奥数 时钟快慢问题

合集下载

小学六年级奥数时钟问题(含例题讲解分析和答案)

小学六年级奥数时钟问题(含例题讲解分析和答案)

时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人〞分别是时钟的分针和时针。

我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。

时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度〞或者“每分钟走多少小格〞。

对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。

分针速度:每分钟走1小格,每分钟走6度时针速度:每分钟走112小格,每分钟走0.5度注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟〞,或者是“坏了的钟〞,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。

要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。

另外,在解时钟的快慢问题中,要学会十字交叉法。

例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511分。

例题精讲:模块一、时针与分针的追及与相遇问题【例 1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走〔3600-30〕/3600个小时,手表又比闹钟快那么它一小时走〔3600+30〕/3600个小时,那么标准时间走1小时手表那么走〔3600-30〕/3600*〔3600+30〕/3600个小时,那么手表每小时比标准时间慢1—【〔3600-30〕/3600*〔3600+30〕/3600】=1—14399/14400=1/14400个小时,也就是1/14400*3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒【巩固】小强家有一个闹钟,每时比标准时间快3分。

小学六年级奥数时钟问题(含例题讲解分析和答案)

小学六年级奥数时钟问题(含例题讲解分析和答案)

时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。

我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。

时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。

对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。

分针速度:每分钟走1小格,每分钟走6度小格,每分钟走0.5度时针速度:每分钟走112注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。

要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。

另外,在解时钟的快慢问题中,要学会十字交叉法。

分。

例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511例题精讲:模块一、时针与分针的追及与相遇问题【例 1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走(3600-30)/3600个小时,手表又比闹钟快那么它一小时走(3600+30)/3600个小时,则标准时间走1小时手表则走(3600-30)/3600*(3600+30)/3600个小时,则手表每小时比标准时间慢1—【(3600-30)/3600*(3600+30)/3600】=1—14399/14400=1/14400个小时,也就是1/14400*3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒【巩固】小强家有一个闹钟,每时比标准时间快3分。

时钟的初中奥数题目(3)份

时钟的初中奥数题目(3)份

时钟的初中奥数题目(3)份时钟的初中奥数题目1一只挂钟,每小时慢5分钟,标准时间中午12点时,把钟与标准时间对准。

现在是标准时间下午5点30分,问,再经过多长时间,该挂钟才能走到5点30分?分析:1、这钟每小时慢5分钟,也就是当标准钟走60分时,这挂钟只能走60-5=55(分),即速度是标准钟速度的=2、因每小时慢5分,标准钟从中午12点走到下午5点30分时,此挂钟共慢了5×(17-12)=27(分),也就是此挂钟要差27分才到5点30分。

3、此挂钟走到5点30分,按标准时间还要走27分,因它的速度是标准时钟速度的,实际走完这27分所要时间应是27÷。

解:5×(17-12)=27(分)27÷=30(分)答:再经过30分钟,该挂钟才能走到5点30分。

时钟的初中奥数题目2星期天,小明在室内阳光下看书,看书之前,小明看了一眼挂钟,发现时针与分针正好处在一条直线上。

看完书之后,巧得很,时针与分针又恰好在同一条直线上。

看书期间,小明听到挂钟一共敲过三下。

(每整点,是几点敲几下;半点敲一下)请你算一算小明从几点开始看书?看到几点结束的?分析:连半点敲声在内,一共敲了三下,说明小明看书的时间是在中午12点以后。

12点以后时针与分针:第一次成一条直线时刻是:(0+30)÷(1-)=30÷=32(分)即12点32分。

第二次成一条直线时刻是:(5×1+30)÷(1-)=35÷=38(分)即1点38分。

第三次成一条直线的时刻是:(5×2+30)÷(1-)=40÷=43(分)即2点43分。

如果从12点32分开始,到1点38分,只敲2下,到2点43分,就共敲5下(不合题意)如果从1点38分开始到2点43分,共敲3下。

因此,小明应从1点38分开始看书,到2点43分时结束的.。

时钟的初中奥数题目3时钟问题解法与算法公式解题关键:时钟问题属于行程问题中的追及问题。

小学六年级奥数时钟问题(含例题讲解分析和答案)

小学六年级奥数时钟问题(含例题讲解分析和答案)

时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。

我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。

时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。

对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。

分针速度:每分钟走1小格,每分钟走6度时针速度:每分钟走112小格,每分钟走0.5度注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。

要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。

另外,在解时钟的快慢问题中,要学会十字交叉法。

例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511分。

例题精讲:模块一、时针与分针的追及与相遇问题【例1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走(3600-30)/3600个小时,手表又比闹钟快那么它一小时走(3600+30)/3600个小时,则标准时间走1小时手表则走(3600-30)/3600*(3600+30)/3600个小时,则手表每小时比标准时间慢1—【(3600-30)/3600*(3600+30)/3600】=1—14399/14400=1/14400个小时,也就是1/14400*3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒【巩固】小强家有一个闹钟,每时比标准时间快3分。

小学六年级奥数时钟问题(含例题讲解分析和答案)知识分享

小学六年级奥数时钟问题(含例题讲解分析和答案)知识分享

小学六年级奥数时钟问题(含例题讲解分析和答案)时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。

我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。

时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。

对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。

分针速度:每分钟走1小格,每分钟走6度小格,每分钟走0.5度时针速度:每分钟走112注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。

要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。

另外,在解时钟的快慢问题中,要学会十字交叉法。

例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为5分。

6511例题精讲:模块一、时针与分针的追及与相遇问题【例 1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快 30 秒.而闹钟却比标准时间每小时慢 30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走(3600-30)/3600个小时,手表又比闹钟快那么它一小时走(3600+30)/3600个小时,则标准时间走1小时手表则走(3600-30)/3600*(3600+30)/3600个小时,则手表每小时比标准时间慢1—【(3600-30)/3600*(3600+30)/3600】=1—14399/14400=1/14400个小时 ,也就是1/14400*3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒 【巩固】 小强家有一个闹钟,每时比标准时间快3分。

钟表快慢问题经典例题

钟表快慢问题经典例题

钟表快慢问题经典例题模块一、时针与分针的追及与相遇问题【例1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走(3600-30)÷3600个小时,手表又比闹钟快那么它一小时走(3600+30)/3600个小时,则标准时间走1小时手表则走(3600-30)÷3600X(3600+30)÷3600个小时,则手表每小时比标准时间慢1—【(3600-30)÷3600X(3600+30)÷3600】=1—14399÷14400=1÷14400个小时,也就是1÷14400X3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒【巩固】小强家有一个闹钟,每时比标准时间快3分。

有一天晚上10点整,小强对准了闹钟,他想第二天早晨6∶00起床,他应该将闹钟的铃定在几点几分?【解析】6:24【巩固】小翔家有一个闹钟,每时比标准时间慢3分。

有一天晚上8:30,小翔对准了闹钟,他想第二天早晨6∶30起床,于是他就将闹钟的铃定在了6∶30。

这个闹钟响铃的时间是标准时间的几点几分?【解析】7点【巩固】当时钟表示1点45分时,时针和分针所成的钝角是多少度?【解析】142.5度【例2】有一座时钟现在显示10时整.那么,经过多少分钟,分针与时针第一次重合;再经过多少分钟,分针与时针第二次重合?【解析】分针每小时走一圈12格,时针走1格,分针每小时比时针多走12-1=11格,每分钟多走11/60格。

10时整的时候,时针与分针相距10格,第一次重合,分针要在相同的时间里比时针多走10格,所用时间是:10÷11/60=54又6/11(分钟)第二次重合,分针要比时针多走12格,所用时间是:12÷11/60=65又5/11(分钟)【巩固】钟表的时针与分针在4点多少分第一次重合?【解析】此题属于追及问题,追及路程是20格,速度差是12/60-1/60 ,所以追及时间是:20/(12/60-1/60 )(分)。

(完整)小学六年级奥数时钟问题(含例题讲解分析和答案)

(完整)小学六年级奥数时钟问题(含例题讲解分析和答案)

时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。

我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。

时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。

对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。

分针速度:每分钟走1小格,每分钟走6度小格,每分钟走0.5度时针速度:每分钟走112注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。

要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。

另外,在解时钟的快慢问题中,要学会十字交叉法。

分。

例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511例题精讲:模块一、时针与分针的追及与相遇问题【例 1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走(3600-30)/3600个小时,手表又比闹钟快那么它一小时走(3600+30)/3600个小时,则标准时间走1小时手表则走(3600-30)/3600*(3600+30)/3600个小时,则手表每小时比标准时间慢1—【(3600-30)/3600*(3600+30)/3600】=1—14399/14400=1/14400个小时,也就是1/14400*3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒【巩固】小强家有一个闹钟,每时比标准时间快3分。

(小学奥数)时钟问题

(小学奥数)时钟问题

1.行程問題中時鐘的標準制定;2.時鐘的時針與分針的追及與相遇問題的判斷及計算;3.時鐘的週期問題.時鐘問題知識點說明 時鐘問題可以看做是一個特殊的圓形軌道上2人追及或相遇問題,不過這裏的兩個“人”分別是時鐘的分針和時針。

我們通常把研究時鐘上時針和分針的問題稱為時鐘問題,其中包括時鐘的快慢,時鐘的週期,時鐘上時針與分針所成的角度等等。

時鐘問題有別於其他行程問題是因為它的速度和總路程的度量方式不再是常規的米每秒或者千米每小時,而是2個指針“每分鐘走多少角度”或者“每分鐘走多少小格”。

對於正常的時鐘,具體為:整個鐘面為360度,上面有12個大格,每個大格為30度;60個小格,每個小格為6度。

分針速度:每分鐘走1小格,每分鐘走6度時針速度:每分鐘走112小格,每分鐘走0.5度 注意:但是在許多時鐘問題中,往往我們會遇到各種“怪鐘”,或者是“壞了的鐘”,它們的時針和分針每分鐘走的度數會與常規的時鐘不同,這就需知識點撥教學目標時鐘問題要把時鐘問題當做行程問題來看,分針快,時針慢,所以分針與時針的問題,就是他們之間的追及問題。

另外,在解時鐘的快慢問題中,要學會十字交叉法。

例如:時鐘問題需要記住標準的鐘,時針與分針從一次重合到下一次重合,所分。

需時間為56511例題精講模組一、時針與分針的追及與相遇問題【例 1】當時鐘錶示1點45分時,時針和分針所成的鈍角是多少度?【巩固】在16點16分這個時刻,鐘錶盤面上時針和分針的夾角是____度.次重合;再經過多少分鐘,分針與時針第二次重合?【巩固】鐘錶的時針與分針在4點多少分第一次重合?【巩固】現在是3點,什麼時候時針與分針第一次重合?【例 3】鐘錶的時針與分針在8點多少分第一次垂直?【巩固】2點鐘以後,什麼時刻分針與時針第一次成直角?【例 4】時鐘的時針和分針在6點鐘反向成一直線,問:它們下—次反向成—直線是在什麼時間?(準確到秒)【例 5】8時到9時之間時針和分針在“8”的兩邊,並且兩針所形成的射線到“8”的距離相等.問這時是8時多少分?【例 6】現在是10點,再過多長時間,時針與分針將第一次在一條直線上?【巩固】在9點與10點之間的什麼時刻,分針與時針在一條直線上?【例 7】晚上8點剛過,不一會小華開始做作業,一看鐘,時針與分針正好成一條直線。

小学六年级奥数时钟问题(含例题讲解分析和标准答案)

小学六年级奥数时钟问题(含例题讲解分析和标准答案)

时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。

我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。

时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的M每秒或者千M每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。

对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。

分针速度:每分钟走1小格,每分钟走6度时针速度:每分钟走112小格,每分钟走0.5度注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。

要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。

另外,在解时钟的快慢问题中,要学会十字交叉法。

例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511分。

例题精讲:模块一、时针与分针的追及与相遇问题【例1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走(3600-30)/3600个小时,手表又比闹钟快那么它一小时走(3600+30)/3600个小时,则标准时间走1小时手表则走(3600-30)/3600*(3600+30)/3600个小时,则手表每小时比标准时间慢1—【(3600-30)/3600*(3600+30)/3600】=1—14399/14400=1/14400个小时,也就是1/14400*3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒【巩固】小强家有一个闹钟,每时比标准时间快3分。

小学六年级奥数时钟问题(含例题讲解分析和答案)

小学六年级奥数时钟问题(含例题讲解分析和答案)

时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。

我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。

时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。

对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。

分针速度:每分钟走1小格,每分钟走6度小格,每分钟走0.5度时针速度:每分钟走112注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。

要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。

另外,在解时钟的快慢问题中,要学会十字交叉法。

分。

例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511例题精讲:模块一、时针与分针的追及与相遇问题【例 1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走(3600-30)/3600个小时,手表又比闹钟快那么它一小时走(3600+30)/3600个小时,则标准时间走1小时手表则走(3600-30)/3600*(3600+30)/3600个小时,则手表每小时比标准时间慢1—【(3600-30)/3600*(3600+30)/3600】=1—14399/14400=1/14400个小时,也就是1/14400*3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒【巩固】小强家有一个闹钟,每时比标准时间快3分。

小学六年级奥数时钟问题(含例题讲解分析和答案)

小学六年级奥数时钟问题(含例题讲解分析和答案)

时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。

我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。

时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。

对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。

分针速度:每分钟走1小格,每分钟走6度小格,每分钟走0.5度时针速度:每分钟走112注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。

要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。

另外,在解时钟的快慢问题中,要学会十字交叉法。

分。

例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511例题精讲:模块一、时针与分针的追及与相遇问题【例 1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走(3600-30)/3600个小时,手表又比闹钟快那么它一小时走(3600+30)/3600个小时,则标准时间走1小时手表则走(3600-30)/3600*(3600+30)/3600个小时,则手表每小时比标准时间慢1—【(3600-30)/3600*(3600+30)/3600】=1—14399/14400=1/14400个小时,也就是1/14400*3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒【巩固】小强家有一个闹钟,每时比标准时间快3分。

奥数时钟快慢问题完整版

奥数时钟快慢问题完整版

奥数时钟快慢问题HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。

我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。

时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。

对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。

分针速度:每分钟走1小格,每分钟走6度时针速度:每分钟走112小格,每分钟走0.5度注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。

要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。

另外,在解时钟的快慢问题中,要学会十字交叉法。

例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为5分。

6511【例 1】小明上午 8点要到学校上课,可是家里的闹钟早晨 6点10分就停了,他上足发条但忘了对表就急急忙忙上学去了,到学校一看还提前了10分。

中午12点放学,小明回到家一看钟才11点整。

如果小明上学、下学在路上用的时间相同,那么,他家的闹钟停了多少分【考点】行程问题之时钟问题【难度】☆☆【题型】解答【解析】根据题意可知,小明从上学到放学一共经过的时间是290分钟(11点减去6点10分),在校时间为250分钟(8点到12点,再加上提前到的10分钟)所以上下学共经过290-250=40(分钟),即从家到学校需要20分钟,所以从家出来的时间为7:30(8:00-10分-20分)即他家的闹钟停了1小时20分钟,即80分钟。

(完整)小学六年级奥数时钟问题(含例题讲解分析和标准答案)

(完整)小学六年级奥数时钟问题(含例题讲解分析和标准答案)

时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。

我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。

时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的M每秒或者千M每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。

对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。

分针速度:每分钟走1小格,每分钟走6度小格,每分钟走0.5度时针速度:每分钟走112注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。

要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。

另外,在解时钟的快慢问题中,要学会十字交叉法。

分。

例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511例题精讲:模块一、时针与分针的追及与相遇问题【例 1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走(3600-30)/3600个小时,手表又比闹钟快那么它一小时走(3600+30)/3600个小时,则标准时间走1小时手表则走(3600-30)/3600*(3600+30)/3600个小时,则手表每小时比标准时间慢1—【(3600-30)/3600*(3600+30)/3600】=1—14399/14400=1/14400个小时,也就是1/14400*3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒【巩固】小强家有一个闹钟,每时比标准时间快3分。

小学六年级奥数时钟问题(含例题讲解分析和答案)

小学六年级奥数时钟问题(含例题讲解分析和答案)

时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。

我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。

时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。

对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。

分针速度:每分钟走1小格,每分钟走6度时针速度:每分钟走112小格,每分钟走0.5度注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。

要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。

另外,在解时钟的快慢问题中,要学会十字交叉法。

例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511分。

例题精讲:模块一、时针与分针的追及与相遇问题【例1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走(3600-30)/3600个小时,手表又比闹钟快那么它一小时走(3600+30)/3600个小时,则标准时间走1小时手表则走(3600-30)/3600*(3600+30)/3600个小时,则手表每小时比标准时间慢1—【(3600-30)/3600*(3600+30)/3600】=1—14399/14400=1/14400个小时,也就是1/14400*3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒【巩固】小强家有一个闹钟,每时比标准时间快3分。

奥数讲解

奥数讲解

27、时钟问题—快慢表问题时钟问题—快慢表问题基本思路:1、按照行程问题中的思维方法解题;2、不同的表当成速度不同的运动物体;3、路程的单位是分格(表一周为60分格);4、时间是标准表所经过的时间;5、合理利用行程问题中的比例关系;28、时钟问题—钟面追及基本思路:封闭曲线上的追及问题。

关键问题:①确定分针与时针的初始位置;②确定分针与时针的路程差;基本方法:①分格方法:时钟的钟面圆周被均匀分成60小格,每小格我们称为1分格。

分针每小时走60分格,即一周;而时针只走5分格,故分针每分钟走1分格,时针每分钟走1/12分格。

②度数方法:从角度观点看,钟面圆周一周是360°,分针每分钟转360/60 度,即6°,时针每分钟转360/12*60 度,即1/2 度。

31、简单方程代数式:用运算符号(加减乘除)连接起来的字母或者数字。

方程:含有未知数的等式叫方程。

列方程:把两个或几个相等的代数式用等号连起来。

列方程关键问题:用两个以上的不同代数式表示同一个数。

等式性质:等式两边同时加上或减去一个数,等式不变;等式两边同时乘以或除以一个数(除0),等式不变。

移项:把数或式子改变符号后从方程等号的一边移到另一边;移项规则:先移加减,后变乘除;先去大括号,再去中括号,最后去小括号。

加去括号规则:在只有加减运算的算式里,如果括号前面是“+”号,则添、去括号,括号里面的运算符号都不变;如果括号前面是“-”号,添、去括号,括号里面的运算符号都要改变;括号里面的数前没有“+”或“-”的,都按有“+”处理。

移项关键问题:运用等式的性质,移项规则,加、去括号规则。

乘法分配率:a(b+c)=ab+ac解方程步骤:①去分母;②去括号;③移项;④合并同类项;⑤求解;方程组:几个二元一次方程组成的一组方程。

解方程组的步骤:①消元;②按一元一次方程步骤。

消元的方法:①加减消元;②代入消元。

23、综合行程问题综合行程基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、路程三者之间的关系.基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题:确定运动过程中的位置和方向。

六年级奥林匹克数学基础教程25时间问题

六年级奥林匹克数学基础教程25时间问题

小学数学奥数基础教程时间问题同学们都知道,任何一块手表或快或慢都会有些误差,所以手表指示的时刻并不一定是准确时刻。

这一讲的内容是与不准确时钟有关的时间问题。

这类题目的变化很多,无论怎样变,关键是抓住单位时间内的误差,然后根据某一时间段内含多少个单位时间,就可求出这一时间段内的误差。

例1 肖健家有一个闹钟,每小时比标准时间慢半分钟。

有一天晚上8点整时,肖健对准了闹钟,他想第二天早晨5点55分起床,于是他就将闹钟的铃定在了5点55分。

这个闹钟将在标准时间的什么时刻响铃?分析与解:因为这个闹钟走得慢,所以响铃时间肯定在5点55分后面。

,闹钟走595分相当于标准时间的响铃时是标准时间的6点整。

例2爷爷的老式时钟的时针与分针每隔66分重合一次。

如果早晨8点将钟对准,到第二天早晨时针再次指示8点时,实际上是几点几分?分析与解:由上一讲知道,时针与分针两次重合的时间间隔为所以老式时钟每重合一次就比标准时间慢时钟24时重合多少次呢?我们观察从12点开始的24时。

分针转24圈,时针转2圈,分针比时针多转22圈,即22次追上时针,也就是说 24时正好例3 小明家有两个旧挂钟,一个每天快20分,一个每天慢30分。

现在将这两个旧挂钟同时调到标准时间,它们至少要经过多少天才能再次同时显示标准时间?分析与解:由时钟的特点知道,每隔12时,时针与分针的位置重复出现。

所以快钟和慢钟分别快或慢12时的整数倍时,将重新显示标准时间。

快钟快12时,需经过(60×12)÷20=36(天),即快钟每经过36天显示一次标准时间。

慢钟慢12时需要(60×12)÷30=24(天),即慢钟每经过24天显示一次标准时间。

因为[36,24]=72,所以两个钟同时再次显示标准时间,至少要经过72天。

例4一个快钟每时比标准时间快1分,一个慢钟每时比标准时间慢2分。

若将两个钟同时调到标准时间,结果在24时内,快钟显示9点整时,慢钟恰好显示8点整。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

奥数时钟快慢问题Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。

我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。

时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。

对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。

分针速度:每分钟走1小格,每分钟走6度时针速度:每分钟走112小格,每分钟走度注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。

要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。

另外,在解时钟的快慢问题中,要学会十字交叉法。

例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511分。

【例 1】小明上午 8点要到学校上课,可是家里的闹钟早晨 6点10分就停了,他上足发条但忘了对表就急急忙忙上学去了,到学校一看还提前了10分。

中午12点放学,小明回到家一看钟才11点整。

如果小明上学、下学在路上用的时间相同,那么,他家的闹钟停了多少分【考点】行程问题之时钟问题【难度】☆☆【题型】解答【解析】根据题意可知,小明从上学到放学一共经过的时间是290分钟(11点减去6点10分),在校时间为250分钟(8点到12点,再加上提前到的10分钟)所以上下学共经过290-250=40(分钟),即从家到学校需要20分钟,所以从家出来的时间为7:30(8:00-10分-20分)即他家的闹钟停了1小时20分钟,即80分钟。

【答案】80分钟【巩固】星期天早晨,小明发现闹钟因电池能量耗尽停走了。

他换上新电池,估计了一下时间,将闹钟的指针拨到8:00。

然后,小明离家前往天文馆。

小明到达天文馆时,看到天文馆的标准时钟显示的时间是9:15。

在天文馆参观一个半小时后,小明从天文馆以同样的速度返回家中,看到闹钟显示的时间是11:20。

请问,这时小明应该把闹钟调到什么时间才是准确的【考点】行程问题之时钟问题【难度】☆☆【题型】解答【解析】由小明的闹钟显示的时间可知.小明出门共用了3小时20分钟。

来回路上共用去1小时50分钟,回家路上用去55分钟.从小明到达天文馆,到回到家中共经历2小时25分钟,小明到达天文馆时是9:15,所以回到家中的时间是11时40分,即应把闹钟调到11:40.【答案】11:40.【例 2】—辆汽车的速度是每小时50千米,现有一块每5小时慢2分的表,若用该表计时,测得这辆汽车的时速是多少(得数保留一位小数)【考点】行程问题之时钟问题【难度】☆☆【题型】解答【解析】正常表走5小时,慢表只走了:5×60-2=298(分),【解析】因此,用慢表测速度,这辆汽车的速度是:50×5÷298≈(千米/小时)60【答案】50.3千米/小时【巩固】—辆汽车的速度是每小时121千米,现有一块每小时快30秒的表,若用该表计时,测得这辆汽车的时速是多少【考点】行程问题之时钟问题【难度】☆☆【题型】解答【解析】正常表走1小时,快表走了:分,因此,用快表测速度,这辆汽车的速度是:⨯÷=(千米/小时)1216060.5120【答案】120千米/小时【例 3】小春有一块手表,这块表每小时比标准时间慢2分钟。

某天晚上9点整,小春将手表对准,到第二天上午手表上显示的时间是7点38分的时候,标准时间是______。

【考点】行程问题之时钟问题【难度】☆☆【题型】填空【解析】从晚上9点到第二天7:38,分针一共划过60×10+38=638,而这块表每小时比标准时间慢2分钟,即每转58格,标准钟转60格,所以标准钟分针转了638÷58×60=660,所以此时是8点.【答案】8点【巩固】小翔家有一个闹钟,每时比标准时间慢3分。

有一天晚上9点整,小翔对准了闹钟,他想第二天早晨6∶30起床,于是他就将闹钟的铃定在了6∶30。

这个闹钟响铃的时间是标准时间的几点几分【考点】行程问题之时钟问题【难度】☆☆【题型】解答【解析】7点【答案】7点【例 4】小强家有一个闹钟,每时比标准时间快3分。

有一天晚上10点整,小强对准了闹钟,他想第二天早晨6∶00起床,他应该将闹钟的铃定在几点几分【考点】行程问题之时钟问题【难度】☆☆【题型】解答【解析】6:24【答案】6:24【巩固】小翔家有一个闹钟,每时比标准时间慢3分。

有一天晚上9点整,小翔对准了闹钟,他想第二天早晨7∶00起床,他应该将闹钟的铃定在几点几分【考点】行程问题之时钟问题【难度】☆☆【题型】解答【解析】7点30分【答案】7点30分【例 5】有一个时钟每时快20秒,它在3月1日中午12时准确,下一次准确的时间是什么时间【考点】行程问题之时钟问题【难度】☆☆【题型】解答【解析】时钟与标准时间的速度差是 20秒/时,因为经过12小时,时钟的指针回到起始的位置,所以到下一次准确时间时,时钟走了 12×3600÷20=2160(小时)即 90天,所以下一次准确的时间是5月30日中午12时。

【答案】5月30日中午12时【巩固】有一个时钟,它每小时慢25秒,今年3月21日中午十二点它的指示正确。

请问:这个时钟下一次指示正确的时间是几月几日几点钟【考点】行程问题之时钟问题【难度】☆☆【题型】解答【解析】当这个时钟慢12个小时的时候,它又指示准确的时间,慢12个小时需⨯⨯=12×12×12(小时)【解析】60601225⨯⨯=72(天)【解析】相当于:12121224【解析】注意3月份有31天,4月份有30天,5月份有31天,到6月1日中午,恰好是72天【解析】答:下一次指示正确时间是6月1日中午12点。

【答案】6月1日中午12点【例 6】小明家有两个旧挂钟,一个每天快20分,另一个每天慢30分。

现在将这两个旧挂钟同时调到标准时间,它们至少要经过多少天才能再次同时显示标准时间【考点】行程问题之时钟问题【难度】☆☆【题型】解答【解析】快的挂钟与标准时间的速度差是 20分/天,慢的挂钟与标准时间的速度差是 30分/天,快的每标准一次需要 12×60÷30=24(天),慢的每标准一次需要 12×60÷20=36(天),24与36的最小公倍数是 72,所以它们至少要经过72天才能再次同时显示标准时间。

【答案】72天【巩固】小明家有两个旧挂钟,一个每小时快20秒,另一个每小时慢30秒。

现在将这两个旧挂钟同时调到标准时间,它们至少要经过多少天才能再次同时显示标准时间【考点】行程问题之时钟问题【难度】☆☆【题型】解答【解析】快的挂钟与标准时间的速度差是 20秒/时,慢的挂钟与标准时间的速度差是 30秒/时,快的每标准一次需要 12×60×60÷30=1440(时)=60天,慢的每标准一次需要 12×60×60÷20=2160(时)=90天,60与90的最小公倍数是 180天,所以它们至少要经过180天才能再次同时显示标准时间。

【答案】180天【例 7】一个快钟每时比标准时间快1分,一个慢钟每时比标准时间慢3分。

将两个钟同时调到标准时间,结果在24时内,快钟显示9点整时,慢钟恰好显示8点整。

此时的标准时间是多少【考点】行程问题之时钟问题【难度】☆☆【题型】解答【解析】根据题意可知,标准时间过60分钟,快钟走了61分钟,慢钟走了57分钟,即标准时间每60分钟,快钟比慢钟多走4分钟,60÷4=15(小时)经过15小时快钟比标准时间快15分钟,所以现在的标准时间是8点45分。

【答案】8点45分【巩固】一个快钟每时比标准时间快2分,一个慢钟每时比标准时间慢3分。

将两个钟同时调到标准时间,结果在24时内,快钟显示7点整时,慢钟恰好显示6点整。

此时的标准时间是多少【考点】行程问题之时钟问题【难度】☆☆【题型】解答【解析】根据题意可知,标准时间过60分钟,快钟走了62分钟,慢钟走了57分钟,即标准时间每60分钟,快钟比慢钟多走4分钟,60÷5=12(小时)经过12小时快钟比标准时间快24分钟,所以现在的标准时间是6点36分。

【答案】6点36分【例 8】手表比闹钟每时快60秒,闹钟比标准时间每时慢60秒。

8点整将手表对准,12点整手表显示的时间是几点几分几秒【考点】行程问题之时钟问题【难度】☆☆【题型】解答【解析】按题意,闹钟走3600秒手表走3660秒,而在标准时间的一小时中,闹钟走了3540秒。

所以在标准时间的一小时中手表走3660÷3600×3599 = 3599(秒)即手表每小时慢1秒,所以12点时手表显示的时间是11点59分56秒。

【答案】11点59分56秒【巩固】王叔叔有一只手表,他发现手表比家里的闹钟每小时快 30 秒.而闹钟却比标准时间每小时慢 30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒【考点】行程问题之时钟问题【难度】☆☆【题型】解答【解析】6秒【答案】6秒【例 9】某科学家设计了只怪钟,这只怪钟每昼夜10时,每时100分(如图所示)。

当这只钟显示5点时,实际上是中午12点;当这只钟显示6点75分时,实际上是什么时间【考点】行程问题之时钟问题【难度】☆☆【题型】解答【解析】标准钟一昼夜是24×60=1440(分),怪钟一昼夜是100×10=1000(分),怪钟从5点到6点75分,经过175分,1440×175÷1000=252(分),即4点12分。

【答案】4点12分【巩固】某科学家设计了只怪钟,这只怪钟每昼夜100时,每时100分。

当这只钟显示5点时,实际上是中午12点;当这只钟显示7点50分时,实际上是什么时间【考点】行程问题之时钟问题【难度】☆☆【题型】解答【解析】标准钟一昼夜是24×60=1440(分),怪钟一昼夜是100×100=10000(分),怪钟从5点到7点50分,经过250分,1440×250÷10000=36(分),即12点36分。

【答案】12点36分【例 10】高山气象站上白天和夜间的气温相差很大,挂钟受气温的影响走的不正常,每个白天快30秒,每个夜晚慢20秒。

相关文档
最新文档