浙江省嘉兴市2019-2020学年高一上学期期末检测数学试题及答案
2019-2020学年浙江省嘉兴市高一上学期期末考试数学试卷及答案
22、(1)当 a 1时, f x
x
1 1
1
x
1
0
,所以
2x x 1
x 1
1 x 2
x 2
所以
2 x x 1
x
或
1
x x
2 1
x 1,解得 x
1 2
5
或 x
( ) 所以当 a 1时,方程 f
x
= 0 的解集为 1
5 ;
2
(2)由题意令
f (x) = 0 得
x
1
1
a
x a ,记 g x
2
a kc a b ab
4k 6 , 2
解得 k 2 .
20、(1)因为
f
x
a 2x
1 2x
x
R 是偶函数,
所以
f
x
f
x ,即 a 2x
1 2x
a 2x
1 2x
,
化简得
a
1
2x
1 2x
0
,
所以 a 1 ;
(2)结论:
f
x
2x
1 2x
在(0,+∞)单调递增.证明如下:
任取 0 x1 x2 ,则
f
x1 f
x2
2 x1
1 2 x1
2
x2
1 2 x2
2 x1
2x2
2 x2 2 x1
2 x1 2x2
2x1 2x2 2x1 x2 1 2x1 x2
因为 0 x1 x2 ,所以 2x1 2x2 0, 2x1 x2 1 0 ,所以 2x1x2 1 0
所以
A.2
B.3
C. 2
2022-2023学年浙江省嘉兴市第一中学、湖州中学高一数学第一学期期末学业水平测试试题含解析
【解析】根据向量的数量积运算以及运算法则,直接计算,即可得出结果.
【详解】因为 a 1, b
3
,且a与bFra bibliotek的夹角为
6
,
所以 a b a b cos 3 , 62
因此 a b 2a b 2 a 2 a b b 2 2 3 3 1 . 22
故选:A.
5、D
【解析】全称命题的否定是特称命题,把任意改为存在,把结论否定.
A. [0, 2]
B.[0, )
C. (0, 2]
D.[2, )
10.曲线
y
Asin x
a( A
0,
0) 在区间
0,
2π
上截直线
y
2
及
y
1 所得的弦长相等且不为
0
,则下列对
A , a 的描述正确的是
A. a 1 , A 3
2
2
B. a 1 , A 3
2
2
C. a 1, A 1
D. a 1, A 1
直线(除 a 2 时外)与函数 y f (x) 在 (0, 5) 上的图象最多一个公共点,此时 a 0 或 a 2 或 a 不存在, 将 a 2 时的直线(含 a 2 )绕 A 顺时针旋转到直线 y 2 (不含直线 y 2 )的位置, 旋转过程中的直线与函数 y f (x) 在 (0, 5) 上的图象至少有两个公共点,此时 0 a 2 ,
8.若 x log2 3 1,求 3x 3x ()
A. 5
B. 13
2
6
C. 10
D. 3
3
2
9.定义在 R 上的函数 f (x) 满足 f (x) 2 f (x 2) ,且当 x (1,1] 时, f (x) (1)|x| ,若关于 x 的方程 2
2021-2022学年浙江省嘉兴市高一(上)期末数学试卷【答案版】
20212022学年浙江省嘉兴市高一(上)期末数学试卷一、选择题I :本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={x |0≤x <2},B ={x |﹣1<x <1},则A ∪B =()A .(﹣1,0]2.在平面直角坐标系xOy 中,角θ的顶点与原点O 重合,它的始边与x 轴的非负半轴重合,终边OP 交单位圆O 于点P (−5,),则tan θ的值为()534B .(﹣1,2)C .[0,1)D .(0,1)A .−53B .54C .−34D .−433.已知命题p :∃a ∈N ,a ≥100,则¬p 为()A .∃a ∈N ,a ≤1004.设a ,b ∈R ,则“a >b >0”是“<”的()ab11B .∃a ∈N ,a <100C .∀a ∈N ,a ≤100D .∀a ∈N ,a <100A .充分而不必要条件C .充分必要条件B .必要而不充分条件D .既不充分也不必要条件5.将函数y =sin2x 的图象向左平移个单位,得到函数f (x )的图象,则()3πA .f(x)=sin(2x +3)C .f(x)=sin(2x +3)6.函数f (x )=(21+e x2ππB .f(x)=sin(2x −3)D .f(x)=sin(2x −3)2ππ−1)•sin x 的图象大致形状为()A .B .C .D .−x 2+4x ,x ≤47.设函数f (x)={,若关于x 的方程f (x )=t 有四个实根x 1,x 2,x 3,x 4(x 1<x 2<x 3|log 2(x −4)|,x >4<x 4),则x 1+x 2+2x 3+2x 4的最小值为()A .8.已知a ,b ,c 都是正实数,设M =a+b +b+c +c+a ,则下列判断正确的是()A .0<M ≤1二、选择题II :本题共4小题,每小题5分,共20分。
2019-2020学年浙江省嘉兴市高一(上)期末数学试卷
2019-2020学年浙江省嘉兴市高一(上)期末数学试卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知A B ⊆,A C ⊆,{2B =-,0,1,9},{1C =,3,6,9},则集合A 可以为( ) A .{1,3}B .{1,9}C .{2,0}D .{2,3}2.(5分)已知正方形ABCD 的边长为1,则||(AB AD +=u u u r u u u r )A .2B .3C .2D .223.(5分)若点(sin ,tan )P αα在第二象限,则角α的终边所在的象限为( ) A .第一象限 B .第二象限C .第三象限D .第四象限4.(5分)设函数1()()21x f x x R =∈+,则它的值域为( ) A .(0,1)B .(0,2)C .(1,)+∞D .(2,)+∞5.(5分)已知平面向量,a b r r 满足||23,||4a b ==r r ,且,a b rr 的夹角为30︒,则( )A .()a a b ⊥+r r rB .()b a b ⊥+r r rC .()b a b ⊥-r r rD .()a a b ⊥-r r r6.(5分)函数()sin()4f x x π=+,则()(f x )A .在(0,)2π上单调递增B .在3(,)44ππ上单调递增C .在37(,)44ππ上单调递增 D .在57(,)44ππ上单调递增 7.(5分)函数()f x 的图象如图所示,则它的解析式可能是( )A .21()2xx f x -=B .()2(||1)x f x x =-C .()||||f x ln x =D .()1x f x xe =-8.(5分)为了得到函数cos(4)3y x π=+的图象,可以将函数sin 4y x =的图象( )A .向左平移524π个单位 B .向右平移524π个单位C .向左移动56π个单位 D .向右平移56π个单位 9.(5分)已知||||1OA OB ==u u u r u u u r ,60AOB ∠=︒,OC OA OB λμ=+u u u r u u u r u u u r ,其中实数λ,μ满足12λμ+剟,0λ…,0μ…,则点C 所形成的平面区域的面积为( )A .3B .33C .3 D .3 10.(5分)若不等式(||)cos()023x a b x ππ--+…对[1x ∈-,3]恒成立,则(a b -= )A .13B .23C .56D .73二、填空题:11.(6分)若2log 3a =,3log 2b =,则a b =g ,lga lgb += .12.(6分)设函数1,1,(),1,x e x f x lnx x ⎧-<=⎨⎩…则(0)f 的值为 ;若f (a )2=,则a = .13.(6分)已知向量(,12),(4,5),(,10)OA k OB OC k ===-u u u r u u u r u u u r ,若||||AB BC =u u u r u u u r,则k = ;若A ,B ,C 三点共线,则k = .14.(6分)若tan 2α=,则sin 3cos sin cos αααα+=- ,sin cos αα= .15.(5分)设函数22,0,()2,0,x x f x x x x -⎧=⎨-+>⎩„若(f f (a ))30+…,则实数a 的取值范围是 . 16.(5分)如图所示,2OD =,4OE =,60DOE ∠=︒,3,3AB AD AC AE ==u u u r u u u r u u u r u u u r ,则BC OE =u u u r u u u rg .17.(5分)设()||f x x x a x =--,对任意的实数(1,2)a ∈-,关于x 的方程()f x tf =(a )共有三个不相等的实数根,则实数t 的取值范围是 . 三、解答题:解答应写出文字说明、证明过程或演算步骤.18.(12分)已知集合2{|4120|}A x x x =--„,{|222|}B x a x a =-+剟. (Ⅰ)若1a =,求()U A B I ð;(Ⅱ)若[4A B =-U ,6],求实数a 的值.19.(12分)已知平面向量(2,4),(3,5),(2,6)a b c ===-r r r. (Ⅰ)若a xb yc =+r r r,求x y +的值;(Ⅱ)若a kc +r r在a b -r r k .20.(12分)已知函数1()2()2x xf x a x R =+∈g 是偶函数. (Ⅰ)求a 的值;(Ⅱ)当(0,)x ∈+∞时,判断函数()f x 的单调性,并证明你的结论.21.(12分)已知函数()sin()(0,0)3f x A x A πωω=+>>的图象经过点,且图象上相邻两条对称轴之间的距离为2π.(Ⅰ)求函数()f x 的解析式及它的单调递增区间;(Ⅱ)是否存在实数m ,使得不等式f f >成立?若存在,请求出m 的取值范围;若不存在,请说明理由. 22.(13分)已知函数1()||1f x a x a x =--+-,(1,)x ∈+∞. (Ⅰ)若1a =,求方程()0f x =的解;(Ⅱ)若函数()y f x =恰有两个不同的零点1x ,212()x x x <,求12x x +的值.2019-2020学年浙江省嘉兴市高一(上)期末数学试卷参考答案与试题解析一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知A B ⊆,A C ⊆,{2B =-,0,1,9},{1C =,3,6,9},则集合A 可以为( ) A .{1,3}B .{1,9}C .{2,0}D .{2,3}【解答】解:由已知条件可得:{1B C =I ,9}, 由A B ⊆,A C ⊆,所以{1A =,9}, 故选:B .2.(5分)已知正方形ABCD 的边长为1,则||(AB AD +=u u u r u u u r )A .2B .3CD .【解答】解:Q 正方形ABCD 的边长为1,∴AB AD AC +=u u u r u u u r u u u r,||AC ==u u u r||||AB AD AC ∴+==u u u r u u u r u u u r故选:C .3.(5分)若点(sin ,tan )P αα在第二象限,则角α的终边所在的象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限【解答】解:由题意,点(sin ,tan )P αα位于第二象限,所以sin 0tan 0αα<⎧⎨>⎩,所以α在第三象限;故选:C .4.(5分)设函数1()()21xf x x R =∈+,则它的值域为( ) A .(0,1)B .(0,2)C .(1,)+∞D .(2,)+∞【解答】解:20x >Q ,211x ∴+>,∴10121x<<+,即函数的值域为(0,1). 故选:A .5.(5分)已知平面向量,a b r r 满足|||4a b ==r r ,且,a b rr 的夹角为30︒,则( )A .()a a b ⊥+r r rB .()b a b ⊥+r r rC .()b a b ⊥-r r rD .()a a b ⊥-r r r【解答】解:Q 平面向量,a b r r 满足||23,||4a b ==r r ,且,a b rr 的夹角为30︒, ∴对于22:()(23)234cos30240A a a b a a b +=+=+⨯⨯︒=≠r rr r r r gg ; 对于22:()4423cos30280B b a b b a b +=+=+⨯⨯︒=≠r r r rr r g g; 对于22:()4423cos3020C b a b b a b -=-=-⨯⨯︒=≠r r r rr r g g; 对于22:()(23)234cos300D a a b a a b -=-=-⨯⨯︒=r rr r r r g g; ∴()a a b ⊥-rr r 故选:D .6.(5分)函数()sin()4f x x π=+,则()(f x )A .在(0,)2π上单调递增B .在3(,)44ππ上单调递增C .在37(,)44ππ上单调递增 D .在57(,)44ππ上单调递增 【解答】解:由于函数()sin()4f x x π=+,故在(0,)2π上,(44x ππ+∈,3)4π,函数()f x 没有单调性,故排除A ;在(4π,3)4π上,(42x ππ+∈,)π,函数()f x 单调第减,故排除B ;在3(4π,7)4π上,(,2)4x πππ+∈,函数()f x 没有单调性,故排除C , 在5(4π,7)4π上,3(42x ππ+∈,2)π,函数()f x 单调第增,故D 满足条件, 故选:D .7.(5分)函数()f x 的图象如图所示,则它的解析式可能是( )A .21()2xx f x -=B .()2(||1)x f x x =-C .()||||f x ln x =D .()1x f x xe =-【解答】解:由图象可知,函数的定义域为R ,故排除C ;由f (1)0=可知,故排除D ; 当x →-∞时,()0f x →,故排除A ; 故选:B .8.(5分)为了得到函数cos(4)3y x π=+的图象,可以将函数sin 4y x =的图象( )A .向左平移524π个单位 B .向右平移524π个单位 C .向左移动56π个单位 D .向右平移56π个单位 【解答】解:将函数sin 4y x =的图象向左平移524π个单位,得到5sin(4)cos(4)63y x x ππ=+=+的图象, 故选:A .9.(5分)已知||||1OA OB ==u u u r u u u r ,60AOB ∠=︒,OC OA OB λμ=+u u u r u u u r u u u r,其中实数λ,μ满足12λμ+剟,0λ…,0μ…,则点C 所形成的平面区域的面积为( )ABCD【解答】解:建立平面直角坐标系; 因为||||1OA OB ==u u u r u u u r,60AOB ∠=︒,所以(1,0)A ,1(2B;设(,)C x yQ OC OA OB λμ=+u u u r u u u r u u u r,∴12x y λμ⎧=+⎪⎪⎨⎪=⎪⎩⇒x y y λμ⎧=-⎪⎪⎨⎪=⎪⎩;Q 实数λ,μ满足12λμ+剟,0λ…,0μ…,∴0120x y x y y ⎧⎪⎪⎪⎪+⎨⎪⎩…剟…;对应区域如图:;由31(231x yA xy⎧-=⎪⎪⇒⎨⎪+=⎪⎩,3);3(1,3)32x yBx y⎧-=⎪⎪⇒⎨⎪+=⎪⎩;3331123122OBD OACS S S∆∆∴=-=⨯⨯-⨯⨯=阴影;即点C所形成的平面区域的面积为33.故选:B.10.(5分)若不等式(||)cos()023x a b xππ--+…对[1x∈-,3]恒成立,则(a b-=) A.13B.23C.56D.73【解答】解:当113x-剟或733x剟时,cos()023xππ+…;当1733x剟时,cos()023xππ+„,∴当113x-剟或733x剟时||0x a b--…;当1733x剟时,||0x a b--„,设()||f x x a b =--,则()f x 在(,)a -∞上单调递减,在(,)a +∞上单调递增, 且()f x 的图象关于直线x a =对称, 17()()033f f ∴==,1782333a ∴=+=,即43a =,又774()||0333f b =--=,故1b =.41133a b ∴-=-=. 故选:A . 二、填空题:11.(6分)若2log 3a =,3log 2b =,则a b =g 1 ,lga lgb += . 【解答】解:2log 3a =Q ,3log 2b =, 则32123lg lg a b lg lg ==g g , 10lga lgb lgab lg +===.故答案为:1,0.12.(6分)设函数1,1,(),1,x e x f x lnx x ⎧-<=⎨⎩…则(0)f 的值为 0 ;若f (a )2=,则a = .【解答】解:根据题意,函数1,1,(),1,x e x f x lnx x ⎧-<=⎨⎩…,则0(0)1110f e =-=-=,若f (a )2=,当1a <时,f (a )12a e =-=,解可得31a ln =>,舍去;当1a …时,f (a )2lna ==,解可得2a e =,符合题意; 故2a e =, 故答案为:0,2e ,13.(6分)已知向量(,12),(4,5),(,10)OA k OB OC k ===-u u u r u u u r u u u r ,若||||AB BC =u u u r u u u r ,则k = 32;若A ,B ,C 三点共线,则k = .【解答】解:Q (,12),(4,5),(,10)OA k OB OC k ===-u u u r u u u r u u u r, ∴(4,7)AB OB OA k =-=--u u u r u u u r u u u r ,(4,5)CB OB OC k =-=+-u u u r u u u r u u u r ,Q 若||||AB BC =u u u r u u u r ,∴32k ==, A Q 、B 、C 三点共线,(5)(4)(7)(4)0k k ∴-⨯---⨯+=,解得23k =-.故答案为:32;23- 14.(6分)若tan 2α=,则sin 3cos sin cos αααα+=- 5 ,sin cos αα= .【解答】解:sin 3cos tan 3235sin cos tan 121αααααα+++===---,222sin cos tan 22sin cos 1415sin cos tan αααααααα=∴===+++, 故答案为:5,25. 15.(5分)设函数22,0,()2,0,x x f x x x x -⎧=⎨-+>⎩„若(f f (a ))30+…,则实数a 的取值范围是3[,)2-+∞ . 【解答】解:根据()f x 的解析式作出其图象如图所示:由图可知当()3f x =-时仅有一解3x =,当()3f x =时仅有一解32x =-.令f (a )t =,则(f f (a ))30+…,即()3f t -…,3t ∴„,即f (a )3„,32a ∴-…. a ∴的取值范围为3[,)2-+∞.故答案为:3[,)2-+∞.16.(5分)如图所示,2OD =,4OE =,60DOE ∠=︒,3,3AB AD AC AE ==u u u r u u u r u u u r u u u r ,则BC OE =u u u r u u u rg 36 .【解答】解:连接DE ;Q 3,3AB AD AC AE ==u u u r u u u r u u u r u u u r ,//DE BC ∴且13DE BC =;∴2233()3334324cos6036BC OE DE OE OE OD OE OE OE OD ==-=-=⨯-⨯⨯⨯︒=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r g g g g ;故答案为:3617.(5分)设()||f x x x a x =--,对任意的实数(1,2)a ∈-,关于x 的方程()f x tf =(a )共有三个不相等的实数根,则实数t 的取值范围是 (0,1) . 【解答】解:根据解析式可得f (a )a =-,由题意得,关于x 的方程()f x tf =(a )有三个不相等的实数根即()f x at =-有三个不相等的实数根;即()y f x =与y at =-有三个不同的交点; 22(1),()(1),x a x x af x x a x x a ⎧-+=⎨-+-<⎩…, (1)当12a <„时,1122a a a -+剟,则()f x 在1(,)2a --∞上单调递增,在1(2a -,)a 上单调递减,在(,)a +∞上单调递增, 故21(1)()24a a f x f --⎛⎫==⎪⎝⎭极大值,()f x f =极小值(a )a =-, 所以需满足(1)2/4a ata sup sup at -<-⎧⎪⎨-<><>>-⎪⎩对任意(1,2)a ∈恒成立,解得01t <<;(2)当11a -<<时,1122a a a -+<<,则()f x 在1(,)2a --∞上单调递增,在1(2a -,1)2a +上单调递减,在1(2a +,)+∞上单调递增, 故21(1)()24a a f x f --⎛⎫== ⎪⎝⎭极大值,21(1)()24a a f x f ++⎛⎫==-⎪⎝⎭极小值, 则需22(1)(1)44a a at +--<-<对任意11a -<<恒成立, ①当0a =时,11044-<<成立,此时t R ∈,②当01a <<时,112244a a a a t ++-+-<-<恒成立,解得01t 剟, ③当10a -<<时,112244a a a a t ++-+<<-恒成立,解得01t 剟, 综上01t 剟, 结合(1)(2)得(0,1)t ∈, 故答案为(0,1).三、解答题:解答应写出文字说明、证明过程或演算步骤.18.(12分)已知集合2{|4120|}A x x x =--„,{|222|}B x a x a =-+剟. (Ⅰ)若1a =,求()U A B I ð;(Ⅱ)若[4A B =-U ,6],求实数a 的值.【解答】解:(Ⅰ)当1a =时,{|24}B x x =-剟,{|26}A x x =-剟, 所以{|2U C B x x =<-或4}x >, 所以(){|46}U A B x x =<I „ð. (Ⅱ)[4A B =-Q U ,6],∴242226a a -=-⎧⎨-+⎩剟,即222a a =⎧⎨-⎩剟,解得2a =.19.(12分)已知平面向量(2,4),(3,5),(2,6)a b c ===-r r r . (Ⅰ)若a xb yc =+r r r,求x y +的值;(Ⅱ)若a kc +r r在a b -r rk .【解答】解:(Ⅰ)因为(2,4),(3,5),(2,6)a b c ===-r r r, 所以(32,56)xb yc x y x y +=-+r r, 又a xb yc =+r r r , 所以322564x y x y -=⎧⎨+=⎩,解得57114x y ⎧=⎪⎪⎨⎪=⎪⎩,所以1114x y +=(Ⅱ)由题意知(1,1),(22,46)a b a kc k k -=--+=-+r r r r,所以||)()(22)(46)46a b a kc a b k k k -+-=---+=--r rr r r r g, 因为a kc +r r在a b -r r,()()||a kc a b a b +--rr r r g rr 解得2k =-20.(12分)已知函数1()2()2x x f x a x R =+∈g 是偶函数. (Ⅰ)求a 的值;(Ⅱ)当(0,)x ∈+∞时,判断函数()f x 的单调性,并证明你的结论. 【解答】解:(Ⅰ)因为1()2()2x xf x a x R =+∈g 是偶函数, 所以()()f x f x -=,即112222x xx xa a --+=+g g , 化简得1(1)(2)02x xa --=,所以1a = (Ⅱ)结论:1()22x xf x =+在(0,)+∞单调递增.下证之. 任取120x x <<,则2112121212121212121122(22)(21)()()2(2)2222222x x x x x x x x x x x x x x x x f x f x ++----=+-+=-+=g因为120x x <<,所以1212220,210x x x x +-<>>, 所以12210x x +>>所以121212(22)(21)02x x x x x x ++--<,即12()()f x f x <所以1()22x x f x =+在(0,)+∞单调递增.21.(12分)已知函数()sin()(0,0)3f x A x A πωω=+>>的图象经过点,且图象上相邻两条对称轴之间的距离为2π.(Ⅰ)求函数()f x 的解析式及它的单调递增区间;(Ⅱ)是否存在实数m ,使得不等式f f >成立?若存在,请求出m 的取值范围;若不存在,请说明理由.【解答】解:(Ⅰ)因为函数()sin()(0,0)3f x A x A πωω=+>>的图象经过点,所以(0)sin 3f A π=,解得2A =又函数图象上相邻两条对称轴之间的距离为2π得4T π=, 又由2T πω=,得12ω=, 所以1()2sin()23f x x π=+结合函数sin y x =的单调性, 令122()2232k x k k Z πππππ-+++∈剟,解得54433k x k ππππ-++剟, 所以函数()f x 的单调递增区间是5[4,4]()33k k k Z ππππ-++∈, (Ⅱ)由题意知222010m m m ⎧-+⎨-+⎩……,所以01m 剟,[0,1] 由函数()f x 的单调递增区间是5[4,4]()33k k k Z ππππ-++∈知,()f x 在[0,1]上单调递增,又f f >,所以>,解得12m >, 结合01m 剟,得112m <„. 22.(13分)已知函数1()||1f x a x a x =--+-,(1,)x ∈+∞. (Ⅰ)若1a =,求方程()0f x =的解;(Ⅱ)若函数()y f x =恰有两个不同的零点1x ,212()x x x <,求12x x +的值. 【解答】解:(Ⅰ)当1a =时,1()|1|101f x x x =--+=-,所以2||11xx x -=-- 所以12211x x x x <<⎧⎪-⎨=-⎪-⎩或2211x x x x ⎧⎪-⎨=-⎪-⎩…,解得x =x ∈∅所以当1a =时,方程()0f x =的解集为⎪⎪⎩⎭(Ⅱ)由题意令()0f x =得1||1a x a x -=--, 记1()||,()1g x a h x x a x =-=--, 作函数()g x 与()h x 的图象,由函数()y f x =在定义域(1,)+∞内恰有两个不同的零点1x ,212()x x x <, 可知0a „不合题意,故0a >如图所示,要使函数()y f x =恰有两个不同的零点,则应有直线y x a =-与函数1()||1g x a x =--的图象相切或者直线y x a =-经过点1(1,0)a+, (1)当直线y x a =-与函数1()||1g x a x =--的图象相切时, 联立方程11y x a y a x =-⎧⎪⎨=-⎪-⎩,消去y 得2(21)210x a x a -+++=,由△0=得2(21)4(21)0a a +-+=,所以12a =-(舍去)或32a =此时22x =,直线32y x =-,联立1312y x =--,解得115x +=所以1255x x ++=(2)当直线y x a =-经过点1(1,0)a +时,有101a a=+-,所以210a a --=,得15a += 此时直线方程为11515,y x x ++=-=联立151511y x y x ⎧+=-⎪⎪⎨+⎪=-⎪-⎩,消去y 解得235x +=,所以1225x x +=+. 综上所述,当32a =时,1255x x ++=;当15a +=时,1225x x +=+.。
浙江省杭高三校2023-2024学年高一上学期期末数学试题含答案
杭高2023学年第一学期期末考试高一数学参考答案(答案在最后)命题:1.本试卷分试题卷和答题卡两部分.本卷满分150分,考试时间120分钟.2.答题前务必将自己的学校、班级、姓名用黑色字迹的签字笔或钢笔填写在答题卡规定的地方.3.答题时,请按照答题卡上“注意事项”的要求,在答题卡相应的位置上规范答题,在本试题卷上答题一律无效.4.考试结束后,只需上交答题卡.第Ⅰ卷一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若角α终边上一点()43P ,-,则sin α=()A.3 B.45-C.35D.34-【答案】C 【解析】【分析】根据三角函数的定义可求sin α的值.【详解】因为()43P ,-,故5OP =,故3sin 5α=,故选:C.2.已知2log 0.5a =,0.52b =,sin 2c =,则,,a b c 的大小关系为()A.a b c <<B.b<c<aC.c<a<bD.a c b<<【答案】D 【解析】【分析】分别利用函数2log y x =、2x y =和sin y x =的单调性,对“2log 0.5a =,0.52b =,sin 2c =”三个因式进行估值即可.【详解】因为函数2log y x =是增函数,且0.51<,则22log 0.5log 10a =<=,因为函数2x y =是增函数,且0.50>,则0.50221b =>=,因为正弦函数sin y x =在区间π3π[,22上是减函数,且π2π2<<,所以π0sin πsin 2sin 12c =<=<<,所以a c b <<,故选:D.3.函数2lg 43()()f x x x =+-的单调递减区间是()A.3,2⎛⎤-∞ ⎥⎝⎦B.3,2⎡⎫+∞⎪⎢⎣⎭C.31,2⎛⎤- ⎥⎝⎦D.3,42⎡⎫⎪⎢⎣⎭【答案】D 【解析】【分析】计算出函数定义域后结合复合函数的单调性计算即可得.【详解】由()()243lg f x x x =+-可得,2430x x+->,解得()1,4x ∈-,故()f x 的定义域为()1,4-,由ln y x =为增函数,令243t x x =+-,对称轴为32x =,故其单调递减区间为3,42⎡⎫⎪⎢⎣⎭,所以()()243lg f x x x =+-的单调递减区间为3,42⎡⎫⎪⎢⎣⎭.故选:D.4.“01a <<且01b <<”是“log 0a b >”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据两者之间的推出关系可得条件关系.【详解】若01a <<且01b <<,则log log 10a a b >=,故log 0a b >成立,故“01a <<且01b <<”是“log 0a b >”的充分条件.若log 0a b >,则log log 1a a b >,故11a b >⎧⎨>⎩或0101a b <<⎧⎨<<⎩,故“01a <<且01b <<”不是“log 0a b >”的必要条件,故“01a <<且01b <<”是“log 0a b >”的充分不必要条件.故选:A.5.设函数()f x 51,11,1x x x a x -<⎧=⎨+≥⎩.若4()95f f ⎡⎤=⎢⎥⎣⎦,则a 等于()A.12B.2C.13D.3【答案】B 【解析】【分析】按照从内到外的原则,先计算4()5f 的值,再代入4()95f f ⎡⎤=⎢⎥⎣⎦,即可求出a 的值.【详解】由于函数()f x 51,11,1x x x a x -<⎧=⎨+≥⎩,且415<,则44(51355f =⨯-=,且31>,所以34()(3)195f f f a ⎡⎤==+=⎢⎥⎣⎦,即38a =,得2a =.故选:B.6.已知函数()24f x x ax =-+在()1,2上有且只有一个零点,则实数a 的取值范围是()A.[)8,10 B.()8,10 C.[)4,5 D.()4,5【答案】D 【解析】【分析】根据题意将零点问题转化为函数图象公共点问题进而求解答案即可.【详解】因为函数()24f x x ax =-+在()1,2上有且只有一个零点,所以24x ax +=,即4x a x+=在()1,2上有且只有一个实根,所以4y x x=+与y a =的函数图象在()1,2x ∈时有一个公共点,由于4y x x =+在()1,2单调递减,所以442121a +<<+,即45a <<.故选:D7.已知()()π2sin 03⎛⎫=+> ⎪⎝⎭f x x ωω在2π0,3⎛⎫⎪⎝⎭上单调递增,则ω的取值范围是()A.(]0,4 B.10,4⎛⎤ ⎝⎦C.10,4⎛⎫ ⎪⎝⎭D.(]0,1【答案】B 【解析】【分析】先求出π3x ω+取值范围,再由()f x 在2π0,3⎛⎫⎪⎝⎭上单调递增得2πππ332ω+≤,最后结合题意求出ω的取值范围即可.【详解】因为2π0,3x ⎛⎫∈ ⎪⎝⎭,0ω>,所以ππ2ππ,3333x ω⎛⎫+∈+ ⎪⎝⎭,要使得()f x 在2π0,3⎛⎫ ⎪⎝⎭上单调递增,则2πππ332ω+≤,解得14ω≤,又由题意可知0ω>,所以104ω<≤,故选:B8.中国早在八千多年前就有了玉器,古人视玉为宝,玉佩不再是简单的装饰,而有着表达身份、感情、风度以及语言交流的作用.不同形状.不同图案的玉佩又代表不同的寓意.如图1所示的扇形玉佩,其形状具体说来应该是扇形的一部分(如图2),经测量知4AB CD ==,4BC =,8AD =,则该玉佩的面积为()A.16π3- B.32π3-C.16π3D.32π3【答案】B【解析】【分析】取AD 的中点为M ,连接BM 、CM ,延长AB ,CD 交于点O ,利用平面几何知识得到扇形的圆心角,进而利用扇形面积公式和三角形的面积公式计算求得该玉佩的面积.【详解】如图,取AD 的中点为M ,连接BM ,CM ,延长AB ,CD 交于点O ,由题意,△AOB 为等腰三角形,又∵AB CD =,∴AD //BC ,又∵M 为AD 的中点,8,4AD BC ==,∴AM 与BC 平行且相等,∴四边形ABCM 为平行四边形,∴4MC AB ==,同理4CM AB ==,∴△ABM ,△CDM 都是等边三角形,∴△BOC 是等边三角形,∴该玉佩的面积138844234S π=⨯⨯⨯-⨯⨯=32π3-.故选:B.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知函数()f x 的图象是连续不断的,且有如下对应值表:x1234567()f x 4-2-1421-3-在下列区间中,函数()f x 必有零点的区间为()A.(1,2)B.(2,3)C.(5,6)D.(5,7)【答案】BCD 【解析】【分析】根据零点存在定理可判断零点所在区间.【详解】由所给的函数值表知,()()()()()()()()120,230,560,570,f f f f f f f f ><<<由零点存在定理可知:()f x 在区间()()()2,3,5,6,5,7内各至少有一个零点,故选:BCD.10.设函数()πsin 2,6f x x x ⎛⎫=+= ⎪⎝⎭R ,若ππ,22α⎛⎫∈- ⎪⎝⎭,函数()f x α+是偶函数,则α的值可以是()A.π6-B.π3-C.π6D.π3【答案】BC 【解析】【分析】由题意可得()πsin 226f x x αα⎛⎫+=++⎪⎝⎭,结合偶函数的性质与ππ,22α⎛⎫∈- ⎪⎝⎭计算即可得.【详解】()πsin 226f x x αα⎛⎫+=++ ⎪⎝⎭,又其为偶函数,则图像关于y 轴对称,则ππ2π,62k k α+=+∈Z ,得ππ,62k k α=+∈Z ,又ππ,22α⎛⎫∈- ⎪⎝⎭,则π6α=或π3α=-.故选:BC.11.已知函数())ln1f x x x =++.则下列说法正确的是()A.()1lg3lg 23f f ⎛⎫+= ⎪⎝⎭B.函数()f x 的图象关于点()0,1对称C.对定义域内的任意两个不相等的实数12,x x ,()()12120f x f x x x -<-恒成立.D.若实数,a b 满足()()2f a f b +>,则0a b +>【答案】ABD 【解析】【分析】选项A 、B ,先利用函数解析式得出结论:()()2f x f x -+=,由于1lglg33=-,只需验证()()lg3lg32f f +-=是否成立即可;选项B ,需验证点()(,)x f x 和点()(,)x f x --关于点()0,1对称即可;选项C ,利用复合函数单调性的“同增异减”的原则判断即可;选项D ,将不等式()()2f a f b +>转化为()()()2f a f b f b >-=-的形式,借助函数()f x 单调性判断即可.【详解】对于A 、B 选项,对任意的x ∈R ,0x x x >+≥,所以函数())ln1f x x x =++的定义域为R ,又因为()())()1])1f x f x x x x x -+=+-++++22ln(1)22x x =+-+=,由于()()()1lg3lg lg3lg323f f f f ⎛⎫+=+-= ⎪⎝⎭,故A 正确;由于函数()f x 满足()()2f x f x -+=,所以任意点()(,)x f x 和点()(,)x f x --关于点()0,1对称,故函数()f x 的图象关于点()0,1对称,故B 正确;对于C 选项,对于函数())ln h x x =+0x x x >+≥,得该函数的定义域为R ,()()))()22lnlnln 10h x h x x x x x -+=-+=+-=,即()()h x h x -=-,所以函数()h x 为奇函数,当0x ≥时,内层函数u x =为增函数,外层函数ln y u =为增函数,所以函数()h x 在[)0,∞+上为增函数,故函数()h x 在(],0-∞上也为增函数,因为函数()h x 在R 上连续,故函数()h x 在R 上为增函数,又因为函数1y x =+在R 上为增函数,故函数()f x 在R 上为增函数,故C 不正确;对于D 选项,由()()2f x f x -+=,得2()()f x f x -=-,因为实数a ,b 满足()()2f a f b +>,所以()()()2f a f b f b >-=-,同时函数()f x 在R 上为增函数,可得a b >-,即0a b +>,故D 正确.故选:ABD.12.函数()lg f x x =,有0a b <<且()()22a b f a f b f +⎛⎫==⎪⎝⎭,则下列选项成立的是()A.1ab =B.14a <C.3<<4b D.517328a b +<<【答案】ACD 【解析】【分析】利用对数性质判断选项A ;再利用零点存在定理判断得3<<4b ,从而判断选项B 、C 、D.【详解】因为()lg ,f x x =有0a b <<且()()2,2a b f a f b f +⎛⎫== ⎪⎝⎭所以lg lg =a b ,即lg lg a b -=,得lg lg 0a b +=所以1ab =,且()()0,1,1,.a b ∞∈∈+所以A 正确22112lg 2lg lg 24b b b b b +++==(因为12b b+>),故22142,b b b=++即4324210,b b b -++=()()321310b b b b ----=,令()3231,g b b b b =---当13b <<时,()3222313310g b b b b b b b =---<---<当4b >时,()32222314311(1)10g b b b b b b b b b b b =--->---=--=-->,而()()30,40,g g 故()0g b =在()3,4之间必有解,所以存在b ,使得3 4.b <<所以C 正确111,43a b ⎛⎫=∈ ⎪⎝⎭,所以B 不正确11517,2238a b b b +⎛⎫⎛⎫=+∈ ⎪ ⎪⎝⎭⎝⎭,所以D 正确故选:ACD【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.第Ⅱ卷三、填空题:本题共4小题,每小题5分,20分.13.计算:23(log 9)(log 4)⋅=____________.【答案】4【解析】【分析】根据题意,由换底公式代入计算,即可得到结果.【详解】()()23log 9log 4=lg 9lg 2×lg 4lg 32lg 3lg 2=×2lg 2lg 3=4.故答案为:414.写出一个同时满足以下三个条件①定义域不是R ,值域是R ;②奇函数;③周期函数的函数解析式___________.【答案】()()πtan ,πZ 2f x x x k k =≠+∈(答案不唯一).【解析】【分析】联想正切函数可得结果.【详解】满足题意的函数为()tan f x x =,(Z)2x k k ππ≠+∈(答案不唯一).故答案为:()tan f x x =,(Z)2x k k ππ≠+∈(答案不唯一).15.已知()f x 为定义在R 上的奇函数,且又是最小正周期为T 的周期函数,则πsin 32T f ⎡⎤⎛⎫+ ⎪⎢⎥⎝⎭⎣⎦的值为____________.【答案】2【解析】【分析】根据函数的周期和奇偶性得到02T f ⎛⎫=⎪⎝⎭,进而得到ππsin sin 3232T f ⎡⎤⎛⎫+== ⎪⎢⎥⎝⎭⎣⎦.【详解】因为()f x 的最小正周期为T ,故222T T T f f T f ⎛⎫⎛⎫⎛⎫=-=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,又()f x 为奇函数,故22T T f f ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,故22T T f f ⎛⎫⎛⎫=-⎪ ⎪⎝⎭⎝⎭,即202T f ⎛⎫= ⎪⎝⎭,解得02T f ⎛⎫= ⎪⎝⎭,故ππsin sin 3232T f ⎡⎤⎛⎫+== ⎪⎢⎥⎝⎭⎣⎦.故答案为:3216.对于任意实数,a b ,定义{},min ,,a a ba b b a b ≤⎧=⎨>⎩.设函数()3f x x =-+,()2log g x x =,则函数{}()min (),()h x f x g x =的最大值是_______.【答案】1【解析】【分析】画出()f x 和()g x 的图象,得到()h x 的图象,根据图象得到最大值.【详解】在同一坐标系中,作出函数()(),f x g x 的图象,依题意,()h x 的图象为如图所示的实线部分,令23log 2x x x -+=⇒=,则点()2,1A 为图象的最高点,因此()h x 的最大值为1,故答案为:1四、解答题:本题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.已知cos sin 3cos sin θθθθ-=-+.(1)求tan θ的值;(2)求222sin 113cos +-θθ的值.【答案】(1)2-(2)132【解析】【分析】(1)根据题意整理可得sin 2cos θθ=-,进而可得结果;(2)根据齐次式问题分析求解,注意“1”的转化.【小问1详解】因为cos sin 3cos sin θθθθ-=-+,整理得sin 2cos θθ=-,所以sin tan 2cos θθθ==-;【小问2详解】因为tan 2θ=-,所以2222222222222sin 12sin sin cos 3sin cos 13cos sin cos 3cos sin 2cos θθθθθθθθθθθθ++++==-+--()()22223tan 1tan 321213222θθ⨯-+==--+=-.18.已知集合{}1217A xx =≤-≤∣,函数()f x =的定义域为集合B .(1)求A B ⋂;(2)若{}M xx m =≤∣,求R M B ⋃=时m 的取值范围.【答案】(1){34}A B xx ⋂=<≤∣(2)[)3,+∞【解析】【分析】(1)解一次与二次不等式,结合具体函数定义域的求法化简集合,A B ,再利用交集的运算即可得解;(2)利用集合的并集结果即可得解.【小问1详解】集合{}{}121714A xx x x =≤-≤=≤≤∣∣,由2230x x -->,得1x <-或3x >,则集合{1B xx =<-∣或3}x >,所以{34}A B xx ⋂=<≤∣.【小问2详解】因为R M B ⋃=,{}M xx m =≤∣,则3m ≥,故m 的取值范围是[)3,+∞.19.已知()sin()f x x π=-223,(1)求()f x 的最小正周期和对称轴方程;(2)求()f x 在闭区间,44ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值.【答案】(1)最小正周期为π;对称轴方程为5,122k x k Z ππ=+∈;(2)()max 1f x =,()min 2f x =-;【解析】【分析】(1)由正弦函数的性质计算可得;(2)由x 的取值范围,求出23x π-的取值范围,再由正弦函数的性质计算可得;【详解】解:(1)因为()2sin 23f x x π⎛⎫=- ⎪⎝⎭,所以最小正周期22T ππ==,令2,32x k k Z πππ-=+∈,解得5,122k x k Z ππ=+∈,故函数的对称轴为5,122k x k Z ππ=+∈(2)因为,44x ππ⎡⎤∈-⎢⎥⎣⎦,所以52,366x πππ⎡⎤-∈-⎢⎥⎣⎦,所以当236x ππ-=,即4x π=时函数取得最大值()max 14f x f π⎛⎫== ⎪⎝⎭,当232x ππ-=-,即12x π=-时函数取得最小值()min 212f x f π⎛⎫=-=- ⎪⎝⎭20.已知函数()f x 为定义在R 上的偶函数,当0x ≥时,()1432xx f x +=-⨯.(1)求()f x 的解析式;(2)求方程()8f x =-的解集.【答案】(1)()11432,0432,0x x xx x f x x +--+⎧-⨯≥=⎨-⨯<⎩(2){}2,1,1,2--【解析】【分析】(1)根据偶函数的性质直接求解即可;(2)根据题意先求0x ≥时符合题意的解,再结合偶函数对称性求出方程解集即可.【小问1详解】因为函数()f x 为定义在R 上的偶函数,当0x ≥时,()1432xx f x +=-⨯,所以任取0x <,则0x ->,此时()()1432xx f x f x --+=-=-⨯,所以()11432,0432,0x x xx x f x x +--+⎧-⨯≥=⎨-⨯<⎩【小问2详解】当0x ≥时,令()14328xx f x +=-⨯=-,即()226280xx -⨯+=,令2x t =,则2680t t -+=,解得2t =或4t =,当22x t ==时,1x =,当24x t ==时,2x =,根据偶函数对称性可知,当0x <时,符合题意的解为=1x -,2x =-,综上,原方程的解集为{}2,1,1,2--21.已知函数()222cos 1f x x x =+-.(1)求()f x 的单调递增区间;(2)若π102313f α⎛⎫-=⎪⎝⎭,π,π2α⎛⎫∈ ⎪⎝⎭,求πsin 4α⎛⎫+ ⎪⎝⎭的值.【答案】(1)πππ,π,Z36k k k ⎡⎤-++∈⎢⎥⎣⎦(2)26【解析】【分析】(1)由降幂公式和辅助角公式化简函数解析式,整体代入法求单调递增区间;(2)由π102313f α⎛⎫-= ⎪⎝⎭,代入函数解析式解出cos α和sin α,由两角和的正弦公式求解πsin 4α⎛⎫+ ⎪⎝⎭的值.【小问1详解】()222cos 12cos 2f x x x x x =+-=+1π2sin 2cos 22sin 2226x x x ⎛⎫⎛⎫=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭,令Z 262πππ2π22π,k x k k -+≤+≤+∈,解得2ππ2π22πZ ,33k x k k -+≤≤+∈,即ππππ,Z 36k x k k -+≤≤+∈,所以()f x 的单调递增区间为πππ,π,Z 36k k k ⎡⎤-++∈⎢⎥⎣⎦.【小问2详解】由π102313f α⎛⎫-=⎪⎝⎭得5sin 213πα⎛⎫-= ⎪⎝⎭,所以5cos 13α=-,又因为π,π2α⎛⎫∈⎪⎝⎭,所以12sin 13α==,所以πππsin sin cos cos sin 44426ααα⎛⎫+=+= ⎪⎝⎭.22.已知函数()22log f x x =-,()()21,11,1x x g x f x x ⎧-≤⎪=⎨->⎪⎩.(1)求()g x 的最大值;(2)若对任意[]14,16x ∈,2R x ∈,不等式()()()12212kf x f xg x ⋅>恒成立,求实数k 的取值范围.【答案】(1)1(2)1,2⎛⎫+∞ ⎪⎝⎭【解析】【分析】(1)根据分段函数性质讨论函数单调性与最值,结合指数函数和对数函数相关知识求解最值即可;(2)根据题意转化为对任意[]14,16x ∈,()()21121kf x f x ⋅>恒成立,代入函数表达式进行化简,令21log ,24m x m =≤≤,将不等式化为()()2211k m m --->,结合二次函数相关知识分类讨论即可.【小问1详解】当1x ≤时,()21xg x =-,此时022x <≤,1211x -<-≤,则()0211xg x ≤=-≤;当1x >时,()()211log g x f x x =-=-单调递减,此时()()11g x g <=,综上所述,当1x =时,取得()g x 的最大值1;【小问2详解】因为对任意[]14,16x ∈,2R x ∈,不等式()()()21122kf x f xg x ⋅>恒成立,且()21g x ≤,所以对任意[]14,16x ∈,()()21121kf x f x ⋅>恒成立,由题意得,()()()()()()22112121212122log 22log 22log 1log kkf x f x x x k x x ⋅=--=---,令21log ,24m x m =≤≤,则不等式可化为()()2211k m m --->,即()2223230m k m k +--+>对任意[]2,4m ∈恒成立,令()()[]222323,2,4h m m k m k m =+--+∈,则函数图象开口向上,对称轴()233222k km --=-=⨯,当322k -≤,即1k ≥-时,()()()min 2843230h m h k k ==+--+>,解得12k >,符合题意;当3242k -<<时,即51k -<<-时,()2min 323022k k k h m h --+-⎛⎫==> ⎪⎝⎭,即2230k k -+<,不等式无解,该情况舍去;当342k-≥时,即5k ≤-时,()()()min 43283236110h m h k k k ==+--+=+>,解得116k >-,不符合题意,该情况舍去.综上所述,实数k 的取值范围为1,2∞⎛⎫+⎪⎝⎭.【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d=∈(1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <;(2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <;(3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <;(4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集.。
浙江省嘉兴市2019-2020学年高一数学上学期期末考试试题(含解析)
【详解】①由题: tan 2 ,
sin 3cos tan 3 5 则 sin cos tan 1 ,
sin cos
②
sin cos sin2 cos2
tan tan2 1
2 5.
2 故答案为:①5,② 5
【点睛】此题考查同角三角函数的基本关系,根据正切求值,关键在于正确处理分子分母齐
【答案】 (1). 1 (2). 0 【解析】
【分析】 ①根据换底公式计算即可得解;
②根据同底对数加法法则,结合①的结果即可求解.
【详解】①由题: a log2 3, b log3 2 ,
则
ab
log2
3
log3
2
log2
3
log2 log2
2 3
1
;
②由①可得: lg a lg b lg ab lg1 0 .
a
4 3
,b
1
,
a 4,b 1
检验当 3
时,
x
4 3
1
在
x
1,
1 3
大于等于
0,在
x
1 3
,
7 3
时,小于等于
0,在
x
7 3
,
3
大于等于
0,
ab 1
所以
3.
故选:A 【点睛】此题考查根据不等式恒成立求参数的值,将问题转化为方程的根的问题,涉及转化 与化归思想,综合性强. 二、填空题:
11.若 a log2 3, b log3 2 ,则 ab =______, lg a lg b =______.
【答案】
3 (1). 2
2 (2). 3
【解析】
【分析】
2020-2021学年高一上学期期末考试数学卷及答案
2020-2021学年高一上学期期末考试数学卷及答案1.集合A和B分别表示y=x+1和y=2两个函数的图像上所有的点,求A和B的交集。
答案:A={(-∞,1]}。
B={2}。
A∩B=A={(-∞,1]}2.已知函数y=(1-x)/(2x^2-3x-2),求函数的定义域。
答案:分母2x^2-3x-2=(2x+1)(x-2),所以函数的定义域为x∈(-∞,-1/2]∪(2,∞)。
3.如果直线mx+y-1=0与直线x-2y+3=0平行,求m的值。
答案:两条直线平行,说明它们的斜率相等,即m=2.4.如果直线ax+by+c=0经过第一、第二,第四象限,求a、b、c应满足的条件。
答案:第一象限中x>0.y>0,所以ax+by+c>0;第二象限中x0,所以ax+by+c0.y<0,所以ax+by+c<0.综上所述,应满足ab<0.bc<0.5.已知两条不同的直线m和n,两个不同的平面α和β,判断下列命题中正确的是哪个。
答案:选项A是正确的。
因为如果m与α垂直,n与β平行,那么m和n的夹角就是α和β的夹角,所以m和n垂直。
6.已知圆锥的表面积为6π,且它的侧面展开图是一个半圆,求这个圆锥的底面半径。
答案:设底面半径为r,侧面的母线长为l,则圆锥的侧面积为πrl。
根据题意,πrl=6π,所以l=6/r。
而侧面展开图是一个半圆,所以底面周长为2πr,即底面直径为2r,所以侧面母线长l=πr。
将上述两个式子代入公式S=πr^2+πrl中,得到r=2.7.已知两条平行线答案:两条平行线的距离等于它们的任意一点到另一条直线的距离。
我们可以先求出l2上的一点,比如(0,7/8),然后带入l1的方程,得到距离为3/5.8.已知函数y=ax-1/(3x^2+5),如果它的图像经过定点P,求点P的坐标。
答案:点P的坐标为(1,2)。
因为当x=1时,y=a-1/8,所以a=17/8.又因为当x=2时,y=1/13,所以17/8×2-1/13=2,解得a=17/8,所以y=17x/8-1/(3x^2+5),当x=1时,y=2.9.已知a=3/5,b=1/3,c=4/3,求a、b、c的大小关系。
浙江省嘉兴市2019-2020学年高三上学期期末考试数学试题及答案
浙江省嘉兴市2019~2020学年第一学期期末检测高三数学试题卷(2020.1)本试题卷分选择题和非选择题两部分。
全卷共6页,选择题部分1至3页;非选择题部分4至6页。
满分150分,考试时间120分钟。
考生注意:1. 答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上。
2. 答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
参考公式:若事件A ,B 互斥,则()()()P A B P A P B +=+ 若事件A ,B 相互独立,则()()()P A B P A P B ⋅=⋅若事件A 在一次试验中发生的概率是p ,则n 次独立重复试验中事件A 恰好发生k 次的概率()()()10,1,2,,n kk kn n P k C p p k n −=−=⋅⋅⋅台体的体积公式()1213V S S h =其中1S ,2S 分别表示台体的上、下底面积,h 表示台体的高. 柱体的体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高 锥体的体积公式13V Sh =其中S 表示锥体的底面积,h 表示锥体的高 球的表面积公式24S R π= 球的体积公式343V R π=其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知全集U R =,集合{}|11A x x =−<≤,{}1,1B =−,则()U A C B =( )A. {}|1x x ≠−B. {}|1x x ≠C. {}|11x x −<<D. {}|11x x −≤≤2. 已知i 是虚数单位,()122z i i +=−,则z =( ) A. 1B. 2C. iD. 2i3. 设曲线12x y x +=−在点()1,2−处的切线与直线0ax by c ++=垂直,则ab=( ) A.13B. 13− C. 3 D. -34. 函数()22log f x x x =+,则满足(]01,4x ∈,且()0f x 为整数的实数0x 的个数为( ) A. 3B. 4C. 17D. 185. 设,m n R ∈,则“m n >”是“m m n n >”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充要条件D. 既不充分也不必要条件6. 已知x ,y 满足条件2020240x y y x y −−≤⎧⎪−≤⎨⎪+−≥⎩,若z ax y =+的最大值为0,则实数a 的值为( )A. 12−B. -2C.12D. 27. 如图是某三棱锥的正视图和俯视图(单位:cm ),则该三棱锥侧视图面积是( )(单位:2cm )A. 2B.C.32D.8. 等差数列{}n a 满足:10a >,31047a a =.记12n n n n a a a b ++=,当数列{}n b 的前n 项和n S 取最大值时,n =( )A. 17B. 18C. 19D. 209. 已知A ,B 是椭圆C :2213y x +=短轴的两个端点,点O 为坐标原点,点P 是椭圆C 上不同于A ,B 的动点,若直线PA ,PB 分别与直线4x =−交于点M ,N ,则OMN ∆面积的最小值为( )A. B.C. D.10. 如图,ABC ∆中,2AB =,3AC =,BC 边的垂直平分线分别与BC ,AC 交于点D ,E ,若P 是线段DE 上的动点,则PA BC ⋅的值为( )A. 与角A 有关,且与点P 的位置有关B. 与角A 有关,但与点P 的位置无关C. 与角A 无关,但与点P 的位置有关D. 与角A 无关,且与点P 的位置无关非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分. 11. 已知55sin,cos 66P ππ⎛⎫⎪⎝⎭是角α的终边上一点,则cos α=______,角α的最小正值是______. 12. 已知箱中装有10个不同的小球,其中2个红球、3个黑球和5个白球,现从该箱中有放回地依次取出3个小球.则3个小球颜色互不相同的概率是______;若变量ξ为取出3个球中红球的个数,则ξ的方差()D ξ=______.13. 已知213nx x ⎛⎫+ ⎪⎝⎭的展开式中的各二项式系数的和比各项系数的和小240,则n =______;展开式中的系数最大的项是______.14. 在ABC ∆中,角A ,B ,C 所对的边分别为4a =,4b =,6c =.I 是ABC ∆内切圆的圆心,若AI xAB yAC =+,则x =______;y =______.15. 已知()()111x x a a a f x −=>+,实数1x ,2x 满足()()121f x f x +=,则()12f x x +的最小值为______.16. 已知两定点1,04P ⎛⎫− ⎪⎝⎭,1,04Q ⎛⎫ ⎪⎝⎭位于动直线l 的同侧,集合{}|,1M l P Q l =点到直线的距离之和等于,()(){},|,,N x y x y l l M =∉∈.则集合N 中的所有点组成的图形面积是______.17. 已知矩形ABCD ,4AB =,2BC =,E 、F 分别为边AB 、CD 的中点.沿直线DE 将ADE ∆翻折成PDE ∆,在点P 从A 至F 的运动过程中,CP 的中点G 的轨迹长度为______.三、解答题:本大题共5小题,共74分。
2019年-2020学年高一上学期数学期末模拟考试试题(含答案解析)
2019年-2020 学年高一数学期末模拟考试试题一.选择题(共10小题)1.已知集合A={x|0<log4x<1},B={x|e x﹣2≤1},则A∪B=()A.(﹣∞,4)B.(1,4)C.(1,2)D.(1,2]2.某同学用二分法求方程3x+3x﹣8=0在x∈(1,2)内近似解的过程中,设f(x)=3x+3x ﹣8,且计算f(1)<0,f(2)>0,f(1.5)>0,则该同学在第二次应计算的函数值为()A.f(0.5)B.f(1.125)C.f(1.25)D.f(1.75)3.函数的图象大致是()A.B.C.D.4.函数的零点所在的区间是()A.B.C.D.5.已知a,b是非零实数,则“a>b”是“ln|a|>ln|b|”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.函数的值域为()A.B.C.(0,] D.(0,2]7.若a>b>c>1且ac<b2,则()A.log a b>log b c>log c a B.log c b>log b a>log a cC.log b c>log a b>log c a D.log b a>log c b>log a c8.已知函数f(x)=lg(ax2﹣2x+a)的值域为R,则实数a的取值范围为()A.[﹣1,1] B.[0,1]C.(﹣∞,﹣1)∪(1,+∞)D.(1,+∞)9.若x1是方程xe x=4的解,x2是方程xlnx=4的解,则x1•x2等于()A.4 B.2 C.e D.110.我国古代数学著作《九章算术》有如下问题:“今有蒲生一日,长三尺莞生一日,长一尺蒲生日自半,莞生日自倍.问几何日而长倍?”意思是:“今有蒲草第1天长高3尺,芜草第1天长高1尺以后,蒲草每天长高前一天的一半,芜草每天长高前一天的2倍.问第几天莞草是蒲草的二倍?”你认为莞草是蒲草的二倍长所需要的天数是()(结果采取“只入不舍”的原则取整数,相关数据:lg3≈0.4771,lg2≈0.3010)A.2 B.3 C.4 D.5二.填空题(共5小题)11.已知x>0,y>0,且+=1,则3x+4y的最小值是2512.函数(a>0且a≠1)的图象恒过定点P,则点P的坐标为(4,),若点P在幂函数g(x)的图象上,则g(9)=.13.函数的递减区间是(3,+∞).14.已知函数f(x)=有3个零点,则实数a的取值范围是(,1).15.对于函数f(x),若在定义域内存在实数x0满足f(﹣x0)=﹣f(x0),则称函数f(x)为“倒戈函数”.设f(x)=3x+2m﹣1(m∈R,且m≠0是定义在[﹣1,1]上的“倒戈函数”,则实数m的取值范围是.三.解答题(共4小题)16.已知函数的定义域为集合A,集合B={x|1<x<8},C={x|a <x<2a+1},(1)求集合(∁R A)∪B;(2)若A∪C=A,求a的取值范围17.(1)已知5a=3,5b=4,用a,b表示log2536.(2)求值.18.已知函数f(x)=log a(1﹣x),g(x)=log a(x+3),其中0<a<1.(1)解关于x的不等式:f(x)<g(x);(2)若函数F(x)=f(x)+g(x)的最小值为﹣4,求实数a的值.19.某工厂今年初用128万元购进一台新的设备,并立即投入使用,计划第一年维修、保养费用8万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该设备使用后,每年的总收入为54万元,设使用x年后设备的盈利总额y万元.(1)写出y与x之间的函数关系式;(2)从第几年开始,该设备开始盈利?(3)使用若干年后,对设备的处理有两种方案:①年平均盈利额达到最大值时,以42万元价格卖掉该设备;②盈利额达到最大值时,以10万元价格卖掉该设备.问哪种方案处理较为合理?请说明理由.2019年-2020 学年高一期末模拟考试试题一.选择题(共10小题)1.已知集合A={x|0<log4x<1},B={x|e x﹣2≤1},则A∪B=()A.(﹣∞,4)B.(1,4)C.(1,2)D.(1,2]【答案】A【解答】解:A={x|1<x<4},B={x|x≤2},∴A∪B=(﹣∞,4).故选:A.2.某同学用二分法求方程3x+3x﹣8=0在x∈(1,2)内近似解的过程中,设f(x)=3x+3x ﹣8,且计算f(1)<0,f(2)>0,f(1.5)>0,则该同学在第二次应计算的函数值为()A.f(0.5)B.f(1.125)C.f(1.25)D.f(1.75)【答案】C【解答】解:∵f(1)<0,f(2)>0,f(1.5)>0,∴在区间(1,1.5)内函数f(x)=3x+3x﹣8存在一个零点该同学在第二次应计算的函数值=1.25,故选:C.3.函数的图象大致是()A.B.C.D.【答案】D【解答】解:由,可知当x→﹣∞时,f(x)→﹣∞,排除A,C;当x→+∞时,由指数爆炸可知e x>x3,则→0,排除B.故选:D.4.函数的零点所在的区间是()A.B.C.D.【答案】C【解答】解:由于连续函数满足f()=﹣2<0,f()=>0,且函数在区间(,)上单调递增,故函数函数的零点所在的区间为(,).故选:C.5.已知a,b是非零实数,则“a>b”是“ln|a|>ln|b|”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】D【解答】解:由于ln|a|>ln|b|⇔|a|>|b|>0,由a>b推不出ln|a|>ln|b|,比如a=1,b=﹣2,有a>b,但ln|a|<ln|b|;反之,由ln|a|>ln|b|推不出a>b,比如a=﹣2,b=1,有ln|a|>ln|b|,但a<b;∴“a>b”是“ln(a﹣b)>0”的既不充分也不必要条件.故选:D.6.函数的值域为()A.B.C.(0,] D.(0,2]【答案】A【解答】解:令t(x)=2x﹣x2=﹣(x﹣1)2+1≤1∵单调递减∴即y≥故选:A.7.若a>b>c>1且ac<b2,则()A.log a b>log b c>log c a B.log c b>log b a>log a cC.log b c>log a b>log c a D.log b a>log c b>log a c【答案】B【解答】解:因为a>b>c>1,令a=16,b=8,c=2,则log c a>1>log a b所以A,C错,则故D错,B对.故选:B.8.已知函数f(x)=lg(ax2﹣2x+a)的值域为R,则实数a的取值范围为()A.[﹣1,1] B.[0,1]C.(﹣∞,﹣1)∪(1,+∞)D.(1,+∞)【答案】B【解答】解:函数f(x)=lg(ax2﹣2x+a)的值域为R,设g(x)=ax2﹣2x+a,则g(x)能取边所有的正数,即(0,+∞)是g(x)值域的子集,当a=0时,g(x)=﹣2x的值域为R,满足条件.当a≠0时,要使(0,+∞)是g(x)值域的子集,则满足得,此时0<a≤1,综上所述,0≤a≤1,故选:B.9.若x1是方程xe x=4的解,x2是方程xlnx=4的解,则x1•x2等于()A.4 B.2 C.e D.1【答案】A【解答】解:由于x1和x2是函数y=e x和函数y=lnx与函数y=的图象的公共点A和B的横坐标,而A(),B()两点关于y=x对称,可得,因此x1x2=4,故选:A.10.我国古代数学著作《九章算术》有如下问题:“今有蒲生一日,长三尺莞生一日,长一尺蒲生日自半,莞生日自倍.问几何日而长倍?”意思是:“今有蒲草第1天长高3尺,芜草第1天长高1尺以后,蒲草每天长高前一天的一半,芜草每天长高前一天的2倍.问第几天莞草是蒲草的二倍?”你认为莞草是蒲草的二倍长所需要的天数是()(结果采取“只入不舍”的原则取整数,相关数据:lg3≈0.4771,lg2≈0.3010)A.2 B.3 C.4 D.5【答案】C【解答】设蒲草每天长的高度为数列{a n},莞草每天长的高度为数列{b n},由题意得:{a n}为等比数列,求首项为3,公比为,所以通项公式a n=3•()n﹣1,前n项和S n=6[1﹣()n],{b n}为等比数列,首项为1,公比为2,所以通项公式b n=2n﹣1,前n项和T n=2n﹣1;由题意得设n天莞草是蒲草的二倍,即2n﹣1=2•6[1﹣()n]⇒(2n)2﹣13•2n+12=0⇒2n=12或1(舍)两边取以10为底的对数,n===2+由相关数据可得,n=4,故选:C.二.填空题(共5小题)11.已知x>0,y>0,且+=1,则3x+4y的最小值是25【答案】25【解答】解:因为x>0,y>0,+=1,所以3x+4y=(3x+4y)(+)=13++≥13+2=25(当且仅当x=2y 时取等号),所以(3x+4y)min=25.故答案为:25.12.函数(a>0且a≠1)的图象恒过定点P,则点P的坐标为(4,),若点P在幂函数g(x)的图象上,则g(9)=.【答案】(4,);.【解答】解:对于函数(a>0且a≠1),令2x﹣7=1,求得x=4,y=,可得它的图象恒过定点P(4,).点P在幂函数g(x)=xα的图象上,则4α=,即22α=2﹣1,∴α=﹣,g(x)==,故g(9)==,故答案为:(4,);.13.函数的递减区间是(3,+∞).【答案】(3,+∞)【解答】解:由2x2﹣5x﹣3>0得x>3或x<﹣,设t=2x2﹣5x﹣3,则当x>3时,函数t为增函数,当x<﹣时,函数t为减函数,∵y=log0.1t为减函数,∴要求y=log0.1(2x2﹣5x﹣3)的递减区间,即求函数t=2x2﹣5x﹣3的递增区间,即(3,+∞),即函数f(x)的单调递减区间为为(3,+∞).故答案为:(3,+∞).14.已知函数f(x)=有3个零点,则实数a的取值范围是(,1).【答案】(,1).【解答】解:∵函数f(x)=有3个零点,∴a>0 且y=ax2+2x+1在(﹣2,0)上有2个零点,∴,解得<a<1,故答案为:(,1).15.对于函数f(x),若在定义域内存在实数x0满足f(﹣x0)=﹣f(x0),则称函数f(x)为“倒戈函数”.设f(x)=3x+2m﹣1(m∈R,且m≠0是定义在[﹣1,1]上的“倒戈函数”,则实数m的取值范围是.【解答】解:∵f(x)=3x+2m﹣1是定义在[﹣1,1]上的“倒戈函数,∴存在x0∈[﹣1,1]满足f(﹣x0)=﹣f(x0),∴3+2m﹣1=﹣3﹣2m+1,∴4m=﹣3﹣3+2,构造函数y=﹣3﹣3+2,x0∈[﹣1,1],令t=3,t∈[,3],y=﹣﹣t+2,y∈[﹣,0],∴﹣<0,∴﹣,故答案为:[﹣,0).三.解答题(共4小题)16.已知函数的定义域为集合A,集合B={x|1<x<8},C={x|a <x<2a+1},(1)求集合(∁R A)∪B;(2)若A∪C=A,求a的取值范围【解答】解:(1)∵函数的定义域为集合A,∴A={x|}={x|﹣1<x<2},∴∁R A={x|x≤﹣1或x≥2},∵集合B={x|1<x<8},∴集合(∁R A)∪B={x|x≤﹣1或x>1}.(2)∵A={x|}={x|﹣1<x<2},C={x|a<x<2a+1},A∪C=A,∴C⊆A,当C=∅时,a≥2a+1,解得a≤﹣1,当C≠∅时,,解得﹣1<x.综上,a的取值范围是(﹣∞,].17.(1)已知5a=3,5b=4,用a,b表示log2536.(2)求值.【解答】解:(1)5a=3,5b=4,得a=log53,b=log54,log2536=,(2)原式=﹣1+2=﹣1﹣2+2=2.5﹣1=1.5.18.已知函数f(x)=log a(1﹣x),g(x)=log a(x+3),其中0<a<1.(1)解关于x的不等式:f(x)<g(x);(2)若函数F(x)=f(x)+g(x)的最小值为﹣4,求实数a的值.【解答】解:(1)不等式即为log a(1﹣x)<log a(x+3),∵0<a<1,∴1﹣x>x+3>0,得解为﹣3<x<﹣1,(2),由﹣x2﹣2x+3>0解得其定义域为(﹣3,1),∵h(x)=﹣x2﹣2x+3z在(﹣3,﹣1)上单调递增,在(﹣1,1)上单调递减,∴h(x)max=h(﹣1)=4.∵0<a<1,且F(x)的最小值为﹣4,∴log a4=﹣4.得a﹣4=4,所以a==.19.某工厂今年初用128万元购进一台新的设备,并立即投入使用,计划第一年维修、保养费用8万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该设备使用后,每年的总收入为54万元,设使用x年后设备的盈利总额y万元.(1)写出y与x之间的函数关系式;(2)从第几年开始,该设备开始盈利?(3)使用若干年后,对设备的处理有两种方案:①年平均盈利额达到最大值时,以42万元价格卖掉该设备;②盈利额达到最大值时,以10万元价格卖掉该设备.问哪种方案处理较为合理?请说明理由.(1)由题意可知x年的维修,使用x年后的总保养、维修费用为8x+【解答】解:=2x2+6x.所以盈利总额y关于x的函数为:y=54x﹣(2x2+6x)﹣128=﹣2x2+48x﹣128(x∈N×).(2)由y>0,得﹣2x2+48x﹣128>0,即x2﹣24x+64<0,解得,由x∈N*,得4≤x≤20.答:第4年该设备开始盈利.(3)方案①年平均盈利,当且仅当,即x=8时取等号,.所以方案①总利润为16×8+42=170(万元),方案②y=﹣2(x﹣12)2+160,x=12时y取得最大值160,所以方案②总利润为160+10=170(万元),答:选择方案①处理较为合理.。
嘉兴市2019—2020学年第一学期期末检测高三数学试题卷Word版含解析
嘉兴市2019-2020学年第一学期期末检测高三数学试题卷第Ⅰ卷一、选择题(本大题共10小题,每小题4分,共40分.)1. 已知集合,,则A. B.C. D.2. 若复数,为虚数单位,则A. B. C. D.3. 点到直线的距离是A. B. C. 1 D.4. 已知是非零实数,则“”是“”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件5. 实数满足,若的最小值为1,则正实数A. 2B. 1C.D.6. 某几何体的三视图如图所示(单位:),则该几何体的表面积(单位:)是A. B. C. D.7. 函数的图象与直线相切,则实数A. B. 1 C. 2 D. 48. 若在内有两个不同的零点,则和A. 都大于1B. 都小于1C. 至少有一个大于1D. 至少有一个小于19. 设点是双曲线与圆在第一象限的交点,是双曲线的两个焦点,且,则双曲线的离心率为A. B. C. 13 D.10. 如图,正方体的棱长为1,分别是棱的中点,过的平面与棱分别交于点.设,.①四边形一定是菱形;②平面;③四边形的面积在区间上具有单调性;④四棱锥的体积为定值.以上结论正确的个数是A. 4B. 3C. 2D. 1第Ⅱ卷二、填空题(本大题共7小题,多空题6分,单空题4分,共36分)11. 各项均为实数的等比数列,若,,则______,公比_____.12. 已知,则项的二项式系数是________;________.13. 已知函数,则的单调递增区间是______;14. 直角中,,为边上的点,且,则______;若,则________.15. 在锐角中,内角所对的边分别是,若,则的取值范围是________.16. 有编号分别为1,2,3,4的4个红球和4个黑球,从中取出3个,则取出的编号互不相同的概率是________.17. 已知实数满足,则的取值范围是_______.三、解答题(本大题共5小题,共74分,解答应写出文字说明、证明过程或演算步骤)18. 已知函数的部分图象如图所示.(Ⅰ)求的解析式;(Ⅱ)设函数,求的值域.19. 已知函数,(为自然对数的底数).(Ⅰ)若是的极值点,求实数的值;(Ⅱ)求的单调递增区间.20. 如图,在矩形中,点在线段上,,,沿直线将翻折成,使点在平面上的射影落在直线上.(Ⅰ)求证:直线平面;(Ⅱ)求二面角的平面角的余弦值.21. 如图,为半圆的直径,点是半圆弧上的两点,,.曲线经过点,且曲线上任意点满足:为定值.(Ⅰ)求曲线的方程;(Ⅱ)设过点的直线与曲线交于不同的两点,求面积最大时的直线的方程.22. 已知数列满足,.(Ⅰ)求数列的通项公式;(Ⅱ)求证:对任意的,都有①;②().嘉兴市2019-2020学年第一学期期末检测高三数学试题卷参考答案第Ⅰ卷一、选择题(本大题共10小题,每小题4分,共40分.)1. 已知集合,,则A. B.C. D.【答案】D【解析】,选D.2. 若复数,为虚数单位,则A. B. C. D.【答案】B【解析】 ,选B.,3. 点到直线的距离是A. B. C. 1 D.【答案】A【解析】点到直线的距离是 ,选A.4. 已知是非零实数,则“”是“”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】D点睛:充分、必要条件的三种判断方法.1.定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.2.等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.5. 实数满足,若的最小值为1,则正实数A. 2B. 1C.D.【答案】C【解析】由 ,舍; 由作可行域,则直线过点A取最小值1,满足题意,所以,选C点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.6. 某几何体的三视图如图所示(单位:),则该几何体的表面积(单位:)是A. B. C. D.【答案】B【解析】几何体为一个正方体与一个正四棱台的组合体,所以表面积为,选B点睛:空间几何体表面积的求法(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.(3)旋转体的表面积问题注意其侧面展开图的应用.7. 函数的图象与直线相切,则实数A. B. 1 C. 2 D. 4【答案】C【解析】选C8. 若在内有两个不同的零点,则和A. 都大于1B. 都小于1C. 至少有一个大于1D. 至少有一个小于1【答案】D【解析】+=,因为在内有两个不同的零点,所以+<,即和至少有一个小于1,选D9. 设点是双曲线与圆在第一象限的交点,是双曲线的两个焦点,且,则双曲线的离心率为A. B. C. 13 D.【答案】A【解析】因为,,所以,因为,选A.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.10. 如图,正方体的棱长为1,分别是棱的中点,过的平面与棱分别交于点.设,.①四边形一定是菱形;②平面;③四边形的面积在区间上具有单调性;④四棱锥的体积为定值.以上结论正确的个数是A. 4B. 3C. 2D. 1【答案】B【解析】因为对面互相平行,所以四边形一定是平行四边形;因为EF垂直平面BDD1B1,所以EF垂直GH,所以四边形一定是菱形;因为AC//EF,所以平面;四边形的面积在区间上先减后增;四棱锥的体积为 ,所以正确的是1,2,4,选B点睛:求体积的两种方法:①割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.②等积法:等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到第Ⅱ卷二、填空题(本大题共7小题,多空题6分,单空题4分,共36分)11. 各项均为实数的等比数列,若,,则______,公比_____.【答案】 (1). 3 (2).【解析】12. 已知,则项的二项式系数是________;________.【答案】 (1). 15 (2). 64【解析】项的二项式系数是 ,点睛:赋值法研究二项式的系数和问题“赋值法”普遍适用于恒等式,是一种重要的方法,对形如的式子求其展开式的各项系数之和,常用赋值法,只需令即可;对形如的式子求其展开式各项系数之和,只需令即可.13. 已知函数,则的单调递增区间是______;______.【答案】 (1). (2). 3【解析】因为为单调递增函数,所以由得的单调递增区间是;14. 直角中,,为边上的点,且,则______;若,则________.【答案】 (1). 4 (2).【解析】建立直角坐标系,设,所以,由得15. 在锐角中,内角所对的边分别是,若,则的取值范围是________.【答案】..................因为锐角,所以16. 有编号分别为1,2,3,4的4个红球和4个黑球,从中取出3个,则取出的编号互不相同的概率是________.【答案】【解析】8个球,从中取出3个,共有种基本事件其中取出的编号互不相同的有种基本事件,所以概率为17. 已知实数满足,则的取值范围是_______.【答案】【解析】设因此因为,所以,即取值范围是点睛:利用三角函数的性质求范围,先通过变换把函数化为的形式再借助三角函数图象研究性质,解题时注意观察角、函数名、结构等特征.三、解答题(本大题共5小题,共74分,解答应写出文字说明、证明过程或演算步骤)18. 已知函数的部分图象如图所示.(Ⅰ)求的解析式;(Ⅱ)设函数,求的值域.【答案】(1) (2)【解析】试题分析:(1)先根据最高点得振幅,再根据四分之一个周期求,最后代入最值点求(2)先根据二倍角公式以及配角公式将函数化为基本三角函数,再根据正弦函数性质求值域试题解析:(Ⅰ)由图象得周期,所以;又由,得;所以.(Ⅱ),因为,,,所以的值域为.19. 已知函数,(为自然对数的底数).(Ⅰ)若是的极值点,求实数的值;(Ⅱ)求的单调递增区间.【答案】(1) (2)见解析【解析】试题分析:(1)先求导数,再根据,得实数的值;(2)先求导函数零点,再根据两零点大小分类讨论,根据对应导函数符号确定单调增区间试题解析:(Ⅰ)由,得,此时是的极小值点.(Ⅱ)由,得或.①当时,,的单调递增区间是;②当时,,的单调递增区间是;③当时,,的单调递增区间是.20. 如图,在矩形中,点在线段上,,,沿直线将翻折成,使点在平面上的射影落在直线上.(Ⅰ)求证:直线平面;(Ⅱ)求二面角的平面角的余弦值.【答案】(1)见解析(2)【解析】试题分析:(1)根据射影定义得,再根据线面垂直得,最后根据线面垂直判定定理得结论(2)连接交于点.则根据二面角定义得是二面角的平面角的平面角.再通过解三角形得二面角的平面角的余弦值.试题解析:(Ⅰ)证明:在线段上取点,使,连接交于点.正方形中,,翻折后,,,又,平面,又平面,平面平面又平面平面,点在平面上的射影落在直线上,又点在平面上的射影落在直线上,点为直线与的交点,平面即平面,直线平面;(Ⅱ)由(Ⅰ)得是二面角的平面角的平面角.,在矩形中,可求得,.在中,,二面角的平面角的余弦值为.点睛:立体几何中折叠问题,要注重折叠前后垂直关系的变化,不变的垂直关系是解决问题的关键条件.线面角的寻找,主要找射影,即需从线面垂直出发确定射影,进而确定线面角.21. 如图,为半圆的直径,点是半圆弧上的两点,,.曲线经过点,且曲线上任意点满足:为定值.(Ⅰ)求曲线的方程;(Ⅱ)设过点的直线与曲线交于不同的两点,求面积最大时的直线的方程.【答案】(1) (2)或【解析】试题分析:(1)先求P点坐标,再根据两点间距离公式求,最后根据椭圆定义确定a,c,b(2)先设,与椭圆方程联立,结合韦达定理以及弦长公式求EF,根据点到直线距离公式求高,再根据三角形面积公式得面积关于k的函数关系式,最后根据基本不等式求最值,根据等号成立条件确定直线的方程试题解析:(Ⅰ)根据椭圆的定义,曲线是以为焦点的椭圆,其中,.,,,曲线的方程为;(Ⅱ)设过点的直线的斜率为,则.由得,,,又点到直线的距离,的面积.令,则.当且仅当,即时,面积取最大值.此时直线的方程为或.22. 已知数列满足,.(Ⅰ)求数列的通项公式;(Ⅱ)求证:对任意的,都有①;②().【答案】(1) (2)见解析【解析】试题分析:(1)对递推关系式进行变形,转化为一个常数列,即得数列的通项公式;(2)①先对通项进行放缩:,再根据裂项相消法求和,即证得结论②先倒序相加法求和,再利用基本不等式进行放缩求和,最后证明和值与结果大小试题解析:(Ⅰ)当时,,当时,.又,,.(Ⅱ)①证明:当时,成立;当时,②设,则,当时,,,当且仅当时等号成立.当时,,点睛:证明数列不等式,,常用方法为方缩法,经过放缩,将数列化为可求和,最后再比较和值与结果大小即可。
2019-2020学年高一数学上学期期末联考试题及答案(新人教A版第60套)
2019-2020 学年度第一学期期末联考高一数学试题第 I 卷(选择题)一、选择题(本大题共 10 小题,每题 5 分,共 50 分.每题只有一个正确答案)1.若 A={0,1,2 } , B = { x 1? x 2} , 则A?B(){ } { 0,1,2 }{}{1,2 }A . 1B .C . 0,1D .2. sin15 o cos15o 值为()A .1B .1C.3 D. 324243. 函数 f ( x)1lg(1 x) 的定义域是 ()1 xA .( - ,- 1)B .(1,+ )C .(-1,1)∪(1,+ )D .(- ,+ )4.已知点 P( x,3) 是角终边上一点,且 cos4),则 x 的值为(B . 55D . 4A . 5C . 45.已知 a0.7 0.8 ,blog 2 0.8, c1.10.8 ,则 a,b, c 的大小关系是()A . a b cB . b a cC . a c bD . b c a6.设函数 y = x 3 与 y( 1 )x 2 的图像的交点为 ( x 0,y 0) ,则 x 0 所在的区间是 ()2A .(0,1)B.(1 ,2) C .(2 , 3) D .(3 ,4)7.在自然界中,存在着大批的周期函数,比方声波,若两个声波随时间的变化规律分别为:y 1 3sin 100 t , y 2 3cos 100 t ,则这两个声波合成后即yy 1 y 2 的振幅为()A . 3B . 6C . 3 2 D. 6 28.以下函数中,不拥有奇偶性的函数是 ( )A . yexexB . y lg1 x1 xC . ycos2xD . y sin x cos x9.若 yAsin( x)( A0,0,| |) 的最小值为2,其图像相邻最高点与最低点横坐标之差为2 ,且图像过点(20, 1),则其分析式是()A . y 2sin( x )6B. y 2sin( x )3C . y2sin( x) 2 6xD . y 2sin( )2 310.如右图,点 P 在半径为 1的半圆上运动, AB 是直径, P当 P 沿半圆弧从 A 到 B 运动时,点 P 经过的行程 x 与 APBxB O A的面积 y 的函数y f ( x) 的图像是以下图中的()yy11 12OC π2πx OD第 II卷(非选择题)π2πx二、填空题(本大题共 5 小题,每题 5 分,共25 分.将答案填在题后横线上)11.(log29)(log 3 4).12.把函数y= 3sin2 x的图象向左平移个单位获得图像的函数分析是.13.已知tan 2 ,则 cos26.14.若函数f x 知足 f ( x 1) f ( x) ,且当x1,1 时, f x x ,则 f 2 f 3f4.15.函数f ( x)| cos x | cos x 具备的性质有.(将全部切合题意的序号都填上)( 1)f (x)是偶函数;( 2)f (x)是周期函数,且最小正周期为;( 3)f (x)在[, ] 上是增添的;2( 4)f (x)的最大值为2.三、解答题(本大题共 6 小题,共75 分.解答应写出文字说明、证明过程或演算步骤)16.已知会合M ={x 1 < x < 2},会合Nx 3x 4 .2( 1)求AèB;P ={}( 2)设会合x a < x < a + 2,若 P 腿(A B) ,务实数 a 的取值范围.117.(本小题满分12 分)已知tan2, tan,此中0,0.3( 1)求tan() 的值;( 2)求角的值.18.(本小题满分12 分)已知函数 f (x) sin( x)sin( x) .32( 1)求f (x)的最小正周期;3,求 g(x) 在区间[0,] 上的值域.( 2)若g (x) f ( x)4219.(此题满分12 分)辽宁号航母纪念章从2012 年10 月5 日起开始上市.经过市场检查,获得该纪念章每 1 枚的市场价y(单位 : 元) 与上市时间x(单位 : 天 ) 的数据以下:上市时间x 天41036市场价y 元905190(1) 依据上表数据联合散点图,从以下函数中选用一个适合的函数描绘辽宁号航母纪念章的市场价y与上市时间x 的变化关系并说明原因: ①y ax b ;②y ax 2bx c ;③y a log b x .(2)利用你选用的函数,求辽宁号航母纪念章市场价最低时的上市天数及最低的价钱.20. ( 本小题满分13 分)已知函数 f (x)cx1, 0 x c,知足 f (c)9 x.2 c 21, c ≤ x128(1)求常数 c 的值;(2)解对于 x 的不等式 f (x)21.821. ( 本小题满分14 分 ) 已知函数mf( )|x|1( x0).x x( 1)当m 2时,判断f (x)在(,0) 的单一性,并用定义证明.( 2)若对随意x R ,不等式 f (2x)0 恒建立,求 m 的取值范围;( 3)议论f (x)零点的个数.2019-2020 学年度第一学期期末 考高一数学参照答案参照答案: 一、1.A2.B 3 .C4.D5.B 6 .B 7 .C 8 .D 9 .C10.A 二、填空11. 4 12. 13 .3 14. 115.( 1)( 3)(4)56三、解答{ x 1 < x < 4}16.解:( 1) A? B⋯⋯⋯⋯⋯⋯⋯⋯ 6 分 ( 2)由(1) A ? B {x 1 < x < 4 }, ⋯⋯⋯⋯⋯⋯⋯⋯ 9 分ì?a 3 1?1#a2⋯⋯⋯⋯⋯⋯⋯⋯ 12 分í?2 ? 4?a +1tantan217.解:( 1) tan()37⋯⋯⋯⋯⋯⋯⋯⋯ 5 分1 tan tan1 ( 2) 131tantan2( 2) tan(31⋯⋯⋯⋯⋯⋯⋯⋯ 10 分)tan tan111( 2)1 3因 tan2 0,tan0 ,3因此, 022因此2,2故4⋯⋯⋯⋯⋯⋯⋯⋯ 12 分18.解:f (x)( 1 sin x3cos x)cos x⋯⋯⋯⋯⋯⋯⋯⋯ 2 分221 sin x cos x3cos 2 x221sin 2x3(1 cos 2x) ⋯⋯⋯⋯⋯⋯⋯⋯ 4 分441sin(2 x3) 3 ⋯⋯⋯⋯⋯⋯⋯⋯ 6 分24( 1)因此T 2.⋯⋯⋯⋯⋯⋯⋯⋯ 8 分21(2)g (x)) ,sin(2 x23因 0 ≤ x ≤2 ,因此3 ≤ 2x3 ≤ ,3因此3≤ sin(2 x)≤1,233≤ 1sin(2 x) ≤ 1,423 2因此 g(x) 在区 [0,] 上的 域 [3 ,1] .⋯⋯⋯⋯⋯⋯⋯⋯ 12 分24 219.解 :(1) ∵跟着 x 的增添, y 的 先减后增,而所 的三个函数中y ax b 和 ya logb x 然都是 函数,不 足 意,∴ yax 2 bx c .⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(2) 把点 (4 , 90) , (10 , 51) , (36 , 90) 代入 yax 2 bx c 中,16a 4b c90得 100a 10bc 51⋯⋯⋯⋯⋯⋯⋯⋯6 分1296a 36b c 90解得 a 110, c 126⋯⋯⋯⋯⋯⋯⋯⋯ 8 分, b1 4 1∴ yx 2 10x 126 (x 20)2 26 ,⋯⋯⋯⋯⋯⋯⋯⋯ 10 分44∴当 x 20 , y 有最小 y min 26 .⋯⋯⋯⋯⋯⋯ 11 分答: 宁号航母 念章市 价最低 的上市天数 20 天,最低的价钱 26 元.⋯⋯⋯⋯12 分20.解: (1)∵ f ( c)9 ,即 c c1 9 ,2 8 28解得 c1⋯⋯⋯⋯⋯⋯⋯⋯ 5 分.21 x 1, 0 x 1(2) 由 (1) 得 f ( x)21, 1≤ x2 ,2 4x12由 f ( x)2,适当 0x12 x1 ⋯⋯⋯⋯⋯⋯⋯⋯9 分1,解得4 ;822当1≤ x 1 ,解得 1≤ x5 . ⋯⋯⋯⋯⋯⋯⋯⋯ 12 分228∴不等式 f ( x)2 1的解集 { x | 2 x 5} .⋯⋯⋯⋯⋯⋯⋯⋯ 13 分8 4821.分析:( 1)当 m2 ,且 x0 , f ( x)x 2 1 是 减的.⋯⋯⋯⋯⋯⋯⋯1 分x明: x 1x 2 0 ,f (x 1)f (x 2 )x 12 1 ( x 22 1)x 1x 2(x 2 x 1 ) (2 2x 1)x 2( x 2 x 1 )2( x 2 x 1)x 1x 2( x 22 ⋯⋯⋯⋯⋯⋯3 分x 1 )(1 ) x 1 x 2又 x 1 x 2 0 ,因此 x 2 x 1 0 , x 1x 2 0 ,因此 ( x 2 x 1 )(1 2 0)x 1x 2 因此故当f ( x 1 ) f ( x 2 ) 0 ,即 f (x 1) f (x 2 ) ,m 2 , f ( x) x2在 ( ,0) 上 减的. ⋯⋯⋯⋯⋯⋯⋯⋯ 4 分1 x( 2)由 f (2 x ) 0 得 | 2x | m x1 0 ,形 (2 x )22x22x(2 x ) 2m 0 ,即 m而 2x(2 x )2(2 x 1)21 ,12 41当 2x即 x1 (2 x (2 x )2 )max ,2 14因此 m⋯⋯⋯⋯⋯⋯⋯⋯ 9 分.4( 3)由 f (x)0 可得 x | x | xm 0( x 0) , m x | x | x(x 0)令 g( x)x x | x |x 2 x, xx 2x, x 0作 y g (x) 的 像及直y m ,由 像可得:当 m1 1f ( x) 有 1 个零点.或 m,4 4当 m10 或 m1或 m, f (x) 有 2 个零点;41 14当 0mm0 , f ( x) 有 3 个零点.⋯⋯⋯⋯⋯⋯⋯⋯ 14 分或44。
嘉兴市2019~2020学年第二学期期末检测高一数学答案
嘉兴市2019—2020学年第二学期期末检测高一数学 参考答案 (2020.7)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.A 2.B 3.C 4.D 5.B 6.B 7.B 8.C 9.C 10.D 第10题解析:对于A 选项,假设{}n a 有界,即存在常数M ,对任意*n N ∈,都有1,n n a M a M +≤≤, 则M M M a a n n n 211=+≤+=++.由于左边n +1递增到无穷大,而右边为常数,从而A 项错误;同理,C 项2112n n n a a M +=+≤,错误; 对于B 项,2n ≥时,11112n n a a n +-=-≥,累加可得,21(2)2n a a n -≥-,21,2n na a =≥,显然不是有界的;对于D 选项,22a =,2221222111==(1)(1)111n n a n n n n na n n n n n n n ++=+<=⋅+-+-- , 累乘可得13122122122()()13231n n n n a a a n n n n a a a n n n n -------⨯⨯⨯=⨯⨯⨯⋅⨯⨯⨯--- , 22(1)2n a n a n=⋅-<,从而4n a <,D 正确. 二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
11.1;2-n . 12.1; 13.7;101. 14.2;3 15.219. 16.2020. 17.18. 第17题解析:设()4CAB πθθ∠=<,则折叠后,θπθθ22,sin ,cos -='∠=='AD B AD B A ,故814sin 81)22sin(cos sin 21sin 21≤=-⋅⋅='∠⋅⋅'='A θθπθθB DA AD B A S B AD ,取最大值时=8πθ.三、解答题:本大题共5小题,共74分。
浙江省嘉兴市2019-2020学年高一上学期期末数学试卷 (有解析)
浙江省嘉兴市2019-2020学年高一上学期期末数学试卷一、选择题(本大题共10小题,共50.0分)1. 若A ⊆B ,A ⊆C ,B ={0,1,2,3,4,5,6},C ={0,2,4,6,8,10},则这样的A 的个数为( )A. 4B. 15C. 16D. 322. 如图,已知|OA ⃗⃗⃗⃗⃗ |=|OB ⃗⃗⃗⃗⃗⃗ |=1,|OC ⃗⃗⃗⃗⃗ |=√3,,⟨OA ⃗⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ ⟩=30∘,若OC ⃗⃗⃗⃗⃗ =x OA ⃗⃗⃗⃗⃗ +y OB ⃗⃗⃗⃗⃗⃗ ,则x +y =( )A. 1B. 2C. 3D.43. 已知α是第二限角,则下列结论正确的是( )A. sinα⋅cosα>0B. sinα⋅tanα<0C. cosα⋅tanα<0D. 以上都有可能4. 函数y =1−2x 的值域为( )A. [1,+∞)B. (1,+∞)C. (−∞,1]D. (−∞,1)5. 已知a ⃗ =(3,4),|b ⃗ |=2,两向量夹角θ=60°,则a ⃗ ·b ⃗ 的值是( )A. 7B. 12C. 5D. 256. 已知函数f(x)=2sin(π4−2x),则函数f(x)的单调递减区间为( )A. [3π8+2kπ,7π8+2kπ](k ∈Z)B. [−π8+2kπ,3π8+2kπ](k ∈Z)C. [3π8+kπ,7π8+kπ](k ∈Z)D. [−π8+kπ,3π8+kπ](k ∈Z)7. 已知函数f(x)的图象如图所示,则该函数的解析式可能是( )A. f(x)=ln|x|e xB. f(x)=e x ln|x|C. f(x)=ln|x|xD. f(x)=(x −1)ln|x|8. 为了得到函数y =3sin(2x +π5)的图象,只需把y =3sin2x 上的所有的点( )A. 向左平行移动π10长度单位 B. 向右平行移动π10长度单位 C. 向右平行移动π5长度单位D. 向左平行移动π5长度单位9. 在平面直角坐标系中,o 是坐标原点,两定点A,B 满足|OA ⃗⃗⃗⃗⃗ |=|OB ⃗⃗⃗⃗⃗⃗ |=OA ⃗⃗⃗⃗⃗ ⋅OB⃗⃗⃗⃗⃗⃗ =2,则点集|P |=|OP ⃗⃗⃗⃗⃗ |=λOA ⃗⃗⃗⃗⃗ +μOB⃗⃗⃗⃗⃗⃗ ,|λ|+|μ|≤1,λ,μ∈R|所表示的区域的面积是( ) A. 2√2B. 2√3C. 4√2D. 4√310. 已知cos x =−12,且x ∈[0,2π],则角x 等于( ).A. 2π3或4π3B. π3或2π3C. π6或5π6D. 5π6或11π6二、填空题(本大题共7小题,共39.0分) 11. 计算log 83⋅log 932=______.12. 已知函数f(x)={2x ,x >0x,x ≤0,则f(1)+f(−1)为________.13. 已知点A(1,−2),若向量AB⃗⃗⃗⃗⃗ 与a =(2,3)同向,且|AB ⃗⃗⃗⃗⃗ |=2√13,则点B 的坐标为________. 14. 若tanα=13,则sinαcosα=________.15. 已知函数f(x)={2x ,x >0−x 2−2x +1,x ⩽0,若f(f(a))=4,则a =________.16. 已知△ABC 是等腰直角三角形,AC =BC =2,则AB⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ = ______ . 17. 已知函数f(x)={2−x −1(x ≤0)f(x −1)(x >0),若关于x 的方程f(x)=ax(a >0)有三个不相等的实数根,则实数a 的取值范围是_________. 三、解答题(本大题共5小题,共61.0分)18. 已知集合A ={x|a ≤x ≤a +8},B ={x|x <−1或x >5},(1)当a =0时,求A ∩B ,A ∪(C R B); (2)若A ∪B =B ,求实数a 的取值范围.19. 已知a ⃗ =(1,2),b ⃗ =(3,1),c ⃗ =b ⃗ −k a ⃗ ,且a⃗ ⊥c ⃗ . (1)求向量b ⃗ 在向量a ⃗ 的方向上的投影; (2)求实数k 的值及向量c ⃗ 的坐标.20. 已知函数f(x)=a⋅2x −2+a 2x +1,a ∈R .(1)试判断f (x)的单调性,并证明你的结论; (2)若f (x)为定义域上的奇函数,求函数f (x)的值域.21. 函数f(x)=sin(ωx +φ)(ω>0,|φ|<π2)的图象关于直线x =3π8对称,且图象上相邻两个最高点的距离为π.(1)求函数f(x)的解析式以及它的单调递增区间; (2)是否存在实数m ,满足不等式f(√m+18)>f(√−m+48)?若存在,求出m 的取值范围;若不存在,请说明理由.22.求函数f(x)=x3−x2−x−2的零点.-------- 答案与解析 --------1.答案:C解析:解:∵A ⊆B ,A ⊆C , ∴A ⊆(B ∩C),∵B ={0,1,2,3,4,5,6},C ={0,2,4,6,8,10}, ∴B ∩C ={0,2,4,6}, ∴A 的个数为16, 故选C .利用A ⊆B ,A ⊆C ,可得A ⊆(B ∩C),求出B ∩C ,即可得出结论. 本题考查集合的运算与关系,考查学生的计算能力,比较基础.2.答案:C解析:本题考查平面向量的模,平面向量的数量积,属于中档题.根据OC ⃗⃗⃗⃗⃗ =x OA ⃗⃗⃗⃗⃗ +y OB ⃗⃗⃗⃗⃗⃗ ,等式左右两端点乘OA ⃗⃗⃗⃗⃗ ,OB ⃗⃗⃗⃗⃗⃗ ,从而建立方程组,即可求解. 解:由题意可知,, OB ⃗⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗ =0,.∵OC ⃗⃗⃗⃗⃗ =x OA ⃗⃗⃗⃗⃗ +y OB⃗⃗⃗⃗⃗⃗ , ∴OC ⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗ =x OA ⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗ +y OB ⃗⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗ , 即3=32x ,①∴OC ⃗⃗⃗⃗⃗ ·OA ⃗⃗⃗⃗⃗ =x OA ⃗⃗⃗⃗⃗ ·OA ⃗⃗⃗⃗⃗ +y OB ⃗⃗⃗⃗⃗⃗ ·OA ⃗⃗⃗⃗⃗ , 即32=x −12y ,②联立①②可得:{x =2y =1,故x +y =3.故选C .3.答案:B解析:直接利用角的象限,判断正弦函数与余弦函数、正切函数的值的符号,然后判断选项.本题考查角的象限与三角函数值的符号的判断,考查计算能力.解:因为α是第二限角,所以sinα>0,cosα<0,tanα<0,所以sinα⋅tanα<0.故选B.4.答案:D解析:解:函数y=1−2x,其定义域为R.∵2x的值域为(0,+∞),∴函数y=1−2x的值域为(−∞,1),故选:D.利用指数函数的图象及性质求解即可.本题考查了值域的求法,利用了指数函数值域求解.比较基础.5.答案:C解析:本题考查了数量积的定义,属于基础题.利用数量积的定义即可得出.解:∵a⃗=(3,4),∴|a⃗|=5.又|b⃗ |=2,两向量夹角θ=60°,=5.则a⃗⋅b⃗ =|a⃗||b⃗ |cos60°=5×2×12故选C.6.答案:D解析:本题主要考查诱导公式,正弦函数的单调性,属于基础题.利用诱导公式化简函数的解析式,再利用正弦函数的单调性,求得函数f(x)的单调递减区间.解:∵函数f(x)=2sin(π4−2x)=−2sin(2x −π4), 令2kπ−π2≤2x −π4≤2kπ+π2,求得kπ−π8≤x ≤kπ+3π8,可得函数的减区间为[kπ−π8,kπ+3π8],k ∈Z ,故选:D .7.答案:A解析:解:由图象可知,当x →+∞时,f(x)→0,当x →−∞时,f(x)→+∞ 对于A :满足要求,对于B :当x →+∞时,f(x)=e x ln|x|→+∞,不满足, 对于C :当x →−∞时,f(x)=e x ln|x|→0,不满足, 对于D :当x →−∞时,f(x)=(x −1)ln|x|→−∞,不满足, 故选:A .通过函数的变化趋势即可判断.本题考查了函数图象的判断,函数值的变换趋势,零点等方面来判断.8.答案:A解析:解:把y =3sin2x 上的所有的点向左平行移动π10长度单位, 可得函数y =3sin(2x +π5)的图象, 故选:A .利用y =Asin(ωx +φ)的图象变换规律,得出结论.本题主要考查y =Asin(ωx +φ)的图象变换规律,属于基础题.9.答案:D解析:本题考查了平面向量的基本定理及其意义,考查了二元一次不等式(组)所表示的平面区域,两定点A ,B 满足∣OA ⃗⃗⃗⃗⃗ ∣=∣OB ⃗⃗⃗⃗⃗⃗ ∣ =OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗⃗ =2,说明O ,A ,B 三点构成边长为2的等边三角形,设出两个定点的坐标,再设出P 点坐标,由平面向量基本定理,把P 的坐标用A ,B 的坐标及λ,μ表示,把不等式|λ|+|μ|≤1去绝对值后可得线性约束条件,画出可行域可求点集P 所表示区域的面积,属中档题.解:由两定点A ,B 满足|OA ⃗⃗⃗⃗⃗ |=|OB ⃗⃗⃗⃗⃗⃗ |=OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗⃗ =2,AB ⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ ,则|AB ⃗⃗⃗⃗⃗ |2=(OB ⃗⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ )2=|OB ⃗⃗⃗⃗⃗⃗ 2|−2OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗⃗ +|OA ⃗⃗⃗⃗⃗ |2=4,则|AB ⃗⃗⃗⃗⃗ |=2,说明O ,A ,B 三点构成边长为2的等边三角形. 不妨设A(√3,−1),B(√3,1).再设P(x,y).由OP ⃗⃗⃗⃗⃗ =λOA ⃗⃗⃗⃗⃗ +μOB ⃗⃗⃗⃗⃗⃗ ,得:(x,y)=(√3λ,−λ)+(√3μ,μ)=(√3(λ+μ),μ−λ). 所以{λ+μ=√33xμ−λ=y,解得{λ=√36x −12y μ=√36x +12y ①. 由|λ|+|μ|≤1.所以①等价于{ √36x −12y ≥0√36x +12y ≥0x ≤√3或{ √36x −12y ≥0√36x +12y <0y ≥−1或{ √36x −12y <0√36x +12y ≥0y ≤1或{ √36x −12y <0√36x +12y <0x ≥−√3. 可行域如图中矩形ABCD 及其内部区域,则区域面积为2×2√3=4√3. 故选D .10.答案:A解析:本题主要考查三角函数的求值问题,根据诱导公式以及余弦函数的图象和性质是解决本题的关键,根据余弦函数的图象和性质进行求解即可. 比较基础,属中档题. 解:∵cosx =−12<0, ∴x 在第二象限或第三象限. ∵cos(π−π3)=−cos π3=−12, ∴x =π−π3=2π3.∵cos(π+π3)=−cos π3=−12, ∴x =π+π3=4π3,∴满足条件的角x =2π3或4π3. 故选A .11.答案:56解析:本题考查对数式的计算,属于基础题.根据对数的换底公式以及运算性质计算,即可得到答案. 解:.故答案为56.12.答案:1解析:本题考查了分段函数,将x 的值代入函数的解析式即可得答案. 解:由函数f(x)={2x ,x >0x,x ⩽0 可得f(1)+f(−1)=2−1=1, 故答案为1.13.答案:(5,4)解析:本题主要考查两向量间的共线问题,属基础题.先假设A 、B 点的坐标,表示出向量AB ⃗⃗⃗⃗⃗ ,再由向量AB ⃗⃗⃗⃗⃗ 与a ⃗ =(2,3)同向且|AB ⃗⃗⃗⃗⃗ |=2√13,可确定点B 的坐标.解:设A 点坐标为(x A ,y A ),B 点坐标为(x B ,y B ), ∵AB ⃗⃗⃗⃗⃗ 与a⃗ 同向, ∴可设AB ⃗⃗⃗⃗⃗ =λa ⃗ =(2λ,3λ)(λ>0),∴|AB ⃗⃗⃗⃗⃗ |=√(2λ)2+(3λ)2=2√13,∴λ=2,则AB ⃗⃗⃗⃗⃗ =(x B −x A ,y B −y A )=(4,6), ∴{x B −x A =4y B −y A =6,∵{x A =1y A =−2,解得{x B =5y B =4, ∴B 点坐标为(5,4). 故答案为(5,4).14.答案:310解析:此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.原式分母看做“1”,利用同角三角函数间的基本关系化简,将tanα的值代入计算即可求出值. 解:∵tanα=13,∴sinαcosα=sinαcosαsin 2α+cos 2α=tanαtan 2α+1=1319+1=310,故答案为310.15.答案:1或−1解析:本题考查了分段函数的解析式,令m =f(a) ,则f(m)=4,分m >0,m <0可得m =2,即可得f(a)=2,分a >0和a ⩽0讨论,可得a 的值. 解:令m =f(a) ,则f(m)=4, 当m >0时,由2m =4,解得m =2; 当m ⩽0时,由−m 2−2m +1=4,无解. 故f(a)=2,当a >0时,由2a =2,解得a =1;当a ⩽0时,由−a 2−2a +1=2,解得a =−1. 综上:a =1或a =−1. 故答案为1或−1.16.答案:−4解析:解:∵△ABC 是等腰直角三角形,AC =BC =2,∴AB =2√2,<AB ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ >=135∘,AB ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =|AB ⃗⃗⃗⃗⃗ |×|BC ⃗⃗⃗⃗⃗ |cos135°=2√2×2×(−√22)=−4 故答案为:−4由已知得AB =2√2,<AB ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ >=135∘,AB ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =|AB ⃗⃗⃗⃗⃗ |×|BC ⃗⃗⃗⃗⃗ |cos135°,代入计算即可得到所求值.本题考查了向量的数量积运算,属于基础题。
浙江省嘉兴市重点名校2022-2023学年数学高一上期末含解析
,即
BP
2PC
,得点
P
为线段
BC
上靠近
C
点的三等分点,又因为 AQ 3 AB 1 AC ,所以 3 ( AQ AB) 1 ( AC AQ) ,即 3BQ QC ,得点 Q 为线段 BC
44
4
4
上靠近 B 点的四等分点,所以 PQ
5
S BC ,所以 APQ 与 ABC 的面积之比为
APQ
二、填空题:本大题共 6 小题,每小题 5 分,共 30 分。
11.设角 的顶点与坐标原点重合,始边与 x 轴的非负半轴重合,若角 的终边上一点 P 的坐标为 (1, 3) ,则 cos
的值为__________
12.在平面直角坐标系中,正三角形 ABC 的边 BC 所在直线的斜率是 0,则 AC,AB 所在直线的斜率之和为________
1.已知函数
f
(x)
3sin
2
x
6
,若函数
y
f
2(x) (m 1) f (x) m 在[0,π ]上有 3 个零点,则 m 的取值范围 2
为( )
A.
3 2
,
3
B.
3 2
,
3
C.
3 2
,
3 2
D.
3 2
,
3
2.已知集合 A {x | x2 x 0},集合 B {x N | 1 x 3} ,则下列结论正确的是
PQ
5
,选择 B
12
S ABC BC 12
【点睛】平面向量的线性运算要注意判断向量是同起点还是收尾相连的关系再使用三角形法则和平行四边形法则进行
加减运算,借助向量的数乘运算可以判断向量共线,及向量模长的关系
2019-2020学年浙江省嘉兴市高一(上)期末数学试卷
2019-2020学年浙江省嘉兴市高一(上)期末数学试卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知A B ⊆,A C ⊆,{2B =-,0,1,9},{1C =,3,6,9},则集合A 可以为( ) A .{1,3}B .{1,9}C .{2,0}D .{2,3}2.(5分)已知正方形ABCD 的边长为1,则||(AB AD +=u u u r u u u r )A .2B .3C .2D .223.(5分)若点(sin ,tan )P αα在第二象限,则角α的终边所在的象限为( ) A .第一象限 B .第二象限C .第三象限D .第四象限4.(5分)设函数1()()21x f x x R =∈+,则它的值域为( ) A .(0,1)B .(0,2)C .(1,)+∞D .(2,)+∞5.(5分)已知平面向量,a b r r 满足||23,||4a b ==r r ,且,a b rr 的夹角为30︒,则( )A .()a a b ⊥+r r rB .()b a b ⊥+r r rC .()b a b ⊥-r r rD .()a a b ⊥-r r r6.(5分)函数()sin()4f x x π=+,则()(f x )A .在(0,)2π上单调递增B .在3(,)44ππ上单调递增C .在37(,)44ππ上单调递增 D .在57(,)44ππ上单调递增 7.(5分)函数()f x 的图象如图所示,则它的解析式可能是( )A .21()2xx f x -=B .()2(||1)x f x x =-C .()||||f x ln x =D .()1x f x xe =-8.(5分)为了得到函数cos(4)3y x π=+的图象,可以将函数sin 4y x =的图象( )A .向左平移524π个单位 B .向右平移524π个单位C .向左移动56π个单位 D .向右平移56π个单位 9.(5分)已知||||1OA OB ==u u u r u u u r ,60AOB ∠=︒,OC OA OB λμ=+u u u r u u u r u u u r ,其中实数λ,μ满足12λμ+剟,0λ…,0μ…,则点C 所形成的平面区域的面积为( )A .3B .33C .3 D .3 10.(5分)若不等式(||)cos()023x a b x ππ--+…对[1x ∈-,3]恒成立,则(a b -= )A .13B .23C .56D .73二、填空题:11.(6分)若2log 3a =,3log 2b =,则a b =g ,lga lgb += .12.(6分)设函数1,1,(),1,x e x f x lnx x ⎧-<=⎨⎩…则(0)f 的值为 ;若f (a )2=,则a = .13.(6分)已知向量(,12),(4,5),(,10)OA k OB OC k ===-u u u r u u u r u u u r ,若||||AB BC =u u u r u u u r,则k = ;若A ,B ,C 三点共线,则k = .14.(6分)若tan 2α=,则sin 3cos sin cos αααα+=- ,sin cos αα= .15.(5分)设函数22,0,()2,0,x x f x x x x -⎧=⎨-+>⎩„若(f f (a ))30+…,则实数a 的取值范围是 . 16.(5分)如图所示,2OD =,4OE =,60DOE ∠=︒,3,3AB AD AC AE ==u u u r u u u r u u u r u u u r ,则BC OE =u u u r u u u rg .17.(5分)设()||f x x x a x =--,对任意的实数(1,2)a ∈-,关于x 的方程()f x tf =(a )共有三个不相等的实数根,则实数t 的取值范围是 . 三、解答题:解答应写出文字说明、证明过程或演算步骤.18.(12分)已知集合2{|4120|}A x x x =--„,{|222|}B x a x a =-+剟. (Ⅰ)若1a =,求()U A B I ð;(Ⅱ)若[4A B =-U ,6],求实数a 的值.19.(12分)已知平面向量(2,4),(3,5),(2,6)a b c ===-r r r. (Ⅰ)若a xb yc =+r r r,求x y +的值;(Ⅱ)若a kc +r r在a b -r r k .20.(12分)已知函数1()2()2x xf x a x R =+∈g 是偶函数. (Ⅰ)求a 的值;(Ⅱ)当(0,)x ∈+∞时,判断函数()f x 的单调性,并证明你的结论.21.(12分)已知函数()sin()(0,0)3f x A x A πωω=+>>的图象经过点,且图象上相邻两条对称轴之间的距离为2π.(Ⅰ)求函数()f x 的解析式及它的单调递增区间;(Ⅱ)是否存在实数m ,使得不等式f f >成立?若存在,请求出m 的取值范围;若不存在,请说明理由. 22.(13分)已知函数1()||1f x a x a x =--+-,(1,)x ∈+∞. (Ⅰ)若1a =,求方程()0f x =的解;(Ⅱ)若函数()y f x =恰有两个不同的零点1x ,212()x x x <,求12x x +的值.。
浙江省嘉兴市第一中学2024-2025学年高一上学期10月月考数学试题
浙江省嘉兴市第一中学2024-2025学年高一上学期10月月考数学试题一、单选题1.集合{13}A xx =-<≤∣,{}24B x x =<,那么集合A B =I ( ) A .{22}x x -<<∣ B .{12}x x -<<∣ C .{23}x x -<≤∣ D .{13}xx -<<∣ 2.已知命题():1,p x ∀∈+∞,20x x ->,则( )A .命题p 的否定为“()1,x ∃∈+∞,20x x ->”B .命题p 的否定为“(],1x ∃∈-∞,20x x -≤”C .命题p 的否定为“()1,x ∃∈+∞,20x x -≤”D .命题p 的否定为“(],1x ∀∈-∞,20x x ->”3.设命题“2x >”是命题“240x -≤”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.设函数()221,036,0x x x f x x x ⎧++<=⎨+≥⎩,则不等式()()1f x f >的解集是( ) A .()(),41,-∞-+∞UB .()(),21,-∞-+∞UC .()(),42,-∞-+∞UD .()(),22,∞∞--⋃+5.设a ,b ,R c ∈,则下列命题正确的是( )A .若a b >,则a b >B .若0a b c >>>,则a a c b b c +<+C .若a b >,则11a b< D .若0a b c >>>,则b c a b a c >-- 6.不等式1122x x x x --->-++的解集为( ) A .{2x x <-或x >1B .{|2}x x <-C .{}1x x > D .{}21x x -<<7.设0m >,若2420mx x -+=有两个不相等的根1x ,2x ,则12x x +的取值范围是( ) A .()0,2 B .(]0,2 C .()2,+∞ D .[)2,+∞8.对于实数a 和b 定义运算“⋅”:⋅a b =22,,a ab a b b ab a b⎧-≤⎨->⎩,设()(21)(2)f x x x =-⋅-,如果关于x 的方程()()f x m m R =∈恰有三个互不相等的实数根123x x x ,,,则m 的取值范围( ) A .9,4⎛⎤-∞ ⎥⎝⎦ B .90,4⎡⎤⎢⎥⎣⎦ C .9(0,)4 D .φ二、多选题9.下列各组函数是同一个函数的是( )A .()221f x x x =--与()221g s s s =--B .()f x ()g x =-C .()x f x x =与()g x =D .()f x x =与()g x =10.已知集合{}22M y y x ==-,{N x y ==,则( )A .M N M ⋂=B .M N M ⋃=C .()N M ⋂=∅R ðD .()M N ⋂=∅R ð11.已知2()2f x x x a =-+.若方程()0f x =有两个根12,x x ,且12x x <,则下列说法正确的有()A .1>0x ,20x >B .1a <C .若120x x ≠,则121211x x x x ++的最小值为D .,R m n ∀∈,都有()()()22f m f n m nf ++≥三、填空题12.设集合{}21,,45A t t t =-+,若2A ∈,则实数t 的值为.13.已知不等式()()22240a x a x -+--≥解集是∅,则实数a 的取值范围是.14.已知a ,b ,0c >满足4a b c ++=,则11ab bc+的最小值为.四、解答题15.已知全集为R ,集合{}22A x x x =+<,{124}B xx a =-<+<∣. (1)当1a =时,求R ()A B ⋃ð;(2)若A B B =I ,求实数a 的取值范围.16.设函数2()(1)2(R)f x ax a x a a =+-+-∈(1)若不等式()2f x ≥-对一切实数x 恒成立,求a 的取值范围;(2)解关于x 的不等式:()1f x a <-.17.设a 为实数,函数()f x =(1)求函数()f x 的定义域;(2)设t ()f x 表示为t 的函数()h t ,并写出定义域;(3)若0a <,求()f x 的最大值18.已知x ,0y >满足6x y +=.(1)求22x y +的最小值;(2)求3yx y +的最小值;(3)若()2244x y m x y +≥+恒成立,求m 的取值范围. 19.已知二次函数()()1f x ax x =-,()0,4a ∈,()0,1x ∈.若有()00f x x =,我们就称0x 为函数()f x 的一阶不动点;若有()()00f f x x =,我们就称0x 为函数()f x 的二阶不动点.(1)求证:()01f x <<;(2)若函数()f x 具有一阶不动点,求a 的取值范围;(3)若函数()f x 具有二阶不动点,求a 的取值范围.。
2024-2025学年浙江省嘉兴市高一上学期10月月考数学检测试卷(含解析)
2024-2025学年浙江省嘉兴市高一上学期10月月考数学检测试卷一、单项选择题:本题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合要求的.1. 已知集合,,则集合( ){}21A x x =-<<{}2,1,1,2B =--A B = A.B.C.D.{}1,0-{}1-{}0,1{}1x =-2. 已知函数的定义域为( )()f x =()f x A. B. C. 且 D.{|1}x x ≠-{|0}x x ≥{|0x x ≤1}x ¹-且{|0x x ≥1}x ≠3. 若,则下列正确的是( ),,,0a b c a b ∈<<R A .B. C.D. 11a b<ac bc>22()(11)a c b c +<+2a ab<4. 函数的大致图象是( )1xy x=+A .B.C. D.5. 使“”成立的必要不充分条件是( )11x x +≥-A. B. C. D. 或1<1x -≤2x ≤-11x -≤≤1x ≤-0x ≥6. 已知、为互不相等的正实数,下列四个数中最大的是( )a bB.D. 211a b+2a b+7. 命题“∀x ∈R ,∃n ∈N +,使n ≥2x+1”的否定形式是( )A. ∀x ∈R ,∃n ∈N +,有n<2x+1B. ∀x ∈R ,∀n ∈N +,有n<2x+1C. ∃x ∈R ,∃n ∈N +,使n<2x+1D. ∃x∈R ,∀n ∈N +,使n<2x+18. 设函数的定义域为,对于任意,若所有点()0)f x a =<D ,m n D ∈构成一个正方形区域,则实数的值为()()(),P m f n a A. -1B. -2C. -3D. -4二、多项选择题:本题共3小题,每小题4分,共12分. 在每小题给出的选项中,有多项符合题目要求,全部选对得4分,部分选对得部分分.9. 已知为正数,且,则下列说法正确的是(),x y 1xy =A. 有最小值2B. 有最大值2x y +x y +C. 有最小值2D. 有最大值222x y +22x y +10. 已知命题是真命题,则下列说法正确的是( )2:[1,3],40p x x ax ∃∈-+<A. 命题“”是假命题2[1,3],40x x ax ∃∈-+≥B. 命题“”是假命题2[1,3],40x x ax ∀∈-+≥C. “”是“命题为真命题”的充分不必要条件5a >pD. “”是“命题为真命题”的必要不充分条件4a ≥p 11. 著名数学家华罗庚曾说过“数缺形时少直观,形少数时难入微”,事实上,很多代数问题平面上点与的距离加以考虑. 结合综上观点,对于函数(,)M x y (,)N a b)()f x A. 的图象是轴对称图形()y f x =B. 的值域是()y fx =[0,4]C.先递减后递增()f x D. 方程有且仅有一个解(())f f x =三、填空题:本题共3小题,每小题4分,共12分.12. 集合的子集个数为__________个.{0,1}A =13. 已知一元二次不等式的解集为,则________.210ax bx a -->1{|1}2x x -<<a =14. 函数满足:对任意的都有,且,若()y f x =12,x x R ∈1212()()f x f x x x ->-()220f +=恒成立,则的最小值为___________.22()0(01)f ax x a ax x a x ³-++-+<<a 四、简答题:本题共5小题,共52分.解答应写出文字说明、证明过程或演算步骤.15.设集合,,或.{}12A x x =-≤≤{}21B x m x =<<{1C x x =<-x>2}(1)当时,求;1m =-A B ⋂(2)若中只有一个整数,求实数的取值范围.B C ⋂m 16. 某工厂要建造一个长米,宽米的长方形无盖储水池,储水池容积为4800立方米,深x y 为3米,如果池底每平方米的造价为150元,池壁每平方米的造价为120元.(1)写出总造价与间的关系;z ,x y (2)水池的最低总造价是多少?并求出总造价最低时的值.x 17. 已知命题:“,使得”为真命题.0x ∃∈R 202430x mx m -+-≤(1)求实数m 的取值的集合A ;(2)设不等式的解集为B ,若是的必要不充分条件,求()(3)0x a x a ---≤x A ∈x B ∈实数a 的取值范围.18. 函数()22,01,0x a x f x x ax a x +≤⎧=⎨-+->⎩(1)时,求方程的解;1a =()2f x =(2)求在上的解集;()0f x <(0,)+∞(3)若时,①②同时成立,求的取值范围.0x >a ①恒成立;()2f x a ≥-②函数的值域为.y =[0,)+∞19. 对于定义域为I 的函数,如果存在区间,使得在区间上是单()f x [,]∈m n I ()f x [,]m n 调函数,且函数的值域是,则称区间是函数的一个(),[,]y f x x m n =∈[,]m n [,]m n ()f x “优美区间”.(1)判断函数和函数是否存在“优美区间”,如果存在,写2()y x x R =∈43(0)y x x =->出符合条件的一个“优美区间”?(直接写出结论,不要求证明)(2)如果是函数的一个“优美区间”,求的最大值.[,]m n 22()1()(0)a a x f x a a x +-=≠n m -2024-2025学年浙江省嘉兴市高一上学期10月月考数学检测试卷一、单项选择题:本题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合要求的.1. 已知集合,,则集合( ){}21A x x =-<<{}2,1,1,2B =--A B = A.B.C.D.{}1,0-{}1-{}0,1{}1x =-【正确答案】B【分析】运用集合的交集运算,即可求解.【详解】由题意知:,对于D ,集合的表示有误;A B = {}1-故选:B.2. 已知函数的定义域为( )()f x =()f x A. B. C. 且 D.{|1}x x ≠-{|0}x x ≥{|0x x ≤1}x ¹-且{|0x x ≥1}x ≠【正确答案】B【分析】利用函数有意义,列出不等式组并求解即得.【详解】函数,解得,()f x =010x x ≥⎧⎨+≠⎩0x ≥所以的定义域为.()f x {|0}x x ≥故选:B3. 若,则下列正确的是( ),,,0a b c a b ∈<<R A. B. C.D. 11a b<ac bc>22()(11)a c b c +<+2a ab<【正确答案】C【分析】利用不等式及其性质逐项判断即可.【详解】对A ,因为,所以,所以不等式两边同时除以得:0a b <<0ab >a b <ab ,故A 错误;11b a <对B ,由,若,则,故B 错误;0a b <<0c >ac bc <对C ,因为,所以不等式两边同时同时乘以得:210c +>a b <21c +,故C 正确;22()(11)a c b c +<+对D ,因为,所以不等式两边同时乘以得:,故D 错误.0a <a b <a 2a ab >故选:C.4. 函数的大致图象是( )1xy x =+A.B.C.D.【正确答案】A【分析】探讨函数的定义域、单调性,再逐一分析各选项判断作答.1xy x =+【详解】函数的定义域为,选项C ,D 不满足,1xy x =+{R |1}x x ∈≠-因,则函数在,上都单调递增,B 不满111111x y x x +-==-++1xy x =+(,1)∞--(1,)-+∞足,则A 满足.故选:A方法点睛:函数图象的识别途径:(1)由函数的定义域,判断图象的左右位置,由函数的值域,判断图象的上下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性.5. 使“”成立的必要不充分条件是( )101x x +≥-A. B. C. D. 或1<1x -≤2x ≤-11x -≤≤1x ≤-0x ≥【正确答案】C【分析】先解不等式,根据不等式的解集以及必要不充分条件的定义即可求解.【详解】不等式可化为,解得,101x x +≥-()()11010x x x ⎧+-≥⎨-≠⎩1<1x ≤-根据题意成立,反之不成立,1111x x --<≤≤≤⇒所以是成立的必要不充分条件.11x -≤≤11x x +≥-故选:C6. 已知、为互不相等的正实数,下列四个数中最大的是( )ab B.D. 211a b +2a b+【正确答案】C【分析】利用重要不等式可得出四个选项中各数的大小.【详解】因为、为互不相等的正实数,a b 所以由重要不等式可得,则,222a b ab +>()()2222222a b a b ab a b +>++=+所以,,()22224a b a b ++>2ab +>>由基本不等式可得,所以,211a b <=+2112a b a b +>>>+.故选:C.7. 命题“∀x ∈R ,∃n ∈N +,使n ≥2x+1”的否定形式是( )A. ∀x ∈R ,∃n ∈N +,有n<2x+1B. ∀x ∈R ,∀n ∈N +,有n<2x+1C. ∃x ∈R ,∃n ∈N +,使n<2x+1D .∃x ∈R ,∀n ∈N +,使n<2x+1【正确答案】D【分析】根据全称命题、特称命题的否定表述:条件中的、,然后把结论否定,∀→∃∃→∀即可确定答案【详解】条件中的、,把结论否定∀→∃∃→∀∴“∀x ∈R ,∃n ∈N +,使n ≥2x+1”的否定形式为“∃x ∈R ,∀n ∈N +,使n<2x+1”故选:D本题考查了全称命题、特称命题的否定形式,其原则是将原命题条件中的、且∀→∃∃→∀否定原结论8. 设函数的定义域为,对于任意,若所有点()0)f x a =<D ,m n D ∈构成一个正方形区域,则实数的值为()()(),P m f n aA. -1B. -2C. -3D. -4【正确答案】D【分析】先求出.进而根据在的单调性,得出函数[]0,2D =22y x x =-[]0,2在.,求解()f x =1x =2=即可得出答案.【详解】由已知可得,.220ax ax -≥因为,所以,解得,所以.0a <220x x -≤02x ≤≤[]0,2D =因为在上单调递减,在上单调递增,22y x x =-[]0,1[]1,2所以,在处取得最小值,22y x x =-1x =1-所以,在处取得最大值,()22y a x x =-1x =a -所以,函数在.()f x =1x =因为,所有点构成一个正方形区域,()()020f f ==()(),P m f n,所以.2=4a =-故选:D.二、多项选择题:本题共3小题,每小题4分,共12分. 在每小题给出的选项中,有多项符合题目要求,全部选对得4分,部分选对得部分分.9. 已知为正数,且,则下列说法正确的是(),x y 1xy =A. 有最小值2B. 有最大值2x y +x y +C. 有最小值2D. 有最大值222x y +22x y +【正确答案】AC【分析】利用基本不等式和重要不等式求和的最小值.【详解】为正数,且,,x y 1xy =则有,,当且仅当时等号成立,2x y +≥=2222y x y x ≥=+1x y ==所以有最小值2,有最小值2.x y +22x y +故选:AC.10. 已知命题是真命题,则下列说法正确的是( )2:[1,3],40p x x ax ∃∈-+<A. 命题“”是假命题2[1,3],40x x ax ∃∈-+≥B. 命题“”是假命题2[1,3],40x x ax ∀∈-+≥C. “”是“命题为真命题”的充分不必要条件5a >p D. “”是“命题为真命题”的必要不充分条件4a ≥p 【正确答案】BCD【分析】由命题的否定判断AB 选项;分离变量法求出为真命题时的取值范围,再根据p a 充分必要条件的概念判断CD.【详解】不能否定,A 选项错误;2[1,3],40x x ax ∃∈-+<2[1,3],40x x ax ∃∈-+≥命题是真命题,则是假命题,2:[1,3],40p x x ax ∃∈-+<2:[1,3],40p x x ax ⌝∀∈-+≥故B 选项正确;,则当时,,2[1,3],40x x ax ∃∈-+<[1,3]x ∈min 4a x x ⎛⎫>+ ⎪⎝⎭由,当且仅当,即时等号成立,44x x +≥=4x x =2x =所以是命题是真命题的充要条件.4a >2:[1,3],40p x x ax ∃∈-+<时有,时不一定有,5a >4a >4a >5a >“”是“命题为真命题”的充分不必要条件,C 选项正确;5a >p 时不一定有,时一定有,4a ≥4a >4a >4a ≥“”是“命题为真命题”的必要不充分条件,D 选项正确.4a ≥p 故选:BCD11. 著名数学家华罗庚曾说过“数缺形时少直观,形少数时难入微”,事实上,很多代数问题平面上点与的距离加以考虑. 结合综上观点,对于函数(,)M x y (,)N a b)()f x A. 的图象是轴对称图形()y f x =B. 的值域是()y f x =[0,4]C. 先递减后递增()f xD .方程有且仅有一个解(())f f x =-【正确答案】AC【分析】由题得,设,,,()f x =(,0)P x 2()1,M -(3,2)N 则,作出图形,由点在轴的移动得出的性质,从而判断各选()f x PM PN=-P x ()f x 项.【详解】依题意,,()||f x =对于A ,,则的图象是轴对称图(2)||()f x f x -==()y f x =形,A 正确;对于B ,设,,,则,如图,(,0)P x 2()1,M -(3,2)N ()||||||f x PM PN =-线段轴,当时,,即,//MN x (1,0)P PM PN=(1)0f =又,而不可能共线,即,因此||||||||4PM PN MN -≤=,,P M N ||||||4PM PN -≠,B 错误;()[0,4)f x ∈对于C ,设在轴上,且在右侧,在点右侧,与交于点,则Q x P (1,0)Q P MQ PN E ,||||||ME PE PM +>,则,||||||NE QE QN +>QM PN QE EM PE NE PM QN +=+++>+即,而在轴上点的右侧,,QM QN PM PN->-P x (1,0)PM PN>因此,即0QM QN PM PN ->->QM QN PM PN->-于是点从向右移动时,递增,同理在轴从左侧向点移动时,减P (1,0)()f x P x (1,0)()f x 小,C 正确;对于D ,,,()||f x =(0)(2)f f ==设,则的解是和,有一个解,()t f x =()f t =10t =22t =1()0f x t ==1x=由,两边平方解得2()2f x t ==2=±+1x =,1x =因此有三个解,D 错误.(())f f x =-故选:AC思路点睛:将题中函数转化为轴上点到两定点距离差的绝对值,然后通过点的移动()f x x 确定函数的性质,利用数形结合使得较为复杂的函数问题得到解决.三、填空题:本题共3小题,每小题4分,共12分.12. 集合的子集个数为__________个.{0,1}A =【正确答案】4【分析】根据“集合中有个元素,子集个数为”可得结果.n 2n【详解】∵集合中元素个数为2,A ∴集合的子集个数为.A 224=故4.13. 已知一元二次不等式的解集为,则________.210ax bx a -->1{|1}2x x -<<a =【正确答案】【分析】根据一元二次不等式的解以及根与系数关系列方程组,由此求得的值.a 【详解】由于一元二次不等式的解集为,210ax bx a -->1{|1}2x x -<<所以,解得.2011122111122a b a a ⎧⎪<⎪⎪-+=-=⎨⎪⎪-⨯=-=-⎪⎩a=故14. 函数满足:对任意的都有,且,若()y f x =12,x x R ∈1212()()f x f x x x ->-()220f +=恒成立,则的最小值为___________.22()0(01)f ax x a ax xa x ³-++-+<<a 【正确答案】1+【分析】根据题目条件可得在上为增函数,构造函数,把不等式转()f x R ()()g x f x x =+化为,利用函数的单调性得,分离参数,结合基本2()(2)g ax x a g -+³22ax x a -+³a 不等式求的最小值.a 【详解】∵对任意的都有,12,x x ∈R 1212()()f x f x x x ->-∴在上为增函数,()f x R 令,则在上为增函数.()()g x f x x =+()g x R ∵,()220f +=∴,(2)0=g ∴不等式可转化为,22()0(01)f ax x a ax x a x ³-++-+<<2()(2)g ax x a g -+³∴,22ax x a -+³∴,即212x a x +³+2max 21x a x +⎛⎫≥ ⎪+⎝⎭令,则,2t x =+2(23)x t t =-<<,222215(2)14415x t t x t t t t t +===-+++-+-∵,即,5t t +≥=5t t =t =∴,1154t t £=+-∴,2max 211x x +⎛⎫=+ ⎪+⎝⎭∴,的最小值为.1a ³a 1+故答案为.1+思路点睛:本题考查构造函数解决不等式问题,具体思路如下:根据题目条件可得在上为增函数,构造函数,把不等式转化为()f x R ()()g x f x x =+,利用函数的单调性得,分离参数得,转2()(2)g ax x a g -+³22ax x a -+³a 212x a x +³+化为,令,利用换元法结合基本不等式求的最小值.2max 21x a x +⎛⎫≥ ⎪+⎝⎭2t x =+a 四、简答题:本题共5小题,共52分.解答应写出文字说明、证明过程或演算步骤.15. 设集合,,或.{}12A x x =-≤≤{}21B x m x =<<{1C x x =<-x >2}(1)当时,求;1m =-A B ⋂(2)若中只有一个整数,求实数的取值范围.B C ⋂m 【正确答案】(1){}11A B x x ⋂=-≤<(2)312m m ⎧⎫-≤<-⎨⎬⎩⎭【分析】(1)当时,写出集合,利用交集的定义可得出集合;1m =-B A B ⋂(2)分析可知,结合题意可知集合中的唯一的整数为,{}21B C x m x ⋂=<<-B C ⋂2-可得出关于实数的不等式组,由此可解得实数的取值范围.m m 【小问1详解】解:当时,,1m =-{}21B x x =-<<又因为,则.{}12A x x =-≤≤{}11A B x x ⋂=-≤<【小问2详解】解:因为,或,{}21B x m x =<<{1C x x =<-}2x >因为只有一个整数,则,所以,解得,B C ⋂B ≠∅21m <12m <由题意可知,且,B C ≠∅ {}21B C x m x ⋂=<<-则集合中的唯一的整数为,所以,解得.B C ⋂2-2223m m <-⎧⎨≥-⎩312m -≤<-因此,实数的取值范围是.m 312m m ⎧⎫-≤<-⎨⎬⎩⎭16. 某工厂要建造一个长米,宽米的长方形无盖储水池,储水池容积为4800立方米,深x y 为3米,如果池底每平方米的造价为150元,池壁每平方米的造价为120元.(1)写出总造价与间的关系;z ,x y (2)水池的最低总造价是多少?并求出总造价最低时的值.x 【正确答案】(1); 240000720()z x y =++(2),.29760040x =【分析】(1)根据题意列出底面积与侧面积,再根据每平米造价即可表示出总造价.(2)利用基本不等式求其最小值即可.【小问1详解】根据题意可知,,则,34800xy =1600xy =又根据题意,总造价()150160023120z x y =⨯++⨯⨯240000720()x y =++【小问2详解】由(1)()150160023120z x y =⨯++⨯⨯,240000720()240000720297600x y =++≥+⨯=当且仅当时,等号成立,40x y ==故水池的长和宽均为时,总造价最低,最低值为元.40m 29760017. 已知命题:“,使得”为真命题.0x ∃∈R 202430x mx m -+-≤(1)求实数m 的取值的集合A ;(2)设不等式的解集为B ,若是的必要不充分条件,求()(3)0x a x a ---≤x A ∈x B ∈实数a 的取值范围.【正确答案】(1)或;{1A m m =≤}3m ≥(2).(,2][3,)-∞-⋃+∞【分析】(1)根据一元二次方程的判别式进行求解即可;(2)根据必要不充分条件的性质进行求解即可.【小问1详解】命题“,使得”为真命题,0x ∃∈R 202430x mx m -+-≤所以,2(2)4(43)0m m ∆=---≥即,2430m m -+≥解之得或,1m ≤3m ≥所以实数m 的取值的集合或;;{1A m m =≤}3m ≥【小问2详解】不等式的解集为,()(3)0x a x a ---≤{}3B x a x a =≤≤+因为是的必要不充分条件,所以 ,x A ∈x B ∈B A 则或,3a ≥31a +≤所以或,3a ≥2a ≤-故实数a 的取值范围为.(,2][3,)-∞-⋃+∞18. 函数()22,01,0x a x f x x ax a x +≤⎧=⎨-+->⎩(1)时,求方程的解;1a =()2f x =(2)求在上的解集;()0f x <(0,)+∞(3)若时,①②同时成立,求的取值范围.0x >a ①恒成立;()2f x a ≥-②函数的值域为.y =[0,)+∞【正确答案】(1)或 0x =2x =(2)答案见解析(3)(]1,2-【分析】(1)根据分段函数解析式来求得方程的解.()2f x =(2)对进行分类讨论,由此求得不等式在上的解集.a ()0f x <(0,)+∞(3)根据不等式恒成立以及函数的值域列不等式来求得的取值范围.a 【小问1详解】当时,,1a =()22,0,0x x f x x x x +≤⎧=⎨->⎩所以或,022x x ≤⎧⎨+=⎩202x x x >⎧⎨-=⎩解得或0x =2x =【小问2详解】当时,,0x >()()()21110f x x ax a x x a ⎡⎤=-+-=---<⎣⎦当时,不等式的解集为.11,2a a -==∅当时,不等式的解集为.11,2a a -<<()1,1a -当时,不等式的解集为.11,2a a ->>()1,1a -【小问3详解】当时,0x >①,()2212,10f x x ax a a x ax =-+-≥--+≥,而,211,ax x a x x ≤+≤+12x x +≥=当且仅当时等号成立,所以.1,1x x x ==2a ≤②函数的值域为,y ==[0,)+∞当时,,不符合.1a =-y =0,420x x >--<当,二次函数的开口向下,不符合值域为,10,1a a +<<-()2141y a x x a =+-+-[0,)+∞当时,二次函数的开口向上,10,1a a +>>-()2141y a x x a =+-+-对称轴,()42211x a a-=-=>++要使的值域为,y =[0,)+∞则需,()()2Δ164114200a a a =-+-=-+≥解得.1a -<≤综上所述,的取值范围是.a (]1,2-方法点睛:分段函数的解法:对于小问1,通过分段讨论函数的解析式,分别求解各个区间上的方程的解.分类讨论法:在小问2中,利用分类讨论的方法处理不等式在不同区间上的解集,确保所有情况均被覆盖.二次函数值域分析:在小问3中,通过分析二次函数的对称轴和开口方向,确定函数的值域并结合不等式求解参数的取值范围.19. 对于定义域为I 的函数,如果存在区间,使得在区间上是单()f x [,]∈m n I ()f x [,]m n 调函数,且函数的值域是,则称区间是函数的一个(),[,]y f x x m n =∈[,]m n [,]m n ()f x “优美区间”.(1)判断函数和函数是否存在“优美区间”,如果存在,写2()y x x R =∈43(0)y x x =->出符合条件的一个“优美区间”?(直接写出结论,不要求证明)(2)如果是函数的一个“优美区间”,求的最大值.[,]m n 22()1()(0)a a x f x a a x +-=≠n m -【正确答案】(1)存在优美区间是,不存在优美区间;()f x []0,1()g x (2【分析】(1)由函数的单调性及值域及新定义求解;(2)由新定义及函数定义域,确定相应方程有两个同号的不等实根,由此求得参()f x x=数范围.【小问1详解】,在上单调递增,由得或1,20y x =≥2y x =[)0,∞+2x x =x =0函数的值域是,存在优美区间是,()[],0,1y f x x =∈[0,1][0,1]是增函数,若存在优美区间,则,43(0)y x x =->[],m n ()()4343mf m m mf n n n n ⎧-=⎪⎧=⎪⎪⇒⎨⎨=⎪⎩⎪-=⎪⎩而方程组无解,不合题意,所以不存在优美区间;【小问2详解】,因为,()()2221111a a x f x a xa a x +-==+-210a >所以在和上都是增函数,()f x (),0∞-(0,+∞)因此优美区间或,[](),,0m n ∞⊆-[](),0,m n ∞⊆+因为函数的值域是,则称区间是函数的一个“优美区(),[,]y f x x m n =∈[,]m n [,]m n ()f x 间”.所以,所以有两个同号的不等实根,()()f m mf n n ⎧=⎪⎨=⎪⎩()f x x =,m n ,,()2111f x x a a x =+-=()22210a x a a x -++=,,或,()222Δ40a aa=+->()()2310a a a +->3a <-1a >,同号,满足题意,又,210mna =>,m n221a a a mn a a +++==n m >n m -===,=因为或,所以当,即时,.3a <-1a>113a =3a=()max n m -==关键点点睛:第二问的关键点在于根据函数的单调性得到,从而转化为()()f m m f n n ⎧=⎪⎨=⎪⎩有两个同号的不等实根,结合韦达定理,即可求出,结合二次函数即()f x x=,m n n m -可求出最大值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省嘉兴市2019~2020学年第一学期期末检测高一数学试卷 (2020.1)本试题卷分选择题和非选择题两部分。
全卷共5页,选择题部分1至2页;非选择题部分3至5页。
满分150分,考试时间120分钟。
考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
选择题部分一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知{}{},,2,0,1,9,1,3,6,9A B A C B C ⊆⊆=−=,则集合A 可以为( ) A.{1,3}B.{1,9}C.{2,0}D.{2,3}2.已知正方形ABCD 的边长为1,则AB AD +=( )A.2B.3D.3.若点()sin ,tan P αα在第二象限,则角α的终边所在的象限为( ) A.第一象限B.第二象限C.第三象限D.第四象限4.设函数()()121xf x x R =∈+,则它的值域为( ) A.(0,1)B.(0,2)C.(1,+∞)D.(2,+∞)5.已知平面向量,a b 满足23,4a b ==,且,a b 的夹角为30°,则( ) A.()a ab ⊥+ B.()b a b ⊥+C.()b a b ⊥−D.()a ab ⊥−6.函数()sin 4f x x π⎛⎫=+ ⎪⎝⎭,则()f x ( ) A.在0,2π⎛⎫⎪⎝⎭上单调递增B.在3,44ππ⎛⎫⎪⎝⎭上单调递增 C.在37,44ππ⎛⎫⎪⎝⎭上单调递增D.在57,44ππ⎛⎫⎪⎝⎭上单调递增7.函数()f x 的图象如图所示,则它的解析式可能是( )A.()212xx f x −= B.()()21xf x x =−C.()ln f x x =D.()1xf x xe =−8.为了得到函数cos 43y x π⎛⎫=+ ⎪⎝⎭的图象,可以将函数sin 4y x =的图象( ) A.向左平移524π个单位B.向右平移524π个单位 C.向左移动56π个单位 D.向右平移56π个单位 9.已知1,60,OA OB AOB OC OA OB λμ==∠=︒=+,其中实数,λμ满足12,0,0λμλμ≤+≤≥≥,则点C 所形成的平面区域的面积为( ) A.3B.334C.32D.3410.若不等式()cos 023x a b x ππ⎛⎫−−+≥ ⎪⎝⎭对[]1,3x ∈−恒成立,则a b −=( )A.13B.23C.56D.73非选择题部分二、填空题:11.若23log 3,log 2a b ==,则a b ⋅=______,lga lgb +=______.12.设函数()1,1,ln ,1,x e x f x x x ⎧−<=⎨≥⎩则()0f 的值为______;若()2f a =,则a =______.13.已知向量()()(),12,4,5,,10OA k OB OC k ===−,若AB BC =,则k =______;若,,A B C 三点共线,则k =______. 14.若tan 2α=,则sin 3cos sin cos αααα+−=______,sin cos αα=______.15.设函数()22,0,2,0,x x f x x x x −≤⎧=⎨−+>⎩若()()30f f a +≥,则实数a 的取值范围是______.16.如图所示,2,4,60,3,3OD OE DOE AB AD AC AE ==∠=︒==,则BC OE ⋅=______.17.设()f x x x a x =−−,对任意的实数()1,2a ∈−,关于x 的方程()()f x tf a =共有三个不相等的实数根,则实数t 的取值范围是______.三、解答题:解答应写出文字说明、证明过程或演算步骤。
18.已知集合{}{}24120,222A x x x B x a x a =−−≤=−≤≤+. (Ⅰ)若1a =,求()RA B ;(Ⅱ)若[]4,6A B =−,求实数a 的值.19.已知平面向量()()()2,4,3,5,2,6a b c ===−. (Ⅰ)若a xb yc =+,求x y +的值;(Ⅱ)若a kc +在a b −k . 20.已知函数()()122xxf x a x R =⋅+∈是偶函数. (Ⅰ)求a 的值;(Ⅱ)当()0,x ∈+∞时,判断函数()f x 的单调性,并证明你的结论. 21.已知函数()()sin 0,03f x A x A πωω⎛⎫=+>> ⎪⎝⎭的图象经过点(,且图象上相邻两条对称轴之间的距离为2π.(Ⅰ)求函数()f x 的解析式及它的单调递增区间;(Ⅱ)是否存在实数m ,使得不等式f f>成立?若存在,请求出m 的取值范围;若不存在,请说明理由. 22.已知函数()()1,1,1f x a x a x x =−−+∈+∞−.(Ⅰ)若1a =,求方程()0f x =的解;(Ⅱ)若函数()y f x =恰有两个不同的零点()1212,x x x x <,求12x x +的值.嘉兴市2019~2020学年第一学期期末检测高一数学 参考答案 (2020.1)一、选择题 BCCAD DBABA 第10题参考解答:设()(),cos23f x x a b g x x ππ⎛⎫=−−=+ ⎪⎝⎭,当[]1,3x ∈−时,函数()cos 23g x x ππ⎛⎫=+ ⎪⎝⎭图象如图所示要使不等式()()0f x g x ≥对[]1,3x ∈−恒成立,只要()f x 在11,3⎛⎫− ⎪⎝⎭与7,33⎛⎫⎪⎝⎭上恒大于零, 在17,33⎛⎫ ⎪⎝⎭上恒大小于零, 所以我们有170,033f f ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,得13a b −=,故选A 二、填空题 11.1;0 12.0;2e13.32;23− 14.5;2515.3,2⎡⎤−+∞⎢⎥⎣⎦16.36 17.(0,,1)第17题参考解答:()()()()221,,1,x a x x af x x x a x tf a ta x a x x a⎧−+≥⎪=−−==−⎨−+−<⎪⎩,(1)当1122a a a −+<≤时,即12a ≤<,此时函数()f x 的图象如图所示,则()f x 在1,2a −⎛⎫−∞ ⎪⎝⎭上单调递增,在1,2a a −⎛⎫⎪⎝⎭上单调递减,在(),a +∞上单调递增, 且()221121,224a a a a f f a a −−−+⎛⎫⎛⎫===− ⎪ ⎪⎝⎭⎝⎭, 关于x 的方程()()f x tf a =总有三个不相等的实数根,只要2214a a a ta −+−<−<对12a ≤<恒成立,解得01t <<(2)当1122a a a −+<<时,即11a −<<,此时函数()f x 的图象如图所示,则()f x 在1,2a −⎛⎫−∞ ⎪⎝⎭上单调递增,在11,22a a −+⎛⎫⎪⎝⎭上单调递减,在1,2a +⎛⎫+∞ ⎪⎝⎭上单调递增, 且222211211121,224224a a a a a a a a f f −−−+++++⎛⎫⎛⎫⎛⎫⎛⎫====⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 关于x 的方程()()f x tf a =总有三个不相等的实数根,只要22212144a a a a ta ++−+−<−<对11a −<<恒成立, ①当0a =时,11044−<<成立,此时t R ∈ ②当01a <<时,112244a a a a t ++−+−<−<恒成立,此时01t ≤≤ ③当10a −<<时,112244a a a a t ++−+<<−恒成立,此时01t ≤≤ 综合①②③得01t ≤≤ 由(1)(2)可知01t << 三、解答题 18.解:(Ⅰ)当1a =时,{}{}24,26B x x A x x =−≤≤=−≤≤, 所以{}24RB x x x =<−>或所以{}46RA B x x ⋂=<≤(Ⅱ)若[]4,6A B ⋃=−,242226a a −=−⎧⎨−≤+≤⎩,222a a =⎧⎨−≤≤⎩解得2a = 19.解:(Ⅰ)因为()()()2,4,3,5,2,6a b c ===−,所以()32,56xb yc x y x y +=−+,又a xb yc =+,所以322564x y x y −=⎧⎨+=⎩,解得57114x y ⎧=⎪⎪⎨⎪=⎪⎩,所以1114x y +=(Ⅱ)由题意知()()1,1,22,46a b a kc k k −=−−+=−+, 所以()()()()2,224646a b a kca b k k k −=+⋅−=−−−+=−−,因为a kc +在a b −()()a kc a b a b+⋅−==−,解得2k =−20.解:(Ⅰ)因为()()122xxf x a x R =⋅+∈是偶函数, 所以()()f x f x −=,即112222xxx xa a −−⋅+=⋅+, 化简得()11202x x a ⎛⎫−−= ⎪⎝⎭,所以1a =(Ⅱ)结论:()122xx f x =+在(0,+∞)单调递增.下证之. 任取120x x <<,则()()()()12122112121212121222211122222222222x x x x x x x x x x x x x x x x f x f x ++−−−⎛⎫−=+−+=−+= ⎪⋅⎝⎭ 因为120x x <<,所以1212220,210x xx x +−<>>,所以12210x x +>>所以()()121212222102x x x x x x ++−−<,即()()12f x f x <所以()122xx f x =+在(0,+∞)单调递增. 21.解:(Ⅰ)因为函数()()sin 0,03f x A x A πωω⎛⎫=+>> ⎪⎝⎭的图象经过点(,所以()0sin3f A π==解得2A =又函数图象上相邻两条对称轴之间的距离为2π得4T π=, 又由2T πω=,得12ω=,所以()12sin 23f x x π⎛⎫=+ ⎪⎝⎭结合函数sin y x =的单调性, 令()1222232k x k k Z πππππ−+≤+≤+∈,解得54433k x k ππππ−+≤≤+, 所以函数()f x 的单调递增区间是()54,433k k k Z ππππ⎡⎤−++∈⎢⎥⎣⎦,(Ⅱ)由题意知222010m m m ⎧−+≥⎪⎨−+≥⎪⎩,所以01m ≤≤, 所以[][]2220,1,10,1m m m −+∈−+∈ 由函数()f x 的单调递增区间是()54,433k k k Z ππππ⎡⎤−++∈⎢⎥⎣⎦知,()f x 在[]0,1上单调递增,又()()2221fm m fm −+>−+,所以()()2221m m m −+>−+,解得12m >结合01m ≤≤,得112m <≤ 22.解:(Ⅰ)当1a =时,()11101f x x x =−−+=−,所以211x x x −=−− 所以12211x x x x <<⎧⎪−⎨=−⎪−⎩或2211x x x x ≥⎧⎪−⎨=−⎪−⎩,解得152x +=或x ∈∅所以当1a =时,方程()0f x =的解集为152⎧⎫+⎪⎪⎨⎬⎪⎪⎩⎭(Ⅱ)由题意令()0f x =得11a x a x −=−−,记()()1,1g x a h x x a x =−=−−, 作函数()g x 与()h x 的图象,由函数()y f x =在定义域(1,+∞)内恰有 两个不同的零点()1212,x x x x <, 可知0a ≤不合题意,故0a >如图所示,要使函数()y f x =恰有两个不同的零点,则应有直线y x a =−与函数()11g x a x =−−的图象相切或者直线y x a =−经过点11,0a ⎛⎫+ ⎪⎝⎭(1)当直线y x a =−与函数()11g x a x =−−的图象相切时, 联立方程11y x a y a x =−⎧⎪⎨=−⎪−⎩,消去y 得()221210x a x a −+++=,由0∆=得()()2214210a a +−+=,所以12a =−(舍去)或32a = 此时22x =,直线32y x =−,联立1312y x =−−,解得112x +=所以12x x +=(2)当直线y x a =−经过点11,0a ⎛⎫+⎪⎝⎭时,有101a a=+−, 所以210a a −−=,得a =此时直线方程为11122y x x =−=联立11y x y x ⎧=⎪⎪⎨⎪=−⎪−⎩,消去y解得232x =,所以122x x +=+. 综上所述,当32a =时,12x x +=a =时,122x x +=+。