高等数学经典求极限方法
高等数学求极限的14种方法

高等数学求极限的14种方法高等数学求极限的14种方法一、极限的定义极限的保号性很重要。
设$x\to x_0$,$limf(x)=A$,则有以下两种情况:1)若$A>0$,则有$\delta>0$,使得当$00$;2)若有$\delta>0$,使得当$0<|x-x_0|<\delta$时,$f(x)\geq 0$,则$A\geq 0$。
极限分为函数极限和数列极限,其中函数极限又分为$x\to\infty$时函数的极限和$x\to x_0$的极限。
要特别注意判定极限是否存在,收敛于$a$的充要条件是它的所有子数列均收敛于$a$。
常用的是其推论,即“一个数列收敛于$a$的充要条件是其奇子列和偶子列都收敛于$a$”。
二、解决极限的方法如下:1.等价无穷小代换。
只能在乘除时候使用。
2.XXX(L'Hospital)法则。
它的使用有严格的使用前提。
首先必须是$x$趋近,而不是$n$趋近,所以面对数列极限时候先要转化成求$x$趋近情况下的极限,数列极限的$n$当然是趋近于正无穷的,不可能是负无穷。
其次,必须是函数的导数要存在,假如只告诉$f(x)$、$g(x)$,而没有告诉是否可导,不可直接用洛必达法则。
另外,必须是“比”或“无穷大比无穷大”,并且注意导数分母不能为$0$。
洛必达法则分为三种情况:1)$\infty/\infty$时,直接用$\infty$;2)$0\cdot\infty$、$\infty-\infty$、$0^0$、$\infty^0$时,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。
通分之后,就能变成(1)中的形式了。
即$f(x)g(x)=\frac{f(x)}{g(x)}$或$f(x)g(x)=\frac{g(x)}{f(x)}$;3)$1^\infty$、$0^0$、$1^{\infty-\infty}$、$\infty^0$对于幂指函数,方法主要是取指数还取对数的方法,即$e^{f(x)g(x)}=e^{g(x)lnf(x)}$,这样就能把幂上的函数移下来了,变成$0/0$型未定式。
高等数学求极限的14种方法(完整资料).doc

【最新整理,下载后即可编辑】高等数学求极限的14种方法一、极限的定义1.极限的保号性很重要:设A x f x x =→)(lim 0,(1)若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (2)若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。
2. 极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。
要特别注意判定极限是否存在在:(1)数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。
常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ”(2)A x x f x A x f x =+∞→=-∞→⇔=∞→lim lim lim )()((3) A x x x x A x f x x =→=→⇔=→+-lim lim lim 0)((4) 单调有界准则(5)两边夹挤准 (夹逼定理/夹逼原理)(6) 柯西收敛准则(不需要掌握)。
极限)(lim 0x f x x →存在的充分必要条件。
是:εδεδ<-∈>∃>∀|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当二.解决极限的方法如下: 1.等价无穷小代换。
只能在乘除..时候使用。
例题略。
2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法)它的使用有严格的使用前提。
首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。
其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。
另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。
洛必达法则分为3种情况: (1)“00”“∞∞”时候直接用(2)“∞•0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。
求极限的13种方法

求极限的13种方法求极限的方法有很多种,以下列举了常见的13种方法和技巧,以帮助解决各种极限问题。
1.代入法:将极限中的变量代入表达式中,简化计算。
这通常适用于简单的多项式函数。
2.夹逼定理:当一个函数夹在两个趋向于相同极限的函数之间时,函数的极限也趋向于相同的值。
3.式子分解:通过将复杂的函数分解成更简单的部分,可以更容易地计算极限。
4.求导法则:使用导数的性质和规则来计算函数的极限。
这适用于涉及导数的函数。
5.递归关系:如果一个函数的递归关系式成立,可以使用递归关系来计算函数的极限。
6.级数展开:将函数展开成无穷级数的形式,可以使用级数的性质来计算函数的极限。
7.泰勒级数:对于可微的函数,可以通过使用泰勒级数来近似计算函数的极限。
8. 洛必达法则:如果一个函数的极限形式是$\frac{0}{0}$或$\frac{\infty}{\infty}$,可以使用洛必达法则来计算极限。
该法则涉及对分子分母同时求导的操作。
9.极限存在性证明:通过证明一个函数在一些点上的左极限和右极限存在且相等,可以证明函数在该点上的极限存在。
10.收敛性证明:对于一个序列极限,可以通过证明序列是有界且单调递增或单调递减的来证明其极限存在。
11.极限值的判断:根据函数的性质,可以判断函数在一些点上的极限是多少。
12.替换法:通过将变量替换为一个新的变量,可以使函数更容易计算极限。
13.反证法:通过假设极限不存在或不等于一些特定值,来推导出矛盾的结论,从而证明极限存在或等于一些特定值。
这些方法并非完整的极限求解技巧列表,但是它们是最常见和基本的方法。
在实际问题中,可能需要结合使用多种方法来求解复杂的极限。
高等数学 求极限方法小结及举例

11
x = f ′( t ) d2y 例 12 . f ′′( t ) ≠ 0 求 . 2 dx y = t f ′( t ) − f ( t ) d y y′( t ) f ′( t ) + t f ′′( t ) − f ′( t ) 解. = = =t d x x′( t ) f ′′( t )
2
t =π − x −1 2 t ========= lim t →0 cot t
tan t = − lim = −1 . t →0 t
"∞" ∞
例 7 . lim ( x ⋅ cot x )
x →0
x = lim =1. x →0 tan x
( 有界量乘无穷小 )
"0⋅ ∞"
lim x cos 1 = 0 . x x →0
4 . "∞ ± ∞" 型 ,
1 ± 1 = f ( x ) ± g( x ) . f ( x ) g( x ) f ( x ) ⋅ g( x )
5 . " ( 1 ± 0 ) ∞ " 型 , 0 " "0 型, u( x ) v ( x ) = e v ( x )⋅ln u( x ) 6. (指数型) " ∞0 " 型 , 7. lim [v ( x )⋅ln u( x ) ] v( x )
n x n −1 sin 1 − x n − 2 cos 1 x>0 x x f ′( x ) = 0 x=0 n x n −1 x<0 ′( x ) = lim n x n −1 sin 1 − x n − 2 cos 1 lim f x x x → +0 x →+0
高数中求极限的16种方法

千里之行,始于足下。
高数中求极限的16种方法在高等数学中,求极限是一个格外重要的技巧和考点。
为了解决各种极限问题,数学家们总结出了很多方法和技巧。
以下是高数中求极限的16种方法:1.代换法:将极限中的变量进行代换,使其变成简洁计算的形式。
2.夹逼准则:当函数处于两个已知函数之间时,可以通过比较已知函数的极限来确定未知函数的极限。
3.无穷小量比较法:比较两个函数的无穷小量的大小,以确定它们的极限。
4.利用函数性质:利用函数的对称性、奇偶性等性质来计算极限。
5.利用恒等变形:将极限式子进行恒等变形,以将其转化为简洁计算的形式。
6.利用泰勒开放:将函数开放成无穷级数的形式,以求出极限。
7.利用洛必达法则:对于某些不定型的极限,可以利用洛必达法则将其转化为可计算的形式。
8.利用级数或累次求和:将极限式子转化为级数或累次求和的形式,以求出极限。
9.利用积分计算:将极限式子进行积分计算,以求出极限。
10.利用微分方程:将极限问题转化为求解微分方程的问题,以求出极限。
第1页/共2页锲而不舍,金石可镂。
11.利用积素等价:将极限式子进行积素等价,以求出极限。
12.利用无穷增减变异法:通过凑出一个等价变形,将极限问题转化为比较某些函数值的大小。
13.利用不等式:通过找到合适的不等式,对函数进行估量,以求得极限。
14.利用递推公式:对于递归定义的函数,可以通过递推公式求出极限。
15.利用导数性质:利用函数的导数性质,对极限进行计算。
16.利用对数和指数函数的性质:利用对数和指数函数的特性,求出极限。
除了上述方法外,还有很多其他的方法和技巧,可以依据具体问题来选择使用。
这些方法和技巧的使用需要机敏把握,通过大量的练习和思考,可以在求解极限问题中得到娴熟应用。
高等数学求极限的常用方法(附例题和详解)

高等数学求极限的14种方法一、极限的定义1.极限的保号性很重要:设A x f x x =→)(lim 0,〔i 〕假设A 0>,那么有0>δ,使得当δ<-<||00x x 时,0)(>x f ; 〔ii 〕假设有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。
2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。
要特别注意判定极限是否存在在:〔i 〕数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。
常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a 〞〔ii 〕A x x f x A x f x =+∞→=-∞→⇔=∞→limlimlim)()((iii)A x x x x A x f x x =→=→⇔=→+-lim lim lim 0)((iv)单调有界准那么〔v 〕两边夹挤准那么〔夹逼定理/夹逼原理〕〔vi 〕柯西收敛准那么〔不需要掌握〕。
极限)(lim 0x f x x →存在的充分必要条件是:εδεδ<-∈>∃>∀|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当二.解决极限的方法如下:1.等价无穷小代换。
只能在乘除..时候使用。
例题略。
2.洛必达〔L’ho spital 〕法那么〔大题目有时候会有暗示要你使用这个方法〕它的使用有严格的使用前提。
首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。
其次,必须是函数的导数要存在,假设告诉f 〔x 〕、g 〔x 〕,没告诉是否可导,不可直接用洛必达法那么。
另外,必须是“0比0〞或“无穷大比无穷大〞,并且注意导数分母不能为0。
洛必达法那么分为3种情况:〔i 〕“00〞“∞∞〞时候直接用 (ii)“∞•0〞“∞-∞〞,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。
高数中求极限的16种方法

高数中求极限的16种方法——好东西首先对极限的总结如下:极限的保号性很重要,就是说在一定区间内,函数的正负与极限一致一、极限分为一般极限,还有数列极限,(区别在于数列极限发散,是一般极限的一种)二、求极限的方法如下:1 .等价无穷小的转化,(一般只能在乘除时候使用,在加减时候用必须证明拆分后极限依然存在) e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。
全部熟记(x趋近无穷的时候还原成无穷小)2.罗比达法则(大题目有时候会有暗示,要你使用这个方法)首先他的使用有严格的使用前提,必须是 X趋近而不是N趋近!所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!必须是函数的导数要存在!必须是 0比0 无穷大比无穷大!当然还要注意分母不能为0注意:罗比达法则分为3种情况0比0,无穷比无穷的时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成1中的形式了;0的0次方,1的无穷次方,无穷的0次方;对于(指数幂数)方程,方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候LNX趋近于0)3.泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特别注意!!!!)E的x展开,sina 展开,cos 展开,ln1+x展开,对题目简化有很好帮助4.面对无穷大比上无穷大形式的解决办法取大头原则,最大项除分子分母!!!!!!!!!!!5.无穷小于有界函数的处理办法面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。
面对非常复杂的函数可能只需要知道它的范围结果就出来了!!!6.夹逼定理(主要对付数列极限!)这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。
高等数学求极限的17种常用方法(附例题和详解)

(iii)
(iv)单调有界准则
(v)两边夹挤准则(夹逼定理/夹逼原理)
(vi)柯西收敛准则(不需要掌握)。极限 存在的充分必要条件是:
二.解决极限的方法如下:
1.等价无穷小代换。只能在乘除时候使用。例题略。
2.洛必达(L’hospital)法则(大题目有时候会有暗示要你使用这个方法)
它的使用有严格的使用前提。首先必须是X趋近,而不是N趋近,所以面对数列极限时候先要转化成求x趋近情况下的极限,数列极限的n当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f(x)、g(x),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况:
;
cos=
ln(1+x)=x-
(1+x) =
以上公式对题目简化有很好帮助
4.两多项式相除:设 ,
P(x)= ,
(i) (ii)若 ,则
5.无穷小与有界函数的处理办法。例题略。
面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数可能只需要知道它的范围结果就出来了。
(i)“ ”“ ”时候直接用
(ii)“ ”“ ”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。通项之后,就能变成(i)中的形式了。即 ;
(iii)“ ”“ ”“ ”对于幂指函数,方法主要是取指数还取对数的方法,即 ,这样就能把幂上的函数移下来了,变成“ ”型未定式。
3.泰勒公式(含有 的时候,含有正余弦的加减的时候)
例1已知A={x -2≤x<3},B={x -1<x≤5},求A B,A B
高等数学中求极限方法总结

高等数学中求极限方法总结高等数学第一章在整个高等数学的学习中都占有相当重要的地位,特别是极限,原因就是后续章节本质上都是极限。
一个经典的形容就是假如高等数学是棵树木的话,那么极限就是它的根,函数就是它的皮。
树没有跟,活不下去,没有皮,只能枯萎,可见极限的重要性。
故在这里总结了10种常用的求极限的方法并举例说明。
1、利用等价无穷小的转化求极限例:求极限x x x x 1cossin lim 20→。
解:x x x x 1cossin lim 20→x x x x 1cos lim 20→=xx x 1cos lim 0→==2注:通常在乘除时候使用,但是不是说一定在加减时候不能用,但是前提是必须证明拆分后极限依然存在,要记住常用的等价无穷小,例如当0→x 时,).(0~sin ,21~sin ,~3x x x x x tgx x tgx −−。
2、罗比达法则例:求极限∫→x x tdtx 020arctan 1lim 解:∫→x x tdt x 020arctan 1lim 21211lim 2arctan lim 200=+==→→x x t x x 例:求极限⎟⎠⎞⎜⎝⎛−−→11ln 1lim 1x x x 解:x x x x x x x x ln )1(ln 1lim 11ln 1lim 11−−−=⎟⎠⎞⎜⎝⎛−−→→21111lim 1ln 11lim 2211=+=−+−=→→xx x x x x x x x …注:使用罗比达法则必须满足使用条件,要注意分母不能为零,导数存在。
罗比达法则分为三种情况(1)0比0和无穷比无穷时候直接分子分母求导;(2)0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成1的形式;(3)0的0次方,1的无穷次方,无穷的0次方,对于(指数幂数)方程,方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,)3、利用2个重要极限求极限例:求极限2)11(lim 22x x x x +−∞→解:211(lim 22x x x x +−∞→2)121(lim 2x x x +−+=∞→12212222])121[(lim +−−+∞→+−+=x x x x x 12lim 22+−∞→=x x x e 2−=e 。
高等数学经典求极限方法

求极限的各种方法1.约去零因子求极限例1:求极限11lim 41--→x x x【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。
【解】6)1)(1(lim 1)1)(1)(1(lim2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限例2:求极限13lim 323+-∞→x x x x【说明】∞∞型且分子分母都以多项式给出的极限,可通过分子分母同除来求。
【解】3131lim 13lim 311323=+-=+-∞→∞→x xx x x x x 【注】(1) 一般分子分母同除x 的最高次方;(2) ⎪⎪⎩⎪⎪⎨⎧=<∞>=++++++----∞→nm b a n m n m b x b x b a x a x a n nm m m m n n n n x 0lim 011011 3.分子(母)有理化求极限例3:求极限)13(lim 22+-++∞→x x x【说明】分子或分母有理化求极限,是通过有理化化去无理式。
【解】13)13)(13(lim)13(lim 22222222+++++++-+=+-++∞→+∞→x x x x x x x x x x0132lim22=+++=+∞→x x x例4:求极限3sin 1tan 1limxxx x +-+→ 【解】)sin 1tan 1(sin tan lim sin 1tan 1lim3030x x x xx x x x x x +++-=+-+→→41sin tan lim 21sin tan limsin 1tan 11lim30300=-=-+++=→→→x x x x x x xx x x x 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子...........是解题的关键4.应用两个重要极限求极限两个重要极限是1sin lim 0=→xxx 和e x n x x x n n x x =+=+=+→∞→∞→10)1(lim )11(lim )11(lim ,第一个重要极限过于简单且可通过等价无穷小来实现。
高数求极限的常用公式

高数求极限的常用公式求极限是高等数学中的一个重要概念,它在许多数学和科学领域中都有着重要的应用。
在求极限的过程中,我们可以利用一些常用的公式来简化计算,提高求解效率。
下面我们将介绍一些常用的求极限公式。
1. 常数的极限公式:当n趋向于无穷大时,常数a的极限为a,即lim(a) = a。
2. 幂函数的极限公式:当n趋向于无穷大时,幂函数x^n的极限为:若n>0,则lim(x^n) = ∞或lim(x^n) = -∞,具体取决于x的正负;若n=0,则lim(x^n) = 1;若0<n<1,则lim(x^n) = 0。
3. 指数函数的极限公式:当x趋向于无穷大时,指数函数a^x的极限为:若a>1,则lim(a^x) = ∞;若0<a<1,则lim(a^x) = 0。
4. 对数函数的极限公式:当x趋向于无穷大时,对数函数log_a(x)的极限为:若a>1,则lim(log_a(x)) = ∞;若0<a<1,则lim(log_a(x)) = -∞。
5. 三角函数的极限公式:当x趋向于无穷大时,三角函数的极限为:lim(sin(x)) = 不存在;lim(cos(x)) = 不存在;lim(tan(x)) = 不存在。
6. 指数与对数函数的极限公式:当x趋向于无穷大时,指数与对数函数的极限为:lim(e^x) = ∞;lim(ln(x)) = ∞。
通过以上常用的求极限公式,我们可以简化极限的计算过程,提高求解的效率。
在实际应用中,我们还可以根据具体问题,灵活运用这些公式,并结合其他数学知识来求解更复杂的极限问题。
求极限是高等数学中的重要内容,掌握这些常用公式对于深入理解极限概念和解决实际问题都具有重要意义。
求极限的13种方法

求极限的13种方法〔简叙〕龘龖龍极限概念与求极限的运算贯穿了高等数学课程的始终,极限思想亦是高等数学的核心与根底,因此,全面掌握求极限的方法与技巧是高等数学的根本要求。
本篇较为全面地介绍了求数列极限与函数极限的各种方法,供同学参考。
一、利用恒等变形求极限利用恒等变形求极限是最根底的一种方法,但恒等变形灵活多变,令人难以琢磨。
常用的的恒等变形有:分式的分解、分子或分母有理化、三角函数的恒等变形、某些求和公式与求积公式的利用等。
例1、求极限)1...()1)(1(22lim na aa n +++∞→ ,其中1<a分析 由于积的极限等于极限的积这一法那么只对有限个因子成立,因此,应先对其进展恒等变形。
解 因为)1...()1)(1(22na a a +++ =)1...()1)(1)(1(1122na a a a a +++-- =)1...()1)(1(11222na a a a ++-- =)1(1112+--n a a当∞→n 时,,21∞→+n 而1<a ,故从而,012→+n a)1...()1)(1(22lim na a a n +++∞→=a-11 二、利用变量代换求极限利用变量代换求极限的主要目的是化简原表达式,从而减少运算量,提高运算效率。
常用的变量代换有倒代换、整体代换、三角代换等。
例2、求极限11lim 1--→nmx x x ,其中m,n 为正整数。
分析 这是含根式的〔0〕型未定式,应先将其利用变量代换进展化简,再进一步计算极限。
解 令11,1→→=t x x t mn时,则当原式=mnt t t t t t t t t t t t m m n n m m n n t m n t =++++++=+++-+++-=----------→→1...1...)1...)(1()1...)(1(lim 11lim 2121212111三、利用对数转换求极限利用对数转换求极限主要是通过公式,ln v u v e u ⋅=进展恒等变形,特别的情形,在〔∞1〕型未定式时可直接运用v u v e u ⋅-=)1( 例3、求极限ox →lim xx 2csc )(cos解 原式=ox →lim 21sin sin 21lim csc )1(cos 2202---==→ee e xx xx x四、利用夹逼准那么求极限利用夹逼准那么求极限主要应用于表达式易于放缩的情形。
高等数学求极限的各种方法

求极限的各种方法1.约去零因子求极限例1:求极限11lim 41--→x x x【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。
【解】6)1)(1(lim 1)1)(1)(1(lim2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限例2:求极限13lim 323+-∞→x x x x【说明】∞∞型且分子分母都以多项式给出的极限,可通过分子分母同除来求。
【解】3131lim 13lim 311323=+-=+-∞→∞→x xx x x x x 【注】(1) 一般分子分母同除x 的最高次方;(2) ⎪⎪⎩⎪⎪⎨⎧=<∞>=++++++----∞→nm b a n m n m b x b x b a x a x a n nm m m m n n n n x 0lim 011011ΛΛ 3.分子(母)有理化求极限例3:求极限)13(lim 22+-++∞→x x x【说明】分子或分母有理化求极限,就是通过有理化化去无理式。
【解】13)13)(13(lim)13(lim 22222222+++++++-+=+-++∞→+∞→x x x x x x x x x x0132lim22=+++=+∞→x x x例4:求极限3sin 1tan 1limxxx x +-+→【解】xx x xx x x x x x sin 1tan 1sin tan limsin 1tan 1lim3030+-+-=+-+→→ 41sin tan lim 21sin tan limsin 1tan 11lim30300=-=-+++=→→→x x x x x x xx x x x 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子...........就是解题的关键 4.应用两个重要极限求极限两个重要极限就是1sin lim 0=→xxx 与e x n x x x n n x x =+=+=+→∞→∞→10)1(lim )11(lim )11(lim ,第一个重要极限过于简单且可通过等价无穷小来实现。
高等数学极限求解方法(共7篇)

高等数学极限求解方法(共7篇)以下是网友分享的关于高等数学极限求解方法的资料7篇,希望对您有所帮助,就爱阅读感谢您的支持。
高等数学求极限的方法篇1对于求解极限的方法可以归结为以下几类: (1)常用等价无穷小记住以下常用等价无穷小-例1 求极限limx →0x (1-cos x ) 【解】原式=x →0 =x →0=x →01==x →02例2 求下列极限1+cos x 2x() -1x (I)w =lim (II ) w =limx →0x →0ln(1+2x 3)4(2)等价无穷小的性质定理:有限个无穷小的代数和仍为无穷小. 定理:有界函数与无穷小的乘积是无穷小. 推论:常数与无穷小的乘积是无穷小. 推论:有限个无穷小的乘积也是无穷小.1【解】lim =0 , lim sin 为有界量,∴原式=0x →0x →0x【注】本题也可以利用常用的等价无穷小公式.(3)常用的极限sin x x sin x x lim =lim =1 lim =0 lim 极限不存在x →0x →0x →∞x →∞x sin x x sin x11x ln(1+x )lim(1+) =lim(1+x ) x =e lim =1x →∞x →0x →0x xlim =1 lim =1n →∞n →∞11例4 求w=lim(+2x ) xx →∞x(4)极限存在的两个准则(1)夹逼准则如果数列{x n },{y n }及{z n }满足下列条件:(1)y n ≤x n ≤z n (n =1, 2,3,...) ;(2)li m y n =lim z n =a , 那么数列{x n }的极限存在,且lim x n =a .n →∞n →∞n →∞(2)单调有界准则单调有界数列必有极限.(5)极限的定义(6)洛必达法则【解】(7)变量替换11方法2 w =lim(+2x ) x =e A ,而x →∞x01t1(t +2-1) x =1/t 0A =lim(+2x -1) −−−→lim −−→lim(1+2t ln 2) =1+l n 2, x →∞x t →0t →0t 故w =e 1+ln 2=2e(8)泰勒公式高等数学中极限的求解方法篇2龙源期刊网高等数学中极限的求解方法作者:曲波来源:《速读下旬》2014年第05期摘要:本文介绍了利用两个重要极限、无穷小量代换、洛比达法则、等求极限的方法,并结合具体的例子,指出了在解题过程中常遇见的一些问题。
高等数学求极限的17种常用方法(附例题和详解)

⾼等数学求极限的17种常⽤⽅法(附例题和详解)⾼等数学求极限的14种⽅法⼀、极限的定义1.极限的保号性很重要:设A x f x x =→)(lim 0,(i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ;(ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。
2.极限分为函数极限、数列极限,其中函数极限⼜分为∞→x 时函数的极限和0x x →的极限。
要特别注意判定极限是否存在在:(i )数列{}的充要条件收敛于a n x 是它的所有⼦数列均收敛于a 。
常⽤的是其推论,即“⼀个数列收敛于a 的充要条件是其奇⼦列和偶⼦列都收敛于a ”(ii )A x x f x A x f x =+∞→=-∞→?=∞→limlimlim)()((iii)A x x x x A x f x x =→=→?=→+-lim lim lim 0)((iv)单调有界准则(v )两边夹挤准则(夹逼定理/夹逼原理)(vi )柯西收敛准则(不需要掌握)。
极限)(lim 0x f x x →存在的充分必要条件是:εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当⼆.解决极限的⽅法如下:1.等价⽆穷⼩代换。
只能在乘除..时候使⽤。
例题略。
2.洛必达(L’ho spital )法则(⼤题⽬有时候会有暗⽰要你使⽤这个⽅法)它的使⽤有严格的使⽤前提。
⾸先必须是X 趋近,⽽不是N 趋近,所以⾯对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正⽆穷的,不可能是负⽆穷。
其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接⽤洛必达法则。
另外,必须是“0⽐0”或“⽆穷⼤⽐⽆穷⼤”,并且注意导数分母不能为0。
高等数学求极限的14种方法

高等数学求极限的14种方法一、极限的定义1.极限的保号性很重要:设A x f x x =→)(lim 0,(1)若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (2)若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。
2. 极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。
要特别注意判定极限是否存在在:(1)数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。
常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ”(2)A x x f x A x f x =+∞→=-∞→⇔=∞→limlimlim)()((3)A x x x x A x f x x =→=→⇔=→+-lim lim lim 0)((4) 单调有界准则(5)两边夹挤准 (夹逼定理/夹逼原理)(6) 柯西收敛准则(不需要掌握)。
极限)(lim 0x f x x →存在的充分必要条件。
是:εδεδ<-∈>∃>∀|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当二.解决极限的方法如下:1.等价无穷小代换。
只能在乘除..时候使用。
例题略。
2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法)它的使用有严格的使用前提。
首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。
其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。
另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。
洛必达法则分为3种情况: (1)“00”“∞∞”时候直接用 (2)“∞•0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。
16种求极限的方法

16种求极限的方法 <网上找的仅供参考>首先说下我的感觉,假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。
树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。
为什么第一章如此重要?各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。
函数的性质表现在各个方面首先对极限的总结如下极限的保号性很重要就是说在一定区间内函数的正负与极限一致1 极限分为一般极限,还有个数列极限,(区别在于数列极限时发散的,是一般极限的一种)2解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???)1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在) e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。
全部熟记(x趋近无穷的时候还原成无穷小)2落笔他法则(大题目有时候会有暗示要你使用这个方法)首先他的使用有严格的使用前提!!!!!!必须是 X趋近而不是N趋近!!!!!!!(所以面对数列极限时候先要转化成求x 趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!!)必须是 0比0 无穷大比无穷大!!!!!!!!!当然还要注意分母不能为0落笔他法则分为3中情况1 0比0 无穷比无穷时候直接用2 0乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成1中的形式了3 0的0次方 1的无穷次方无穷的0次方对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0)3泰勒公式 (含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!!!!)E的x展开 sina 展开 cos 展开 ln1+x展开对题目简化有很好帮助4面对无穷大比上无穷大形式的解决办法取大头原则最大项除分子分母!!!!!!!!!!!看上去复杂处理很简单!!!!!!!!!!5无穷小于有界函数的处理办法面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。
求极限的方法与技巧

求极限的方法与技巧求极限是微积分中的基本问题,它在解决实际问题中起着关键作用。
在高等数学中,求极限的方法有多种。
下面将介绍一些常见的求极限的方法与技巧。
一、代入法:当极限中存在一些点,可以通过直接将该点代入函数中来求得极限。
二、化简法:当题目给出的函数比较复杂时,可以通过化简来求极限。
比如,利用封闭函数性质、基本运算法则等进行化简。
三、夹逼法:夹逼法也叫夹定理法,是一种常用的求极限方法。
其基本思想是给出两个函数,找到一个中间函数,使得中间函数的极限等于极限所求的值。
通过夹定理可得:若函数f(x)、g(x)、h(x)满足f(x)≤g(x)≤h(x),当x趋于其中一值a时,f(x)和h(x)的极限都等于L,则g(x)的极限也等于L。
四、间断分解法:当函数在其中一点存在间断时,可以将函数分解开来,单独求解每一段函数的极限,然后再进行综合得出最后的极限。
五、无穷小量替换法:当给出的函数极限不好求解时,可以通过将其替换为一个相等的无穷小量来简化计算。
比如,将极限中的分子或分母替换为无穷小量,或者将函数替换为等价的无穷小量。
六、洛必达法则:洛必达法则是求解一些形如$\displaystyle\frac{0}{0}$ 或$\displaystyle\frac{\pm\infty }{\pm\infty }$型极限的常用方法。
其基本思想是将函数的极限转化为分数的形式,然后对分子和分母同时求导,最后将得到的导数值带入原函数中。
如果在求导之后依然得到一个$\displaystyle\frac{0}{0}$形式的极限,可以继续应用洛必达法则,直到得到非$\displaystyle\frac{0}{0}$形式的极限。
七、级数展开法:对于一些无穷级数的极限求解,可以通过级数展开来计算。
例如,利用泰勒级数展开,将函数展开成无穷级数的形式,然后利用级数的性质进行计算。
八、极限换元法:有时候对于一些较为复杂的函数,可以通过对变量进行换元简化问题。
求极限的13种方法

求极限的13种方法(简叙)龘龖龍极限概念与求极限的运算贯穿了高等数学课程的始终,极限思想亦是高等数学的核心与基础,因此,全面掌握求极限的方法与技巧是高等数学的基本要求。
本篇较为全面地介绍了求数列极限与函数极限的各种方法,供同学参考。
一、利用恒等变形求极限利用恒等变形求极限是最基础的一种方法,但恒等变形灵活多变,令人难以琢磨。
常用的的恒等变形有:分式的分解、分子或分母有理化、三角函数的恒等变形、某些求和公式与求积公式的利用等。
例1、求极限)1...()1)(1(22lim na aa n +++∞→ ,其中1<a分析 由于积的极限等于极限的积这一法则只对有限个因子成立,因此,应先对其进行恒等变形。
解 因为)1...()1)(1(22na a a +++ =)1...()1)(1)(1(1122na a a a a +++-- =)1...()1)(1(11222na a a a ++-- =)1(1112+--n a a当∞→n 时,,21∞→+n 而1<a ,故从而,012→+n a)1...()1)(1(22lim na a a n +++∞→=a-11 二、利用变量代换求极限利用变量代换求极限的主要目的是化简原表达式,从而减少运算量,提高运算效率。
常用的变量代换有倒代换、整体代换、三角代换等。
例2、求极限11lim 1--→nmx x x ,其中m,n 为正整数。
分析 这是含根式的(00)型未定式,应先将其利用变量代换进行化简,再进一步计算极限。
解 令11,1→→=t x x t mn时,则当原式=mnt t t t t t t t t t t t m m n n m m n n t m n t =++++++=+++-+++-=----------→→1...1...)1...)(1()1...)(1(lim 11lim 2121212111 三、利用对数转换求极限利用对数转换求极限主要是通过公式,ln v u v e u ⋅=进行恒等变形,特别的情形,在(∞1)型未定式时可直接运用v u v e u ⋅-=)1( 例3、求极限ox →lim xx 2csc )(cos解 原式=ox →lim 21sin sin 21lim csc )1(cos 2202---==→ee e xx xx x四、利用夹逼准则求极限利用夹逼准则求极限主要应用于表达式易于放缩的情形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求极限的各种方法1.约去零因子求极限例1:求极限11lim 41--→x x x【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。
【解】6)1)(1(lim 1)1)(1)(1(lim2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限例2:求极限13lim 323+-∞→x x x x【说明】∞∞型且分子分母都以多项式给出的极限,可通过分子分母同除来求。
【解】3131lim 13lim 311323=+-=+-∞→∞→x xx x x x x 【注】(1) 一般分子分母同除x 的最高次方;(2) ⎪⎪⎩⎪⎪⎨⎧=<∞>=++++++----∞→nm b a n m n m b x b x b a x a x a n nm m m m n n n n x 0lim 011011 3.分子(母)有理化求极限例3:求极限)13(lim 22+-++∞→x x x【说明】分子或分母有理化求极限,是通过有理化化去无理式。
【解】13)13)(13(lim)13(lim 22222222+++++++-+=+-++∞→+∞→x x x x x x x x x x0132lim22=+++=+∞→x x x例4:求极限3sin 1tan 1limxxx x +-+→ 【解】)sin 1tan 1(sin tan lim sin 1tan 1lim3030x x x xx x x x x x +++-=+-+→→41sin tan lim 21sin tan limsin 1tan 11lim30300=-=-+++=→→→x x x x x x xx x x x 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子...........是解题的关键4.应用两个重要极限求极限两个重要极限是1sin lim 0=→xxx 和e x n x x x n n x x =+=+=+→∞→∞→10)1(lim )11(lim )11(lim ,第一个重要极限过于简单且可通过等价无穷小来实现。
主要考第二个重要极限。
例5:求极限xx x x ⎪⎭⎫⎝⎛-++∞→11lim【说明】第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑X1+,最后凑指数部分。
【解】2221212112111lim 121lim 11lim e x x x x x x x xx xx =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+--+∞→+∞→+∞→ 例6:(1)x x x ⎪⎭⎫ ⎝⎛-+∞→211lim ;(2)已知82lim =⎪⎭⎫⎝⎛-++∞→xx a x a x ,求a 。
5.用等价无穷小量代换求极限 【说明】(1)常见等价无穷小有:当0→x 时,~)1ln(~arctan ~arcsin ~tan ~sin ~x x x x x x +1e x-,()abx ax x x b~11,21~cos 12-+-; (2) 等价无穷小量代换,只能代换极限式中的因式..; (3)此方法在各种求极限的方法中应作为首选.....。
例7:求极限0ln(1)lim1cos x x x x →+=-【解】 002ln(1)lim lim 211cos 2x x x x x xx x →→+⋅==-.例8:求极限xxx x 30tan sin lim -→【解】x x x x 30tan sin lim -→613lim 31cos lim sin lim 222102030-=-==-=-=→→→xx x x x x x x x x6.用罗必塔法则求极限例9:求极限220)sin 1ln(2cos ln lim x x x x +-→【说明】∞∞或0型的极限,可通过罗必塔法则来求。
【解】220)sin 1ln(2cos ln lim x x x x +-→x x xx x x 2sin 12sin 2cos 2sin 2lim 20+--=→ 3sin 112cos 222sin lim20-=⎪⎭⎫⎝⎛+--=→x x x x x 【注】许多变动上显的积分表示的极限,常用罗必塔法则求解例10:设函数f(x)连续,且0)0(≠f ,求极限.)()()(lim⎰⎰--→x xx dtt x f x dtt f t x【解】 由于⎰⎰⎰=-=-=-0)())(()(xxxu t x du u f du u f dt t x f ,于是⎰⎰⎰⎰⎰-=--→→xxxx x xx duu f x dtt tf dt t f x dtt x f x dtt f t x 00)()()(lim)()()(lim=⎰⎰+-+→xxx x xf du u f x xf x xf dt t f 0)()()()()(lim=⎰⎰+→x xx x xf du u f dtt f 0)()()(lim=)()()(limx f x duu f x dtt f xxx +⎰⎰→=.21)0()0()0(=+f f f7.用对数恒等式求)()(lim x g x f 极限例11:极限xx x 20)]1ln(1[lim ++→【解】 xx x 20)]1ln(1[lim ++→=)]1ln(1ln[2lim x xx e++→=.2)1ln(2lim)]1ln(1ln[2lime eexx xx x x ==+++→→【注】对于∞1型未定式)()(lim x g x f 的极限,也可用公式)()(lim x g x f )1(∞=)()1)(lim(x g x f e -因为===-+)1)(1ln()(lim ))(ln()(lim )()(lim x f x g x f x g x g e e x f )()1)(lim(x g x f e -例12:求极限3012cos lim 13x x x x→⎡⎤+⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.【解1】 原式2cos ln 331limx x x ex +⎛⎫⎪⎝⎭→-=202cos ln 3lim x x x→+⎛⎫ ⎪⎝⎭= 20ln 2cos ln 3lim x x x →+-=()01sin 2cos lim 2x x x x →⋅-+=()011sin 1lim 22cos 6x x x x →=-⋅=-+【解2】 原式2cos ln 331limx x x ex +⎛⎫⎪⎝⎭→-=202cos ln 3lim x x x →+⎛⎫ ⎪⎝⎭= 20cos 1ln 3limx x x→-+=(1)20cos 11lim 36x x x →-==- 8.利用Taylor 公式求极限例13 求极限 ) 0 ( ,2lim 20>-+-→a xa a x x x . 【解】 ) (ln 2ln 1222ln x a x a x ea ax x +++==,) (ln 2ln 1222x a x a x ax++-=-;). (ln 2222x a x a a x x +=-+-∴ a xx a x x a a x x x x 22222020ln ) (ln lim 2lim =+=-+→-→ . 例14 求极限011lim (cot )x x x x→-.【解】 00111sin cos lim (cot )lim sin x x x x xx x x x x x→→--= 323230()[1()]3!2!lim x x x x x x x xοο→-+--+= 333011()()12!3!lim 3x x x x ο→-+==.9.数列极限转化成函数极限求解例15:极限21sin lim n n n n ⎪⎭⎫ ⎝⎛∞→【说明】这是∞1形式的的数列极限,由于数列极限不能使用罗必塔法则,若直接求有一定难度,若转化成函数极限,可通过7提供的方法结合罗必塔法则求解。
【解】考虑辅助极限611sin 11011sin 222lim lim 1sin lim -⎪⎪⎭⎫ ⎝⎛-→⎪⎭⎫ ⎝⎛-+∞→+∞→===⎪⎭⎫ ⎝⎛+e eex x y y y y x x x x x x所以,6121sin lim -∞→=⎪⎭⎫ ⎝⎛e n n n n10.n 项和数列极限问题n 项和数列极限问题极限问题有两种处理方法 (1)用定积分的定义把极限转化为定积分来计算; (2)利用两边夹法则求极限.例16:极限⎪⎪⎭⎫⎝⎛++++++∞→22222212111lim n n n n n 【说明】用定积分的定义把极限转化为定积分计算,是把)(x f 看成[0,1]定积分。
⎰=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛++⎪⎭⎫⎝⎛+⎪⎭⎫⎝⎛∞→10)(211limdx x f n n f n f n f n n 【解】原式=⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎭⎫⎝⎛+++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+∞→222112111111lim n n n n n n1212ln2111102+--=+=⎰dx x例17:极限⎪⎪⎭⎫⎝⎛++++++∞→n n n n n 22212111lim 【说明】(1)该题遇上一题类似,但是不能凑成⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛∞→n n f n f n f n n 211lim的形式,因而用两边夹法则求解;(2) 两边夹法则需要放大不等式,常用的方法是都换成最大的或最小的。
【解】⎪⎪⎭⎫⎝⎛++++++∞→n n n n n 22212111lim 因为11211122222+≤++++++≤+n n nn n n nn n又 nn nn +∞→2lim11lim2=+=∞→n n n所以 ⎪⎪⎭⎫⎝⎛++++++∞→n n n n n 22212111lim =1 12.单调有界数列的极限问题例18:设数列{}n x 满足110,sin (1,2,)n n x x x n π+<<==(Ⅰ)证明lim n n x →∞存在,并求该极限;(Ⅱ)计算211lim n x n n n x x +→∞⎛⎫ ⎪⎝⎭. 【分析】 一般利用单调增加有上界或单调减少有下界数列必有极限的准则来证明数列极限的存在.【详解】 (Ⅰ)因为10x π<<,则210sin 1x x π<=≤<. 可推得 10sin 1,1,2,n n x x n π+<=≤<=,则数列{}n x 有界.于是1sin 1n nn nx x x x +=<,(因当0sin x x x ><时,), 则有1n n x x +<,可见数列{}n x 单调减少,故由单调减少有下界数列必有极限知极限lim n n x →∞存在.设lim n n x l →∞=,在1sin n n x x +=两边令n →∞,得 sin l l =,解得0l =,即lim 0n n x →∞=.(Ⅱ) 因 22111sin lim lim nn x x n n n n n n x x x x +→∞→∞⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭,由(Ⅰ)知该极限为1∞型, 61sin 01sin 110032221lim lim sin 1lim --→⎪⎭⎫ ⎝⎛-→→===⎪⎭⎫ ⎝⎛+++e ee x x xx x x x x x x xx (使用了罗必塔法则)故 2211116sin lim lim e nn x x n n n n n n x x x x -+→∞→∞⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭.。