2017年秋人教版八年级上第十三章轴对称单元测试含答案
人教版八年级数学上册第13章 轴对称单元测试(配套练习附答案)
一、选择题(本大题共10小题,共40.0分)
1.在4×4的正方形网格中,已将图中的四个小正方形涂上阴影,若再从其余小正方形中任选一个也涂上阴影,是整个阴影部分组成的图形成轴对称图形,那么符合条件的小正方形共有()
A.4个B.3个C.2个D.1个
【答案】B
A. B. C. D.
【答案】B
【解析】
【详解】试题分析:作点P关于OA对称的点P1,作点P关于OB对称的点P2,连接P1P2,与OA交于点M,与OB交于点N,此时△PMN的周长最小.由线段垂直平分线性质可得出△PMN的周长就是P1P2的长,∵OP=5,∴OP2=OP1=OP=5.又∵P1P2=5,,∴OP1=OP2=P1P2,∴△OP1P2是等边三角形, ∴∠P2OP1=60°,即2(∠AOP+∠BOP)=60°,∠AOP+∠BOP=30°,即∠AOB=30°,故选B.
【详解】 , ,
,
是 的外角,
,
,
.
【点睛】考查等腰三角形的性质,关键是根据三角形外角的性质以及三角形内角和定理解答.
19.已知点A(2m+n,2),B (1,n-m),当m、n分别为何值时,
(1)A、B关于x轴对称;
(2)A、B关于y轴对称.
【答案】 (2)
【解析】
【分析】(1)根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得
【分析】首先证明△ACD≌△BAE可得∠ACD=∠BAE,根据∠BAE+∠EAC=60°可得∠ACD+∠EAC=60°,再根据三角形内角与外角的关系可得∠APD=60°.
【详解】∵△ABC是等边三角形,
∴
在△ACD和△BAE中,
人教版八年级上册数学第十三章 轴对称 含答案
人教版八年级上册数学第十三章轴对称含答案一、单选题(共15题,共计45分)1、下列图形中,是轴对称图形的有()A.1个B.2个C.3个D.4个2、如图所示,在△ABC中,点D是BC上一点,∠BAD=80°,AB=AD=DC,则∠C 的大小为()A.50°B.40°C.20°D.25°3、下列命题中,假命题是()A.两条直角边对应相等的两个直角三角形全等B.等腰三角形顶角的平分线把它分成两个全等三角形C.有一个角是60º的等腰三角形是等边三角形D.顶角相等的两个等腰三角形全等4、方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A.12B.15C.12或15D.不能确定5、下列图形中,是轴对称图形的是()A. B. C. D.6、某校计划修建一座是轴对称图形的花坛,从学生中征集到的设计方案有正三角形、角、正方形、圆、线段、矩形、梯形等七种图案,你认为不符合条件的是()A.正三角形、角B.正方形、圆C.矩形、线段D.正方形、梯形7、下列图形中,不是轴对称图形的是()A.等边三角形B.平行四边形C.矩形D.菱形8、如图,D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD,若AC=5,BC=3,则BD的长为( )A.1B.1.5C.2D.49、彩陶、玉器、青铜器等器物以及壁画、织锦上美轮美奂的纹样,穿越时空,向人们呈现出古代中国丰富多彩的物质与精神世界,各种纹样经常通过平移、旋转、轴对称以及其它几何构架连接在一起,形成复杂而精美的图案.以下图案纹样中,从整体观察(个别细微之处的细节忽略不计),大致运用了旋转进行构图的是()A. B. C.D.10、如图所示,在Rt△ABC中,E为斜边AB的中点,ED⊥AB,且∠CAD:∠BAD=1:7,则∠BAC的度数为( )A.70°B.48°C.45°D.60°11、如图,△是等边三角形,为的中点,,垂足为点,∥,,下列结论错误的是( )A. 30°B.C.△的周长为10D.△的周长为912、如图,在中,DE是AC的垂直平分线,且分别交BC,AC于D、E 两点,,,则的度数为()A. B. C. D.13、若△ABC 的边 BC 的垂直平分线经过顶点 A ,与 BC 相交于点D ,且AB =2AD ,则△ABC 中必有一个内角的度数为( ), A.45° B.60° C.90° D.120°14、如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,∠ABC=60°,点E 是AB 的中点,连接CE 、OE ,若AB=2BC ,下列结论:①∠ACD=30°;②当BC=4时,BD=;③CD=4OE ;④S △COE = S 四边形ABCD . 其中正确的个数有( )A.1B.2C.3D.4 15、如图,矩形中,,点分别在上,则的最小值是( )A.6B.C.12D.二、填空题(共10题,共计30分)16、在平面直角坐标系中,点 P(-3,-5) 关于 轴对称的点的坐标是________.17、如图,在中,,,是的中线,是的角平分线,交的延长线于点,则的长为________.18、如图,在△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC 的长为半径作弧,两弧相交于M,N两点;②作直线MN交AB于点D,连接CD.若CD=AC,∠B=25°,则∠ACB的度数为________.19、已知点A(m+3,2)与点B(1,n﹣1)关于y轴对称,则代数式(m+n)2017的值为________.20、已知和关于x轴对称,则值为________.21、如图,在△ABC中,AB和AC的垂直平分线分别交BC于E、F,若∠BAC=130°,则∠EAF=________.22、如图,在等边△ABC的外侧作正方形ABDE,AD与CE交于F,则∠ABF 的度数为________.23、如图是按以下步骤作图:(1)在△ABC中,分别以点B,C为圆心,大于BC长为半径作弧,两弧相交于点M,N;(2)作直线MN交AB于点D;(3)连接CD,若∠BCA=90°,AB=6,则CD的长为________.24、如果一个等腰三角形的一个角等于80°,则底角的度数是 ________.25、已知等腰三角形的两边长分别为5cm、2cm,则该等腰三角形的周长是________.三、解答题(共5题,共计25分)26、如图,中,于D.求及的长.27、如图,在△ABC中,D是BC边的中点,且AD平分∠BAC,DE⊥AB,DF⊥AC,垂足分别是E,F,求证:△ABC是等腰三角形.28、尺规作图:某学校正在进行校园环境的改造工程设计,准备在校内一块四边形花坛内栽上一棵桂花树.如图,要求桂花树的位置(视为点P),到花坛的两边AB、BC的距离相等,并且点P到点A、D的距离也相等.请用尺规作图作出栽种桂花树的位置点P(不写作法,保留作图痕迹).29、如图,在△ABC中,AB=AC,∠C=30°,AB⊥AD,AD=4cm,求BC的长.30、已知:如图,在等腰△ABC中,AB=AC,∠BAC=80°,AD平分∠BAC,且AD=AE;求∠EDC的度数.参考答案一、单选题(共15题,共计45分)1、C3、D4、B5、D6、D7、B8、A9、B10、B11、C12、D13、D14、C15、B二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。
2017-2018 人教版数学八年级上册 第13章 轴对称 单元练习题 含答案
2017-2018 人教版数学八年级上册第13章轴对称单元练习题1.如图,直线MN是四边形AMBN的对称轴,点P是直线MN上的点,下列判断错误的是( )A.AM=BM B.AP=BNC.∠MAP=∠MBP D.∠ANM=∠BNM2.如图,△ABC与△A′B′C′关于直线l对称,则下列判断:①BC⊥l,B′C′⊥l;②∠B=∠B′;③AB=A′B′;④△ABC与△A′B′C′的周长与面积相等.其中正确的是( )A.①②B.②③C.②③④D.①②③④3.如图,四边形ABCF与四边形EDCF关于直线CF对称.若∠AFC+∠BCF=150°,则∠AFE+∠BCD的大小是( )A.150° B.300°C.210° D.330°4.如图,三角形ABC与三角形DEF关于直线MN对称,则以下结论中错误的是( )A.AB∥DF B.∠B=∠EC.AB=DE D.AD的连线被MN垂直平分5.如图,已知点P关于OA、OB的对称点分别是P1、P2,线段P1P2分别交OA、OB 于点D、C,P1P2=6cm,则三角形PCD的周长为( )A.3cm B.6cmC.12cm D.无法确定6.把图形沿着直线翻折并将图形“复印”下来得到图形,就叫做该图形关于直线作了轴对称变换,也叫.7.如果一个图形关于某一条直线作轴对称变换后,能够与另一个图形重合,那么就说这两个图形关于这条直线,也称这两个图形成轴对称,这条直线叫做对称轴.8.轴对称变换不改变图形的和.成轴对称的两个图形,对应点的连线被对称轴.9.如图,把一张长方形的纸沿OG折叠后,B、D两点落在B′、D′点处,若得∠AOB′=70°,则∠B′OG的度数为.10.如图,已知三角形ABC,以直线l为对称轴,画出三角形ABC关于直线l对称的图形.11.如图所示的三角形ABC和三角形A′B′C′关于直线l对称,请你画出它的对称轴直线l.13.如图,在正方形网格里有一个△ABC.(1)画出△ABC关于直线MN的对称图形;(2)若网格上的最小正方形的面积是1,求△ABC的面积.13.分别找出具有一条对称轴、两条对称轴、三条对称轴、四条对称轴的几何图形,并画出来(包括对称轴).答案:1---5 BCBAB6. 轴反射7. 对称8. 形状大小垂直平分9. 55°10. 解:如图所示:三角形ACD就是所求作的三角形.11. 解:如图所示:12. 解:(1)略 (2)S △ABC =2×3-12×(1×2+1×2+1×3)=52.13. 解:答案不唯一,如图所示:。
人教版八年级数学上册《第十三章轴对称》单元测试卷含答案
人教版八年级数学上册《第十三章轴对称》单元测试卷含答案一.选择题(共10小题)1.下列图形中,不是轴对称图形的是()A.B.C.D.2.如图,△ABC中,AB=AE,且AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,若△ABC周长为16,AC =6,则DC为()A.5B.8C.9D.103.如图,在△ABC中,∠ACB=90°,CD是高,∠B=60°,则下列关系正确的是()A.B.C.D.4.如图,在△ABC中,AB=AC,CD平分∠ACB,交AB于点D,若∠BAC=100°,则∠ADC的度数为()A.60°B.50°C.65°D.70°5.下列命题中:①等腰三角形底边的中点到两腰的距离相等;②等腰三角形的高、中线、角平分线互相重合;③若△ABC与△A′B′C′成轴对称,则△ABC一定与△A′B′C′全等;④有一个角是60度的三角形是等边三角形;⑤等腰三角形的对称轴是顶角的平分线.正确命题的个数是()A.1B.2C.3D.46.已知等腰三角形两边的长x、y满足|x2﹣9|+(y﹣4)2=0,则三角形周长为()A.10B.11C.12D.10或117.如图,在等边三角形ABC中,BC边上的中线AD=6,E是AD上的一个动点,F是边AB上的一个动点,在点E,F运动的过程中,EB+EF的最小值是()A.6B.4C.3D.28.如图,在正方形网格中,A,B两点都在小方格的顶点上,如果点C也是图中小方格的顶点,且△ABC是等腰三角形,那么点C的个数为()A.1B.2C.3D.49.如图,△ABC是等腰三角形,AB=AC,∠BAC是钝角.点D在底边BC上,连接AD,恰好把△ABC分割成两个等腰三角形,则∠B的度数是()A.30°B.36°C.45°D.60°10.若二元一次方程组的解x,y的值恰好是一个等腰三角形两边的长,且这个等腰三角形的周长为7,则m的值为()A.4B.1.5或2C.2D.4或2二.填空题(共8小题)11.等边三角形的两条中线所成的锐角的度数是度.12.已知点P(1﹣a,3+2a)关于x轴的对称点落在第三象限,则a的取值范围是.13.等腰三角形一腰上的高与另一腰的夹角为42°,则顶角为.14.如图,等腰三角形ABC中,CA=CB,∠C=40°,若沿图中虚线剪去∠A,则∠1+∠2的度数为度.15.如图,在△ABC中,DE是BC的垂直平分线,若AB=6,AC=9,则△ABD的周长是.16.如图,∠ABC和∠ACB的角平分线相交于点M,且过点M的直线DE∥BC,分别交AB、AC于D、E两点,若AB =12,AC=10,则△ADE的周长为.17.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是秒.18.如图,在△ABC中,AB=AC,BC=4,△ABC的面积为20,AB的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则BM+DM的最小值为.三.解答题(共7小题)19.△ABC在直角坐标系内的位置如图所示:(1)分别写出点A,C的坐标:A的坐标:,C的坐标:;(2)请在这个坐标系内画出与△ABC关于x轴对称的△A1B1C1,并写出点B1的坐标;(3)求△A1B1C1的面积.20.已知一个三角形的两条边长分别为4cm,8cm.设第三条边长为x cm.(1)求x的取值范围.(2)若此三角形为等腰三角形,求该等腰三角形的周长.21.如图所示,△ABC是等边三角形,AD为中线,AD=AE.(1)求∠EDC的度数;(2)若AD=2,求△AED的面积.22.如图,DC平分∠ACE,且AB∥CD,求证:△ABC为等腰三角形.23.如图,在等边三角形ABC中,D是BC边上一点,以AD为边作等腰三角形ADE,使AD=AE,∠DAE=80°,DE交AC于点F,∠BAD=15°.(Ⅰ)求∠CAE的度数;(Ⅱ)求∠FDC的度数.24.如图,在△ABC中,AB=AC,D是AB上的一点,过点D作DE⊥BC于点E,延长ED和CA,交于点F.(1)求证:△ADF是等腰三角形;(2)若∠F=30°,BD=4,EC=6,求AC的长.25.如图,在△ABC中,AB=AC,∠BAC=120°,AD是BC边上的中线,且BD=BE,CD的垂直平分线MF交AC 于F,交BC于M.(1)求∠BDE的度数;(2)证明△ADF是等边三角形;(3)若MF的长为2,求AB的边长.参考答案一.选择题(共10小题)1.B.2.A.3.:D.4.A.5.B.6.D.7.A.8.C.9.B.10.C.二.填空题(共8小题)11.60.12.a>1.13.48°或132°.14.250.15.15.16.22.17.4.18.10.三.解答题(共7小题)19.解:(1)A(0,3),C(﹣2,1);(2)如图所示,△A1B1C1即为所求;点B1(﹣4,﹣4);故答案为:(﹣4,﹣4);(3)△A1B1C1的面积=.20.解:(1)根据三角形三边关系得,8﹣4<x<8+4即4<x<12;(2)∵三角形是等腰三角形,等腰三角形两条边长分别为4cm,8cm,且4<x<12∴等腰三角形第三边只能是8cm∴等腰三角形周长为4+8+8=20cm.21.(1)解:∵△ABC是等边三角形∴∠BAC=60°AB=AC=BC∵AD为中线∴AD⊥CD∵AD=AE∴∴∠CDE=∠ADC﹣∠ADE=15°;(2)解:过D作DH⊥AC于H∴∠AHD=90°∵∠CAD=30°∴∵AD=AE=2∴.22.证明:∵AB∥CD∴∠A=∠ACD,∠B=∠DCE.∵DC平分∠ACE∴∠ACD=∠DCE∴∠B=∠A∴AC=BC∴△ABC为等腰三角形.23.解:(Ⅰ)∵三角形ABC为等边三角形∴∠BAE=60°∵∠BAD=15°∴∠DAC=60°﹣15°=45°∵∠DAE=80°∴∠CAE=80°﹣45°=35°;(Ⅱ)∵∠DAE=80°,AD=AE∴∠ADE=(180°﹣80°)=50°∠ADC=∠BAD+∠B=15°+60°=75°又∵∠ADE=50°∴∠FDC=∠ADC﹣∠ADE=75°﹣50°=25°.24.(1)证明:∵AB=AC∴∠B=∠C∵FE⊥BC∴∠F+∠C=90°,∠B+∠BDE=90°∴∠F=∠BDE∵∠BDE=∠FDA∴∠F=∠FDA∴AF=AD∴△ADF是等腰三角形;(2)解:∵DE⊥BC∴∠DEB=90°∵∠F=30°∴∠BDE=30°∵BD=4∴∵AB=AC∴△ABC是等边三角形∴AC=AB=BE+EC=825.(1)解:在△ABC中,AB=AC,∠BAC=120°∴∠B=∠C=×(180°﹣∠BAC)=30°在△BDE中,BD=BE∴∠BDE=∠BED=×(180°﹣∠B)=75°;(2)证明:∵CD的垂直平分线MF交AC于F,交BC于M ∴DF=CF,∠FMC=90°∴∠FDC=∠C=30°∴∠AFD=∠FDC+∠C=60°在△ABC中,AB=AC,∠BAC=120°,AD是BC边上的中线∴∠BAD=∠CAD=∠BAC=60°∴∠CAD=∠AFD=60°∴△ADF是等边三角形;(3)在Rt△FMC中,∠C=30°,MF=2∴CF=2MF=4∴DF=CF=4由(2)可知:△ADF是等边三角形∴AF=DF=4∴AB=AC=AF+CF=4+4=8.。
人教版八年级数学上:第13章《轴对称》单元测试(含答案)(含答案)
第13章轴对称一、选择题(共9小题)1.在平面直角坐标系中,点A(﹣1,2)关于x轴对称的点B的坐标为()A.(﹣1,2)B.(1,2) C.(1,﹣2)D.(﹣1,﹣2)2.如图,△ABC与△DEF关于y轴对称,已知A(﹣4,6),B(﹣6,2),E(2,1),则点D的坐标为()A.(﹣4,6)B.(4,6) C.(﹣2,1)D.(6,2)3.在平面直角坐标系中,与点(1,2)关于y轴对称的点的坐标是()A.(﹣1,2)B.(1,﹣2)C.(﹣1,﹣2) D.(﹣2,﹣1)4.点(3,2)关于x轴的对称点为()A.(3,﹣2)B.(﹣3,2)C.(﹣3,﹣2) D.(2,﹣3)5.在平面直角坐标系中,点P(﹣3,2)关于直线y=x对称点的坐标是()A.(﹣3,﹣2) B.(3,2) C.(2,﹣3)D.(3,﹣2)6.在平面直角坐标系中,已知点A(2,3),则点A关于x轴的对称点的坐标为()A.(3,2) B.(2,﹣3)C.(﹣2,3)D.(﹣2,﹣3)7.点P(2,﹣5)关于x轴对称的点的坐标为()A.(﹣2,5)B.(2,5) C.(﹣2,﹣5) D.(2,﹣5)8.点A(1,﹣2)关于x轴对称的点的坐标是()A.(1,﹣2)B.(﹣1,2)C.(﹣1,﹣2) D.(1,2)9.已知点A(a,2013)与点B(2014,b)关于x轴对称,则a+b的值为()A.﹣1 B.1 C.2 D.3二、填空题(共16小题)10.平面直角坐标系中,点A(2,0)关于y轴对称的点A′的坐标为______.11.在平面直角坐标系中,点A的坐标是(2,﹣3),作点A关于x轴的对称点,得到点A′,再作点A′关于y轴的对称点,得到点A″,则点A″的坐标是(______,______).12.在平面直角坐标系中,点(﹣3,2)关于y轴的对称点的坐标是______.13.已知点P(3,a)关于y轴的对称点为Q(b,2),则ab=______.14.若点M(3,a)关于y轴的对称点是点N(b,2),则(a+b)2014=______.15.已知点P(3,﹣1)关于y轴的对称点Q的坐标是(a+b,1﹣b),则a b的值为______.16.点A(﹣3,0)关于y轴的对称点的坐标是______.17.点P(2,﹣1)关于x轴对称的点P′的坐标是______.18.在平面直角坐标系中,点A(2,﹣3)关于y轴对称的点的坐标为______.19.点P(﹣2,3)关于x轴的对称点P′的坐标为______.20.点P(3,2)关于y轴对称的点的坐标是______.21.点P(1,﹣2)关于y轴对称的点的坐标为______.22.点A(﹣3,2)关于x轴的对称点A′的坐标为______.23.若点A(m+2,3)与点B(﹣4,n+5)关于y轴对称,则m+n=______.24.点P(2,3)关于x轴的对称点的坐标为______.25.已知P(1,﹣2),则点P关于x轴的对称点的坐标是______.三、解答题26.在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是(﹣3,﹣1).(1)将△ABC沿y轴正方向平移3个单位得到△A1B1C1,画出△A1B1C1,并写出点B1坐标;(2)画出△A1B1C1关于y轴对称的△A2B2C2,并写出点C2的坐标.27.如图,在边长为1个单位长度的小正方形网格中,给出了△ABC (顶点是网格线的交点).(1)请画出△ABC 关于直线l 对称的△A 1B 1C 1;(2)将线段AC 向左平移3个单位,再向下平移5个单位,画出平移得到的线段A 2C 2,并以它为一边作一个格点△A 2B 2C 2,使A 2B 2=C 2B 2.28.在平面直角坐标系中,△ABC 的顶点坐标A (﹣4,1),B (﹣2,1),C (﹣2,3)(1)作△ABC 关于y 轴的对称图形△A 1B 1C 1;(2)将△ABC 向下平移4个单位长度,作出平移后的△A 2B 2C 2;(3)求四边形AA 2B 2C 的面积.29.在平面直角坐标系中,已知点A (﹣3,1),B (﹣1,0),C (﹣2,﹣1),请在图中画出△ABC ,并画出与△ABC 关于y 轴对称的图形.30.如图,△ABC 与△DEF 关于直线l 对称,请仅用无刻度的直尺,在下面两个图中分别作出直线l .第13章轴对称参考答案一、选择题(共9小题)1.D;2.B;3.A;4.A;5.C;6.B;7.B;8.D;9.B;二、填空题(共16小题)10.(-2,0);11.-2;3;12.(3,2);13.-6;14.1;15.25;16.(3,0);17.(2,1);18.(-2,-3);19.(-2,-3);20.(-3,2);21.(-1,-2);22.(-3,-2);23.0;24.(2,-3);25.(1,2);三、解答题(共5小题)26.27.28.29.30.。
八年级初二上册数学 人教版单元测试《轴对称》 练习试题 测试卷(含答案)(1)
人教版八年级数学上册 《第十三章 轴对称》单元测试卷一、选择题(共8小题,4*8=32)1.下面四幅图是我国传统文化与艺术中的几个经典图案,其中不是轴对称图形的是( )2.图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线( )A .l 1B .l 2C .l 3D .l 43.下列说法正确的是( )A .等腰三角形的高、中线、角平分线互相重合B .顶角相等的两个等腰三角形全等C .等腰三角形的两个底角相等D .等腰三角形一边不可以是另一边的2倍4.如图,在Rt △ABC 中,∠C =90°,∠B =15°,DE 垂直平分AB 交BC 于点E ,BE =4,则AC 的长为( )A .2B .3C .4D .以上都不对5.如图,在△ABC 中,AB =AC ,∠A =36°,BD ,CE 分别为∠ABC 与∠ACB 的角平分线,BD ,CE 相交于点F ,则图中的等腰三角形有( )A .6个B .7个C .8个D .9个6.如图,在已知的△ABC 中,按以下步骤作图:①分别以点B ,C 为圆心,以大于12 BC 的长为半径作弧,两弧相交于两点M ,N ;②作直线MN 交AB 于点D ,连接CD .若CD =AC ,∠A =50°,则∠ACB 的度数为( )A.90° B.95° C.100° D.105°7.如图,已知S△ABC=12,AD平分∠BAC,且AD⊥BD于点D,则S△ADC的值是( )A.10 B.8 C.6 D.48.在平面直角坐标系xOy中,已知点A(2,-2),在y轴上确定一点P,使△AOP为等腰三角形,则符合条件的点P有()A.1个B.2个C.3个D.4个二、填空题(共6小题,4*6=24)9.如图,△ABC沿着直线MN折叠后,与△DEF完全重合,AC,DF交于点P.△ABC与△DEF 关于直线_______对称,直线MN是_________;10.如图,A,B,C三点在同一条直线上,∠A=50°,BD垂直平分AE,垂足为点D,则∠EBC的度数为_____.11.如图,AD是△ABC的中线,∠ADC=60°,BC=6,把△ABC沿直线AD折叠,点C 落在C′处,连接BC′,则BC′的长为________.12.已知a>0,b<0,则点P(a+1,b-1)关于y轴的对称点一定在第__ __象限.13.如图,在三角形纸片ABC中,∠C=90°,∠A=30°,AC=6,折叠该纸片,使点C落在AB边上的点D处,折痕BE与AC交于点E,则折痕BE的长为__ __.14.如图,在四边形ABCD中,AB=BC=CD=AD,点D到AB的距离为3,∠BAD=60°,点F为AB的中点,点E为AC上的任意一点,则EF+EB的最小值为________.三、解答题(共5小题,44分)15.(6分) 如图,在△AOB中,点C在OA上,点E,D在OB上,且CD∥AB,CE∥AD,AB=AD,求证:△CDE是等腰三角形.16.(8分) 如图,六边形ABCDEF是轴对称图形,CF所在的直线是它的对称轴,若∠AFC +∠BCF=150°,求∠AFE+∠BCD的大小.17.(8分) 如图,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.(1)求∠DAC的度数;(2)求证:DC=AB.18.(10分) 如图,已知点B,C,D在同一条直线上,△ABC和△CDE都是等边三角形,BE交AC于点F,AD交CE于点H.(1)求证△BCE≌△ACD;(2)求证CF=CH;(3)判断△CFH的形状并说明理由.19.(12分) (1)如图①,在四边形ABCD中,AB∥CD,点E是BC的中点,若AE是∠BAD 的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC 得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.因此,AB,AD,DC之间的等量关系是__ __;(2)问题探究:如图②,在四边形ABCD中,AB∥CD,AF与DC的延长线交于点F,点E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.参考答案1-4DCCA 5-8CDCD9.MN,对称轴10.100°11.312.三13.414.315.解:∵CD∥AB,∴∠CDE=∠B.又∵CE∥AD,∴∠CED=∠ADB,又AB=AD,∴∠B=∠ADB,∴∠CDE=∠CED,∴△CDE是等腰三角形16.解:∵六边形ABCDEF是轴对称图形,CF所在的直线是它的对称轴,∠AFC+∠BCF =150°,∴∠AFC=∠EFC,∠BCF=∠DCF,∴∠AFE+∠BCD=2(∠AFC+∠BCF)=300°17.解:(1)∵AB=AC,∴∠B=∠C=30°,∴∠BAC=120°,∠DAC=∠BAC-∠BAD=120°-45°=75°(2)∵∠ADC=∠B+∠DAB=75°,∴∠DAC=∠ADC,∴DC=AC,又∵AB=AC,∴DC=AB18.(1)证明:∵△ABC和△CDE都是等边三角形,∴BC=AC,CE=CD,∠ACB=∠ECD =60°.∴∠BCE=60°+∠ACE=∠ACD.∴△BCE≌△ACD(SAS).(2)证明:∵△BCE≌△ACD,∴∠FBC=∠HAC.∵∠ACB=60°,∠FCH=180°-∠ACB -∠ECD=60°,∴∠BCF=∠ACH.又∵BC=AC,∴△BCF≌△ACH(ASA).∴CF=CH.(3)解:△CFH是等边三角形.理由:∵CF=CH,∠FCH=60°,∴△CFH是等边三角形.19.解:(1)AD=AB+DC(2)AB=AF+CF.证明如下:如图,延长AE交DF的延长线于点G,∵AB∥DC,∴∠BAE =∠G,又∵BE=CE,∠AEB=∠GEC,∴△AEB≌△GEC(AAS),∴AB=GC.∵AE是∠BAF的平分线,∴∠BAG=∠FAG,∵∠BAG=∠G,∴∠FAG=∠G,∴AF=FG.∵CG=FG+CF,∴AB=AF+CF。
人教版八年级上册数学《轴对称》单元测试卷(含答案)
人教版八年级上册数学《轴对称》单元测试卷姓名:__________班级:__________考号:__________一、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.如图,阴影部分是由5个小正方形涂黑组成的一个直角图形,再将方格内空白的两个小正方形涂黑,得到新的图形(阴影部分),其中不是轴对称图形的是()A B C D2...将一个正方形纸片依次..........下.图的方式对折,然后沿图...........c.中的虚线裁剪,成图.........d.样式,...将纸展开铺平,所得到的图形是(...............).3.如图,是小华画的正方形风筝图案,他以图中的对角线AB为对称轴,在对角线的下方再画一个三角形,使得新的风筝图案成为轴对称图形,若下列有一图形为此对称图形,则此图为()A B C D4.如图,在ABC ∆中,AB AC =,ABC ∠,ACB ∠的平分线相交于点F ,过F 作DE BC ∥ ,交AB 于点D ,交AC 于E .图中是等腰三角形有( )个. A .3 B .4 C .5 D .65.已知等腰三角形的周长为24cm ,一腰长是底边长的2倍,则腰长是( )A .4.8cmB .9.6cmC .2.4cmD .1.2cm6.若等腰三角形中有一个角等于50︒,则这个等腰三角形的顶角的度数为( )A .50︒B .80︒C .65︒或50︒D .50︒或80︒7.如图a 是长方形纸带,∠DEF =20°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是( )A 、110°B 、120°C 、140°D 、150° 8.如图,A 在DE 上,F 在AB 上,且AC CE =,123∠=∠=∠,则DE 的长等于( )FE CBADA.DCB.BCC.ABD.AE AC9.将一矩形纸片按如图方式折叠,BC、BD为折痕,折叠后A′B与E′B在同一条直线上,则∠CBD的度数()A、大于90°B、小于90°C、等于90°D、不能确定二、填空题(本大题共5小题,每小题3分,共15分)11.已知:如图,四边形ABCD中,AC平分∠BAD,CD∥AB,BC=6cm,∠BAD=30°,∠B=90°.求CD的长______.F321EDCBAE'A'EDCBA12....已知:如图,Δ.......ABC ...是等边三角形,.......AE ..⊥.BC ..于.E .,.AD ..⊥.CD ..于.D .,若..AB ..∥.CD ..,则图...中.60..°的角有... 个...13.如图,将OAB ∆绕点O 按逆时针方向旋转至''OA B ∆,使点B 恰好落在边''A B 上,已知4AB =cm , '1BB =cm ,则'A B 的长是________cm14....如图..8.-.3.,已知Δ....ABC ...中,..AB ..=.AC ..,∠..BAC ...=.120...°,.DE ..垂直平分....AC ..交.BC ..于.D .,.垂足为...E .,若..DE ..=.2cm ...,则..BC ..=._____cm.........15.如图所示,在△ABC 中,∠BAC=106°,EF 、MN 分别是AB 、AC 的垂直平分线,点E 、M 在BC 上,则∠EAM=三 、解答题(本大题共7小题,共55分)16.下列为边长为1的小正方形组成的网格图.①请画出△ABC 关于直线a 对称的图形(不要求写作法); ②求△ABC 的面积(直接写出即可).B'A'BAONMFE CB A17.如图,在等腰Rt ABC ∆中,3CA CB ==,E 的BC 上一点,满足2BE =,在斜边AB上求作一点P 使得PC PE +长度之和最小。
人教版八年级数学上第十三章轴对称单元测试(含答案)
数学人教版八年级上第十三章轴对称练习令狐采学一、选择题1.下列由数字组成的图形中,是轴对称图形的是( ).2.下列语句中正确的个数是( ).①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③一个轴对称图形不一定只有一条对称轴;④轴对称图形的对应点一定在对称轴的两侧.A.1 B.2 C.3 D.43.已知等腰△ABC的周长为18 cm,BC=8 cm,若△ABC与△A′B′C′全等,则△A′B′C′的腰长等于( ).A.8 cmB.2 cm或8 cmC.5 cmD.8 cm或5 cm4.已知等腰三角形的一个角等于42°,则它的底角为( ).A.42° B.69°C.69°或84° D.42°或69°5.已知A、B两点的坐标分别是(-2,3)和(2,3),则下面四个结论中正确的有 ( ).①A、B关于x轴对称;②A、B关于y轴对称;③A、B不轴对称;④A、B之间的距离为4.A.1个 B.2个C.3个 D.4个二、填空题(本大题共8小题,每小题3分,共24分.把正确答案填在题中横线上)9.观察规律并填空:10.点E(a,-5)与点F(-2,b)关于y轴对称,则a=__________,b=__________.11.如图,在等边△ABC中,AD⊥BC,AB=5 cm,则DC的长为__________.(第11题图) (第12题图)12.如图,在Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,若BD=10,则CD=__________. 13.如图,∠BAC=110°,若MP和NQ分别垂直平分AB和AC,则∠PAQ的度数是__________.14.如图,在△ABC中,点D是BC上一点,∠BAD=80°,AB=AD=DC,则∠C=__________.(第13题图) (第14题图)15.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为__________.16.如图,是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE垂直于横梁AC,AB=8 m,∠A=30°,则DE长为__________.三、解答题(本大题共5小题,共52分) 17.(本题满分10分)如图,在△ABC中,AB=AC,△ABC的两条中线BD、CE交于O点,求证:OB=OC. 19.(本题满分10分)如图,已知△ABC中,AH⊥BC 于H,∠C=35°,且AB+BH=HC,求∠B的度数.20.(本题满分10分)如图,E在△ABC的AC边的延长线上,D点在AB边上,DE交BC于点F,DF=EF,BD=CE.求证:△ABC是等腰三角形.(过D作DG∥AC交BC于G).21.(本题满分12分)如图,C为线段AE上一动点(不与点A、E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BC相交于点P,BE与CD相交于点Q,连接PQ.求证:△PCQ为等边三角形.参考答案1.A点拨:数字图案一般是沿中间竖直线或水平线折叠,看是否是轴对称图形,只有A选项是轴对称图形.2.B点拨:①③正确,②④不正确,其中④对应点还可能在对称轴上.3.D点拨:因为BC是腰是底不确定,因而有两种可能,当BC是底时,△ABC的腰长是5 cm,当BC是腰时,腰长就是8 cm,且均能构成三角形,因为△A′B′C′与△ABC全等,所以△A′B′C′的腰长也有两种相同的情况:8cm或5 cm. 4.D点拨:在等腰三角形中,当一个锐角在未指明为顶角还是底角时,一定要分类讨论.①42°的角为等腰三角形底角;②42°的角为等腰三角形的顶角,则底角为(180°-42°)÷2=69°.所以底角存在两种情况,∴42°或69°.5.B点拨:①③不正确,②④正确.6.D点拨:DE垂直平分AB,∠B=30°,所以AD平分∠CAB,由角平分线性质和线段垂直平分线性质可知A、B、C都正确,且AC≠AD=BD,故D错误.7.C点拨:经过三次轴对称折叠,再剪切,得到的图案是C图(也可将各选项图案按原步骤折叠复原).8.B点拨:本题中的台球经过多次反射,每一次的反射就是一次轴对称变换,直到最后落入球袋,可用轴对称作图(如图),该球最后将落入2号袋.9.点拨:观察可知本题图案是两个数字相同,且轴对称,由排列可知是相同的偶数数字构成的,故此题答案为6组成的轴对称图形.10.2 -5点拨:点E、F关于y轴对称,横坐标互为相反数,纵坐标不变.11.2.5 cm点拨:△ABC为等边三角形,AB=BC=CA,AD⊥BC,所以点D平分BC.2.5 cm.==DC 所以12.5点拨:∠C =90°,∠A =30°, 则∠ABC =60°,BD 是∠ABC 的平分线,5.==CD ,所以30°=D CB 则∠ 13.40°点拨:因为MP 、NQ 分别垂直平分AB 和AC ,所以PA =PB ,QA =QC ,∠PAB =∠B ,∠QAC =∠C ,∠PAB +∠QAC =∠C +∠B =180°-110°=70°,所以∠PAQ 的度数是40°.14.25°点拨:设∠C =x ,那么∠ADB =∠B =2x , 因为∠ADB +∠B +∠BAD =180°,代入解得x =25°.15.60°或120°点拨:有两种可能,如下图(1)和图(2),AB =AC ,CD 为一腰上的高,过A 点作底边BC 的垂线,图(1)中,∠BAC =60°,图(2)中,∠BAC =120°. 16.2 m 点拨:根据30°角所对的直角边是斜边的一2 m.===DE 半,可知 17.证明:∵BD 、CE 分别是AC 、AB 边上的中线,∴.=CD ,=BE又∵AB =AC ,∴BE =CD .中,CBD 和△BCE 在△ ∴△BCE ≌△CBD (SAS).∴∠ECB =∠DBC .∴OB =OC . .1C 1B 1A 如图所示的△(1)解:.18 .2C 2B 2A 如图所示的△(2) 19. 解:如图,在CH 上截取DH=BH ,连接AD ,∵AH ⊥BC ,∴AH 垂直平分BD.∴AB=AD.∴∠B=∠ADB.∵AB+BH=HC,∴AD+DH=HC=DH+CD.∴AD=CD.∴∠C=∠DAC=35°.∴∠B=∠ADB=∠C+∠DAC=70°.20. 证明:如图,过D作DG∥AC交BC于G,则∠GDF=∠E,∠DGB=∠ACB,在△DFG和△EFC中,∴△DFG≌△EFC(ASA).∴CE=GD,∵BD=CE.∴BD=GD.∴∠B=∠DGB.∴∠B=∠ACB.∴△ABC为等腰三角形.21. 证明:如图,∵△ABC和△CDE为等边三角形,∴AC=BC,CE=CD,∠ACB=∠ECD=60°.∴∠ACB+∠3=∠ECD+∠3,即∠ACD=∠BCE.又∵C在线段AE上,∴∠3=60°.在△ACD和△BCE中,∴△ACD≌△BCE.∴∠1=∠2.在△APC和△BQC中,∴△APC≌△BQC.∴CP=CQ.∴△PCQ为等边三角形(有一个角是60°的等腰三角形是等边三角形).。
人教版八年级上册数学第十三章 轴对称含答案
人教版八年级上册数学第十三章轴对称含答案一、单选题(共15题,共计45分)1、将△ABC的三个顶点坐标的横坐标乘以-1,纵坐标不变,则所得图形与原图的关系是()A.关于x轴对称B.关于y轴对称C.关于原点对称D.将原图的x轴的负方向平移了了1个单位2、若点A(x,3)与点B(2,y)关于x轴对称,则()A.x=﹣2,y=﹣3B.x=2,y=3C.x=﹣2,y=3D.x=2,y=﹣33、下列学习用具中,其形状不是轴对称图形的是()A. B. C. D.4、已知某等腰三角形三边长分别为5,a,11,则a的值为( )A.5B.5.5C.11D.5或115、若点与点关于轴对称,则等于()A.-3B.-5C.1D.36、等腰△ABC的顶角A为120°,过底边上一点D作底边BC的垂线交AC于E,交BA的延长线于F,则△AEF是()A.等边三角形B.直角三角形C.等腰直角三角形D.等腰但非等边三角形7、如上图,透明的圆柱形容器(容器厚度忽略不计)的高为12 ,底面周长为10 ,在容器内壁离容器底部3 的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3 的点A处,则蚂蚁吃到饭粒需爬行的最短路径是()A.13B.12C.15D.168、如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:;(1)作线段,分别以为圆心,以长为半径作弧,两弧的交点为;(2)以为圆心,仍以长为半径作弧交的延长线于点;(3)连接下列说法不正确的是( )A. B. C.点是的外心 D.9、如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D,下列结论正确的有()①AD=BD=BC;②△BCD≌△ABC;③AD2=AC•DC;④点D是AC的黄金分割点.A.1个B.2个C.3个D.4个10、如图,在▱ABCD中,AB=6,BC=4,BE平分∠ABC,交CD于点E,则DE的长度是()A. B.2 C. D.311、下列四个图形中轴对称图形的个数是( )A.1B.2C.3D.412、下列四个标志中,是轴对称图形的是()A. B. C. D.13、如果一个三角形是轴对称图形,且有一个角是,那么这个三角形是()A.等边三角形B.含120°角的等腰三角形C.等腰直角三角形 D.含30°角的直角三角形14、下列命题中:(1)形状相同的两个三角形全等;(2)斜边和一条直角边对应相等的两个直角三角形一定全等;(3)等腰三角形两腰上的高线相等;(4)三角形的三条高线交于三角形内一点.其中真命题的个数有().A.0个B.1个C.2个D.3个15、下列图形既是轴对称图形又是中心对称图形的是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,在△ABC中,AB=AC,∠BAC=100°,AB的垂直平分线DE分别交AB、BC于点D、E,则∠AEC=________17、如图,△ABC中,AB=AC,∠BAC=100°,DE垂直平分AB,则∠CAE=________°.18、下面是“已知底边及底边上的高线作等腰三角形”的尺规作图过程.已知:线段.求作:等腰,使,边上的高为.作法:如图,(1)作线段;(2)作线段的垂直平分线交于点;(3)在射线上顺次截取线段,连接.所以即为所求作的等腰三角形.请回答:得到是等腰三角形的依据是:①________:②________.19、如图,在正方形ABCD中,AD= ,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为________.20、将点A(1,2)向左平移3个单位长度得点A′,则点A′关于y轴对称的点的坐标是________.21、线段AB和线段A′B′关于直线l对称,若AB=16cm,则A′B′=________cm.22、等腰三角形一个顶角和一个底角之和是100°,则顶角等于________.23、如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线交AC于点E,垂足为点D,连接BE,则∠EBC的度数为________.24、如图,直线y=x+4与双曲线(k≠0)相交于A(﹣1,a)、B两点,在y轴上找一点P,当PA+PB的值最小时,点P的坐标为________.25、如图,在▱ABCD中,E是边BC上一点,且AB=BE,AE、DC的延长线相交于点F,∠F=62°,则∠D=________°.三、解答题(共5题,共计25分)26、如图,点M,N分别在正三角形ABC的BC,CA边上,且BM=CN,AM,BN交于点Q.求证:∠BQM=60°.27、如图,在Rt△ABC中,∠BAC=90°,点D在BC边上,且△ABD是等边三角形.若AB=2,求△ABC的周长.(结果保留根号)28、临海大桥主塔是一个轴对称图形(如图所示),小明测得桥面宽度米,,求点到桥面的距离.(结果精确到0.1米,参考数据:)29、在△ABC中,AB=AC,点D在边BC所在的直线上,过点D作DF∥AC交直线AB于点F,DE∥AB交直线AC于点E.(1)当点D在边BC上时,如图①,求证:DE+DF=AC.(2)当点D在边BC的延长线上时,如图②;当点D在边BC的反向延长线上时,如图③,请分别写出图②、图③中DE,DF,AC之间的数量关系,不需要证明.(3)若AC=6,DE=4,则DF= .30、铁路上A,B两站(视为直线上的两点)相距50km,C,D为两村庄(视为两个点),DA⊥AB于点A,CB⊥AB于点B(如图).已知DA=20km,CB=10km,现在要在铁路AB上建一个土特产收购站E,使得C,D两村庄到收购站E的直线距离相等,请你设计出收购站的位置,并计算出收购站E到A站的距离.参考答案一、单选题(共15题,共计45分)1、B2、D3、C4、C5、B6、A7、A8、D9、C10、B11、C12、B13、A14、C15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、29、。
人教版八年级数学上册第13章轴对称单元测试题含答案
第十三章 轴对称 单元测试题一、选择题1.已知点A 与点(-4,5)关于y 轴对称,则A 点坐标是( ) A.(4,-5)B.(-4,-5)C.(-5,-4)D.(4,5)2.如果点P(a,2 015)与点Q(2 016,b)关于x 轴对称,那么a+b 的值等于( ) A.-4 031B.-1C.1D.4 0313.图,在已知的△ABC 中,按以下步骤作图:①分别以B,C 为圆心,以大于BC 的长为半径作弧,两弧相交于两点M,N;②作直线MN 交AB 于点D,连接CD.若CD=AC,∠A=50°,则∠ACB 的度数为( )A.90°B.95°C.100°D.105°4.如图:∠EAF=15°,AB=BC=CD=DE=EF ,则∠DEF 等于( ).A 、90°B 、 75°C 、70°D 、 60°FE DCBA5.已知点P 在线段AB 的中垂线上,点Q 在线段AB 的中垂线外,则 ( ) A 、PA+PB >QA+QB B 、PA+PB <QA+QB D 、PA+PB =QA+QBD 、不能确定6.如图,点P 为∠AOB 内一点,分别作出点P 关于OA 、OB 的对称点1P 、2P ,连接1P 2P 交OA 于M ,交OB 于N ,若1P 2P =6,则△PMN 的周长为( ).B MN P 1AP 2OPA 、4B 、5C 、6D 、77.如图,先将正方形纸片对折,折痕为MN ,再把B 点折叠在折痕MN 上,折痕为AE ,点B 在MN 上的对应点为H ,沿AH 和DH 剪下,这样剪得的三角形中( ).N MDC HE BAA 、AD DH AH ≠=B 、AD DH AH ==C 、DH AD AH ≠= D 、AD DH AH ≠≠8、若等腰三角形的周长为26cm ,一边为11cm ,则腰长为( ). A .11cm B .7.5cm C .11cm 或7.5cm D .以上都不对 9.如图,把一个正方形三次对折后沿虚线剪下,则所得图形大致是( ).10.如图所示,Rt △ABC 中,∠C =90°,AB 的垂直平分线DE 交BC 于D ,交AB 于点E.当∠B =30°时,图中一定不相等的线段有( ).A .AC =AE =BEB .AD =BDC .CD =DE D .AC =BD 二、填空题(每小题4分,共16分)11.如图,在△ABC 中,AB,AC 的垂直平分线交BC 于点E,G,若∠B+∠C=40°,则∠EAG= .12.如图,分别作出点P 关于OA,OB 的对称点P 1,P 2,连接P 1P 2,分别交OA,OB 于点M,N,若P 1P 2=5 cm,则△PMN 的周长为.13. 平面直角坐标系中,点A (2,0)关于y 轴对称的点A ′的坐标为___________.14.如图,现要利用尺规作图作△ABC 关于BC 的轴对称图形△A'BC.若AB=5 cm,AC=6 cm,BC=7 cm,则分别以点B,C 为圆心,依次以 cm, cm 为半径画弧,使得两弧相交于点A',再连接A'C,A'B,即可得△A'BC.15. 如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是___________.16. 如图,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为_____度.三、解答题:17.(6分)如图所示,AD是∠BAC的平分线,DE⊥AB,DF⊥AC,垂足分别为E,F,连接EF,EF与AD交于点G,求证:AD垂直平分EF.18.(7分)如图,已知点M、N和∠AOB,求作一点P,使P到点M、N的距离相等,•且到∠AOB的两边的距离相等.19.(8分)如图,AD 是△ABC 的角平分线,BE ⊥AD 交AD 的延长线于点E,EF ∥AC 交AB 于点F,求证:AF=FB.20. (7分)已知:如图,ABC ∆中,AB CD AC AB ⊥=,于D. 求证:DCB 2BAC ∠=∠。
人教版八年级上册数学 第13章 轴对称 单元测试卷(含答案)
人教版八年级上册数学第13章轴对称单元测试卷一.选择题1.点A(﹣3,1)关于x轴的对称点为()A.(﹣3,1)B.(﹣3,﹣1)C.(3,1)D.(3,﹣1)2.下列图形中,是轴对称图形的是()A.B.C.D.3.如图,在△ABC中,AB的垂直平分线交AB于点E,交BC于点D,△ADC的周长为10,且BC﹣AC=2,则BC的长为()A.4 B.6 C.8 D.104.作已知点关于某直线的对称点的第一步是()A.过已知点作一条直线与已知直线相交B.过已知点作一条直线与已知直线垂直C.过已知点作一条直线与已知直线平行D.不确定5.琪琪从镜中看到电子钟示数,则此时时间是()A.12:01 B.10:51 C.11:59 D.10:216.如图是一个台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔,若一个球按图中所示的方向被击出(球可以经过多次反射),则该球最后落入的球袋是()A.1号袋B.2号袋C.3号袋D.4号袋7.如图,在平面直角坐标系中,△ABC的顶点都在格点上,如果将△ABC先沿y轴翻折,再向上平移3个单位长度,得到△A'B'C',那么点B的对应点B'的坐标为()A.(1,7)B.(0,5)C.(3,4)D.(﹣3,2)8.一个六边形的六个内角都是120°(如图),连续四条边的长依次为1,3,3,2,则这个六边形的周长是() A.13 B.14 C.15 D.169.如图,在∠MON内有一点P,点P关于OM的对称点是点G,点P关于ON的对称点是点H,连接GH分别交OM,ON 于点A,B.若GH的长是12cm,则△PAB的周长为()A.12 B.13 C.14 D.1510.等腰三角形的一边长为6,一边长为2,则该等腰三角形的周长为()A.8 B.10 C.14 D.10或14二.填空题11.已知点A(m,3)与点B(2,n)关于x轴对称,则(m+n)2020的值为.12.如图,在△ABC中,AB=AC,BD是∠ABC的平分线,DE∥AB与BC边相交于点E,若BE=3,CE=5,则△CDE的周长是.13.在Rt△ABC中,∠C=90°,∠A=30°,BC=5,斜边AB的长为.14.如图,在△ABC中,D为AB上一点,AD=DC=BC,且∠A=30°,AD=5,则AB=.15.在平面直角坐标系中,O为坐标原点,已知点A(2,﹣1),在x轴上确定一点P,使得△AOP为等腰三角形,则符合条件的点P有个.16.如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,若原来点A坐标是(a,b),经过第1次变换后所得的A1坐标是(a,﹣b),则经过第2020次变换后所得的点A2020坐标是.17.如图,在△ABC中,AB=4,AC=6,BC=7,EF垂直平分BC,点P为直线EF上的任一点,则△ABP周长的最小值是.18.如果一个三角形是轴对称图形,且有一个角为60°,那么这个三角形是,它有条对称轴.19.已知a、b、c是△ABC的三边的长,且满足a2+2b2+c2﹣2b(a+c)=0,则此三角形的形状为.20.如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到矩形的边时的点为P1,第2次碰到矩形的边时的点为P2,…,第n次碰到矩形的边时的点为P n,点P2019的坐标是.三.解答题21.如图所示,在△ABC中,AB,AC的垂直平分线分别交BC于D,E,垂足分别是M,N.(1)若△ADE的周长为6,求BC的长;(2)若∠BAC=100°,求∠DAE的度数.22.已知点A(a+2b,﹣1),B(﹣2,a﹣b),若点A、B关于y轴对称,求a+b的值.23.如图,在△ABC中,AB=AC=10cm,BC=6cm,∠A=50°,DE为AB的垂直平分线,分别交AB、AC于点E、D.(1)求△BCD的周长;(2)求∠CBD的度数.24.如图,在平面直角坐标系中,每个小正方形网格的边长为1个单位,格点三角形(顶点是网格线的交点的三角形)ABC如图所示.(1)请写出点A,B,C的坐标;(2)求△ABC的面积;(3)请作出△ABC关于y轴对称的△A1B1C1.25.如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=70°,则∠MNA的度数是.(2)若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.26.如图,△ABC是等边三角形,DF⊥AB,DE⊥CB,EF⊥AC,求证:△DEF是等边三角形.27.如图,在△ABC中,CD是AB边上的高,BE是AC边上的中线,且BD=CE.(1)求证:点D在BE的垂直平分线上;(2)若∠ABE=20°,请求出∠BEC的度数.答案一.选择题1.B.2.C.3.B.4.B.5.D.6.D.7.C.8.C.9.A.10.C.二.填空题11.1.12.11.13.10.14.10.15.4.16.(a,﹣b).17.10.18.等边三角形,319..等边三角形. 20.(8,3).三.解答题21.解:(1)∵DM和EN分别垂直平分AB和AC,∴AD=BD,EA=EC,∵△ADE的周长为6,∴AD+DE+EA=6.∴BD+DE+EC=6,即BC=6;(2)∵DM和EN分别垂直平分AB和AC,∴AD=BD,EA=EC,∴∠B=∠BAD=∠ADE,∠C=∠EAC=∠AED.∵∠BAC=∠BAD+∠DAE+∠EAC=∠B+∠DAE+∠C=100°,∴∠B+∠C=100°﹣∠DAE,在△ADE中,∠DAE=180°﹣(∠ADE+∠AED)=180°﹣(2∠B+2∠C)∴∠DAE=180°﹣2(100°﹣∠DAE)∴∠DAE=20°.22.解:∵点A(a+2b,﹣1),B(﹣2,a﹣b)关于y轴对称,∴,解得.故a+b=0+1=1.23.(1)解:∵DE为AB的垂直平分线,∴DA=DB,∴△BCD的周长=AC+BC=10+6=16(cm);(2)解:∵AB=AC,∠A=50°,∴∠ABC=∠C=65°,∵DA=DB,∠A=∠ABD=50°,∴∠CBD=65°﹣50°=15°.24.解:(1)由图知,A(﹣4,5)、B(﹣2,1)、C(﹣1,3);(2)△ABC的面积为3×4﹣×2×3﹣×1×2﹣×2×4=4;(3)如图所示,△A1B1C1即为所求.25.解:(1)∵AB=AC,∴∠C=∠ABC=70°,∴∠A=40°,∵AB的垂直平分线交AB于点N,∴∠ANM=90°,∴∠NMA=50°,故答案为:50°;(2)①∵MN是AB的垂直平分线,∴AM=BM,∴△BCM的周长=BM+CM+BC=AM+MC+BC=AC+BC,∵AB=AC=8cm,△MBC的周长是14cm,∴BC=14﹣8=6(cm);②当P与M重合时,△PBC的周长最小.理由:∵PB+PC=PA+PC,PA+PC≥AC,∴当P与M重合时,PA+PC=AC,此时PB+PC最小值等于AC的长,∴△PBC的周长最小值=AC+BC=8+6=14(cm).26.证明:∵△ABC是等边三角形,∴AB=AC=BC,∠ABC=∠ACB=∠CAB=60°,∵DF⊥AB,DE⊥CB,EF⊥AC,∴∠DAB=∠ACF=∠CBE=90°,∴∠FAC=∠BCE=∠DBA=30°,∴∠D=∠E=∠F=180°﹣90°﹣30°=60°,∴DF=DE=EF,∴△DEF是等边三角形.27.(1)证明:连接DE,∵CD是AB边上的高,∴∠ADC=∠BDC=90°,∵BE是AC边上的中线,∴AE=CE,∴DE=CE,∵BD=CE,∴BD=DE,∴点D在BE的垂直平分线上;(2)解:∵DE=AE,∴∠A=∠ADE,∵∠ADE=∠DBE+∠DEB,∵BD=DE,∴∠DBE=∠DEB,∴∠A=∠ADE=2∠ABE,∵∠BEC=∠A+∠ABE,∴∠BEC=3∠ABE,∵∠ABE=20°,∴∠BEC=60°.。
人教版初二上《第13章轴对称》单元测试含答案解析
人教版初二上《第13章轴对称》单元测试含答案解析一、选择题(共5小题,每小题3分,满分15分)1.下列图形:其中所有轴对称图形的对称轴条数之和为( )A .13B .11C .10D .82.下面所给的交通标志图中是轴对称图形的是( )A .B .C .D .3.如图,四边形ABCD 中,AC 垂直平分BD ,垂足为E ,下列结论不一定成立的是( )A .AB=ADB .AC 平分∠BCD C .AB=BD D .△BEC ≌△DEC4.如图,在△ABC 中,∠A=36°,AB=AC ,AB 的垂直平分线OD 交AB 于点O ,交AC 于点D ,连接BD ,下列结论错误的是( )A .∠C=2∠AB .BD 平分∠ABCC .S △BCD =S △BOD D .点D 为线段AC 的黄金分割点5.将点A (3,2)沿x 轴向左平移4个单位长度得到点A′,点A′关于y 轴对称的点的坐标是( )A .(﹣3,2)B .(﹣1,2)C .(1,2)D .(1,﹣2)二、填空题(共5小题,每小题3分,满分15分)6.在等腰△ABC中,AB=AC,∠A=50°,则∠B= .7.如图是4×4正方形网格,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色,使整个涂成黑色的图形成为轴对称图形,如此的白色小方格有个.8.平面直角坐标系中,点A(2,0)关于y轴对称的点A′的坐标为.9.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是.10.如图,△ABC中,AB=AC,∠BAC=54°,点D为AB中点,且OD⊥AB,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为度.三、解答题11.已知:如图,直线AB与直线BC相交于点B,点D是直线BC上一点.求作:点E,使直线DE∥AB,且点E到B,D两点的距离相等.(在题目的原图中完成作图)结论:BE=DE.12.如图,AD∥BC,BD平分∠ABC.求证:AB=AD.13.如图,在边长为1的小正方形组成的10×10网格中(我们把组成网格的小正方形的顶点称为格点),四边形ABCD在直线l的左侧,其四个顶点A、B、C、D分别在网格的格点上.(1)请你在所给的网格中画出四边形A′B′C′D′,使四边形A′B′C′D′和四边形ABCD关于直线l对称,其中点A′、B′、C′、D′分别是点A、B、C、D的对称点;(2)在(1)的条件下,结合你所画的图形,直截了当写出线段A′B′的长度.14.如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:△AEF≌△BCF.15.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m通过点A,BD⊥直线m,CE ⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,同时有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判定△DEF的形状.《第13章轴对称》参考答案与试题解析一、选择题(共5小题,每小题3分,满分15分)1.下列图形:其中所有轴对称图形的对称轴条数之和为()A.13 B.11 C.10 D.8【考点】轴对称图形.【分析】依照轴对称及对称轴的定义,分别找到各轴对称图形的对称轴个数,然后可得出答案.【解答】解:第一个图形是轴对称图形,有1条对称轴;第二个图形是轴对称图形,有2条对称轴;第三个图形是轴对称图形,有2条对称轴;第四个图形是轴对称图形,有6条对称轴;则所有轴对称图形的对称轴条数之和为11.故选:B.【点评】本题考查了轴对称及对称轴的定义,属于基础题,假如一个图形沿一条直线折叠,直线两旁的部分能够互相重合,那个图形叫做轴对称图形,这条直线叫做对称轴.2.下面所给的交通标志图中是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】依照轴对称图形的概念对各选项分析判定后利用排除法求解.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选A.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是查找对称轴,图形两部分折叠后可重合.3.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()A.AB=AD B.AC平分∠BCD C.AB=BD D.△BEC≌△DEC【考点】线段垂直平分线的性质.【分析】依照线段垂直平分线上任意一点,到线段两端点的距离相等可得AB=AD,BC=CD,再依照等腰三角形三线合一的性质可得AC平分∠BCD,EB=DE,进而可证明△BEC≌△DEC.【解答】解:∵AC垂直平分BD,∴AB=AD,BC=CD,∴AC平分∠BCD,EB=DE,∴∠BCE=∠DCE,在Rt△BCE和Rt△DCE中,,∴Rt△BCE≌Rt△DCE(HL),故选:C.【点评】此题要紧考查了线段垂直平分线的性质,以及等腰三角形的性质,关键是把握线段垂直平分线上任意一点,到线段两端点的距离相等.4.如图,在△ABC中,∠A=36°,AB=AC,AB的垂直平分线OD交AB于点O,交AC于点D,连接BD,下列结论错误的是()A .∠C=2∠AB .BD 平分∠ABCC .S △BCD =S △BOD D .点D 为线段AC 的黄金分割点【考点】线段垂直平分线的性质;等腰三角形的性质;黄金分割.【分析】求出∠C 的度数即可判定A ;求出∠ABC 和∠ABD 的度数,求出∠DBC 的度数,即可判定B ;依照三角形面积即可判定C ;求出△DBC ∽△CAB ,得出BC 2=BC •AC ,求出AD=BC ,即可判定D .【解答】解:A 、∵∠A=36°,AB=AC ,∴∠C=∠ABC=72°,∴∠C=2∠A ,正确,B 、∵DO 是AB 垂直平分线,∴AD=BD ,∴∠A=∠ABD=36°,∴∠DBC=72°﹣36°=36°=∠ABD ,∴BD 是∠ABC 的角平分线,正确,C ,依照已知不能推出△BCD 的面积和△BOD 面积相等,错误,D 、∵∠C=∠C ,∠DBC=∠A=36°,∴△DBC ∽△CAB , ∴=,∴BC 2=CD •AC ,∵∠C=72°,∠DBC=36°,∴∠BDC=72°=∠C ,∴BC=BD ,∵AD=BD ,∴AD=BC ,∴AD 2=CD •AC ,即点D 是AC 的黄金分割点,正确,故选C.【点评】本题考查了相似三角形的性质和判定,等腰三角形性质,黄金分割点,线段垂直平分线性质的应用,要紧考查学生的推理能力.5.将点A(3,2)沿x轴向左平移4个单位长度得到点A′,点A′关于y轴对称的点的坐标是()A.(﹣3,2)B.(﹣1,2)C.(1,2) D.(1,﹣2)【考点】坐标与图形变化-平移;关于x轴、y轴对称的点的坐标.【分析】先利用平移中点的变化规律求出点A′的坐标,再依照关于y轴对称的点的坐标特点即可求解.【解答】解:∵将点A(3,2)沿x轴向左平移4个单位长度得到点A′,∴点A′的坐标为(﹣1,2),∴点A′关于y轴对称的点的坐标是(1,2).故选:C.【点评】本题考查坐标与图形变化﹣平移及对称的性质;用到的知识点为:两点关于y轴对称,纵坐标不变,横坐标互为相反数;左右平移只改变点的横坐标,右加左减.二、填空题(共5小题,每小题3分,满分15分)6.在等腰△ABC中,AB=AC,∠A=50°,则∠B= .【考点】等腰三角形的性质.【分析】依照等腰三角形性质即可直截了当得出答案.【解答】解:∵AB=AC,∴∠B=∠C,∵∠A=50°,∴∠B=(180°﹣50°)÷2=65°.故答案为:65°.【点评】本题考查学生对等腰三角形的性质的明白得和把握,此题难度不大,属于基础题.7.如图是4×4正方形网格,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色,使整个涂成黑色的图形成为轴对称图形,如此的白色小方格有个.【考点】轴对称图形.【专题】压轴题;开放型.【分析】依照轴对称图形的概念分别找出各个能成轴对称图形的小方格即可.【解答】解:如图所示,有4个位置使之成为轴对称图形.故答案为:4.【点评】此题利用格点图,考查学生轴对称性的认识.此题关键是找对称轴,按对称轴的不同位置,能够有4种画法.8.平面直角坐标系中,点A(2,0)关于y轴对称的点A′的坐标为.【考点】关于x轴、y轴对称的点的坐标.【分析】依照关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变能够直截了当写出答案.【解答】解:点A(2,0)关于y轴对称的点A′的坐标为(﹣2,0),故答案为:(﹣2,0).【点评】此题要紧考查了关于y轴对称点的坐标特点,关键是把握点的坐标的变化规律.9.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是.【考点】含30度角的直角三角形;线段垂直平分线的性质.【分析】依照同角的余角相等、等腰△ABE的性质推知∠DBE=30°,则在直角△DBE中由“30度角所对的直角边是斜边的一半”即可求得线段BE的长度.【解答】解:∵∠ACB=90°,FD⊥AB,∴∠ACB=∠FDB=90°,∵∠F=30°,∴∠A=∠F=30°(同角的余角相等).又∵AB的垂直平分线DE交AC于E,∴∠EBA=∠A=30°,∴直角△DBE中,BE=2DE=2.故答案是:2.【点评】本题考查了线段垂直平分线的性质、含30度角的直角三角形.解题的难点是推知∠EBA=30°.10.如图,△ABC中,AB=AC,∠BAC=54°,点D为AB中点,且OD⊥AB,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为度.【考点】线段垂直平分线的性质;等腰三角形的性质;翻折变换(折叠问题).【专题】压轴题.【分析】连接OB、OC,依照角平分线的定义求出∠BAO,依照等腰三角形两底角相等求出∠ABC,再依照线段垂直平分线上的点到线段两端点的距离相等可得OA=OB,依照等边对等角可得∠ABO=∠BAO,再求出∠OBC,然后判定出点O是△ABC的外心,依照三角形外心的性质可得OB=OC,再依照等边对等角求出∠OCB=∠OBC,依照翻折的性质可得OE=CE,然后依照等边对等角求出∠COE,再利用三角形的内角和定理列式运算即可得解.【解答】解:如图,连接OB、OC,∵∠BAC=54°,AO为∠BAC的平分线,∴∠BAO=∠BAC=×54°=27°,又∵AB=AC,∴∠ABC=(180°﹣∠BAC)=(180°﹣54°)=63°,∵DO是AB的垂直平分线,∴OA=OB,∴∠ABO=∠BAO=27°,∴∠OBC=∠ABC﹣∠ABO=63°﹣27°=36°,∵AO为∠BAC的平分线,AB=AC,∴△AOB≌△AOC(SAS),∴OB=OC,∴点O在BC的垂直平分线上,又∵DO是AB的垂直平分线,∴点O是△ABC的外心,∴∠OCB=∠OBC=36°,∵将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,∴OE=CE,∴∠COE=∠OCB=36°,在△OCE中,∠OEC=180°﹣∠COE﹣∠OCB=180°﹣36°﹣36°=108°.故答案为:108.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形三线合一的性质,等边对等角的性质,以及翻折变换的性质,综合性较强,难度较大,作辅助线,构造出等腰三角形是解题的关键.三、解答题11.已知:如图,直线AB与直线BC相交于点B,点D是直线BC上一点.求作:点E,使直线DE∥AB,且点E到B,D两点的距离相等.(在题目的原图中完成作图)结论:BE=DE.【考点】作图—复杂作图.【专题】压轴题.【分析】第一以D为顶点,DC为边作一个角等于∠ABC,再作出DB的垂直平分线,即可找到点E.【解答】解:如图所示:点E即为所求,BE=DE【点评】此题要紧考查了复杂作图,关键是把握作一个角等于已知角的方法和线段垂直平分线的作法.12.如图,AD∥BC,BD平分∠ABC.求证:AB=AD.【考点】等腰三角形的判定与性质;平行线的性质.【专题】证明题.【分析】依照AD∥BC,可求证∠ADB=∠DBC,利用BD平分∠ABC和等量代换可求证∠ABD=∠ADB,然后即可得出结论.【解答】证明:∵AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠ADB,∴AB=AD.【点评】此题要紧考查学生对等腰三角形的判定与性质和平行线性质的明白得和把握,此题专门简单,属于基础题.13.如图,在边长为1的小正方形组成的10×10网格中(我们把组成网格的小正方形的顶点称为格点),四边形ABCD在直线l的左侧,其四个顶点A、B、C、D分别在网格的格点上.(1)请你在所给的网格中画出四边形A′B′C′D′,使四边形A′B′C′D′和四边形ABCD关于直线l对称,其中点A′、B′、C′、D′分别是点A、B、C、D的对称点;(2)在(1)的条件下,结合你所画的图形,直截了当写出线段A′B′的长度.【考点】作图-轴对称变换.【分析】(1)依照轴对称的性质,找到各点的对称点,顺次连接即可;(2)结合图形即可得出线段A′B′的长度.【解答】解:(1)所作图形如下:.(2)A'B'==.【点评】本题考查了轴对称变换的知识,要求同学们把握轴对称的性质,能用格点三角形求线段的长度.14.如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:△AEF≌△BCF.【考点】全等三角形的判定与性质;等腰三角形的性质.【专题】证明题.【分析】(1)依照等腰三角形三线合一的性质可得∠BAE=∠EAC,然后利用“边角边”证明△ABE 和△ACE全等,再依照全等三角形对应边相等证明即可;(2)先判定△ABF为等腰直角三角形,再依照等腰直角三角形的两直角边相等可得AF=BF,再依照同角的余角相等求出∠EAF=∠CBF,然后利用“角边角”证明△AEF和△BCF全等即可.【解答】证明:(1)∵AB=AC,D是BC的中点,∴∠BAE=∠EAC,在△ABE和△ACE中,,∴△ABE≌△ACE(SAS),∴BE=CE;(2)∵∠BAC=45°,BF⊥AF,∴△ABF为等腰直角三角形,∴AF=BF,∵AB=AC,点D是BC的中点,∴AD⊥BC,∴∠EAF+∠C=90°,∵BF⊥AC,∴∠CBF+∠C=90°,∴∠EAF=∠CBF,在△AEF和△BCF中,,∴△AEF≌△BCF(ASA).【点评】本题考查了全等三角形的判定与性质,等腰三角形三线合一的性质,等腰直角三角形的判定与性质,同角的余角相等的性质,是基础题,熟记三角形全等的判定方法与各性质是解题的关键.15.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m通过点A,BD⊥直线m,CE ⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,同时有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判定△DEF的形状.【考点】全等三角形的判定与性质;等边三角形的判定.【专题】压轴题.【分析】(1)依照BD⊥直线m,CE⊥直线m得∠BDA=∠CEA=90°,而∠BAC=90°,依照等角的余角相等得∠CAE=∠ABD,然后依照“AAS”可判定△ADB≌△CEA,则AE=BD,AD=CE,因此DE=AE+AD=BD+CE;(2)与(1)的证明方法一样;(3)由前面的结论得到△ADB≌△CEA,则BD=AE,∠DBA=∠CAE,依照等边三角形的性质得∠ABF=∠CAF=60°,则∠DBA+∠ABF=∠CAE+∠CAF,则∠DBF=∠FAE,利用“SAS”可判定△DBF≌△EAF,因此DF=EF,∠BFD=∠AFE,因此∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,依照等边三角形的判定方法可得到△DEF为等边三角形.【解答】证明:(1)∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,∵在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)成立.∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,∴∠CAE=∠ABD,∵在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(3)△DEF是等边三角形.由(2)知,△ADB≌△CEA,BD=AE,∠DBA=∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°,∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠FAE,∵BF=AF在△DBF和△EAF中,∴△DBF≌△EAF(SAS),∴DF=EF,∠BFD=∠AFE,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF为等边三角形.【点评】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了等边三角形的判定与性质.。
人教版八年级上册第13章《轴对称》单元测试含答案
人教版八年级上册第13章《轴对称》单元测试考试分值:120分;考试时间:100分钟;姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(共7小题,满分35分,每小题5分)1.(5分)下列体育运动标志中,从图案看不是轴对称图形的有()个.A.4 B.3 C.2 D.12.(5分)在平面直角坐标系中,点(1,1)关于y轴对称的点的坐标是()A.(﹣1,﹣1)B.(1,﹣1)C.(﹣1,1)D.(1,1)3.(5分)如图,△ABC中,AB=AC,∠A=100°,BD平分∠ABC,则∠ABD的度数为()A.30°B.40°C.20°D.25°4.(5分)已知:如图,在△ABC中,边AB的垂直平分线分别交BC、AB于点G、D,若△AGC的周长为31cm,AB=20cm,则△ABC的周长为()A.31cm B.41cm C.51cm D.61cm5.(5分)如图,在2×2的方格纸中有一个以格点为顶点的△ABC,则与△ABC 成轴对称且以格点为顶点三角形共有()个.A.3个 B.4个 C.5个 D.6个6.(5分)△ABC中,AD是中线,点D到AB,AC的距离相等,则△ABC一定是()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形7.(5分)如图,△ABC中,∠BAC=60°,∠ABC、∠ACB的平分线交于E,D是AE延长线上一点,且∠BDC=120°.下列结论:①∠BEC=120°;②DB=DE;③∠BDE=2∠BCE.其中正确结论的个数为()A.0 B.1 C.2 D.3评卷人得分二.填空题(共7小题,满分35分,每小题5分)8.(5分)一个三角形可被剖成两个等腰三角形,原三角形的一个内角为36度,求原三角形最大内角的所有可能值.9.(5分)在Rt△ABC中,若∠C=90°,AB=,∠A=30°,则BC=.10.(5分)如图所示,一排数字是球衣数字在镜中的像,则原数是.11.(5分)已知点M(1﹣2m,m﹣1)关于x轴的对称点在第一象限,则m 的取值范围是.12.(5分)已知一个等腰三角形的两边长分别是2和5,那么这个等腰三角形的周长为.13.(5分)如下图,在Rt△ABC中,∠C=90°,DE垂直平分AB,垂足为E,D 在BC上,已知∠CAD=32°,则∠B=度.14.(5分)图中的正五角星有条对称轴,图中与∠A的2倍互补的角有个.评卷人得分三.解答题(共7小题,满分50分)15.(6分)用三角板和直尺作图.(不写作法,保留痕迹)如图,点A,B在直线l的同侧.(1)试在直线l上取一点M,使MA+MB的值最小.(2)试在直线l上取一点N,使NB﹣NA最大.16.(6分)在平面直角坐标系中,O为坐标原点,点A的坐标为(2x+y﹣3,x ﹣2y),它关于x轴的对称点A1的坐标为(x+3,y﹣4),关于y轴的对称点为A2.(1)求A1、A2的坐标;(2)证明:O为线段A1A2的中点.17.(7分)已知:如图,BD=DE=EF=FG.(1)若∠ABC=20°,∠ABC内符合条件BD=DE=EF=FG的折线(如DE、EF、FG)共有几条?若∠ABC=10°呢?试一试,并简述理由.(2)若∠ABC=m°(0<m<90),你能找出一个折线条数n与m之间的关系吗?若有,请找出来;若无,请说明理由.18.(6分)如图所示,一个四边形纸片ABCD,∠B=∠D=90°,把纸片按如图所示折叠,使点B落在AD边上的B′点,AE是折痕.(1)试判断B′E与DC的位置关系;(2)如果∠C=130°,求∠AEB的度数.19.(7分)如图,在△ABC中,BD⊥AC,CE⊥AB,垂足分别为D、E,且BD=CE,BD与CE相交于点O,连接AO.求证:AO垂直平分BC.20.(8分)如图△ABC为等边三角形,直线a∥AB,D为直线BC上一点,∠ADE交直线a于点E,且∠ADE=60°.(1)若D在BC上(如图1)求证CD+CE=CA;(2)若D在CB延长线上,CD、CE、CA存在怎样数量关系,给出你的结论并证明.21.(10分)已知:△ABC中,∠B、∠C的角平分线相交于点D,过D作EF∥BC交AB于点E,交AC于点F,求证:BE+CF=EF.参考答案与试题解析一.选择题(共7小题,满分35分,每小题5分)1.(5分)下列体育运动标志中,从图案看不是轴对称图形的有()个.A.4 B.3 C.2 D.1【分析】根据轴对称图形的概念:关于某条直线对称的图形叫轴对称图形.求解【解答】解:(1)(2)(4)都不是轴对称图形,只有(3)是轴对称图形.故选:B.【点评】轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.2.(5分)在平面直角坐标系中,点(1,1)关于y轴对称的点的坐标是()A.(﹣1,﹣1)B.(1,﹣1)C.(﹣1,1)D.(1,1)【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变;即点(x,y)关于y轴的对称点的坐标是(﹣x,y)即可得到点(1,1)关于y轴对称的点的坐标.【解答】解:点(1,1)关于y轴的对称点的坐标是(﹣1,1),故选:C.【点评】此题主要考查了关于x轴、y轴对称的点的坐标规律,比较容易,关键是熟记规律:(1)关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.(2)关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.3.(5分)如图,△ABC中,AB=AC,∠A=100°,BD平分∠ABC,则∠ABD的度数为()A.30°B.40°C.20°D.25°【分析】根据等腰三角形的性质就可以求出∠ABC和∠C的度数,由角平分线的性质就可以求出∠ABD的度数.【解答】解:∵AB=AC,∠A=100°,∴∠ABC=∠C=40°.∵BD平分∠ABC,∴∠ABD=∠DBC=20°.故选:C.【点评】本题主要考查了等腰三角形的性质,解题的关键是掌握角平分线的性质,此题比较简单.4.(5分)已知:如图,在△ABC中,边AB的垂直平分线分别交BC、AB于点G、D,若△AGC的周长为31cm,AB=20cm,则△ABC的周长为()A.31cm B.41cm C.51cm D.61cm【分析】根据线段的垂直平分线的性质得到GA=GB,根据三角形的周长公式计算即可.【解答】解:∵DG是AB的垂直平分线,∴GA=GB,∵△AGC的周长为31cm,∴AG+GC+AC=BC+AC=31cm,又AB=20cm,∴△ABC的周长=AB+AC+BC=51cm,故选:C .【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.5.(5分)如图,在2×2的方格纸中有一个以格点为顶点的△ABC ,则与△ABC 成轴对称且以格点为顶点三角形共有( )个.A .3个B .4个C .5个D .6个【分析】解答此题首先找到△ABC 的对称轴,EH 、GC 、AD ,BF 等都可以是它的对称轴,然后依据对称找出相应的三角形即可.【解答】解:与△ABC 成轴对称且以格点为顶点三角形有△ABG 、△CDF 、△AEF 、△DBH ,△BCG 共5个,故选:C .【点评】本题主要考查轴对称的性质;找着对称轴后画图是正确解答本题的关键.6.(5分)△ABC 中,AD 是中线,点D 到AB ,AC 的距离相等,则△ABC 一定是( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形【分析】根据中线的性质得出S △ABD =S △ACD ,再由点D 到AB ,AC 的距离相等,得出AB=AC ,从而得出△ABC 一定是等腰三角形.【解答】解:∵AD是中线,=S△ACD,∴S△ABD∵D到AB,AC的距离相等,∴AB=AC,∴△ABC一定是等腰三角形,故选:B.【点评】本题考查了等腰三角形的判定以及中线的性质,掌握三角形的中线把三角形的面积分成相等的两部分是解题的关键.7.(5分)如图,△ABC中,∠BAC=60°,∠ABC、∠ACB的平分线交于E,D是AE延长线上一点,且∠BDC=120°.下列结论:①∠BEC=120°;②DB=DE;③∠BDE=2∠BCE.其中正确结论的个数为()A.0 B.1 C.2 D.3【分析】根据三角形内角和等于180°求出∠ABC+∠ACB,再根据角平分线的定义求出∠EBC+∠ECB,然后求出∠BEC=120°,判断①正确;过点D作DF⊥AB于F,DG⊥AC的延长线于G,根据角平分线上的点到角的两边的距离相等可得DF=DG,再求出∠BDF=∠CDG,然后利用“角边角”证明△BDF和△CDG全等,根据全等三角形对应边相等可得BD=CD,再根据等边对等角求出∠DBC=30°,然后根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义求出∠DBE=∠DEB,根据等角对等边可得BD=DE,判断②正确,再求出B,C,E三点在以D 为圆心,以BD为半径的圆上,根据同弧所对的圆周角等于圆心角的一半可得∠BDE=2∠BCE,判断③正确.【解答】解:∵∠BAC=60°,∴∠ABC+∠ACB=180°﹣60°=120°,∵BE、CE分别为∠ABC、∠ACB的平分线,∴∠EBC=∠ABC,∠ECB=∠ACB,∴∠EBC+∠ECB=(∠ABC+∠ACB)=×120°=60°,∴∠BEC=180°﹣(∠EBC+∠ECB)=180°﹣60°=120°,故①正确;如图,过点D作DF⊥AB于F,DG⊥AC的延长线于G,∵BE、CE分别为∠ABC、∠ACB的平分线,∴AD为∠BAC的平分线,∴DF=DG,∴∠FDG=360°﹣90°×2﹣60°=120°,又∵∠BDC=120°,∴∠BDF+∠CDF=120°,∠CDG+∠CDF=120°,∴∠BDF=∠CDG,∵在△BDF和△CDG中,,∴△BDF≌△CDG(ASA),∴DB=CD,∴∠DBC=(180°﹣120°)=30°,∴∠DBE=∠DBC+∠CBE=30°+∠CBE,∵BE平分∠ABC,AE平分∠BAC,∴∠ABE=∠CBE,∠BAE=∠BAC=30°,根据三角形的外角性质,∠DEB=∠ABE+∠BAE=∠ABE+30°,∴∠DBE=∠DEB,∴DB=DE,故②正确;∵DB=DE=DC,∴B,C,E三点在以D为圆心,以BD为半径的圆上,∴∠BDE=2∠BCE,故③正确;综上所述,正确的结论有①②③共3个.故选:D.【点评】本题考查了角平分线的性质,全等三角形的判定与性质,等角对等边的性质,圆内接四边形的判定,同弧所对的圆周角等于圆心角的一半性质,综合性较强,难度较大,特别是③的证明.二.填空题(共7小题,满分35分,每小题5分)8.(5分)一个三角形可被剖成两个等腰三角形,原三角形的一个内角为36度,求原三角形最大内角的所有可能值.【分析】分为以下情况:①原三角形是锐角三角形,最大角是72°的情况;②原三角形是直角三角形,最大角是90°的情况;③原三角形是钝角三角形,最大角是108°的情况;④原三角形是钝角三角形,最大角是126°的情况;⑤原三角形是钝角三角形,最大角是132°的情况.【解答】解:①原三角形是锐角三角形,最大角是72°的情况如图所示:∠ABC=∠ACB=72°,∠A=36°,AD=BD=BC;②原三角形是直角三角形,最大角是90°的情况如图所示:∠ABC=90°,∠A=36°,AD=CD=BD;③原三角形是钝角三角形,最大角是108°的情况如图所示:④原三角形是钝角三角形,最大角是126°的情况如图所示:∠ABC=126°,∠C=36°,AD=BD=BC;⑤原三角形是钝角三角形,最大角是132°的情况如图所示:∠C=132°,∠ABC=36°,AD=BD,CD=CB.综上,原三角形最大内角的所有可能值为72°,90°,108°,132°,126°.【点评】本题主要考查了等腰三角形的性质及三角形内角和定理;分情况讨论是解决本题的关键,本题有一定的难度.9.(5分)在Rt△ABC中,若∠C=90°,AB=,∠A=30°,则BC=5.【分析】根据含30度角的直角三角形的性质推出BC=AB,代入求出即可.【解答】解:∵∠C=90°,∠A=30°,AB=10,∴BC=AB=×10=5,故答案为:5.【点评】本题主要考查对含30度角的直角三角形的性质的理解和掌握,能熟练地运用性质进行计算是解此题的关键.10.(5分)如图所示,一排数字是球衣数字在镜中的像,则原数是251.【分析】易得所求的号码与看到的号码关于竖直的一条直线成轴对称,作出相应图形即可求解.【解答】解:由题意得:251|125.故答案为:251.【点评】考查了镜面对称,解决本题的关键是找到相应的对称轴;难点是作出相应的对称图形;注意2,5的关于竖直的一条直线的轴对称图形是5,2.11.(5分)已知点M(1﹣2m,m﹣1)关于x轴的对称点在第一象限,则m 的取值范围是m<.【分析】直接利用关于x轴对称点的性质得出M点位置,进而得出答案.【解答】解:∵点M(1﹣2m,m﹣1)关于x轴的对称点在第一象限,∴点M在第四象限,∴,解得:m<.故答案为:m<.【点评】此题主要考查了关于x轴对称点的性质以及不等式组的解法,正确解不等式是解题关键.12.(5分)已知一个等腰三角形的两边长分别是2和5,那么这个等腰三角形的周长为12.【分析】题目给出等腰三角形有两条边长为2和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:分情况讨论:①当三边是2,2,5时,2+2<5,不符合三角形的三边关系,应舍去;②当三角形的三边是2,5,5时,符合三角形的三边关系,此时周长是12.故填12.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.13.(5分)如下图,在Rt△ABC中,∠C=90°,DE垂直平分AB,垂足为E,D 在BC上,已知∠CAD=32°,则∠B=29度.【分析】利用中垂线和三角形外角性质计算.【解答】解:∠C=90°,∠CAD=32°⇒∠ADC=58°,DE为AB的中垂线⇒∠BAD=∠B又∠BAD+∠B=58°⇒∠B=29°故填29°【点评】本题涉及中垂线和三角形外角性质,难度中等.14.(5分)图中的正五角星有5条对称轴,图中与∠A的2倍互补的角有10个.【分析】正五角星经过角的顶点和中心点的直线都是它的对称轴,有5条对称轴,且五角星的五个角相等,从而求得答案.【解答】解:正五角星经过角的顶点和中心点的直线都是它的对称轴,所以有5条对称轴.与∠A的2倍即是∠AIE,与该角互为补角的角有∠AIC和∠DIE共两个,同理可得出其他八个符合条件的角.故答案为:5,10.【点评】本题考查了轴对称的性质,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形,这条直线是它的对称轴.三.解答题(共7小题,满分50分)15.(6分)用三角板和直尺作图.(不写作法,保留痕迹)如图,点A,B在直线l的同侧.(1)试在直线l上取一点M,使MA+MB的值最小.(2)试在直线l上取一点N,使NB﹣NA最大.【分析】(1)作点A关于直线l的对称点,再连接解答即可;(2)连接BA,延长BA交直线l于N,当N即为所求;【解答】解:(1)如图所示:(2)如图所示;理由:∵NB﹣NA≤AB,∴当A、B、N共线时,BN﹣NA的值最大.【点评】此题主要考查有关轴对称﹣﹣最短路线的问题中的作图步骤,是此类问题的基础,需熟练掌握.16.(6分)在平面直角坐标系中,O为坐标原点,点A的坐标为(2x+y﹣3,x ﹣2y),它关于x轴的对称点A1的坐标为(x+3,y﹣4),关于y轴的对称点为A2.(1)求A1、A2的坐标;(2)证明:O为线段A1A2的中点.【分析】(1)根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”列方程组求出x、y的值,从而得到点A的坐标,再根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”写出点A1的坐标,根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”写出点A2的坐标;(2)设经过OA1的直线解析式为y=kx,利用待定系数法求一次函数解析式求出直线解析式,再求出点A2在直线上,然后利用勾股定理列式求出OA1=OA2,最后根据线段中点的定义证明即可.【解答】(1)解:∵点A(2x+y﹣3,x﹣2y)与A1(x+3,y﹣4)关于x轴对称,∴,解得,所以,A(8,3),所以,A1(8,﹣3),A2(﹣8,3);(2)证明:设经过O、A1的直线解析式为y=kx,易得:y OA1=﹣x,又∵A2(﹣8,3),∴A2在直线OA1上,∴A1、O、A2在同一直线上,由勾股定理知OA1=OA2==,∴O为线段A1A2的中点.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.17.(7分)已知:如图,BD=DE=EF=FG.(1)若∠ABC=20°,∠ABC内符合条件BD=DE=EF=FG的折线(如DE、EF、FG)共有几条?若∠ABC=10°呢?试一试,并简述理由.(2)若∠ABC=m°(0<m<90),你能找出一个折线条数n与m之间的关系吗?若有,请找出来;若无,请说明理由.【分析】(1)由已知可得到几组相等的角,再根据三角形外角的性质可得到∠EDF,∠FEG,∠AFG,∠AMG分别与∠B的关系,再根据三角形内角和定理即可求解.(2)结合第(1)题,根据三角形内角和定理可知,需满足mn<90°,从而不难求解.【解答】解:(1)有4条,若∠ABC=10°,有8条.当∠ABC=20°,∵BD=DE=EF=FG=GM,∴∠DEB=∠B,∠EDF=∠EFD,∠FEG=∠FGE,∠GFM=∠FMG∵∠EDF=2∠B=40°,∠FEG=3∠B=60°,∠AFG=4∠B=80°,∠AMG=5∠B=100°,∴同理:∠AMG将成为下一个等腰三角形的底角∵100°+100°>180°∴不会再由下一条折线∴共有四条拆线,分别是:DE、EF、FG,GM.同理:当∠ABC=10°,有8条符合条件的折线.(2)由(1)可知∠EDF=2∠B=2m°,∠FEG=3∠B=3m°,∠AFG=4∠B=4m°,∵根据三角形内角和定理可知,需满足mn<90°,∴n<的整数.【点评】此题主要考查等腰三角形的性质,三角形外角和性质及三角形内角和定理的综合运用.18.(6分)如图所示,一个四边形纸片ABCD,∠B=∠D=90°,把纸片按如图所示折叠,使点B落在AD边上的B′点,AE是折痕.(1)试判断B′E与DC的位置关系;(2)如果∠C=130°,求∠AEB的度数.【分析】(1)由于AB′是AB的折叠后形成的,所以∠AB′E=∠B=∠D=90°,∴B′E ∥DC;(2)利用平行线的性质和全等三角形求解.【解答】解:(1)由于AB′是AB的折叠后形成的,∠AB′E=∠B=∠D=90°,∴B′E∥DC;(2)∵折叠,∴△ABE≌△AB′E,∴∠AEB′=∠AEB,即∠AEB=∠BEB′,∵B′E∥DC,∴∠BEB′=∠C=130°,∴∠AEB=∠BEB′=65°.【点评】本题考查了三角形全等的判定及性质;把纸片按如图所示折叠,使点B 落在AD边上的B′点,则△ABE≌△AB′E,利用全等三角形的性质和平行线的性质及判定求解.19.(7分)如图,在△ABC中,BD⊥AC,CE⊥AB,垂足分别为D、E,且BD=CE,BD与CE相交于点O,连接AO.求证:AO垂直平分BC.【分析】欲证明AO垂直平分BC,只要证明AB=AC,BO=CO即可;【解答】证明:∵BD⊥AC,CE⊥AB,∴∠BEC=∠BDC=90°,在Rt△BEC和Rt△CDB中,∴Rt△BEC≌Rt△CDB (HL),∴∠ABC=∠ACB,∠ECB=∠DBC,∴AB=AC,BO=OC,∴点A、O在BC的垂直平分线上,∴AO垂直平分BC.【点评】本题考查全等三角形的判定和性质、线段的垂直平分线的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.20.(8分)如图△ABC为等边三角形,直线a∥AB,D为直线BC上一点,∠ADE 交直线a于点E,且∠ADE=60°.(1)若D在BC上(如图1)求证CD+CE=CA;(2)若D在CB延长线上,CD、CE、CA存在怎样数量关系,给出你的结论并证明.【分析】(1)实际上也就是求两条线段相等,在AC上取一点F,使CF=CD,然后求证△ADF≌△EDC即可.(2)归根究底仍是求两条线段的问题,通过求证全等,最终得出几条边之间的关系.【解答】(1)证明:在AC上取点F,使CF=CD,连接DF.∵∠ACB=60°,∴△DCF为等边三角形.∴∠3+∠4=∠4+∠5=60°.∴∠3=∠5.∵∠1+∠ADE=∠2+∠ACE,∴∠1=∠2.在△ADF和△EDC中,,∴△ADF≌△EDC(AAS).∴CE=AF.∴CD+CE=CF+AF=CA.(2)解:CD、CE、CA满足CE+CA=CD;证明:在CA延长线上取CF=CD,连接DF.∵△ABC为等边三角形,∴∠ACD=60°,∵CF=CD,∴△FCD为等边三角形.∵∠1+∠2=60°,∵∠ADE=∠2+∠3=60°,∴∠1=∠3.在△DFA和△DCE中,∴△DFA≌△DCE(ASA).∴AF=CE.∴CE+CA=FA+CA=CF=CD.注:证法(二)以CD为边向下作等边三角形,可证.证法(三)过点D分别向CA、CE作垂线,也可证.【点评】本题考查了全等三角形的判定与性质及等边三角形的性质;可围绕结论寻找全等三角形,运用全等三角形的性质判定线段相等,证得三角形全等是正确解答本题的关键.21.(10分)已知:△ABC中,∠B、∠C的角平分线相交于点D,过D作EF∥BC交AB于点E,交AC于点F,求证:BE+CF=EF.【分析】根据角平分线定义和平行线性质求出∠EDB=∠EBD,推出DE=BE,同理得出CF=DF,即可求出答案.【解答】证明:∵BD平分∠ABC,∴∠EBD=∠DBC,∵EF∥BC,∴∠EDB=∠DBC,∴∠EDB=∠EBD,∴DE=BE,同理CF=DF,∴EF=DE+DF=BE+CF,即BE+CF=EF.【点评】本题考查了角平分线定义,平行线性质,等腰三角形的判定的应用,注意:等角对等边.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十三章轴对称单元测试一、单选题(共10题;共30分)1、下列图形中一定是轴对称图形的是( )A、梯形B、直角三角形C、角D、平行四边形2、如图所示几何图形中,一定是轴对称图形的有几个()A、2B、3C、4D、53、点A(3,4)关于x轴对称的点B的坐标为().A、(6,4)B、(-3,5)C、(-3,-4)D、( 3,-4)4、已知两角及夹边作三角形,所用的基本作图方法是()A、作已知角的平分线B、作已知线段的垂直平分线C、过一点作已知直线的高D、作一个角等于已知角和作一条线段等于已知线段5、已知等腰三角形的一边长为5,另两边的长是方程x2﹣6x+m=0的两根,则此等腰三角形的周长为()A、10B、11C、10或11D、11或126、如图,直线l:y=﹣x+b,点M(3,2)关于直线l的对称点M1落在y轴上,则b的值等于()A、3B、2C、1或2D、2或37、把经过点(﹣1,1)和(1,3)的直线向右移动2个单位后过点(3,a),则a的值为()A、1B、2C、3D、48、点N(a,﹣b)关于y轴的对称点是坐标是()A、(﹣a,b)B、(﹣a,﹣b)C、(a,b)D、(﹣b,a)9、若等腰三角形的两边长分别是3和6,则这个三角形的周长是()A、12B、15C、12或15D、910、下列几何图形中,既是轴对称图形,又是中心对称图形的是()A、等腰三角形B、正三角形C、平行四边形D、正方形二、填空题(共8题;共24分)11、一个大的等腰三角形能被分割为两个小等腰三角形,则该大等腰三角形顶角的度数是________.12、已知等腰三角形的一边长等于4cm,另一边长等于9cm,则此三角形的周长为 ________cm.13、如图,矩形ABCD中,AB=2,BC=3,对角线AC的垂直平分线分别交AD,BC于点E、F,连接CE,则CE 的长为________14、如图,在△ABC中,AB的垂直平分线分别交AB,AC于D,E两点,若AC=9cm,BC=5cm,则△BCE的周长为________ cm.15、如图,在△ABC中,∠BAC=90°,AB=3,AC=4,BC=5,EF垂直平分BC,点P为直线EF上的任一点,则△ABP周长的最小值是________.16、如图,在正三角形ABC中,AD⊥BC于点D,则∠BAD=________°.17、一个汽车车牌在水中的倒影为,则该车的牌照号码是________.18、如图:△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC的周长为________.三、解答题(共5题;共30分)19、小明、小亮两个同学对于等腰三角形都很感兴趣,小明说:“我知道有一种等腰三角形,过它的顶点作一条直线可以将原来的等腰三角形分成两个等腰三角形,”小亮说:“你才知道一种啊!我知道好几种呢!”聪明的你知道几种呢?(要求画出图形,标明角度,不要求证明,请注意有好几种情况哟)20、如图,已知△ABC中,AB=BD=DC,∠ABC=105°,求∠A,∠C度数.21、已知如图,A(3,0),B(0,4),C为x轴上一点.(1)画出等腰三角形ABC;(2)求出C点的坐标.22、已知甲村和乙村靠近公路a、b,为了发展经济,甲乙两村准备合建一个工厂,经协商,工厂必须满足以下要求:(1)到两村的距离相等;(2)到两条公路的距离相等.你能帮忙确定工厂的位置吗?23、如图1,定义:在四边形ABCD中,若AD=BC,且∠ADB+∠BCA=180°,则把四边形ABCD叫做互补等对边四边形,如图2,在等腰△ABE中,AE=BE,四边形ABCD是互补等对边四边形,求证:∠ABD=∠BAC=∠E.四、综合题(共1题;共15分)24、如图,方格纸中每个小正方形的边长都是1,△ABC的三个顶点都在格点上,如果用(1,0)表示C 点的位置,用(4,1)表示B点的位置,那么.(1)画出直角坐标系;(2)画出与△ABC关于x轴对称的图形△DEF;(3)P为x轴上的一个动点,是否存在P使PA+PB的值最小?若不存在,请说明理由;若存在请求出点P的坐标和PA+PB的最小值.答案解析一、单选题1、【答案】 C【考点】轴对称图形【解析】【分析】如果一个图形沿一条直线对折后,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,据此进行判断.【解答】根据轴对称图形的定义:A、梯形不一定是轴对称图形,故此选项错误;B、直角三角形,不一定是轴对称图形,故此选项错误;C、角的角平分线所在直线可以作为一条对称轴,故是轴对称图形,故此选项正确;D、平行四边形不是轴对称图形,故此选项错误.故选:C.【点评】本题考查轴对称的定义,难度不大,掌握轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2、【答案】 D【考点】轴对称图形【解析】【分析】根据轴对称图形的概念,分析各图形的特征求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.这条直线叫做对称轴.【解答】所有图形沿某条直线折叠后直线两旁的部分能够完全重合,那么一定是轴对称图形的有圆弧、角、扇形、菱形和等腰梯形共5个.故选D.【点评】本题考查了轴对称的知识,注意掌握轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形3、【答案】 D【考点】关于x轴、y轴对称的点的坐标【解析】【解答】因为.点A(3,4)关于x轴对称,所以点B的坐标为(3,-4).故D项正确.【分析】根据关于x轴对称的点的坐标特点横坐标不变,纵坐标为相反数可完成此题.4、【答案】D【考点】作图—基本作图【解析】【解答】解:两角及夹边作三角形,所用的基本作图方法是作一个角等于已知角和作一条线段等于已知线段.故选:D.【分析】根据题意可得作图过程中需要作一条线段等于已知线段,然后再作两个角等于已知角.5、【答案】B【考点】等腰三角形的性质【解析】【解答】解:设方程x2﹣6x+m=0的两根是x1、x2,∴x1+x2=6,且这两根是等腰三角形的两边,都是正数,∵x1+x2=6>5,三边满足三角形中的两边之和大于第三边,∴这个三角形的周长是6+5=11.故选:B.【分析】根据两边长是方程x2﹣6x+m=0的两根,由一元二次方程的根与系数之间的关系可以得到:两边之和为6,再根据三角形三边关系进行分析,从而求得三角形的周长.6、【答案】B【考点】坐标与图形变化-对称【解析】【解答】解:直线MM′的解析式为y=x+b1,把M(3,2)代入函数解析式,得3+b1=2.解得b1=﹣1.直线MM′的解析式为y=x﹣1,当x=0时,y=﹣1,即M′(0,﹣1)MM′的中点(,),把MM′的中点(,)代入y=﹣x+b,得﹣+b=,解得b=2,故选:B.【分析】根据对称点所连的线段被对称轴垂直平分,可得MM′的直线,根据直线解析式,可得自变量为零时的函数值,即M′,根据对称点的中点坐标在它的对称轴上,可得关于b的方程,根据解方程,可得答案.7、【答案】C【考点】坐标与图形变化-对称【解析】【解答】解:设直线解析式为y=kx+b,∵经过点(﹣1,1)和(1,3),∴,解得,∴直线解析式为y=x+2,∵直线向右移动2个单位,∴y=x﹣2+2=x,∵过点(3,a),∴a=3.故选:C.【分析】首先设直线解析式为y=kx+b,再利用待定系数法计算出直线解析式y=x+2,然后根据平移可得直线解析式为y=x,然后再代入(3,a)计算出a的值.8、【答案】 B【考点】关于x轴、y轴对称的点的坐标【解析】【解答】解:N(a,﹣b)关于y轴的对称点是坐标是(﹣a,﹣b),故选:B.【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.9、【答案】 B【考点】等腰三角形的性质【解析】【解答】解:①若3是腰,则另一腰也是3,底是6,但是3+3=6,∴不构成三角形,舍去.②若3是底,则腰是6,6.3+6>6,符合条件.成立.∴C=3+6+6=15.故选B.【分析】根据题意,要分情况讨论:①、3是腰;②、3是底.必须符合三角形三边的关系,任意两边之和大于第三边.10、【答案】 D【考点】轴对称图形【解析】【解答】解:A、是轴对称图形,不是中心对称图形.故错误; B、是轴对称图形,不是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、既是轴对称图形,又是中心对称图形.故正确.故选D.【分析】根据轴对称图形与中心对称图形的概念求解.二、填空题11、【答案】108°或90°或36°或.【考点】等腰三角形的性质【解析】【解答】解:(1)如图1,△ABC中,AB=AC,BD=AD,AC=CD,求∠BAC的度数.∵AB=AC,BD=AD,AC=CD,∴∠B=∠C=∠BAD,∠CDA=∠CAD,∵∠CDA=2∠B,∴∠CAB=3∠B,∵∠BAC+∠B+∠C=180°,∴5∠B=180°,∴∠B=36°,∴∠BAC=108°.(2)如图2,△ABC中,AB=AC,AD=BD=CD,求∠BAC的度数.∵AB=AC,AD=BD=CD,∴∠B=∠C=∠DAC=∠DAB∴∠BAC=2∠B∵∠BAC+∠B+∠C=180°,∴4∠B=180°,∴∠B=45°,∴∠BAC=90°.(3)如图3,△ABC中,AB=AC,BD=AD=BC,求∠BAC的度数.∵AB=AC,BD=AD=BC,∴∠B=∠C,∠A=∠ABD,∠BDC=∠C∵∠BDC=2∠A,∴∠C=2∠A=∠B,∵∠A+∠ABC+∠C=180°,∴5∠A=180°,∴∠A=36°.(4)如图4,△ABC中,AB=AC,BD=AD,CD=BC,求∠BAC的度数.假设∠A=x,AD=BD,∴∠DBA=x,∵AB=AC,∴∠DBC=﹣x,CD=BC,∴∠BDC=2x=∠DBC=﹣x,解得:x=.故答案为:108°或90°或36°或.【分析】因为题中没有指明这个等腰三角形是什么形状,故应该分四种情况进行分析,从而得到答案.12、【答案】22【考点】等腰三角形的性质【解析】【解答】解:分两种情况:当腰为4时,4+4<9,所以不能构成三角形;当腰为9时,9+9>4,9﹣9<4,所以能构成三角形,周长是:9+9+4=22.故填22.【分析】题目给出等腰三角形有两条边长为4cm和9cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.13、【答案】【考点】线段垂直平分线的性质【解析】【解答】解:EF垂直且平分AC,故AE=EC,AO=CO.所以△AOE≌△COE.设CE为x.则DE=AD﹣x,CD=AB=2.根据勾股定理可得x2=(3﹣x)2+22解得CE=.故答案为.【分析】本题首先利用线段垂直平分线的性质推出△AOE≌△COE,再利用勾股定理即可求解.14、【答案】 14【考点】线段垂直平分线的性质【解析】【解答】解:∵DE是AB的垂直平分线,∴AE=BE,∴△BCE的周长=BE+CE+BC=AE+CE+BC=AC+BC,∵AC=9cm,BC=5cm,∴△BCE的周长=9+5=14cm.故答案为:14.【分析】根据线段的垂直平分线上的点到线段的两个端点的距离相等可得AE=BE,然后根据三角形的周长的定义整理得到△BCE的周长=AC+BC.15、【答案】7【考点】线段垂直平分线的性质【解析】【解答】解:∵EF垂直平分BC,∴B、C关于EF对称,连接AC交EF于D,∴当P和D重合时,AP+BP的值最小,最小值等于AC的长,∴△ABP周长的最小值是4+3=7.故答案为:7.【分析】根据题意知点B关于直线EF的对称点为点C,故当点P与点D重合时,AP+BP的最小值,求出AC长度即可得到结论.16、【答案】30【考点】等边三角形的性质【解析】【解答】解:∵△ABC是等边三角形,∴∠BAC=60°,∵AB=AC,AD⊥BC,∴∠BAD= ∠BAC=30°,故答案为:30°.【分析】根据正三角形ABC得到∠BAC=60°,因为AD⊥BC,根据等腰三角形的三线合一得到∠BAD的度数.17、【答案】W5236499【考点】生活中的轴对称现象【解析】【解答】解:W 5 2 3 6 4 9 9∴该车的牌照号码是W5236499.【分析】易得所求的牌照与看到的牌照关于水平的一条直线成轴对称,作出相应图形即可求解.18、【答案】 19【考点】线段垂直平分线的性质【解析】【解答】解:∵DE是AC的垂直平分线,∴AD=CD,AC=2AE=6cm,又∵△ABD的周长=AB+BD+AD=13cm,∴AB+BD+CD=13cm,即AB+BC=13cm,∴△ABC的周长=AB+BC+AC=13+6=19cm.故答案为19.【分析】由已知条件,利用线段的垂直平分线的性质,得到AD=CD,AC=2AE,结合周长,进行线段的等量代换可得答案.三、解答题19、【答案】解:举例如下,如图所示:(1)AC=BC,∠ACB=90°,CD=AD=DB;(2)AB=AC=CD,BD=AD;(3)AB=AC,AD=CD=BC;(4)AB=AC,AD=CD,BD=BC.【考点】等腰三角形的判定与性质【解析】【分析】首先要知道等腰三角形的定义,即有两条边相等的三角形叫做等腰三角形.那么本题中要做出等腰三角形可以分两种情况进行讨论,一是过顶角截等腰三角形的底边,二是过底角截等腰三角形的腰.20、【答案】解:∵AB=BD,∴∠BDA=∠A,∵BD=DC,∴∠C=∠CBD,设∠C=∠CBD=x,则∠BDA=∠A=2x,∴∠ABD=180°﹣4x,∴∠ABC=∠ABD+∠CDB=180°﹣4x+x=105°,解得:x=25°,所以2x=50°,即∠A=50°,∠C=25°.【考点】等腰三角形的性质【解析】【分析】由于AB=BD=DC,所以△ABD和△BDC都是等腰三角形,可设∠C=∠CDB=x,则∠BDA=∠A=2x,根据等腰三角形的性质和三角形内角和定理的推论,可以求出∠A,∠C度数.21、【答案】解:设C(x,0),(1)如图(2)①当A是顶点时,C1(﹣2,0),C2(8,0),②当B是顶点时,C3(﹣3,0)③当C是顶点时,.【考点】等腰三角形的性质【解析】【分析】(1)根据A(3,0),B(0,4),C为x轴上一点.利用两点间的距离可分别求出C 点坐标.(2)设C(x,0),分3种情况①当A是顶点时,②当B是顶点时,③当C是顶点时三种情况进行讨论即可.22、【答案】解:①以O为圆心,以任意长为半径画圆,分别交直线a、b于点A、B;②分别以A、B为圆心,以大于AB为半径画圆,两圆相交于点C,连接OC;③连接ED,分别以E、D为圆心,以大于ED为半径画圆,两圆相交于F、G两点,连接FG;④FG与OC相交于点H,则H即为工厂的位置.故点H即为工厂的位置.【考点】线段垂直平分线的性质【解析】【分析】先作出两条公路相交的角平分线OC,再连接ED,作出ED的垂直平分线FG,则OC与FG的交点H即为工厂的位置.23、【答案】【解答】证明:∵AE=BE,∴∠EAB=∠EBA,∵四边形ABCD是互补等对边四边形,∴AD=BC,在△ABD与△BAC中,∴△ABD≌△BAC(SAS),∴∠ABD=∠BAC,∠ADB=∠BCA,∵∠ADB+∠BCA=180°,∴∠BCA=90°,在等腰△ABE中,∠EAB=∠EBA=(180°﹣∠E)÷2=90°﹣∠E,∴∠ADB=90°﹣∠EAB=90°﹣(90°﹣∠E)=∠E,∴∠ABD=∠BAC=∠E.【考点】等腰三角形的性质【解析】【分析】根据等边对等角可得∠EAB=∠EBA,根据四边形ABCD是互补等对边四边形,可得AD=BC,根据SAS可证△ABD≌△BAC,根据全等三角形的性质可得∠ABD=∠BAC,再根据等腰三角形的性质即可证明.四、综合题24、【答案】(1)解:如图所示:(2)解:如图所示:(3)解:存在,连接BD交x轴于点P,连接PA,由对称可知D(0,﹣2),设直线BD的表达式为y=kx+b,则有B=﹣2,4k+b=1,解得:k= ,b=﹣2,所以直线BD的表达式为y= x﹣2,当y=0时,有x﹣2=0,解得x= ,所以P(,0),由对称可知PA=PD,所以PA+PB=PD+PB=DB= =5.【考点】作图-轴对称变换【解析】【分析】(1)根据C点坐标可确定原点位置,然后可画出坐标系;(2)首先确定A、B、C三点关于x轴对称的对称点位置,然后连接即可;(3)连接BD交x轴于点P,连接PA,设直线BD的表达式为y=kx+b,利用待定系数法确定解析式,然后根据解析式确定P点坐标,再利用勾股定理计算出BD的长.。