方程是()222(2)2x y -+-=.故选:C.13.直线:20+-=l x y 被圆22:9C x y +=截的的弦长为()A. B. C.【正确答案】B【分析】先求出圆心到直线的距离,再利用垂径定理求出弦长.【详解】22:9C x y +=的圆心为()0,0,半径为3,则圆心到直线:20+-=l x y 的距离为d ==则:20+-=l x y 被圆22:9C x y +=截的的弦长为=故选:B14.王老师对本班40名学生报名参与课外兴趣小组(每位学生限报一个项目)的情况进行了统计,列出如下的统计表,则本班报名参加科技小组的人数是()组别数学小组写作小组体育小组音乐小组科技小组频率0.10.20.30.150.25A.10人B.9人C.8人【正确答案】A【分析】根据参加科技小组的频率,求出参加科技小组的人数.【详解】参加科技小组的频率0.25,则本班报名参加科技小组的人数是0.254010⨯=人.15.袋中有4个红球,5个白球,6个黄球,从中任取1个,则取出的球是白球的概率为()A.13B.23C.12D.15【正确答案】A【分析】根据样本空间和样本点和古典概型的概率即可求解.【详解】在任取1个球的事件中,取记i A 为取的是第i 个红球,记i B 为取的是第i 个白球,记i C 为取的是第i 个黄球,记取出的球是白球的事件为M ,所以样本空间{}123412345123456Ω,,,,,,,,,,,,,,A A A A B B B B B C C C C C C =,取出的球是白球的事件{}12345,,,,M B B B B B =,则取出的球是白球的概率为51153=,故选:A.16.函数()cos 6f x x =的最小正周期是()A.π2B.π3 C.π4【正确答案】B【分析】利用周期公式2πT ω=,即可得答案.【详解】∵函数()cos 6f x x =,∴2π2ππ63T ω===,故选:B.17.已知角α的终边位于第二象限,则点(sin ,cos )P αα位于()A.第二象限B.第三象限C.第四象限【正确答案】C【分析】根据角的终边所在象限,确定其正弦值和余弦值的符号,即可得出结果.【详解】因为角α的终边在第二象限,则sin 0α>,cos 0α<,所以点P 在第四象限.18.在平行四边形ABCD 中,AB a =,AD b =,则AC =()A.a b +B.a b-C.2a b+【正确答案】A【分析】根据向量加法的平行四边形法则求解.【详解】平行四边形ABCD 中,AC AB AD a b =+=+.故选:A19.已知向量(1,2)a = ,(3,4)b = ,则32a b -=r r()A.(3,4)B.(3,2)C.(3,2)--【正确答案】C【分析】根据向量的坐标运算,准确运算,即可求解.【详解】由向量(1,2)a = ,(3,4)b =,根据向量的坐标运算,可得32(3,2)a b -=--r r .故选:C.20.已知角α是第一象限角,3cos 5α=,则πcos 3α⎛⎫+= ⎪⎝⎭()A.310B.34310- C.310【正确答案】B【分析】利用两角和差公式和同角三角函数的基本关系即可【详解】3cos 5α=,且角α是第一象限角,4sin 5α∴==,πππ3143cos cos cos sin sin 333525210ααα-⎛⎫∴+=-=⨯-⨯=⎪⎝⎭.故选:B.21.若3cos210cos 1αα+=则cos2cos αα+=()A.49-B.﹣1C.109【正确答案】A【分析】利用二倍角公式解出cos α即可.【详解】23cos210cos 6cos 310cos 1,αααα+==-+23cos 5cos ,20αα+-=∴cos ,576α-±=且11cos α≤≤-,,57163cos α∴-+==且2cos ,25cos 3αα-=2410cos 1741,cos cos2cos 23cos 1cos cos 39ααααααα∴-+--=+==-=-+故选:A.22.在ABC 中,若21,3cos 3,BC AC C ===,则sin B =()A.6B.5C.6【正确答案】A【分析】根据余弦定理求得c =,再根据正弦定理即可求解.【详解】由题意可得1,3BC a AC b ====,AB c =,由余弦定理可得2222222cos 1321363c a b ab C =+-=+-⨯⨯⨯=,即c ,又2cos ,(0,π)3C C =∈,可得sin 3C =,利用正弦定理可知sin sin b cB C =,所以53sin 3sin 6b CB c⨯===.故选:A.23.下列数列中等差数列的是()A.31n a n =+B.31nn a =+ C.2log 1n a n =+【正确答案】A【分析】根据等差数列的定义依次分析即可.【详解】对于A ,13n n a a +-=,相邻两项的差为常数,是等差数列;对于B ,113323n n nn n a a ++-=-=⨯,相邻两项的差不为常数,不是等差数列;对于C ,()2221log log l 1og 1n n n a a n n n++-=+-=,相邻两项的差不为常数,不是等差数列;故选:A24.已知等差数列{}n a 的公差为2,前5项之和为25,则2a =()A.2B.3C.4【正确答案】B【分析】根据等差数列的性质求解.【详解】在等差数列{}n a 中,()155355252a a S a +===,所以35a =,所以23523a a d =-=-=.故选:B25.已知等比数列{}n a 的首项为2,公比为3,则5S =()A.162B.486C.242【正确答案】C【分析】根据等比数列求和公式求解即可.【详解】依题意,知等比数列{}n a 的首项为2,公比为3,所以()5552133124213S ⨯-==-=-.故选:C.26.设a ,R b ∈,则“a b >”是“33a b >”的()A.充分不必要条件B.必要不充分条件C.充分必要条件【正确答案】C【分析】根据()3f x x =单调性及充要条件的定义来判断即得.【详解】因为()3f x x =在R 上为增函数,则a b >可以推出33a b >,反之,若33a b >,则可推出a b >,所以“a b >”是“33a b >”的充分必要条件.故选:C.27.已知a >0,b >0,a +2b =4,则ab 的最大值是()A.B.2C.4【正确答案】D【分析】根据基本不等式即可求解.【详解】()211212422222a b ab a b +⎛⎫=⋅≤=⨯= ⎪⎝⎭,等号成立条件是2a b =,即244a b b +==时取等号,即当且仅当2,1a b ==时取等号,所以ab 的最大值是4.故选:D .28.已知0.12a =,0.20.5b =,0.5log 1.1c =,则()A.c<a<bB.c b a<< C.b a c<<【正确答案】B【分析】根据指数函数、对数函数的性质,将a ,b ,c 与0和1进行比较即可.【详解】由已知0.12a =,0.20.20.210.522b -⎛⎫=== ⎪⎝⎭∵指数函数()2xf x =在R 上单调递增,且值域为()0,∞+,∴()()()00.200.1f f f <-<<,∴0.200.102212-<<=<,即01b a<<<又∵对数函数()0.5log g x x =在区间()0,∞+单调递减,∴()()1.11g g <,即0.50.5log 1.1log 10<=,即0c <.综上所述,a ,b ,c 的大小关系为c b a <<.故选:B.二、判断题(共8个小题,每个题2分,共16分)判断下列各小题正误,正确的写正确,错误的写错误29.方向相同的两个向量是相等向量.()【正确答案】×【分析】根据相等向量的定义即可判断.【详解】因为方向相同且大小相等的两个向量是相等向量,所以方向相同的两个向量是相等向量是错误的.故×30.已知直线l //平面α,则直线l 平行平面内任意一条直线.()【正确答案】错误【分析】根据线面的位置关系以及直线与平面平行的性质定理判定.【详解】已知直线l //平面α,根据线面平行的性质定理,直线l 平行于过直线l 的平面与平面α的形成的交线.故错误.31.已知点(1,3),(2,9)A B ,则直线AB 的斜率为6.()【正确答案】正确【分析】根据直线的斜率公式,即可求解.【详解】由(1,3),(2,9)A B ,根据斜率公式,可得93621AB k -==-,所以是正确的.故正确32.方差反应了一组数据的离散程度.()【正确答案】√【分析】根据方差的意义即可判断.【详解】根据方差的意义可知,方差反应了一组数据的离散程度,所以方差反应了一组数据的离散程度是正确的.故√33.掷一枚骰子,事件“双数朝上”的概率为12,则掷100次,刚好有50次双数朝上.()【正确答案】错误【分析】根据概率的意义判断.【详解】掷一枚骰子,事件“双数朝上”的概率为12,当此试验重复多次后双数朝上”的概率稳定在12附近,它是一个随机事件,所以不能确定掷100次中双数朝上的次数.故错误34.对于函数1ln 1y x x =+-的定义域为{|1}x x ≠.()【正确答案】×【分析】根据对数函数和分式函数的定义域即可求解.【详解】因为1ln 1y x x =+-而ln x 中的真数0x >,分式11x -中的1x ≠,所以1ln 1y x x =+-的定义域为{|0x x >且1}x ≠,故×.35.圆锥是以直角三角形的直角边所在直线为旋转轴,其余两边旋转一周而成的曲面所围成的几何体.()【正确答案】正确【分析】根据圆锥的定义判断.【详解】以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体叫做圆锥,故以上说法正确.故正确.36.函数y x =与函数2y =表示同一个函数.()【正确答案】×【分析】利用函数的定义进行判断即可【详解】因为y x =的定义域为R ,而2y =的定义域为[)0+∞,,所以函数y x =与函数2y =不是同一个函数.故×。

江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题01

江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题01

一、单选题1. 函数的部分图像大致为( )A.B .C.D.2. 设全集,集合,则( )A.B.C.D.3. 已知点F 为双曲线(,)的左焦点,过原点O 的直线与双曲线交于A 、B 两点(点B 在双曲线左支上),连接BF 并延长交双曲线于点C ,且,AF ⊥BC ,则该双曲线的离心率为( )A.B.C.D.4.设是首项大于零的等比数列,则“”是“数列是递增数列”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5. 已知均为实数,下列不等式恒成立的是( )A .若,则B.若,则C .若,则D .若,则6. 下列有关命题的说法正确的是( ).A .命题“若,则”的否命题为:“若,则”B .“”是“”的必要不充分条件C .命题“,使得”的否定是:“,均有”D .命题“若,则”的逆否命题为真命题7. 已知函数为的导函数,则的大致图象是( )A. B.江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题01江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题01二、多选题三、填空题C. D.8. 设集合A={1,2,3},B={x |x 2-2x +m=0},若A ∩B={2},则B=( )A.B.C.D.9. 如图,在直三棱柱中,,,则()A .平面B.平面平面C .异面直线与所成的角的余弦值为D .点,,,均在半径为的球面上10. 已知,且,则( )A.B.C.D.11. 已知直线与椭圆交于两点,点为椭圆的下焦点,则下列结论正确的是( )A .当时,,使得B.当时,,C .当时,,使得D .当时,,12. 如图甲所示,古代中国的太极八卦图是以同圆内的圆心为界,画出相等的两个阴阳鱼,阳鱼的头部有眼,阴鱼的头部有个阳殿,表示万物都在相互转化,互相涉透,阴中有阳,阳中有阴,阴阳相合,相生相克,蕴含现代哲学中的矛盾对立统一规律,其平面图形记为图乙中的正八边形,其中,则()A.B.C.D.四、解答题13. 已知函数,其中为常数,且,将函数的图象向左平移个单位所得的图象对应的函数在取得极大值,则的值为_____________________.14. 已知函数在处有极值8,则等于______.15. 样本数据的众数是______.16. 2024年1月,某市的高二调研考试首次采用了“”新高考模式.该模式下,计算学生个人总成绩时,“”的学科均以原始分记入,再选的“2”个学科(学生在政治、地理、化学、生物中选修的2科)以赋分成绩记入.赋分成绩的具体算法是:先将该市某再选科目原始成绩按从高到低划分为五个等级,各等级人数所占比例分别约为.依照转换公式,将五个等级的原始分分别转换到五个分数区间,并对所得分数的小数点后一位进行“四舍五入”,最后得到保留为整数的转换分成绩,并作为赋分成绩.具体等级比例和赋分区间如下表:等级比例赋分区间已知该市本次高二调研考试化学科目考试满分为100分.(1)已知转换公式符合一次函数模型,若学生甲、乙在本次考试中化学的原始成绩分别为84,78,转换分成绩为78,71,试估算该市本次化学原始成绩B 等级中的最高分.(2)现从该市本次高二调研考试的化学成绩中随机选取100名学生的原始成绩进行分析,其频率分布直方图如图所示,求出图中的值,并用样本估计总体的方法,估计该市本次化学原始成绩等级中的最低分.17. 北京时间2022年11月21日0时,卡塔尔世界杯揭幕战在海湾球场正式打响,某公司专门生产世界杯纪念品,今年的订单数量再创新高,为回馈球迷,该公司推出了盲盒抽奖活动,每位成功下单金额达500元的顾客可抽奖1次.已知每次抽奖抽到一等奖的概率为10%,奖金100元;抽到二等奖的概率为30%,奖金50元;其余视为不中奖.假设每人每次抽奖是否中奖互不影响.(1)任选2名成功下单金额达500元的顾客,求这两名顾客至少一人中奖的概率;(2)任选2名成功下单金额达500元的顾客,记为他们获得的奖金总数,求的分布列和数学期望.18. “学习强国”学习平台软件主要设有“阅读文章”“视听学习”两个学习模块和“每日答题”“每周答题”“专项答题”“挑战答题”四个答题模块,还有“四人赛”“双人对战”两个比赛模块.“四人赛”积分规则为首局第一名积3分,第二、三名积2分,第四名积1分;第二局第一名积2分,其余名次积1分;每日仅前两局得分.“双人对战”积分规则为第一局获胜积2分,失败积1分,每日仅第一局得分.某人在一天的学习过程中,完成“四人赛”和“双人对战”.已知该人参与“四人赛”获得每种名次的概率均为,参与“双人对战”获胜的概率为,且每次答题相互独立.(1)求该人在一天的“四人赛”中积4分的概率;(2)设该人在一天的“四人赛”和“双人对战”中累计积分为,求的分布列和.19. 已知,求的值.20. 近段时间,因为“新冠”疫情全体学生只能在家进行网上学习,为了研究学生网上学习的情况,某学校随机抽取120名学生对线上教学进行调查,其中男生与女生的人数之比为,男生中喜欢上网课的为,女生中喜欢上网课的为,得到如下列联表.喜欢上网课不喜欢上网课合计男生女生合计(1)请将列联表补充完整,试判断能否有的把握认为喜欢上网课与否与性别有关;(2)从不喜欢上网课的学生中采用分层抽样的方法,随机抽取6人,现从6人中随机抽取2人,若所选2名学生中的女生人数为X,求X的分布列及数学期望.附:,其中.0.1500.1000.0500.0250.0100.0050.001k 2.072 2.706 3.841 5.024 6.6357.87910.82821. 函数f(x)=的定义域为集合,关于的不等式的解集为,求使的实数的取值范围.。

2024年天津市高中数学学业水平合格考试卷试题(含答案)

2024年天津市高中数学学业水平合格考试卷试题(含答案)

2024年高中学业水平合格性考试模拟练习数学学科本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共100分,考试时间90分钟.参考公式:柱体的体积公式V Sh =,其中S 表示柱体的底面积,h 表示柱体的高.球的体积公式24π3V R =,其中R 表示球的半径.第Ⅰ卷一、选择题:(本大题共15个小题,每小题3分,共计45分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}0,1,2,3U =,集合{}0,1,2M =,{}0,2,3N =,则U M N = ð().A .∅B .{}1C .{}2,3D .{}0,1,22.命题“R x ∃∈,()12f x <≤”的否定形式是().A .R x ∀∈,()12f x <≤B .R x ∃∈,()12f x <≤C .R x ∃∈,()1f x ≤或()2f x >D .R x ∀∈,()1f x ≤或()2f x >3.复数1i1i+-等于().A .1B .1-C .i D .i-4.不等式()()120x x --≥的解集为().A .{|}12x x ≤≤B .}1{|2x x x ≤≥或C .{}2|1x x <<D .}1{|2x x x <>或5.坐标平面内点P 的坐标为()sin 5,cos5,则点P 位于第()象限.A .一B .二C .三D .四6.某射手在一次射击中,射中10环,9环,8环的概率分别是0.2,0.3,0.1,则此射手在一次射击中不够8环的概率为().A .0.9B .0.6C .0.4D .0.37.为了得到函数πsin 23y x ⎛⎫=-⎪⎝⎭的图象,可以将函数sin 2y x =的图象().A .向右平移π6个单位B .向右平移π3个单位C .向左平移π6个单位D .向左平移π3个单位8.在△ABC 中,π3A =,3BC =,AB =,则C =().A .π6B .π4或3π4C .3π4D .π49.若l ,m 是两条不同的直线,α是一个平面,l α⊥,则“l m ⊥”是“m α∥”的().A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10.下列函数中,周期为π且为偶函数的是().A .sin(22πy x =-B .cos(2)2πy x =--3)C .sin(2πy x =+D .cos()2πy x =+11.三个数3log 2a =,21log 4b =,0.512c -⎛⎫= ⎪⎝⎭之间的大小关系为().A .a c b <<B .a b c <<C .b a c<<D .b c a<<12.一个圆柱的底面直径和高都等于球O 的直径,则球O 与该圆柱的体积之比为().A .18B .16C .12D .2313.如图,在平行四边形ABCD 中,AB a = ,AD b = ,点E 满足13EC AC = ,则DE =().A .2133a b-B .2133a b- C .1233a b- D .1233a b- 14.已知正四面体ABCD ,M 为AB 中点,则直线CM 与直线BD 所成角的余弦值为().A .23B .36C .2121D .4212115.函数()22log 43xf x a x a =+⋅+在区间1,12⎛⎫⎪⎝⎭上有零点,则实数a 的取值范围是().A .12a <-B .32a <-C .3122a -<<-D .34a <-第Ⅱ卷二、填空题:本大题共5个小题,每小题3分,共15分.请将答案填在题中横线上。

高中数学学业水平考试模拟试题

高中数学学业水平考试模拟试题

高中数学学业水平考试模拟试题高中学业水平考试数学模拟题一一、选择题:1.已知集合A={1,2,3,4,5},B={2,5,7,9},则AB等于()A。

{1,2,3,4,5}B。

{2,5,7,9}C。

{2,5}D。

{1,2,3,4,5,7,9}2.若函数f(x)=x+3,则f(6)等于()A。

3B。

6C。

9D。

123.直线A。

(-4,2)B。

(4,-2)C。

(-2,4)D。

(2,-4)4.两个球的体积之比为8:27,那么这两个球的表面积之比为()A。

2:3B。

4:9C。

8:27D。

22:335.已知函数f(x)=sinx*cosx,则f(x)是()A。

奇函数B。

偶函数C。

非奇非偶函数D。

既是奇函数又是偶函数6.向量a=(1,-2),b=(2,1),则()A。

a//bB。

a⊥bC。

a与b的夹角为60°D。

a与b的夹角为30°7.已知等差数列{an}中,a7+a9=16,a4=1,则a12的值是()A。

15B。

30C。

31D。

648.阅读下面的流程图,若输入的a,b,c分别是5,2,6,则输出的a,b,c分别是()A。

6,5,2B。

5,2,6C。

2,5,6D。

6,2,59.已知函数f(x)=x-2x+b在区间(2,4)内有唯一零点,则b的取值范围是()A。

RB。

(-∞,0)C。

(-8,+∞)D。

(-8,0)10.在△ABC中,已知∠A=120°,b=1,c=2,则a等于()A。

3B。

5+√3C。

7D。

5-√3二、填空题:11.某校有高级教师20人,中级教师30人,其他教师若干人,为了了解该校教师的工资收入情况,拟按分层抽样的方法从该校所有的教师中抽取20人进行调查。

已知从其他教师中共抽取了10人,则该校共有教师人数为50人。

12.(3)³的值是27.13.已知m>0,n>0,且m+n=4,则mn的最大值是4.14.若幂函数y=f(x)的图像经过点(9,1),则f(25)的值是1/25.15.已知f(x)是定义在[-2,0)∪(0,2]上的奇函数,log4(2) = 1/2,则f(log4(2))的值为0.当$x>0$时,函数$f(x)$的图像如下图所示,因此$f(x)$的值域为$(-\infty,-1]\cup[1,\infty)$。

江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题01

江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题01

一、单选题1. 在平面直角坐标系中,是圆上的四段弧(如图),点P 在其中一段上,角以为始边,OP 为终边,若,则P所在的圆弧是A.B.C.D.2. 已知,则是的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3. 已知点P 是抛物线上的动点,过点P 向y 轴作垂线,垂足记为N ,动点M满足最小值为3,则点M 的轨迹长度为( )A.B.C.D.4. 西安是世界四大古都之一,历史上先后有十多个王朝在西安建都.图为唐长安(西安古称)城示意图,城中南北向共有9条街道,东西向有12条街道,被称为“九衢十二条”,整齐的街道把唐长安城划分成了108坊,各坊有坊墙包围.下列说法错误的是()A .从延平门进城到安化门出城,最近的不同路线共有15条.B .甲乙二人从安化门、明德门、启夏门这三个城门中随机选一城门进城,若二人选择互不影响,则二人从同一城门进城的概率为.C .用四种不同的颜色给长乐、永福、大宁、兴宁四坊染色(街道忽略),要求有公共边的两个区域不能用同一种颜色,共有60种不同的染色方法.D.若将街道看成直线,则图中矩形区域中共有不同矩形150个.5. 声音通过空气的振动所产生的压强叫做声压强,简称声压,声压的单位为帕斯卡(),把声压的有效值取对数来表示声音的强弱,这种表江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题01二、多选题示声音强弱的数值叫声压级,声压级以符号表示,单位为分贝(),在空气中,声压级的计算公式为(声压级),其中为待测声压的有效值,为参考声压,在空气中,一般参考声压取,据此估计,声压为的声压级为()A.B.C.D.6. 若,则( )A.B.C.D.7. 二项式的展开式中含项的系数为( )A .35B .70C .140D .2808. 复数满足,则在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限9. 已知为等差数列,,则使数列的前n项和成立的最大正整数n 是( )A .2021B .4044C .4043D .404210.设直线,为直线上动点,则的最小值为( )A.B.C.D.11. 音乐,是用声音来展现美,给人以听觉上的享受,熔铸人们的美学趣味.著名数学家傅立叶研究了乐声的本质,他证明了所有的乐声都能用数学表达式来描述,它们是一些形如的简单正弦函数的和,其中频率最低的一项是基本音,其余的为泛音.由乐声的数学表达式可知,所有泛音的频率都是基本音频率的整数倍,称为基本音的谐波.下列函数中不能与函数构成乐音的是( )A.B.C.D.12. 已知矩形ABCD 的顶点都在球心为O 的球面上,,,且四棱锥的体积为,则球O 的表面积为( )A.B.C.D.13. 已知向量,,则( )A.B.C.D.14. 近年来,我国大力发展新能源汽车工业,新能源汽车(含电动汽车)的销量已跃居全球首位,同时我国也加大了新能源汽车公共充电桩的建设,以解决新能源汽车的充电困境.下面是我国2021年9月至2022年8月这一年来公共充电桩累计数量统计图,则针对这12个月的数据,下列说法正确的是( )三、填空题四、填空题五、解答题A .这12个月以来,我国公共充电桩累计数量一直保持增长态势B .这12个月我国公共充电桩累计数量的中位数低于123万台C .这12个月我国公共充电桩的月平均累计数量超过115万台D .2022年6月我国公共充电桩累计数量的同比增长率最大15. 已知函数,则( )A.的图象可由的图象向右平移个单位长度得到B.在上单调递增C .在内有2个零点D .在上的最大值为16. 已知为虚数单位,复数,下列说法正确的是( )A.B .复数在复平面内对应的点位于第四象限C.D .为纯虚数17.的展开式中的系数为________用数字填写答案18. 若抛物线上的点到焦点的距离是点A 到y 轴距离的2倍,则___________.19. 在中,若、、成等比数列,则角的最大值为________20. 设的内角A ,B ,C 所对的边分别为a ,b ,c ,且,已知的面积等于10,,则___________,a 的值为___________.21. 已知函数,当_____时,的最小值为_____22.已知,.记.(1)求的值;(2)化简的表达式,并证明:对任意的,都能被整除.23. 随着温度降低,各种流行病毒快速传播.为了增强员工预防某病毒的意识,某单位决定先对员工进行病毒检测,为了提高检测效率,决定六、解答题七、解答题八、解答题九、解答题将员工分为若干组,对每一组员工的血液样本进行混检(混检就是将若干个人被采集的血液样本放到一个采集管中(采集之前会对这些人做好信息登记)).检测结果为阴性时,混检样本均视为阴性,代表这些人都未感染:如果出现阳性,相关部门会立即对该混检管的所有受试者暂时单独隔离,并重新采集该混检管的所有受试者的血液样本进行一一复检,直至确定其中的阳性.已知某单位共有N 人,决定n 人为一组进行混检,(1)若,每人被病毒感染的概率均为,记检测的总管数为X ,求X 的分布列:(2)若.每人被病毒感染的概率均为0.1,记检测的总管数为Z ,求Z 的期望.24. 如图,在四棱锥中,是边长为2的正三角形,,,设平面平面.(1)作出(不要求写作法);(2)线段上是否存在一点,使平面?请说明理由;(3)若,求平面与平面的夹角的余弦值.25. 设,函数.(1)求a的值,使得为奇函数;(2)求证:时,函数在R 上单调递减.26.已知数列的前n项和为,且,,数列满足.(1)求数列的通项公式;(2)设,数列的前项和为,求证:.27. 2022年北京冬奥会后,由一名高山滑雪运动员甲组成的专业队,与两名高山滑雪爱好者乙、丙组成的业余队进行友谊比赛,约定赛制如下:业余队中的两名队员轮流与甲进行比赛,若甲连续赢两场则专业队获胜;若甲连续输两场则业余队获胜;若比赛三场还没有决出胜负,则视为平局,比赛结束.已知各场比赛相互独立,每场比赛都分出胜负,且甲与乙比赛,甲赢的概率为,甲与丙比赛,甲赢的概率为,其中.(1)若第一场比赛,业余队可以安排乙与甲进行比赛,也可以安排丙与甲进行比赛.请分别计算两种安排下业余队获胜的概率;若以获胜概率大为最优决策,问:业余队第一场应该安排乙还是丙与甲进行比赛?(2)为了激励专业队和业余队,赛事组织规定:比赛结束时,胜队获奖金6万元,负队获奖金3万元;若平局,两队各获奖金3.6万元.在比赛前,已知业余队采用了(1)中的最优决策与甲进行比赛,设赛事组织预备支付的奖金金额共计X 万元,求X 的数学期望的取值范围.28. 已知中,a ,b ,c 分别为角A ,B ,C的对边,且(1)求角C ;(2)若,求的最大值.。

江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题01(1)

江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题01(1)

一、单选题二、多选题1. 已知复数z满足,则( )A.B.C.D.2. 三棱锥中,底面,若,则该三棱锥外接球的表面积为( )A.B.C.D.3. 双曲线C :的左,右焦点分别为,,是C 上一点,满足,且,则C 的离心率为( )A.B .2C.D.4. 已知函数在区间内单调递减,则实数ω的取值范围是( )A.B.C.D.5.已知长方体的高,则当最大时,二面角的余弦值为( )A.B.C.D.6. 设,,则下列不等式中,恒成立的是( )A.B.C.D.7. 若集合,,且,则的值为( )A.B.C.或D.或或8. 已知分别为双曲线E :的左、右焦点,过的直线与的左、右两支分别交于两点.若是等边三角形,则双曲线E 的离心率为( )A.B .3C.D.9. 在棱长为2的正四面体中,点分别为棱的中点,则( )A .平面B .过点的截面的面积为C .异面直线与所成角的大小为D.与平面所成角的大小为10.如图,直线,点A 是之间的一个定点,点A到的距离分别为1和2.点是直线上一个动点,过点A作,交直线于点,则()A.B .面积的最小值是C.D .存在最小值11. 已知函数,则( )江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题01(1)江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题01(1)三、填空题四、解答题A.是周期函数B .函数在定义域上是单调递增函数C .函数是偶函数D .函数的图象关于点对称12. 关于x的不等式在上恒成立,则( )A.B.C.D.13.在的展开式中,x 的系数为_________.14.已知函数,则______.15. 已知三棱锥内接于体积为的半球,为半球底面圆的直径,平面平面,且,则平面截半球所得截面面积的最小值为______.16. 已知双曲线的离心率为2,F 为双曲线C 的右焦点,M 为双曲线C 上的任一点,且点M 到双曲线C 的两条渐近线距离的乘积为,(1)求双曲线C 的方程;(2)设过点F 且与坐标轴不垂直的直线l 与双曲线C 相交于点P ,Q ,线段PQ 的垂直平分线与x 轴交于点B ,求的值.17. 解关于x的不等式:.18.在等腰直角三角形中,斜边,现将绕直角边所在直线旋转一周形成一个圆锥.(1)求这个圆锥的表面积;(2)若在这个圆锥中有一个圆柱,且圆柱的一个底面在圆锥的底面上,当圆柱侧面积最大时,求圆柱的体积.19. 某企业新研发了一种产品,产品的成本由原料成本及非原料成本组成.每件产品的非原料成本(元)与生产该产品的数量(千件)有关,经统计得到如下数据:x 12345678y56.53122.7517.815.9514.51312.5根据以上数据绘制了散点图观察散点图,两个变量间关系考虑用反比例函数模型和指数函数模型分别对两个变量的关系进行拟合.已求得用指数函数模型拟合的回归方程为,与x的相关系数.(1)用反比例函数模型求y 关于x 的回归方程;(2)用相关系数判断上述两个模型哪一个拟合效果更好(精确到0.001),并用其估计产量为10千件时每件产品的非原料成本;(3)根据企业长期研究表明,非原料成本y 服从正态分布,用样本平均数作为的估计值,用样本标准差s 作为的估计值,若非原料成本y 在之外,说明该成本异常,并称落在之外的成本为异样成本,此时需寻找出现异样成本的原因.利用估计值判断上述非原料成本数据是否需要寻找出现异样成本的原因?参考数据(其中):0.340.115 1.531845777.55593.0630.70513.9参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计公式分别为:,,相关系数.20. 已知函数与.(1)若与有相同的零点,求的值;(2)若对恒成立,求的最小值.21. 已知为实数,数列满足:①;②.若存在一个非零常数,对任意,都成立,则称数列为周期数列.(1)当时,求的值;(2)求证:存在正整数,使得;(3)设是数列的前项和,是否存在实数满足:①数列为周期数列;②存在正奇数,使得.若存在,求出所有的可能值;若不存在,说明理由.。

江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题01(1)

江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题01(1)

一、单选题二、多选题1.若不等式对任意恒成立,则实数的取值范围为A.B.C.D.2. 若,是两条不同的直线,是一个平面,则下列说法正确的是A .若,,则B .若,,则C .若,,则D .若,,则3.若函数的图象上的任意一点P 的坐标为,且满足条件,则称函数具有性质S ,那么下列函数中具有性质S 的是( )A.B.C.D.4.已知,则( )A.B.C.D.5. 已知为虚数单位,的共轭复数为,则实数( )A .4B .2C .1D .06. 某公司对4月份员工的奖金情况统计如下:奖金(单位:元)80005000400020001000800700600500员工(单位:人)12461282052根据上表中的数据,可得该公司4月份员工的奖金:①中位数为800元;②平均数为1373元;③众数为700元,其中判断正确的个数为A .0B .1C .2D .37. 已知直线,直线,给出下列命题:①∥;②∥m ;③∥;④∥其中正确命题的序号是A .①②③B .②③④C .①③D .②④8. 中国农历的二十四节气是中华民族的智慧与传统文化的结晶,二十四节气歌是以春、夏、秋、冬开始的四句诗.在国际气象界,二十四节气被誉为“中国的第五大发明”.2016年11月30日,二十四节气被正式列入联合国教科文组织人类非物质文化遗产代表作名录.某小学三年级共有学生500名,随机抽查100名学生并提问二十四节气歌,只能说出两句的有45人,能说出三句及以上的有32人,据此估计该校三年级的500名学生中,对二十四节气歌只能说出一句或一句也说不出的有( )A .69人B .84人C .108人D .115人9. 已知函数,则下列结论正确的是( )A .恒成立B.只有一个零点C .在处得到极大值D .是上的增函数江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题01(1)江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题01(1)三、填空题10. 为比较甲、乙两地某月14时的气温情况,随机选取该月中的5天,将这5天中14时的气温数据单位:制成如图所示的茎叶图.下列结论正确的为()A .甲地该月14时的平均气温低于乙地该月14时的平均气温B .甲地该月14时的平均气温高于乙地该月14时的平均气温C .甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差D .甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差11. 已知奇函数在上可导,其导函数为,且恒成立,则下列选项正确的是( ).A.为非奇非偶函数B.C.D.12.某校研究性学习小组根据某市居民人均消费支出的统计数据,制作年人均消费支出条形图(单位:元)和年人均消费支出饼图(如图).已知年居民人均消费总支出比年居民人均消费总支出提高,则下列结论正确的是()A .年的人均衣食支出金额比年的人均衣食支出金额高B .年除医疗以外的人均消费支出金额等于年的人均消费总支出金额C .年的人均文教支出比例比年的人均文教支出比例有提高D .年人均各项消费支出中,“其他”消费支出的年增长率最低13. 如图,游客从景点下山至有两种路径:一种是从沿直线步行到,另一种是先从乘缆车到,然后从沿直线步行到.现有甲、乙两位游客从下山,甲沿匀速步行,速度为50米/分钟.在甲出发2分钟后,乙从乘缆车到,在处停留1分钟后,再从匀速步行到.已知缆车从到要8分钟,长为米,若,.为使两位游客在处互相等待的时间不超过3分钟,则乙步行的速度(米/分钟)的取值范围是_____.14. 如图,已知有公共焦点、的椭圆和双曲线相交于A 、B 、C 、D四个点,且满足,直线AB 与x 轴交于点P ,直线CP 与双曲线交于点Q ,记直线AC 、AQ 的斜率分别为、,若,则椭圆的离心率为___________.四、解答题15. 函数的周期为,则__________.16.已知双曲线,过点的直线与双曲线相交于两点.(1)点能否是线段的中点?请说明理由;(2)若点都在双曲线的右支上,直线与轴交于点,设,求的取值范围.17.如图,在多面体中,四边形为菱形,,,且平面平面.(1)求证:;(2)若,,求多面体的体积.18.已知是递增的等比数列,,成等差数列.(Ⅰ)求数列的通项公式;(Ⅱ)设数列满足,,求数列的前项和.19.如图,在正方体中, E 为的中点.(Ⅰ)求证:平面;(Ⅱ)求直线与平面所成角的正弦值.20. 设n 为正整数,集合A =,,,,,.对于集合A中的任意元素和,记.(Ⅰ)当n=3时,若,,求和的值;(Ⅱ)当时,对于中的任意两个不同的元素,,证明:.(Ⅲ)给定不小于2的正整数n,设B是A的子集,且满足:对于B中的任意两个不同元素,,.写出一个集合B,使其元素个数最多,并说明由.21. 在中,角的对边分别为,且,,.(1)求的值;(2)求的值.。

2024年6月福建省普通高中学业水平合格性考试数学仿真模拟试卷01(解析版)

2024年6月福建省普通高中学业水平合格性考试数学仿真模拟试卷01(解析版)

....【答案】C【分析】由偶函数的性质即可得【详解】根据偶函数的图象性质可知,关于轴对称的函数是偶函数.故选:C.A .2B .1【答案】D【分析】直接利用棱锥的体积公式计算【详解】因为1DD ⊥面ADP所以1113D ADP ADP V DD S -=⨯⨯=A .1AD B .1AA C .1BD D .EO【答案】C【分析】根据线面平行的判定定理即可得出答案.【详解】解:对于A ,因为直线1AD 与平面AEC 交于点A ,故不平行;对于B ,因为直线1AA 与平面AEC 交于点A ,故不平行;对于C ,在正方体1111ABCD A B C D -中,因为E 为1DD 的中点,O 为BD 的中点,所以1EO BD ∕∕,又EO ⊂平面AEC ,1BD ⊄平面AEC ,所以1BD ∕∕平面AEC ;对于D ,因为EO ⊂平面AEC ,故不平行.故选:C.13.已知函数()221,2,2x x f x x ax x ⎧+<=⎨-+≥⎩,若[(1)]6f f =-,则实数a 的值为()A .3-B .3C .1-D .1【答案】D【分析】先求出(1)3f =,则可得[(1)](3)6f f f ==-,解方程可得a 的值.【详解】因为1(1)213f =+=,所以2[(1)](3)33936f f f a a ==-+=-+=-,解得1a =.故选:D14.从某班所有同学中随机抽取10人,获得他们某学年参加社区服务次数的数据如下:4,4,4,7,7,8,8,9,9,10,根据这组数据,下列说法正确的是()A .众数是7B .平均数是7C .第75百分位数是8.5D .中位数是8【答案】B【分析】根据众数,平均数,中位数,百分位数的定义逐一判断即可.A .ABC 是钝角三角形B .ABC 的面积是A B C '' C .ABC 是等腰直角三角形D .ABC 的周长是44+所以ABC 的周长是442+,面积是在A B C ''' 中,4''=A C ,过B '作x 轴垂线,垂足为D ¢,所以2222B D O B ''''==,四、解答题(本大题共3小题,共27分.解答应写出文字说明,证明过程或演算步骤.)24.我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查.通过抽样,获得某年100位居民每人的月均用水量(单位:吨),将数据按照[)0,0.5,[)0.5,1,…,[]4,4.5分成9组,制成了如图所示的频率直方图.(1)求直方图中a 的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由.【答案】(1)0.30(2)36000,理由见解析【分析】(1)根据频率之和为1得到方程,求出答案;(2)计算出月均用水量不低于3吨的频率,进而求出答案.【详解】(1)由频率直方图可知,月均用水量在[)0,0.5的频率为0.080.50.04⨯=.同理在[)0.5,1,[)1.5,2,[)2,2.5,[)3,3.5,[]4,4.5的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由()10.040.080.210.250.060.040.020.52a -++++++=⨯,解得0.30a =.(2)由(1)知,该市100位居民月均用水量不低于3吨的频率为0.060.040.020.12++=.由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为3000000.1236000⨯=.25.如图,三棱柱111ABC A B C -内接于一个圆柱,且底面是正三角形,圆柱的体积是2π,底面直径与母线长相等.(1)求圆柱的底面半径;(2)求三棱柱11ABC A B -【答案】(1)1(2)332【分析】(1)根据圆柱体积公式直接计算;(1)作出函数在[]3,3x ∈-的图像;(2)求52f f ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭;(3)求方程()0f x =的解集,并说明当整数)553312222f f ⎫⎫⎛⎫⎛⎫=-+=-=-+⎪ ⎪ ⎪⎪⎭⎝⎭⎝⎭⎭时,由10x +=,得=1x -;时,由310x -=,得13x =;10x -=,得1x =;解集为11,,13⎧⎫-⎨⎬⎩⎭;。

2024年广东省普通高中学业水平合格性考试模拟一数学试题(1)

2024年广东省普通高中学业水平合格性考试模拟一数学试题(1)

一、单选题1. 若复数满足,则( )A.B.C.D.2. 设,则的定义域为.A .(-4,0)∪(0,4)B .(-4,-1)∪(1,4)C .(-2,-1)∪(1,2)D .(-4,-2)∪(2,4)3. 已知函数,则函数的图像是( )A.B.C.D.4. 设定义在R上的函数,对于任一给定的正数p,定义函数,则称函数为的“p 界函数”.关于函数的2界函数,结论不成立的是( )A.B.C.D.5. 如图所示,点F 是椭圆的右焦点,A ,C 是椭圆上关于原点O 对称的两点,直线与椭圆的另一个交点为B ,若,则椭圆M 的离心率为()A.B.C.D.6.的展开式中,含项的系数为( )A .430B .435C .245D .2407. 若,则( )A.B.C .3D.8. 唐朝的狩猎景象浮雕银杯如图1所示,其浮雕临摹了国画、漆绘和墓室壁画,体现了古人的智慧与工艺.它的盛酒部分可以近似地看作是半球与圆柱的组合体(假设内壁表面光滑,忽略杯壁厚度),如图2所示.已知球的半径为R ,酒杯的容积,则其内壁表面积为2024年广东省普通高中学业水平合格性考试模拟一数学试题(1)2024年广东省普通高中学业水平合格性考试模拟一数学试题(1)二、多选题三、填空题()A.B.C.D.9. 如图,正三棱锥和正三棱锥的侧棱长均为,.若将正三棱锥绕旋转,使得点E ,P 分别旋转至点A,处,且A ,B ,C ,D 四点共面,点A ,C 分别位于BD 两侧,则()A.B.C.多面体的外接球的表面积为D .点P 与点E旋转运动的轨迹长之比为10. 在平面直角坐标系中,已知动圆(),则下列说法正确的是( )A .存在圆经过原点B.存在圆,其所有点均在第一象限C .存在定直线,被圆截得的弦长为定值D.所有动圆仅存在唯一一条公切线11.已知正方体的棱长为1,是棱的中点,是棱上一点(不包括端点),则下述结论正确的是( ).A .存在点,使得直线与直线相交B.点到平面的距离为C.当是棱的中点时,直线与所成的角为D.平面截正方体所得截面是五边形12. 已知定义在R上的函数,对于任意的恒有,且,若存在正数t ,使得,则下列结论正确的是( )A.B.C.为偶函数D .为周期函数13.记为等比数列的前项和,若,则__________.14. 已知函数在上存在唯一零点,则下列说法中正确的是________.(请将所行正确的序号填在横线上)①;②;③;④.15.如图,是面积为1的等腰直角三角形,记的中点为,以为直角边第一次构造等腰,记的中点为,以为直角边第二次构造等腰,…,以此类推,当第n次构造的等腰的直角边所构成的向量与同向时,构造停止,则构造出的所有等腰直角三角形的面积之和为____________.四、解答题16. 已知函数,(1)若曲线在点处的切线与直线重合,求的值;(2)若函数的最大值为,求实数的值;(3)若,求实数的取值范围.17. 如图所示,已知四棱锥中,底面是直角梯形,,,,平面,.(Ⅰ)求证:;(Ⅱ)求四棱锥的表面积.18. 如图,四面体中,,,与面的所成角为.(1)若四面体的体积为,求的长;(2)设点在面中,,,过作的平行线,分别交于点,求面与面所成夹角的余弦值.19. 设数列的前n项和为,且.(1)求的通项公式;(2)若,求数列的前n项和.20. 已知.(1)求的值域;(2)若为的中线,已知,求的长.21. 如图,在三棱锥中,平面平面BCD,,O为BD的中点.(1)证明:;(2)若是边长为1的等边三角形,点E在棱AD上,,且二面角的大小为45°,求直线AC与平面BCE所成角的正弦值.。

江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题01(高频考点版)

江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题01(高频考点版)

一、单选题二、多选题三、填空题四、解答题1. 如果直线与直线平行,那么等于( )A.B .1C.D .22. 酒驾是严重危害交通安全的违法行为.根据规定:血液中酒精含量达到的驾驶员即为酒后驾车,及以上为醉酒驾车.某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了,若在停止喝酒后,他血液中酒精含量会以每小时的速度减少,要想安全驾驶,那么他至少经过( )A .2小时B .4小时C .6小时D .8小时3. 某展示柜共有32个不同的手办摆件,起初上层放14个手办摆件,下层放18个手办摆件,现要从下层的18个手办摆件中抽2个调整到上层,若其他手办摆件的相对顺序不变,则不同的调整方法有( )A .18360种B .24480种C .36720种D .73440种4. 集合A ={1,2,3}的非空子集个数为( )A .5B .6C .7D .85.已知实数满足:,则( )A.B.C.D.6. 若集合A 的子集个数有4个,则集合A 中的元素个数是( )A .2B .4C .8D .167. 已知函数,则( )A .当时,单调递减B .当时,C.若有且仅有一个零点,则D .若,则8.已知数列满足,其中,为数列的前n 项和,则下列四个结论中,正确的是( )A.B .数列的通项公式为:C .数列的前n项和为:D .数列为递减数列9.已知函数(1)函数的值域是____________.(2)若关于x 的方程恰有两个互异的实数解,则a 的取值范围是______________-.10. 已知圆锥的表面积为,且它的侧面展开图是一个半圆,则它的母线长为__________;该圆锥的体积为__________.11.已知随机变量,若,则_________.12.函数,则_________13. 某商品的包装纸如图1,其中菱形的边长为3,且,,,将包装纸各三角形沿菱形的江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题01(高频考点版)江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题01(高频考点版)边进行翻折后,点E,F,M,N汇聚为一点P,恰好形成如图2的四棱锥形的包裹.(1)证明底面;(2)设点T为BC上的点,且二面角的正弦值为,试求PC与平面PAT所成角的正弦值.14. 如图,已知是正三角形,EA、CD都垂直于平面ABC,且,,F是BE的中点,(1)求证:平面ABC;(2)求证:平面EDB;15. 如图在四棱锥中,底面是矩形,,,,为的中点,面面.(1)证明:面(2)求二面角的余弦值.16. 已知函数.(1)求函数的定义域;(2)求函数的值域.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学学业水平考试模拟试题一1.直线210x y -+=在y 轴上的截距为( ) A.12B.1-C.2D.1 2.设集合2{|4},{1,2,3}A x x B =<=,则A B ⋂=( )A.{1,2,3}B.{1,2}C.{1}D.{2}3.函数()f x = ) A. (,2)(2,)-∞⋃+∞ B. (2,)+∞ C. [2,)+∞ D.(,2)-∞4.等差数列{}n a 中,若536,2a a ==,则公差为( )A. 2B. 1C. -2D. -15.以(2,0)为圆心,经过原点的圆方程为( )A.(x+2)2+y 2=4B. (x -2)2+y 2=4C. (x+2)2+y 2=2D. (x -2)2+y 2=26. 已知实数x ,y 满足002x y x y ≥⎧⎪≥⎨⎪+≤⎩,则z =4x +y 的最大值为( )A. 10B. 8C. 2D. 07.设关于x 的不等式(ax -1)(x +1)<0(a ∈R )的解集为{x |-1<x <1},则a 的值是( )A.-2B.-1C.0D.18.已知函数()sin()24x f x π=+,则()2f π=( ) A.1- B.1C.2-D.2 9.设a R ∈,则“2a >”是“112a <”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件10. 已知两直线l ,m 和平面α,则( )A .若l ∥m ,m ⊂α,则l ∥αB .若l ∥α,m ⊂α,则l ∥mC .若l ⊥m ,l ⊥α,则m ⊥αD .若l ⊥α,m ⊂α,则l ⊥m11. 已知为数列的前项和,且,,则( )A .4B .C .5D .612. 已知向量,a b 的夹角为45︒,且1a =,210a b -=,则b =( )2 B.2 C. 2 D.3213. 将函数πsin(4)3y x =+的图像上各点的横坐标伸长为原来的2倍,再向右平移π6个单位,得到的函数的图像的一个对称中心为( ) A .(π16,0) B .(π9,0) C .(π4,0) D .(π2,0) 14. 函数()的大致图象是()A .B .C .D .15. 在△ABC 中,c b a ,,为角C B A ,,的对边,若Cc B b A a sin cos cos ==,则ABC ∆是( ) A .锐角三角形 B. 钝角三角形 C. 等腰三角形 D. 等边三角形16. 已知函数,,若方程有两个不相等的实根,则实数的取值范围是( )A. B. C. D. 17. 已知抛物线24y x =与双曲线()222210,0x y a b a b -=>>有相同的焦点F ,点A 是两曲线的一个交点,且AF x ⊥轴,则双曲线的离心率为( )A 22B 51C 31+D 2+118.已知函数2()2(0)f x x x x =+>,11()(),()(()),*n n f x f x f x f f x n N +==∈,则5()f x 在上的最大值是( )A.1021-B.3221- C.1031- D.3231- 19. 一个几何体的三视图如图所示(单位:cm ),则该几何体的表面积为 2cm ,体积为 3cmcos tan y x x 22x ()21f x x =-+()g x kx =()()f x g x =k 10,2⎛⎫ ⎪⎝⎭1,12⎛⎫ ⎪⎝⎭()1,2()2,+∞20. 已知直线1:(3)453l m x y m ++=-与2:2(5)8l x m y ++=,当实数______m =时,12l l .21.已知0,0a b >>,且1a b +=,则11(2)(2)a b ++的最小值为_____________22.如图,已知棱长为4的正方体''''ABCD A B C D -,M 是正方形''BB C C 的中心,P 是''A C D ∆内(包括边界)的动点,满足PM PD =,则点P 的轨迹长度为_________23. 已知数列{a n }的前n 项和为S n ,且a 1=1,a n +1=13S n ,n ∈N *. (1)求a 2,a 3,a 4的值(2)求数列{a n }的通项公式.24.平面直角坐标系xOy 中,过椭圆M :x 2a 2+y 2b2=1 (a >b >0)右焦点的直线x +y -3=0交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12. (1)求M 的方程;(2)C ,D 为M 上的两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形ACBD 面积的最大值.25. 已知函数()b kx x x f +++=21,其中b k ,为实数且0≠k (Ⅰ)当0>k 时,根据定义证明()x f 在()2,-∞-单调递增;(Ⅱ)求集合=k M {b | 函数)(x f 由三个不同的零点}.高中数学学业水平考试模拟试题一参考答案1-18.ACBA BBDB ADCD DCCB DD19-22.64322+; 160,7,16,143- 23.(本题10分)解:(1)由a 1=1,a n +1=13S n ,n ∈N *,得 a 2=13S 1=13a 1=13,a 3=13S 2=13(a 1+a 2)=49,a 4=13S 3=13(a 1+a 2+a 3)=1627, 由a n +1-a n =13(S n -S n -1)=13a n (n ≥2),得a n +1=43a n (n ≥2), 又a 2=13,所以a n =13×⎝⎛⎭⎫43n -2(n ≥2), ∴ 数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧1 n =1,13×⎝⎛⎭⎫43n -2 n ≥2. 24.(本题10分)解:(1)设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),则x 21a 2+y 21b 2=1,x 22a 2+y 22b 2=1,y 2-y 1x 2-x 1=-1,由此可得b 2x 2+x 1a 2y 2+y 1=-y 2-y 1x 2-x 1=1. 因为x 1+x 2=2x 0,y 1+y 2=2y 0,y 0x 0=12,所以a 2=2b 2. 又由题意知,M 的右焦点为(3,0),故a 2-b 2=3.因此a 2=6,b 2=3.所以M 的方程为x 26+y 23=1. (2)由⎩⎪⎨⎪⎧ x +y -3=0,x 26+y 23=1,解得⎩⎨⎧ x =433,y =-33或⎩⎨⎧x =0,y = 3.因此|AB |=463. 由题意可设直线CD 的方程为y =x +n ⎝⎛⎭⎫-533<n <3, 设C (x 3,y 3),D (x 4,y 4).由⎩⎪⎨⎪⎧y =x +n ,x 26+y 23=1得3x 2+4nx +2n 2-6=0. 于是x 3,4=-2n ±29-n 23. 因为直线CD 的斜率为1,所以|CD |=2|x 4-x 3|=439-n 2. 由已知,四边形ACBD 的面积S =12|CD |·|AB |=8699-n 2. 当n =0时,S 取得最大值,最大值为863. 所以四边形ACBD 面积的最大值为863.25.(本题11分)解:(1)证明:当(,2)x ∈-∞-时,b kx x x f ++-=+21)(. 任取12,(,2)x x ∈-∞-,设21x x >.⎪⎪⎭⎫ ⎝⎛+++--⎪⎪⎭⎫ ⎝⎛+++-=-b kx x b kx x x f x f 2211212121)()(12121()(2)(2)x x k x x ⎡⎤=-+⎢⎥++⎣⎦.由所设得021<-x x ,0)2)(2(121>++x x ,又0>k , ∴0)()(21<-x f x f ,即)()(21x f x f <.∴()f x 在)2,(--∞单调递增.(2)函数)(x f 有三个不同零点,即方程021=+b kx x ++有三个不同的实根. 方程化为:⎩⎨⎧=++++->0)12()2( 22b x k b kx x 与⎩⎨⎧=-+++-<0)12()2( 22b x k b kx x . 记2()(2)(21)u x kx b k x b =++++,2()(2)(21)v x kx b k x b =+++-.○1当0>k 时,)(),(x v x u 开口均向上. 由01)2(<-=-v 知)(x v 在)2,(--∞有唯一零点. 为满足)(x f 有三个零点,)(x u 在),2(+∞-应有两个不同零点. ∴⎪⎪⎩⎪⎪⎨⎧->+->+-+>- 2220)12(4)2( 0)2(2k k b b k k b u k k b 22-<⇔.○2当0<k 时,)(),(x v x u 开口均向下. 由01)2(>=-u 知)(x u 在),2(+∞-有唯一零点.为满足)(x f 有三个零点, )(x v 在)2,(--∞应有两个不同零点. ∴⎪⎪⎩⎪⎪⎨⎧-<+->--+<- 2220)12(4)2( 0)2(2k k b b k k b v k k b --<⇔22.综合○1、○2可得{|2k M b b k =<-.。

相关文档
最新文档