四、随机变量的数字特征(答案)

合集下载

四随机变量的数字特征-文档资料

四随机变量的数字特征-文档资料
注意:X,Y相互独立为上述5个条件中任何一个 成立的充分条件,但非必要条件.
考点与例题分析
考点一:数学期望和方差的计算 考点二:随机变量函数的数学期望与方差 考点三:协方差、相关系数,独立性与相关性
考点一:数学期望和方差的计算
1.对分布已知的情形,按定义求; 2.对由随机试验给出的随机变量,先求出分布, 再按定义计算; 3.利用期望、方差的性质以及常见分布的期望和 方差计算; 4.对较复杂的随机变量,将其分解为简单随机变量, 特别是分解为(0,1)分布的随机变量和进行计算.
例1 一台设备由三大部件构成,在设备运转中各
部件需要调试整的概率相应为0.1,0.2,0.3,假设各 部件的状态相互独立,以X表示同时需要调整的部
件数,试求X的E(X)和D(X).
(二)方差 1.定义 D(X)=E{[X-E(X)]2}
均方差或标准差:(X)D (X)
2.计算 (1) 离散型: D (X ) [x k E (X )2p ]k.
(2)连续型: D (X )k [xE (X )]2f(x)d x.
(3) 常用计算公式:D(X)=E(X2)-E2(X).
(5)(6) XY 1; (6)(7)XY 1 X与Y以概率1线性相关,即存在a,b
且a≠0,使 P (Y a X b ) 1 .
(8)
1 P (Ya X b ) 1 (a0 ), XY
1 P (Ya X b ) 1 (a0 ), XY
(四)矩与混合矩
3.随机变量函数的数学期望
(1)X为随机变量,y=g(x)为实变量x的函数.
离散型:E (Y)E [g(X )] g(xk)p k;
连续型:E (Y ) E [g (X )] k g (x )f(x )d x .

(完整版)概率论习题答案随机变量的数字特征

(完整版)概率论习题答案随机变量的数字特征

(完整版)概率论习题答案随机变量的数字特征第3章随机变量的数字特征1,在下列句⼦中随机地取⼀单词,以X 表⽰取到的单词所包含的字母个数,试写出X 的分布律并求)(X E .“They found Peking greatly changed ”解:根据题意,有1/5的可能性取到5个单词中的任意⼀个。

它们的字母数分别为4,5,6,7,7。

所以分布律为5/29)77654(51)(=++++=X E .2,在上述句⼦的29个字母中随机地取⼀个字母,以Y 表⽰取到的字母所在的单词所包含的字母数,写出Y 的分布律并求)(Y E 。

解:5个单词字母数还是4,5,6,7,7。

这时,字母数更多的单词更有可能被取到。

分布律为29/175)147665544(291)(=?+?+?+?=Y E .3,在⼀批12台电视机中有2台是次品,若在其中随即地取3台,求取到的电视机中包含的次品数的数学期望。

解:根据古典概率公式,取到的电视机中包含的次品数分别为0,1,2台的概率分别为1163123100==C C p , 229312210121==C C C p , 221312110222==C C C p 。

所以取到的电视机中包含的次品数的数学期望为)(21222112290116台=?+?+?=E 。

4,抛⼀颗骰⼦,若得6点则可抛第⼆次,此时得分为6+(第⼆次所抛的点数),否则得分就是第⼀次所抛的点数,不能再抛。

求所得分数的分布律,并求得分的数学期望。

解:根据题意,有1/6的概率得分超过6,⽽且得分为7的概率为两个1/6的乘积(第⼀次6点,第2次1点),其余类似;有5/6的概率得分⼩于6。

分布律为得分的数学期望为)(1249)121110987(361)54321(61点=++++++++++=E 。

5,(1)已知)(~X λπ,}6{}5{===X P X P ,求)(X E 。

(2)设随机变量X 的分布律为Λ,4,3,2,1,6}{22--===k k k X P π,问X 的数学期望是否存在?解:(1)根据)(~X λπ,可得}6{!6!5}5{65=====--X P e e X P λλλλ,因此计算得到6=λ,即)6(~X π。

第四章 随机变量的数字特征试题答案

第四章 随机变量的数字特征试题答案

第四章随机变量的数字特征试题答案一、 选择(每小题2分)1、设随机变量X 服从参数为2的泊松分布,则下列结论中正确的是(D ) A.E (X )=0.5,D (X )=0.5?B.E (X )=0.5,D (X )=0.25 C.E (X )=2,D (X )=4?D.E (X )=2,D (X )=22Y X -=,则34) A C 5A 6、)1=(C ) A .34?B .37C .323?D .326 7、设随机变量X 服从参数为3的泊松分布,)31,8(~B Y ,X 与Y 相互独立,则)43(--Y X D =(C )A .-13?B .15C .19?D .238、已知1)(=X D ,25)(=Y D ,XY ρ=0.4,则)(Y X D -=(B )A .6?B .22C .30?D .469、设)31,10(~B X,则)(X E =(C )A .31?B .1C .310?D .1010、设)3,1(~2N X ,则下列选项中,不成立的是(B )A.E (X )=1?B.D (X )=3?C.P (X=1)=0?D.P (X<1)=0.511A .C .12、XY ρ=(D 13x =(B)A .14、(C ) A.-15、为(A .C .21)(,41)(==X D X E ?D .41)(,21)(==X D X E 16、设二维随机变量(X ,Y )的分布律为则)(XY E =(B )A .91-?B .0 C .91?D .3117、已知随机变量X 服从参数为2的泊松分布,则随机变量X 的方差为(D ) A18,0.5),则A 19,则X A 20, 则21(B A C 22、设n X X X ,,,21 是来自总体),(2σμN 的样本,对任意的ε>0,样本均值X 所满足的切比雪夫不等式为(B ) A .{}22εσεμn n X P ≥<-?B .{}221εσεμn X P -≥<-C .{}221εσεμn X P -≤≥-?D .{}22εσεμn n X P ≤≥-23、设随机变量X 的μ=)(X E ,2)(σ=X D ,用切比雪夫不等式估计{}≥<-σ3)(X E X P (C )A .91?B .31C .98?D .124、设随机变量X 服从参数为0.5的指数分布,用切比雪夫不等式估计{}≤≥-32X P (C )A25A 1234且5x =710 67、设随机变量X 服从参数为3的指数分布,则)12(+X D =948、设二维随机变量);,;,(~),(222121ρσσμμN Y X ,且X 与Y 相互独立,则ρ=0 9、设随机变量序列 ,,,,21n X X X 独立同分布,且μ=)(i X E ,0)(2>=σi X D ,,2,1=i ,则对任意实数x ,⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧>-∑=∞→x n n X P n i i n σμ1lim =)(1x Φ- 10、设随机变量X 具有分布51}{==k XP ,5,4,3,2,1=k ,则)(X E =3 11、设随机变量X 在区间(0,1)上服从均匀分布,Y=3X -2,则E?(?Y?)=-0.5 121314、3=,则cov(X 1516大于1724}=0.6826 附:18、-0.5,19的期望E?(Y)=4,D?(Y?)=9,又E?(XY?)=10,则X ,Y 的相关系数XY ρ=31 20、设随机变量X 服从二项分布31,3(B ,则)(2X E =35 三、计算:每小题5分1、某柜台做顾客调查,设每小时到达柜台的顾客数X 服从泊松分布,则)(~λP X ,若已知}2{}1{===X P XP ,且该柜台销售情况Y (千元),满足2212+=X Y。

概率论与数理统计第三版课后习题答案

概率论与数理统计第三版课后习题答案

概率论与数理统计第三版课后习题答案概率论与数理统计是一门应用广泛的数学学科,它研究了随机事件的发生规律和数据的统计分析方法。

而《概率论与数理统计》第三版是一本经典的教材,它系统地介绍了概率论和数理统计的基本理论和方法。

在学习过程中,课后习题是巩固知识、提高能力的重要途径。

下面将为大家提供一些《概率论与数理统计》第三版课后习题的答案,希望能对大家的学习有所帮助。

第一章概率论的基本概念1. 掷一颗骰子,问出现奇数的概率是多少?答:骰子一共有6个面,其中3个面是奇数(1、3、5),所以出现奇数的概率是3/6=1/2。

2. 从一副扑克牌中随机抽取一张牌,问抽到红心的概率是多少?答:一副扑克牌有52张牌,其中有13张红心牌,所以抽到红心的概率是13/52=1/4。

第二章随机变量及其分布1. 设随机变量X的概率密度函数为f(x)=kx,其中0<x<1,求k的值。

答:由概率密度函数的性质可知,对于0<x<1,有∫f(x)dx=∫kxdx=1,解得k=2。

2. 设随机变量X的概率密度函数为f(x)=ce^(-x),其中x>0,求c的值。

答:由概率密度函数的性质可知,对于x>0,有∫f(x)dx=∫ce^(-x)dx=1,解得c=1。

第三章多维随机变量及其分布1. 设随机变量(X,Y)服从二维正态分布,其概率密度函数为f(x,y)=1/(2πσ1σ2√(1-ρ^2))e^(-(1/(2(1-ρ^2)))(x^2/σ1^2-2ρxy/(σ1σ2)+y^2/σ2^2)),其中-∞<x,y<∞,求常数σ1、σ2和相关系数ρ之间的关系。

答:由二维正态分布的性质可知,对于-∞<x,y<∞,有∫∫f(x,y)dxdy=1,解得σ1σ2√(1-ρ^2)=1。

2. 设随机变量(X,Y)服从二维均匀分布,其概率密度函数为f(x,y)=1/(b-a)(d-c),其中a<x<b,c<y<d,求常数a、b、c、d之间的关系。

概率论与数理统计第四章随机变量的数字特征习题解答

概率论与数理统计第四章随机变量的数字特征习题解答

习题4-11、设随机变量X 服从参数为p 的01-分布,求()E X 。

解:据题意知,X 的分布律为根据期望的定义,得()0(1)1E X p p p =⋅-+⋅=。

2、袋中有n 张卡片,记有号码1,2,,n 。

现从中有放回地抽出k 张卡片,求号码之和X 的数学期望。

解:设i X 表示第i 次取到的卡片的号码(1,2,,i k =),则12k X X X X =+++。

因为是有放回地抽出卡片,所以i X 之间相互独立。

所以第i 次抽到号码为m 的卡片的概率为1{},(1,2,,;1,2,,)i P X m m n i k n====,即i X 的分布律为1{},(1,2,,)i P X m m n n===, 所以11()(12)2i n E X n n+=+++=, 所以,1(1)()()2k k n E X E X X +=++=。

注:求复杂随机变量期望时可先引入若干个简单的随机变量,再根据期望的性质即可。

3、某产品的次品率为0.1,检验员每天检验4次。

每次随机地抽取10件产品进行检验,如果发现其中的次品数多于1,就去调整设备,以X 表示一天中调整设备的次数,试求()E X 。

(设诸产品是否是次品是相互独立的。

)解:令Y 表示一次抽检的10件产品的次品数,据题意知,~(10,0.1)Y b ,00101191010{1}1{0}{1}10.10.90.10.90.2639p P Y P Y P Y C C =>=-=-==--=,因此,~(4,0.2639)X b ,从而()40.2639 1.0556E X np ==⋅=。

注:此题必须先求出一天中调整设备的概率。

即p 值。

4、据统计,一位60岁的健康(一般体检未发生病症)者,在5年内仍然活着或自杀身亡的概率为p (01p <<,p 为已知),在五年内非自杀身亡的概率为1p -。

保险公司开办5年人寿保险,条件是参保者需缴纳人寿保费a 元(a 已知),若5年内非自杀死亡,保险公司赔偿b 元(b a >)。

随机变量的数字特征

随机变量的数字特征

随机变量的数字特征随机变量是概率论中的重要概念,描述了在一定概率分布下可能取得的不同取值。

在实际问题中,我们常常需要对随机变量的数字特征进行分析,以揭示其分布规律和潜在规律。

本文将介绍随机变量的数字特征及其应用。

1. 期望值期望值是描述随机变量平均取值的一个重要数字特征。

对于离散型随机变量,期望值的计算公式为:$$ E[X] = \\sum_{i} x_i \\cdot P(X = x_i) $$其中,X表示随机变量,x i为X可能取得的值,P(X=x i)为X取值为x i的概率。

对于连续型随机变量,期望值的计算公式为:$$ E[X] = \\int_{-\\infty}^{\\infty} x \\cdot f(x) dx $$其中,f(x)为X的概率密度函数。

2. 方差方差是描述随机变量取值分散程度的数字特征。

对于离散型随机变量,方差的计算公式为:Var[X]=E[(X−E[X])2]对应连续型随机变量的方差计算公式为:$$ Var[X] = \\int_{-\\infty}^{\\infty} (x - E[X])^2 \\cdot f(x) dx $$3. 协方差协方差描述了两个随机变量之间的线性相关性。

对于两个随机变量X和Y,其协方差的计算公式为:Cov[X,Y]=E[(X−E[X])(Y−E[Y])]协方差的正负值表示了两个随机变量的相关性程度,当协方差为正时,表示两个随机变量正相关,为负时表示负相关。

4. 相关系数相关系数是协方差标准化后的结果,用以衡量两个随机变量之间的线性相关性强弱。

相关系数的计算公式为:$$ \\rho_{X,Y} = \\frac{Cov[X,Y]}{\\sigma_X \\cdot \\sigma_Y} $$其中,$\\sigma_X$和$\\sigma_Y$分别为X和Y的标准差。

相关系数的取值范围在-1到1之间,绝对值越接近1表示相关性越强。

5. 大数定律大数定律是概率论中的一个重要定理,指出在独立重复试验中,随着试验次数的增多,样本平均值将趋近于总体期望值。

《概率论与数理统计答案》第三章

《概率论与数理统计答案》第三章
第三章
习题参考答案与提示
第三章 随机变量的数字特征习题参考答案与提示
1.设随机变量 X 的概率分布为
X
-3 0.1
0 0.2
1 0.3
5 0.4
pk 试求 EX 。
答案与提示: EX = 2 。 2.已知随机变量 X 的分布列为
X
0 0.1
1
p
2 0.4
3 0.2
Pk
答案与提示:(1)由归一性, p = 0.3 ; (2) EX = 1.7 ; (3) DX = 0.81 3.已知随机变量 X 的分布列为


D X −Y = 1−
26.设灯管使用寿命 X 服从指数分布,已知其平均使用寿命为 3000 小时,现有
—5—

若一周 5 个工作日里无故障可获利 10 万元,发生一次故障仍获利 5 万元,发生二次2π网

ww w
3 ; 2
.k
hd a
EZ =
1 , DZ = 3 ; 2
w. c
解:(1)由数学期望、方差的性质及相关系数的定义( ρ XY =
第三章
习题参考答案与提示
求:(1) Y = 2 X 的数学期望;(2) Y = e −2 X 的数学期望。 答案与提示:(1) EY = E 2 X = 2 ;(2) EY = Ee −2 X = 1/ 3 。
1 11.试证明事件在一次试验中发生的次数的方差不超过 。 4
答案与提示:事件在 n 次独立重复试验中发生的次数服从参数为 n , p 的二项分 布 B ( n, p ) ,当然在一次试验中发生的次数应服从 B (1, p ) ,即为(0-1)分布。
f ( x) = 1 − x− β e 2α

(完整版)概率论第三章第四章习题及答案

(完整版)概率论第三章第四章习题及答案
返回主目录
第三章 多维随机变量及其分布
n
解:(1)P{X n} P{X n,Y m}
m0
n e14 (7.14)m (6.86)nm
m0
m!(n m)!
e14 n
n! (7.14)m (6.86)nm
n! m0 m!(n m)!
e14 (7.14 6.86)n 14n e14 , n 0,1,2,
返回主目录
第三章 多维随机变量及其分布
(3)P{Y m | X 20} C2m0 0.51m0.4920m , m 0,1,2, ,20.
P{Y m | X n} Cnm 0.51m0.49nm , m 0,1,2, , n
返回主目录
第三章 多维随机变量及其分布
11.设随机变量(X,Y)的联合概率密度为
0, FU (u) un ,
1,
u 0, 0 u 1,
u 1.
返回主目录
第四章 随机变量的数字特征
U 的密度函数为
nun1, x (0,1),
fU (u)
0,
其他.
0, FU (u) un ,
1,
u 0, 0 u 1,
u 1.
E(U )
ufU (u)du
e14 (7.14)m (6.86)nm m!(n m)!
e
1414n n!
Cnm
7.14 14
m
6.86 14
nm
Cnm 0.51m0.49nm , m 0,1,2, , n
P{X n,Y m} e14 (7.14)m (6.86)nm , m!(n m)!
m 0,1,2, , n; n 0,1,2, .
cxey ,0 x y ,

随机变量的数字特征

随机变量的数字特征

随机变量的数字特征
随机变量的数字特征包括均值、方差、标准差、偏度和峰度等。

其中,均值是衡量随机变量中心位置的指标,是所有取值的平均数;方差是随机变量离均值的距离平方的平均数;标准差是方差的算术平方根,也是随机变量离均值距离的度量,具有与随机变量相同的量纲;偏度是随机变量概率分布的偏斜程度,为其分布的非对称程度的度量;峰度则是随机变量概率分布的尖锐程度,衡量随机变量的概率分布在平均值附近的峰值高低。

可以通过计算公式来求解以上数字特征,例如均值的计算公式为所有取值的总和除以取值的数量;方差的计算公式为将每个取值与均值的差值平方后的总和除
以取值的数量;标准差的计算公式则是方差的算术平方根;偏度的计算公式为三阶中心矩与标准差的比值;峰度的计算公式为四阶中心矩与标准差的四次幂的比值。

了解随机变量的数字特征有助于描绘随机变量的特征与规律,进而分析和预测其行为。

同时,对于特定应用领域,也需要针对性地选择数字特征进行分析,以
更好地满足应用的需求。

天津理工大学概率论与数理统计第四章习题答案详解.doc

天津理工大学概率论与数理统计第四章习题答案详解.doc

第 4 章随机变量的数字特征一、填空题1、设X为北方人的身高,Y 为南方人的身高,则“北方人比南方人高”相当于E( X ) E(Y)2、设X为今年任一时刻天津的气温,Y 为今年任一时刻北京的气温,则今年天津的气温变化比北京的大,相当于D(X) D(Y) .3、已知随机变量X 服从二项分布,且E(X ) 2.4, D(X) 1.44 ,则二项分布的参数n= 6 , p= .4、已知X服从(x ) 1 e x2 2x 1,则 . E(X)=1 , D(X)=1/2.5、设X的分布律为X 1 0 1 2P 1 1 1 1 8 4 2 8则 E(2X 1) 9/4 .6、设X ,Y相互独立,则协方差cov( X ,Y ) 0 .这时, X ,Y 之间的相关系数XY 0 .7 、若XY是随机变量 (X,Y)的相关系数,则 | XY| 1的充要条件是P Y aX b 1 .8、XY是随机变量 ( X ,Y ) 的相关系数,当XY 0时,X与Y 不相关,当| XY | 1 时,X 与 Y 几乎线性相关 .9、若D(X) 8, D(Y ) 4 ,且X ,Y相互独立,则 D (2X Y ) 36 .10、若a, b为常数,则D (aX b) a2 D ( X ) .11、若X ,Y相互独立,E( X ) 0, E(Y) 2 ,则 E(XY ) 0 .12、若随机变量X 服从[0,2 ]上的均匀分布,则E( X )π.13、若D(X) 25, D(Y ) 36, XY 0.4 ,则 cov( X ,Y ) 12 , D(X Y) 85,D ( X Y ) 37 .14、已知E( X ) 3,D(X) 5,则E(X 2)2 30 .15、若随机变量X 的概率密度为e x x 0,(x)x,则 E(2X ) 20 0E (e 2 X ) 1/3 .二、计算题1、五个零件中有 1 个次品,进行不放回地检查,每次取 1 个,直到查到次品为止。

概率论与数理统计(理工类,第四版)吴赣昌主编课后习题答案第四章

概率论与数理统计(理工类,第四版)吴赣昌主编课后习题答案第四章

第四章随机变量的数字特征4.1 数学期望习题1设随机变量X服从参数为p的0-1分布,求E(X).解答:依题意,X的分布律为由E(X)=∑i=1∞xipi,有E(X)=0⋅(1-p)+1⋅p=p.习题2袋中有n张卡片,记有号码1,2,…,n.现从中有放回抽出k张卡片来,求号码之和X的期望.分析:.解答:设Xi表示第i次取得的号码,则X=∑i=1kXi,且P{Xi=m}=1n,其中m=1,2,⋯,n,i=1,2,⋯,k,故E(Xi)=1n(1+2+⋯+n)=n+12,i=1,2,⋯,k,从而E(X)=∑i=1kE(Xi)=k(n+1)2.习题3某产品的次品率为0.1,检验员每天检验4次. 每次随机地抽取10件产品进行检验,如发现其中的次品数多于1,就去调整设备. 以X表示一天中调整设备的次数,试求E(X)(设诸产品是否为次品是相互独立的).解答:X的可能取值为0,1,2,3,4,且知X∼b(4,p),其中p=P{调整设备}=1-C101×0.1×0.99-0.910≈0.2639,所以E(X)=4×p=4×0.2639=1.0556.习题4据统计,一位60岁的健康(一般体检未发生病症)者,在5年之内仍然活着和自杀死亡的概率为p(0<p<1,p为已知),在5年之内非自杀死亡的概率为1-p,保险公司开办5年人寿保险,条件是参加者需交纳人寿保险费a元(a已知),若5年内非自杀死亡,公司赔偿b元(b>a),应如何确定b才能使公司可期望获益,若有m人参加保险,公司可期望从中收益多少?解答:令X=“从一个参保人身上所得的收益”,由X的概率分布为求E(X),E(X2),E(3X2+5).解答:E(X)=-2×0.4+2×0.3=-0.2,E(X2)=(-2)2×0.4+22×0.3=2.8,E(3X2+5)=[3×(-2)2+5]×0.4+(3×02+5)×0.3+(3×22+5)×0.3=13.4.习题7设连续型随机变量X的概率密度为f(x)={kxa,0<x<10,其它,其中k,a>0,又已知E(X)=0.75,求k,a的值.解答:\because∫-∞+∞f(x)dx=1,∫-∞+∞xf(x)dx=0.75,∴∫01kxadx=1,∫01x⋅kxadx=0.75,即ka+1xa+1∣01=1,ka+2xa+2∣01=0.75,即{ka+1=1ka+2=0.75,∴k=3,a=2.习题8设随机变量X的概率密度为f(x)={1-∣1-x∣,0<x<20,其它,求E(X).解答:f(x)={x,0<x<12-x,1≤x<20,其它,所以E(X)=1×0.4+2×0.2+3×0.4=2.0,E(Y)=-1×0.3+0×0.4+1×0.3=0.(2)可以利用X,Y的联合分布先求出Z的分布律,然后求E(Z),也可以利用定理直接求E(Z),下面采取直接求法.E(Z)=E(YX)=∑i∑jyjxipij=(-1×0.2+1×0.1)+(-12×0.1+12×0.1)+(-13×0+13×0.1)=-115.(3)E(Z)=E[(X-Y)2]=∑i∑j(xi-yj)2pij=(1-(-1))2×0.2+(1-0)2×0.1+(1-1)2×0.1+32×0.1+22×0.0+12×0.1+42×0.0+32×0.3+22×0.1=5.也可以利用期望的性质求E(Z),得E[(X-Y)2]=E(X2-2XY+Y2)=E(X2)-2E(XY)+E(Y2)=(12×0.4+22×0.2+32×0.4)-2[-1×0.2+1×0.1+(-2)×0.1+2×0.1+(-3)×0.0+3×0.1]+(-1)2×0.3+12×0.3=5.习题12设(X,Y)的概率密度为f(x,y)={12y2,0≤y≤x≤10,其它,求E(X),E(Y),E(XY),E(X2+Y2).解答:如右图所示.E(X)=∫-∞+∞∫-∞+∞xf(x,y)dxdy=∫01dx∫0xx⋅12y2dy=45,E(Y)=∫-∞+∞∫-∞+∞yf(x,y)dxdy=∫01dx∫0xy⋅12y2dy=35,E(XY)=∫-∞+∞∫-∞+∞xyf(x,y)dxdy=∫01dx∫0xxy⋅12y2dy=12,E(X2+Y2)=∫-∞+∞∫-∞+∞(x2+y2)f(x,y)dxdy=∫01dx∫0x(x2+y2)⋅12y2dy=23+615=1615.习题13设X和Y相互独立,概率密度分别为ϕ1(x)={2x,0≤x≤10,其它,ϕ2(y)={e-(y-5),y>50,其它,求E(XY).解答:解法一由独立性.E(XY)=E(X)⋅E(Y)=∫01x⋅2xdx∫0+∞ye-(y-5)dy=23×6=4.解法二令z=y-5,则E(XY)=E(X)⋅E(Y)=∫01x⋅2xdx⋅E(z+5)=23×(1+5)=4.4.2 方差习题1设随机变量X服从泊松分布,且P(X=1)=P(X=2),求E(X),D(X).解答:由题设知,X的分布律为P{X=k}=λkk!e-λ(λ>0)由P{X=1}=P{X=2},得λ11!e-λ=λ22!e-λ,即λ=0(舍去),λ=2.所以E(X)=2,D(X)=2.习题2下列命题中错误的是().(A)若X∼p(λ),则E(X)=D(X)=λ;(B)若X服从参数为λ的指数分布,则E(X)=D(X)=1λ;(C)若X∼b(1,θ),则E(X)=θ,D(X)=θ(1-θ);(D)若X服从区间[a,b]上的均匀分布,则E(X2)=a2+ab+b23.解答:应选(B).E(X)=1λ,D(X)=1λ2.习题3设X1,X2,⋯,Xn是相互独立的随机变量,且都服从正态分布N(μ,σ2)(σ>0),则ξ¯=1n∑i=1nξi服从的分布是¯.解答:由多维随机变量函数的分布知:有限个相互独立的正态随机变量的线性组合仍然服从正态分布,且E(X¯)=μ,D(X¯)=σ2n.习题4若Xi∼N(μi,σi2)(i=1,2,⋯,n),且X1,X2,⋯,Xn相互独立,则Y=∑i=1n(aiXi+bi)服从的分布是 .解答:应填N(∑i=1n(aiμi+bi),∑i=1nai2σi2).由多维随机变量函数的分布知:有限个相互独立的正态随机变量的线性组合仍然服从正态分布,且E(Y)=∑i=1n(aiμi+bi),D(Y)=∑i=1nai2σi2.习题5设随机变量X服从泊松分布,且3P{X=1}+2P{X=2}=4P{X=0},求X的期望与方差.解答:试问哪家工厂生产的灯泡质量较好?解答:哪家工厂的灯泡寿命期望值大,哪家的灯泡质量就好.由期望的定义有E(X)=900×0.1+1000×0.8+1100×0.1=1000,E(Y)=950×0.3+1000×0.4+1050×0.3=1000.今两厂灯泡的期望值相等:E(X)=E(Y)=1000,即甲,乙两厂的生产水平相当. 这就需要进一步考察哪家工厂灯泡的质量比较稳定,即看哪家工厂的灯泡寿命取值更集中一些,这就需要比较其方差.方差小的,寿命值较稳定,灯泡质量较好,则方差的定义式得D(X)=(900-1000)2×0.1+(1000-1000)2×0.8+(1100-1000)2×0.1=2200,D(Y)=(950-1000)2×0.3+(1000-1000)2×0.4+(1050-1000)2×0.3=1500.因D(X)>D(Y),故乙厂生产的灯泡质量较甲厂稳定.习题7已知X∼b(n,p),且E(X)=3,D(X)=2,试求X的全部可能取值,并计算P{X≤8}.解答:\becauseE(X)=np,D(X)=np(1-p),∴{np=3np(1-p)=2,即{n=9p=13,∴X的取值为:0,1,2,⋯,9,P{X≤8}=1-P{X=9}=1-(13)9.习题8设X∼N(1,2),Y服从参数为3的(泊松)分布,且X与Y独立,求D(XY).解答:\becauseD(XY)=E(XY)2-E2(XY)=E(X2Y2)-E2(X)2(Y),又\becauseE(X2Y2)=∫-∞+∞∫-∞+∞x2y2f(x,y)dxdy=∫-∞+∞x2fX(x)dx∫-∞+∞y2fY(y)dy =E(X2)E(Y2),∴D(XY)=E(X2)E(Y2)-E2(X)E2(Y)=[D(X)+E2(X)][D(Y)+E2(Y)]-E2(X)E2(Y)=D(X)D(Y)+D(X)E2(Y)+D(Y)E2(X)=2×3+2×32+3×12=27.习题9设随机变量X1,X2,X3,X4相互独立,且有E(Xi)=i,D(Xi)=5-i,i=1,2,3,4,又设Y=2X1-X2+3X3-12X4,求E(Y),D(Y).解答:E(Y)=E(2X1-X2+3X3-12X4)=2E(X1)-E(X2)+3E(X3)-12E(X4)=2×1-2+3×3-12×4=7,D(Y)=4D(X1)+D(X2)+9D(X3)+14D(X4)=4×4+3+9×2+14×1=37.25.习题105家商店联营,它们每两周售出的某种农产品的数量(以kg计)分别为X1,X2,X3,X4,X5.已知X1∼N(200,225),X2∼N(240,240),X3∼N(180,225),X4∼N(260,265),X5∼N(320,270),X1,X2,X3,X4,X5相互独立.(1)求5家商店两周的总销售量的均值和方差;(2)商店每隔两周进货一次,为了使新的供货到达前商店不会脱销的概率大于0.99,问商店的仓库应至少储存该产品多少千克?解答:(1)设总销售量为X,由题设条件知X=X1+X2+X3+X4+X5,于是E(X)=∑i=15E(Xi)=200+240+180+260+320=1200,D(X)=∑i=15D(X i)=225+240+225+265+270=1225.(2)设商店的仓库应至少储存y千克该产品,为使P{X≤y}>0.99,求y.由(1)易知,X∼N(1200,1225),P{X≤y}=P{X-≤y-=Φ(y-)>0.99.查标准正态分布表得y-=2.33,y=2.33×1225+1200≈1282(kg).习题11设随机变量X1,X2,⋯,Xn相互独立,且都服从数学期望为1的指数分布,求Z=min{X1,X2,⋯,Xn}的数学期望和方差.解答:Xi(i=1,2,⋯,n)的分布函数为F(x)={1-e-x,x>00,其它,Z=min{X1,X2,⋯,Xn}的分布函数为FZ(z)=1-[1-F(z)]n={1-e-nz,z>00,其它,于是E(Z)=∫0∞zne-nzdz=-ze-nz∣0∞+e-nzdz=1n,而E(Z2)=∫0∞z2ne-nzdz=2n2,于是D(Z)=E(Z2)-(E(Z))2=1n2.4.3 协方差与相关系数习题1设(X,Y)服从二维正态分布,则下列条件中不是X,Y相互独立的充分必要条件是().(A)X,Y不相关;(B)E(XY)=E(X)E(Y);(C)cov(X,Y)=0;(D)E(X)=E(Y)=0.解答:应选(D)。

第4章随机变量的数字特征

第4章随机变量的数字特征
1. 袋中有 20 个同样的球,其中 12 个标上数字 1,8 个标上数字 2,现在从袋中任取一 球并记住球上的数字后再放回,这样一共进行了 4 次,记 X 为数字 1 出现的次数,则 E(X) = ( ) . (A) 1.6 (B) 0.4 (C) 2.4 (D) 9.6
⎧ax + b, 0 ≤ x ≤ 1 2. 设随机变量 X 的密度函数 f ( x ) = ⎨ ,且 E ( X ) = 7 / 12 ,则( 其它 ⎩ 0,
9. 二维随机向量 ( X , Y ) 满足 E ( XY ) = E ( X ) E (Y ) ,则( (A) D ( XY ) = D ( X ) D (Y ) (C) X 与 Y 独立
) .
(B) D ( X + Y ) = D ( X − Y ) (D) X 与 Y 不独立
) .
10. 设 X ~ N(3,2),Y ~ U(2,8) ,且 X 与 Y 相 5 (C) 11 (D) 1
) .
(A) -1 (B) 4 (C) 2 (D) 7 . 4. 如果随机变量 X 存在二阶原点矩,则下列表达式正确的是( ) (A) E ( X 2 ) < [ E ( X )] 2 (C) E ( X 2 ) ≥ E ( X ) (B) E ( X 2 ) ≥ [ E ( X )] 2 (D) E ( X 2 ) < E ( X )
Y=
1 n ∑ X i ,则( n i =1
(A) Cov( X 1 , Y ) =
) .
σ2
n
(B) Cov( X 1 , Y ) = σ 2
(C) D( X 1 + Y ) =
n+2 2 σ n
(D) D( X 1 − Y ) =

概率论与数理统计习题册 第四章 答案

概率论与数理统计习题册 第四章  答案

× (−1) j+1 3 j j
= ∞ (−1) j+1 × 2 = ∞ 2 = +∞
j =1
j j=1 j

∑ 所以级数 x j p j 非绝对收敛,故由定义可知 X 的数学期望不存在。 j =1
四、有 3 只球、4 只盒子,盒子的编号为 1,2,3,4.将球逐个独立地、随机地放入 4 只盒
子中去.以 X 表示其中至少有一只球的盒子的最小编码(例如, X = 3 表示第 1 号,第 2 号盒子
六、设随机变量 ( X ,Y ) 的分布律为 P( X = 1,Y = 10) = P( X = 2,Y = 5) = 0.5 ,试 求 ρ XY .
例 22)
************************************************************************
十二、一微波线路有两个中间站,其中任何一个出现故障都要引起线路故障.假
设两个中间站无故障的时间都服从指数分布,平均无故障工作的时间相应为1和
0.5(千小时),试求线路无故障工作时间 X 的数学期望.
30 30
30 30
P{Y = 4} = C41 = 4 , P{Y = 9} = C91 = 9
30 30
30 30
即 Y 的分布律为
Y
2
3
4
9
pk
2 30
15 30
4 30
9 30
所以 E(Y ) = 2 × 2 + 3× 15 + 4 × 4 + 9 × 9 = 73 . 30 30 30 30 15
f
(x)
=
⎧⎪⎨θ1

概率论习题

概率论习题

第四章、随机变量的数字特征检测题一、单项选择题,在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在表格中。

错选、多选或未选均无分。

1.设离散随机变量X 的分布列为,则D (X )=( )A.0.21B.0.6C.0.84D.1.22.设随机变量X ~B (30,61),则E (X )=( ) A.61B. 65C. 625 D.53.已知随机变量X 和Y 相互独立,且它们分别在区间[-1,3]和[2,4]上服从均匀分布,则E(XY)=( ) A. 3B. 6C. 10D. 124.设二维随机向量(X,Y )~N(μ1,μ2,ρσσ,,2221),则下列结论中错误..的是( ) A.X~N (21,1σμ),Y~N (222,σμ)B.X 与Y 相互独立的充分必要条件是ρ=0C.E (X+Y )=21μ+μD.D (X+Y )=2221σ+σ5.设随机变量X ,Y 都服从区间[0,1]上的均匀分布,则E (X+Y )=( ) A.61B.21 C.1D.26.设X 为随机变量,其方差存在,c 为任意非零常数,则下列等式中正确的是( )A.D(X+c)=D(X)B.D(X+c)=D(X)+cC.D(X-c)=D(X)-cD.D(cX)=cD(X)7.设E (X )=E (Y )=2,Cov(X,Y)=,61-则E (XY )=( ) A.61-B.623C.4D.625 8.设随机变量X ~U(0,2),又设Y=e -2X ,则E(Y)=( ). A. 21(1-e -4) B.41(1-e -4) C.41D. -41e -4 9.设(X ,Y )为二维连续随机向量,则X 与Y 不相关...的充分必要条件是( ) A .X 与Y 相互独立B .E (X +Y )=E (X )+E (Y )C .E (XY )=E (X )E (Y )D .(X ,Y )~N (μ1,μ2,21σ,22σ,0)10.设二维随机向量(X ,Y )~N (1,1,4,9,21),则Cov (X ,Y )=( ) A .21 B .3 C .18D .3611.已知二维随机向量(X ,Y )的联合分布列为( )则E (X )= A .0.6 B .0.9 C .1D .1.612.设随机变量X 与Y 相互独立,且它们分别在区间[-1,3]和[2,4]上服从均匀分布,则E (XY )=( )A.1B.2C.3D.413.设随机变量X 服从参数为2的泊松分布,则下列结论中正确的是( ) A.E (X )=0.5,D (X )=0.5 B.E (X )=0.5,D (X )=0.25 C.E (X )=2,D (X )=4D.E (X )=2,D (X )=214.设随机变量X 与Y 相互独立,且X ~N (1,4),Y ~N (0,1),令Z=X -Y ,则E (Z 2)=( )A.1B.4C.5D.615.已知D (X )=4,D (Y )=25,Cov (X ,Y )=4,则ρXY =()A.0.004B.0.04C.0.4D.416.设随机变量X~N (1,22),Y~N (1,2),已知X 与Y 相互独立,则3X-2Y 的方差为( ) A .8 B .16 C .28D .44二、填空题,不写解答过程,将正确的答案写在每小题的空格内。

第四章随机变量的数字特征(有答案)

第四章随机变量的数字特征(有答案)

第四章随机变量的数字特征1. (2016)设随机变量X 的概率密度函数2,01(),0,x x f x <<⎧=⎨⎩其他 则2()E X =0.5 .2. (2016)设随机变量X 与Y 满足()1,()2,()4,()9,0.5XY E X E Y D X D Y ρ=====, 则()E XY = 5 .3. (2016)设二维随机变量(,)X Y 的联合分布律为(1) 求,X Y 的边缘分布律; (2) 求,X Y 的相关系数XY ρ; (3) 判断,X Y 是否相关、是否独立? 解答: (1)X 与Y分分(2)2()()3E X E Y ==, 4()()9D X D Y ==, 2()9E XY =, 因此 故 1.2XY ρ===- …...................................4分(3)X 与Y 相关, 不独立. ...............................................................................2分4.(2016)设A 与B 是两个随机事件, 随机变量1,,0,A X A ⎧=⎨⎩出现不出现 1,,0,B Y B ⎧=⎨⎩出现不出现证明: 随机变量X 与Y 不相关的充分必要条件是A 与B 相互独立.证明: X故 ()()E X P A =, 同理, ()()E Y P B =.XY故 ()()E XY P AB =. ...........................................................................................3分XY ρ==因此 X 与Y 不相关0XY ρ⇔=()()()E XY E X E Y ⇔=()()()P AB P A P B ⇔= 即 X 与Y 不相关的充分必要条件是A 与B 相互独立. ..................................2分 5. (2015)设随机变量X 服从参数为2的泊松分布, 则期望2[(1)]E X +=11 . 6. (2015)设随机变量X 服从正态分布2(1,3)N , Y 服从正态分布2(0,4)N , X 与Y的相关系数12XY ρ=-, 设32X YZ =+, 求:(1) Z 数学期望()E Z 及方差()D Z ;(2) X 与Z 的协方差cov(,)X Z 及相关系数XZ ρ. 解答:(1)111()()()323E Z E X E Y =+=;()()32X YD Z D =+1111()()29432XY D X D Y ρ=++⋅⋅2211111342()34394322=⋅+⋅+⋅⋅⋅-⋅⋅=. …...................................…6分(2)cov(,)cov(,)32X YX Z X =+ 11cov(,)cov(,)32X X X Y =+11()32XY D X ρ=+21113(0322=⋅+-=. 故 0XZ ρ=. ............................................................................................……...4分 7. (2014)对球的半径做近似测量, 设测量值均匀分布在区间(2,3)上, 则球的体积的数学期望为653π . 8. (2014)设随机变量X 与Y 的方差均为4, 相关系数12XY ρ=, 2Z X Y =+, 则协方差cov(,)X Z = 8 .9. (2014)设X ,Y 为随机变量, 下列选项中, 不是()()()E XY E X E Y =的充要条件的是 D . (A) cov(,)0X Y = (B) ()D X Y DX DY -=+ (C) X 与Y 不相关(D) X 与Y 独立10. (2014)设连续型随机变量X 的概率密度函数为,01()0,Ax x f x <<⎧=⎨⎩,其他. (1)求常数A ;(2)设随机变量2Y X =, 求Y 的概率密度函数()Y f y ;(3)设随机变量11,,210,.2X Z X ⎧≥⎪⎪=⎨⎪<⎪⎩, 求()E Z .解答:(1)+-()d 1f x x ∞∞=⎰,即+d 1Ax x ∞-∞=⎰,得2A =. ……………………3分(2)法1:2y x =的反函数为x =(01,()0,X XYf f yf y⎧+<<⎪=⎨⎪⎩其它.0,01,0,y⎧+<<⎪=⎨⎪⎩其它.1,01,0,y<<⎧=⎨⎩其它.…………………4分法2:2(){}{}YF y P Y y P X y=≤=≤当0y≤时:()0YF y=,当01y<<时:(){dYF y P X x x y=≤≤==⎰,当1y≥时:()1YF y=.因此1,01,()()0,Y Yyf y F y<<⎧'==⎨⎩其它.……………………………………4分(3)11213{1}{}2d24P Z P X x x==≥==⎰,故3()4E Z=. ………………………3分11.(2014)设某厂生产的某种设备的寿命(单位: 年)X服从指数分布, 其概率密度函数为141e, 0,()40,0.xxf xx-⎧>⎪=⎨⎪≤⎩工厂规定: 若出售的设备在一年内损坏, 则可予以调换. 工厂售出一台设备后, 若在一年内未损坏, 厂方可获利100元, 若在一年内损坏, 厂方则亏损200元.试求厂方售出一台设备的平均利润.解答:设Y为厂方售出一台设备的利润,有114411{1}e d1e4xP X x--<==-⎰,……………………3分则Y平均利润111444()100e200(1e)300e200E Y---=--=-. (3)分。

概率论与数理统计第四章习题及答案

概率论与数理统计第四章习题及答案

概率论与数理统计习题 第四章 随机变量的数字特征习题4-1 某产品的次品率为,检验员每天检验 4次,每次随机地取 10件产品进行检验,如发现其中的次品数多于1个,就去调整设备,以 X 表示一天中调整设备的次数,试求E(X)(设诸产品是否为次品是相互独立的)解:设表示一次抽检的 10件产品的次品数为1 —=.从而E ( X )=np =4X =的数学期望不存在. 解:3j—)不绝对收敛,由数学期望的定义知, X 的数学期望不存在.J求 E(X), E(X 2), E(3X 25).解 E (X )=(-2) +0 +2习题4-3 设随机变量 X 的分布律为P =P (调整设备)=P ( E >1)=1 — P ( E W 1)= 1 -[P ( E =0)+ P ( E =1)]查二项分布表因此X 表示一天调整设备的次数时4P ( X =1)= XX =, P ( X =2)=1 4P ( X =3)= XX =, P ( X =4)=X 〜巳4,. 4XX =2 4XX =P ( X =0)=XX习题4-2 设随机变量 X 的分布律为P X23j ,1,2,,说明X由于.13j (1)j 勺一P(X j(1)j1-)-,而级数2 j 1 j• 1 3j- 1)j1- P(X ( 1)j由关于随机变量函数的数学期望的定理,知E(X2)=(-2) 2小2 小2+0 +2E(3X2+5)=[32 2 2(-2) +5] +[3 0 +5] +[3 2+5]如利用数学期望的性质, 则有E(3X2+5)=3E(X2)+5=3 +5=E(X)2 E(X ) E(3X22 0.4 020.3 0.30.2,习题求(1)Y22(2) 0.4 225) 3E(X ) 54-4 设随机变量2X; (2)Y e 2X0.3 2.8,13.4X的概率密度为f(X)的数学期望.(I)E( Y) E(2X) 2xf(x)dx2( 0dx2( xe 0 e x dx) 2e(II )E(Y) E(e 2X) 2x x .e e dx3x dx习题4-5 设(X,Y)的概率密度为f(x,y)求 E(X), E(Y), E(XY), E(X2 Y2).解各数学期望均可按照E[g(X, Y)]在有限区域G:{(x,y)|0E(X)E(Y) 0,xe3xx 0,x 0dx)12y2, 0,y x 1, 其它g(x, y) f (x, y)dxdy 计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率论与数理统计练习题系 专业 班 姓名 学号第四章 随机变量的数字特征(一)一、选择题:1.设随机变量X ,且()E X 存在,则()E X 是 [ B ] (A )X 的函数 (B )确定常数 (C )随机变量 (D )x 的函数2.设X 的概率密度为910()900xex f x x -⎧≥⎪=⎨⎪<⎩,则1()9E X -= [ C ] (A )919x x e dx +∞-∞⋅⎰ (B )919xx e dx +∞-∞-⋅⎰ (C )1- (D )13.设ξ是随机变量,()E ξ存在,若23ξη-=,则()E η= [ D ](A )()E ξ (B )()3E ξ (C )()2E ξ- (D )()233E ξ- 二、填空题:1.设随机变量X 的可能取值为0,1,2,相应的概率分布为0.6 , 0.3 , .01,则()E X = 0.52.设X为正态分布的随机变量,概率密度为2(1)8()x f x +-=,则2(21)E X -= 93.设随机变量X 的概率分布,则2(3)E X X += 116/154.设随机变量X 的密度函数为||1()()2x f x e x -=-∞<<+∞,则()E X = 0 三、计算题:1.袋中有5个乒乓球,编号为1,2,3,4,5,从中任取3个,以X 表示取出的3个球中最大编号,求()E X解:X 的可能取值为3,4,53511(3)10P X C ===, 23353(4)10C P X C === 24356(5)10C P X C ===133()345 4.510105E X =⨯+⨯+⨯=2.设随机变量X 的密度函数为2(1)01()0x x f x -≤≤⎧=⎨⎩其它,求()E X解:11()2(1)3E X x x dx =⋅-=⎰3.设随机变量2~(,)X N μσ,求(||)E X μ- 解:22()22|||x y x x dx y y edy μσμμσ---∞∞--∞-∞--=⎰令22y yedy ∞-==4.设随机变量X 的密度函数为0()0xe xf x x -⎧≥=⎨<⎩,试求下列随机变量的数学期望。

(1) 21X Y e -= (2)2max{,2}Y X = (3)3min{,2}Y X = 解:(1)2013x x E Y e e dx +∞--=⋅=⎰() (2)2202()2xx E Y e dx xe dx +∞--=+⎰⎰2222232ee e ---=-+=+(3)2302()2x x E Y xe dx e dx +∞--=+⎰⎰2221321e e e ---=-+=-概率论与数理统计练习题系 专业 班 姓名 学号第四章 随机变量的数字特征(二)一、选择题:1.已知()1,()3E X D X =-=,则2[3(2)]E X -= [ B ](A )9 (B )6 (C )30 (D )362.设~(,)X B n p ,则有 [ D ] (A )(21)2E X np -= (B )(21)4(1)1D X np p -=-+ (C )(21)41E X np +=+ (D )(21)4(1)D X np p -=-3.设ξ服从参数为λ的泊松分布,23ηξ=-,则 [ D ] (A )()23()23E D ηληλ=-=- (B )()2()2E D ηληλ==(C )()23()43E D ηληλ=-=- (D )()23()4E D ηληλ=-= 二、填空题:1.设随机变量X 的可能取值为0,1,2,相应的概率分布为0.6 , 0.3 , .01,则 ()D X = 0.45 2.设随机变量X 的密度函数为||1()()2x f x e x -=-∞<<+∞,则()D X = 2 3.随机变量X 服从区间[0,2]上的均匀分布,则2()[()]D X E X = 1/34.设正态分布Y 2(3)y--,则()D X = 1/2三、计算题:1.设随机变量X 的可能取值为1,2,3,相应的概率分布为0.3 , 0.5 , .02,求:21Y X =-的期望与方差;解:()10.320.530.2 1.9E X =⨯+⨯+⨯=222()()()10.340.590.2(1.9)0.49D X E X EX =-=⨯+⨯+⨯-=()2()1 2.8E Y E X =-= ()4() 1.96D Y D X ==2.设随机变量~(0,1)X N ,试求||E x 、||D X 、3()E X 与4()E X解:22|||x E X x ed x -+∞-∞=⎰222x d x-+∞=⎰= 220|x -+∞==222||(||)(||)()D X E X E x E X =-=2222()x E X dx -+∞-∞=⎰22x -+∞-∞=-⎰2222]x x xeedx --+∞+∞-∞-∞=-⎰ = 1所以 2||1D X =-π2332()x E X dx ∞-=⎰= 02442()x E X dx ∞-=⎰232x ∞--∞=-⎰2223x d x∞-=⎰= 33.设随机变量X 的分布密度为02()240axx f x bx c x <<⎧⎪=+≤<⎨⎪⎩其它,已知3()2,(13)4E X P X =<<=,求:(1)常数A ,B ,C 的值; (2)方差()D X ; (3)随机变量XY e =的期望与方差。

解:(1)2422()()E X x axdx x bx c dx ==⋅++⎰⎰323424022|||332a b c x x x =++856633a b c =++得8566233a b c ++= 3(13)4P X <<=得 353224a b c ++= ()1f x dx +∞-∞=⎰得 2621a b c ++=所以 解得11,, 1.44a b c ==-=242220211(2)()(2)()(2)(1)(2)44D X x f x dx x x dx x x dx +∞-∞=-=-+--⎰⎰⎰23=242202111(3)()()(1)(1)444xx x E Y e f x dx xe dx x e dx e +∞-∞==+-=-⎰⎰⎰2222221()()(())()[(1)]4x D Y E Y E Y e f x dx e +∞-∞=-=--⎰ 222242220211111142424244()|[()][()]x x x x e x e e e =-+---- 422221111164()[()]e e =--- 2221(1)4e e =-概率论与数理统计练习题系 专业 班 姓名 学号第四章 随机变量的数字特征(三)一、选择题:1.对任意两个随机变量X 和Y ,若EY EX XY E ⋅=)(,则 [ B ] (A )()()()D XY D X D Y = (B )()()()D X Y D X D Y +=+ (C )X 与Y 相互独立 (D )X 与Y 不相互独立2.由()()()D X Y D X D Y +=+即可断定 [ A ] (A )X 与Y 不相关 (B )(,)()()X Y F x y F x F y =⋅ (C )X 与Y 相互独立 (D )相关系数1XY ρ=- 二、填空题:1.设维随机变量(,)X Y 服从(0,0,1,1,0)N ,则(32)D X Y -= 13 2.设X 与Y 独立,且6)(=X D ,3)(=Y D ,则(2)D X Y -= 27 三、计算题:1. 已知二维随机变量),(Y X 的分布律如表: 试验证X 与Y 不相关,但X 与Y 不独立。

解:X 的分布律为:X 1- 0 1 P 0.375 0.25 0.375 Y 的分布律为:X 1- 0 1 P 0.375 0.25 0.375103750025103750E X =-⨯+⨯+⨯=()()...103750025103750E Y =-⨯+⨯+⨯=()()...110125*********E X Y =--⨯+-⨯⨯+-⨯⨯()()().().(). 01101250110125++⨯-⨯++⨯⨯().. = 00xy E XY E X E Y ρ=-=()()() 所以X与Y 不相关。

110125P X Y =-=-=(,).≠1103750375P X P Y =-=-=⨯()().. 所以X 与Y 不相互独立。

2.设()25,()36,0.4XY D X D Y ρ===,求:(),()D X Y D X Y +- 解:(,)xy Cov X Y ρ=0.45612=⨯⨯=()()2(,)()85D X Y D X Cov X Y D Y +=++=, ()()2(,)()37D X Y D X Cov X Y D Y -=-+=3.设~(0,4),~(0,4)X N Y U ,且X ,Y 相互独立,求:(),(),(23)E XY D X Y D X Y +-解:()0,()4E X D X ==, 40()22E Y +==,244()123D Y ==,0xy ρ= 0)(=XYE ,416()()()433D X Y D X D Y +=+=+=, (23)4()9()161228D X Y D X D Y -=+=+=4.设X ,Y 相互独立,其密度函数分别为21()0X x x f x ≤≤⎧=⎨⎩0其它,(5)5()05y Y e y f y y --⎧>=⎨≤⎩,求()E XY解:3110022()2|33x E X x xdx =⋅==⎰ (5)555()(1)|6y y E Y y e dy e e y +∞---+∞=⋅=-+=⎰2()()()643E XY E X E Y ==⨯= 5.(1)设随机变量23041605(),()(),(),(),.XY W aX Y E X E Y D X D Y =+====ρ=-。

求常数a 使()E W 为最小,并求()E W 的最小值。

(2)设随机变量(,)X Y 服从二维正态分布,且有22(),()X Y D X D Y =σ=σ,证明当222X Ya σ=σ时,随机变量W X aY =-与V X aY =+相互独立。

解:(1)22269W a X aXY Y =++ 2222226969()[]()()()E W E a X a X Y Y a E X a E X YE Y=++=++ 22269[()(())]()[()(())]a D X E X aE XY D Y E Y =++++ 2424144a a =-+2246364327()[()]a a a =-+=-+当3a =时,()E W 最小,最小值为108。

相关文档
最新文档