傅里叶级数
傅里叶级数公式傅里叶级数展开傅里叶级数收敛性的计算公式
傅里叶级数公式傅里叶级数展开傅里叶级数收敛性的计算公式傅里叶级数公式的计算公式提供了一种将任意周期函数表示为一组正弦和余弦函数的和的方法。
这种表示方法在信号处理、图像处理等领域具有重要应用。
在本文中,将详细介绍傅里叶级数展开和收敛性的计算公式。
一、傅里叶级数展开傅里叶级数展开是将周期为T的函数f(t)表示为一组三角函数的和。
傅里叶级数展开的计算公式如下:f(t) = a0 + Σ (an*cos(nωt) + bn*sin(nωt)),其中a0、an和bn分别为系数,ω为角频率,n为正整数。
根据这个公式,我们可以将任意周期函数表示为一组正弦和余弦函数的和。
傅里叶级数展开的关键是计算系数a0、an和bn,这里不再赘述具体的推导过程。
二、傅里叶级数收敛性的计算公式傅里叶级数的收敛性是指在何种条件下,傅里叶级数能够无限接近原函数f(t)。
傅里叶级数的收敛性可以通过计算系数a0、an和bn来确定。
1. 正弦级数的收敛性对于奇函数,即满足f(-t)=-f(t)的函数,其傅里叶级数只包含正弦函数。
对于奇函数f(t),其傅里叶级数的计算公式为:f(t) = Σ (bn*sin(nωt)),其中bn的计算公式为:bn = (2/T) * ∫[0,T] {f(t)*sin(nωt)} dt。
当函数f(t)满足一定的条件时,傅里叶级数对奇函数收敛。
这些条件包括函数f(t)在一个周期内有有限个有界不连续点,并且在这些点上的左右极限存在。
2. 余弦级数的收敛性对于偶函数,即满足f(-t)=f(t)的函数,其傅里叶级数只包含余弦函数。
对于偶函数f(t),其傅里叶级数的计算公式为:f(t) = a0/2 + Σ (an*cos(nωt)),其中a0和an的计算公式为:a0 = (2/T) * ∫[0,T] {f(t)} dt,an = (2/T) * ∫[0,T] {f(t)*cos(nωt)} dt。
同样地,当函数f(t)满足一定的条件时,傅里叶级数对偶函数收敛。
傅里叶级数
− 2
n
T 2
= bn ∫ T sin nωt d t
2
− 2
T 2
2 即 bn = T
T = bn 2
∫
T 2
T − 2
fT ( t )sin nω t d t
最后可得:
a0 fT (t) = + ∑(an cos mωt + bn sin nωt) (1.1) 2 n=1 T 2 2 其 中 a0 = ∫ T fT (t) dt T −2 T 2 2 an = ∫T fT (t) cos nωt dt (n =1,2,L ) T −2 T 2 2 bn = ∫T fT (t) sin nωt dt (n =1,2,L ) T −2
1= 12 dt = T ∫T
− 2 T 2 T 2 T 2
1+ cos 2nωt T cos nωt = ∫T cos nωt dt = ∫T dt = − − 2 2 2 2
2
1− cos 2nωt T sin nωt = ∫T sin nωt dt = ∫T dt = − − 2 2 2 2
T 2
f4 (t) =
n=−∞
∑ f (t + 4n),
+∞
2π 2π π nπ = = , ωn = nω = ω= T 4 2 2
f4(t)
−1
T=4
1
3
t
则
1 T 2 − jωnt cn = ∫ T fT (t )e dt T −2 1 2 1 1 − jωnt − jωnt = ∫ f4 (t )e dt = ∫ e dt T −2 T −1 1 1 1 − jωnt jωn − jωn = e = e −e −Tjωn Tjωn −1 2 sinωn 1 = ⋅ Sa(ωn ) (n = 0, ±1, ±2,L ) T =4 = T ωn 2
《傅里叶级数》课件
FFT的出现极大地促进了数字信号处理领域的发展,尤其在实时信号处理 和大数据分析方面。
小波变换与傅里叶级数的关系
01
小波变换是一种时间和频率的局部化分析方法,用于多尺度信 号处理和分析。
02
小波变换与傅里叶级数都是信号的频域表示方法,但小波变换
频域处理
傅里叶变换将图像从空间域转换到频域,使得图 像的频率特征更加明显,便于进行滤波、增强等 操作。
图像压缩
通过分析图像的频谱,可以去除不重要的频率成 分,从而实现图像的压缩,节省存储和传输资源 。
图像去噪
傅里叶变换在图像去噪中发挥了重要作用,通过 滤除噪声对应的频率成分,可以有效去除图像中 的噪声。
傅里叶级数提供了一种将 复杂信号分解为简单正弦 波的方法,有助于理解和 处理信号。
频谱分析
通过傅里叶变换,可以分 析信号的频率成分,这在 通信、音频处理等领域有 广泛应用。
滤波器设计
利用傅里叶级数或其变换 形式,可以设计各种滤波 器,用于提取特定频率范 围的信号或抑制噪声。
图像处理中的应用
1 2 3
数值分析中的应用
求解微分方程
傅里叶级数在数值分析中常用于 求解初值问题和偏微分方程,通 过离散化和变换,将复杂问题转 化为易于处理的简单问题。
数值积分与微分
傅里叶级数在数值积分和微分中 也有应用,可以将复杂的积分或 微分运算转换为易于计算的离散 形式。
插值与拟合
傅里叶级数可以用于多项式插值 和函数拟合,通过选取适当的基 函数,可以构造出精度较高的插 值函数或拟合模型。
04
傅里叶级数的扩展知识
离散傅里叶变换
离散傅里叶变换(DFT)是连续傅里叶变换的离 散化形式,用于将时域信号转换为频域信号。
傅里叶数的定义式
傅里叶数的定义式
傅里叶级数是一种非常重要的数学概念,它能准确描述事物的细微特征,一般
用来表达平滑的自变量函数。
傅里叶数,是指任意一个实函数f(x),当它可以展
开成一系列正弦函数和余弦函数的无穷级数形式,即
f(x) = a_0 + \sum_{k=1}^{\infty}\left(a_k \cos kx+b_k\sin kx \right),
称为这个函数的Fourier级数。
a_0为常数项,a_k和b_k称为系数,用来表
示正弦函数和余弦函数的幅度,k称为频率,表示周期的数量。
它不仅能准确的表
示出一个函数及它的特征,而且具有十分优美的美学感受。
傅里叶级数的准确度在各个研究领域都有着广泛的运用,在科学技术上准确性、廉价性、可靠性和多领域性都是值得它被广泛使用的补充。
比如经典力学1中引入了不惯性系统的分析和计算,2亚贝拉计算可以通过傅里叶级数来实现,有着重要
的创新意义;从基本物理装潢到地理、几何图形等,甚至医学诊断都是它的可实现的应用场景。
此外,傅立叶级数的可容纳量大,内容全面,支持大幅度计算,准确率高,可以作为大量、复杂功能的基础性计算工具。
总之,傅里叶级数是一种重要的数学概念,无论从准确性、廉价性、可靠性和
多领域性来讲,它都可以作为一种用于研究各种函数的表征。
它的实用性已经被成功的应用在科学计算领域,推荐给更多的读者快速和有效的理解、掌握傅里叶级数,发展自己的专业特长,让这种数学概念在我们的实践中实现更大的潜力。
傅里叶级数
∫πcos nxdx = 0,
π
π
∫πsin nxdx = 0,
π
( n = 1,2,3,L)
0, m ≠ n ∫ πsin mx sin nxdx = π, m = n, 0, m ≠ n ∫ πcos mx cos nxdx = π, m = n,
π
∫π
π
sin mx cos nxdx = 0.
右端级数收敛吗?若收敛是否收敛于 右端级数收敛吗?若收敛是否收敛于f(x)?
f ( x)在 a, b]光滑: f ′( x )在[a , b]连续. [ 光滑: 连续. f ( x)在 a, b]按段光滑: [ 按段光滑:
f ( x )在[a , b]有定义,且至多有有限 个第一类 有定义, 间断点, 间断点, f ′( x )在 [a , b] 除有限个点外有定义且 连续,在这有限个点上 f ′( x ) 左右极限存在. 左右极限存在. 连续,
第, 古今往来,众多数学家一直在寻找用简单函数较好 地近似代替复杂函数的途径,除了理论上的需要外, 地近似代替复杂函数的途径,除了理论上的需要外, 它对实际应用的领域的意义更是不可估量. 它对实际应用的领域的意义更是不可估量. 在微积分发明之前,这个问题一直没有本质上的 在微积分发明之前, 突破. 突破. 熟知的简单函数:幂函数,三角函数. 熟知的简单函数:幂函数,三角函数.
π π
1 π bn = ∫π f ( x)sinnxdx π
( n = 1,2,3,L)
f(x)的傅里叶系数 的傅里叶系数
1 π ) an = π ∫π f ( x)cos nxdx, (n = 0,1,2,L 1 π bn = ∫π f ( x)sinnxdx, (n = 1,2,L) π 1 2π ) an = π ∫0 f ( x)cos nxdx, (n = 0,1,2,L 或 2 bn = 1 π f ( x)sin nxdx, (n = 1,2,L ) ∫0 π
《傅里叶级数》课件
傅里叶系数: a_n和b_n,可 以通过积分计算 得到
傅里叶级数的收 敛性:对于满足 一定条件的函数, 傅里叶级数收敛 于该函数
傅里叶级数的计算步骤
傅里叶级数的计算实例
实例:计算正弦函数的傅里 叶级数
计算步骤:确定周期、确定 频率、确定振幅、确定相位
傅里叶级数的定义:将周期函 数分解为无穷多个正弦和余弦 函数的和
傅里叶级数未来的研究方向与挑战
傅里叶级数的快速算法研究 傅里叶级数的应用领域拓展 傅里叶级数的理论研究与证明 傅里叶级数的计算复杂性与优化
感谢您的观看
汇报人:PPT
实例:计算余弦函数的傅里 叶级数
实例:计算三角函数的傅里 叶级数
实例:计算复杂函数的傅里 叶级数
傅里叶级数的应 用实例
信号处理中的应用
滤波器设计:傅里叶级数可以用于设计各种滤波器,如低通滤波器、高通滤波器等。 信号分析:傅里叶级数可以用于分析信号的频率成分,如分析信号的频谱、功率谱 等。
信号处理:傅里叶级数可以用于处理信号,如信号的压缩、增强、去噪等。
傅里叶级数的周期性
傅里叶级数是一种周期函数 周期性是傅里叶级数的基本性质之一 周期性是指函数在一定区间内重复出现 周期性是傅里叶级数在信号处理、图像处理等领域里叶级数的展开式
傅里叶级数的定 义:将周期函数 分解为无穷多个 正弦函数和余弦 函数的线性组合
傅里叶级数的展 开式:f(x) = a_0 + Σ[a_n * cos(nωx) + b_n * sin(nωx)]
数值分析中的应用
傅里叶级数在信号处理中的应用 傅里叶级数在图像处理中的应用 傅里叶级数在音频处理中的应用 傅里叶级数在金融数据分析中的应用
其他应用领域
傅里叶级数
2. 三角级数的一般形式
一般的三角级数为
取 1, 由于
A A i n ( n x ) 0 ns n
n 1
s i n c o s n x c o s s i n n x s i n ( n x ) n n n
a0 设 A0 , 2
A s i n a , A c o s b n n n n n n
最简单的周期运动,可用正弦函数
y A s i n ( x )
( 1 )
来描写。 由(1)所表达的周期运动称为简谐振动
初 相 角 , 其 中 A 振 幅 , 角 频 率 ,
简谐振动(1)的周期为
2 T
对于较为复杂的周期运动,常可以用几个 简谐振动
f ( x )cos nxdx ,
1
n0,1,2,
f ( x )sin nxdx
1
, n 1 , 2 ,
2. Fourier系数和Fourier级数 Euler―Fourier公式:
如 f 是以2 为周期 的函数 , 则
可换为
c 2
c
设函数 f ( x ) 在区间[ , ] 上可积,称公式
1 , s i n k x sinkxdx 0 ,
k 1 , 2 , ;
k , h 1 , 2 ,
s i n k x c o s h x d x s i n, k x c o s h x 1 s i n ( kh ) x s i n ( kh ) x d x 0, 2
傅里叶级数的定理
傅里叶级数的定理傅里叶级数是一种将周期函数表示为三角函数的级数展开形式的数学工具。
它是由法国数学家傅里叶在18世纪提出的,被广泛应用于物理学、工程学和信号处理等领域。
傅里叶级数的定理提供了一种将任意周期函数分解为正弦和余弦函数的方法,使得我们可以更好地理解和分析周期性的现象。
傅里叶级数的定理可以简单地表述为:任意一个周期为T的函数f(x)可以表示为一系列正弦和余弦函数的线性组合,即f(x) = a0 + Σ(an*cos(nωx) + bn*sin(nωx))其中an和bn是傅里叶系数,表示了函数f(x)中各个频率分量的振幅,ω=2π/T是角频率。
a0是直流分量,对应于频率为0的分量。
傅里叶级数的定理是基于正交函数的思想而来。
正交函数是指在某个区间上两两内积为0的函数。
在傅里叶级数中,正弦和余弦函数是互相正交的,因此可以通过内积运算来确定各个傅里叶系数的值。
傅里叶级数的定理在实际应用中具有重要意义。
首先,它可以将复杂的周期函数分解为一系列简单的正弦和余弦函数,使得我们能够更好地理解函数的频域特性。
其次,傅里叶级数的定理为信号处理提供了一种便捷的方法,可以对信号进行频谱分析和滤波处理。
此外,傅里叶级数还被广泛应用于图像处理、音频处理和通信系统等领域。
傅里叶级数的定理具有一些重要的性质。
首先,对于一个具有奇对称性或偶对称性的函数,其傅里叶级数只包含正弦函数或余弦函数。
其次,傅里叶级数的收敛性得到了严格的数学证明,即对于一个光滑的函数,其傅里叶级数可以收敛到原函数。
此外,傅里叶级数还满足线性性质,即两个函数的傅里叶级数之和等于它们的傅里叶级数之和。
傅里叶级数的定理虽然强大,但也有一些限制。
首先,傅里叶级数只适用于周期函数,对于非周期函数需要进行适当的处理才能使用傅里叶级数展开。
其次,傅里叶级数的展开系数需要通过积分计算,对于一些复杂的函数可能无法得到解析解,需要使用数值方法进行近似计算。
傅里叶级数的定理为我们理解和分析周期函数提供了一种有效的工具。
傅里叶级数的基本概念及其应用
傅里叶级数的基本概念及其应用傅里叶级数是一种将周期函数表示为正弦和余弦函数的无穷级数的方法。
在物理、工程学、计算机科学、信号处理和其他领域中,傅里叶级数的应用非常广泛。
一、傅里叶级数的计算方法假设f(x)是一个周期为2π的函数,即对于所有x,都有f(x+2π)=f(x)。
那么我们可以将f(x)表示为以下形式的傅里叶级数:f(x)=a0/2 + ∑[n=1→∞] an*cos(nx) + bn*sin(nx)其中,an和bn是系数,具体计算方法如下:an=1/π * ∫[0→2π] f(x)cos(nx) dxbn=1/π * ∫[0→2π] f(x)sin(nx) dx可以看到,傅里叶级数是一个从1到无穷大的无穷级数。
它由一个常数项a0/2和一系列正弦和余弦函数组成。
系数an和bn是根据函数f(x)在一个周期内的值计算而来。
二、傅里叶级数的应用傅里叶级数具有广泛的应用,以下是其中的几个例子:1. 信号处理在信号处理中,傅里叶级数被用来将一个周期性的信号分解成一系列正弦和余弦函数的和。
这些函数描述了信号在频域上的频率分量,从而使得信号可以被更容易地分析和处理。
2. 振动分析傅里叶级数还可以用来描述和分析振动。
例如,在调音中,傅里叶级数可以将任何一个音调分解成一组正弦和余弦函数。
这些函数描述了声音在频域上的频率成分,从而使得人们可以更好地理解和分析音调和音乐。
3. 电路分析在电路分析中,傅里叶级数可以用来分析周期性的电路信号。
例如,在交流电路中,傅里叶级数可以将一个周期性的电压或电流信号表示为一组正弦和余弦函数的和。
这些函数描述了信号在频域上的频率分量,从而使得工程师可以更好地理解和分析电路性能。
三、傅里叶级数的扩展除了傅里叶级数之外,还有许多基于原始傅里叶级数的扩展方法。
这些扩展方法不仅可以将非周期性函数表示为一组正弦和余弦函数的和,还可以通过傅里叶变换将非周期性信号表示为连续频率分量的积分。
这些方法被广泛地应用于信号处理、傅里叶光学、图像处理等领域。
傅里叶级数
a0 dx an cos nxdx bn sin nxdx 2 n 1 n 1
a0 2 a0 2
1 a0 f ( x )dx
傅里叶级数
§9.4 傅里叶级数
(2) 求ak .
a0 f ( x )cos kxdx 2
cos kxdx
[an cos nx cos kxdx bn sin nx cos kxdx ]
n 1
ak cos 2 kxdx ak ,
ak
f ( x )cos kxdx
1
( k 1, 2, 3,)
傅里叶级数
傅里叶级数
§9.4 傅里叶级数
傅里叶级数:以傅里叶系数为系数的三角级数.
a0 (a n cos nx bn sin nx ) 2 n1
问题:
a0 f ( x ) 条件 ? (a n cos nx bn sin nx ) 2 n1
傅里叶级数
§9.4 傅里叶级数
3、收敛条件 定理:若 f ( x ) 是以 2 为周期的周期函数,且在一个 周期内连续或只有有限个第一类间断点,则 f ( x ) 的傅 里叶级数收敛,并且
(1) 当 x 是 f ( x ) 的连续点时,级数收敛于 f ( x ) .
f ( x 0) f ( x 0) (2)当 x是 f ( x ) 的间断点时,收敛于 . 2
f ( 0) f ( 0) (3) 当 x为端点 x 时,收敛于 . 2
傅里叶级数
§8.4 傅里叶(Fourier)级数
π 1 l an= ∫ f ( x) cos n xdx,(n = 0,1,2,L) l −l l π 1 l bn= ∫ f ( x) sin n xdx,(n = 1,2,L) l −l l
例8.4.5设f ( x )是周期为4的函数, 且在[ −2, ]上的表达式为 2 0.当 − 2 ≤ x ≤ 0时; f ( x) = 1, 当0 ≤ x < 2时。 将f ( x )展开成傅里叶级数。
例8.4.1设方波函数y ( x )的周期为2π, 它在[ −π, π ]上的表达式为 − 1,−π ≤ x < 0; y( x) = 1,0 ≤ x < π . 把y ( x )展开成傅里叶级数.
− 2π
y
1
−π
O
π
-1
2π
x
设 f ( x )是周期为 2的同期函数 , 它在区间 ( −1,1]上定义为 2 , − 1 < x ≤ 0, f ( x) = 3 则 f ( x )的傅里叶级数在 x = 1处收敛于 x ,0 < x ≤ 1 .
例8.4.3在0 < x < 2π上把f ( x ) = x展开成傅里叶级数。
2.设f ( x )只在[0, π ]上有定义, 有满足收敛定理, 我们可以作以2π为周期的函数 F ( x ), 使得在(0, π )内,F ( x ) ≡ f ( x ), 然后将F ( x )展开成为傅里叶级数, 则在(0, π )上, 该傅里叶级数就是f ( x )在(0, π )上的傅里叶级数, 对于区间端点x = 0, x = π , 可根据 收敛定理判定基收敛性。 由于这里仅给出半个周期定义, 所以在作周期延拓时, 首先需定义[0, π ]上F ( x )的值, 这里可以用两种延拓方法来定义F ( x ) :
信号与系统课件--§4.2 傅里叶级数
an =0,展开为正弦级数。 例
▲ ■ 第 5页
3 .f(t)为奇谐函数——f(t) = –f(t±T/2)
此时 其傅里叶级数中 只含奇次谐波分量, 而不含偶次谐波分量 即 a0=a2=…=b2=b4=…=0
f(t)
0
T/2
T
t
4. f(t)为偶谐函数——f(t) = f(t±T/2) 此时 其傅里叶级数中 只含偶次谐波分量, 而不含奇次谐波分量 即 a1=a3=…=b1=b3=…=0
系数an , bn称为傅里叶系数
an 2 T
T
2 T 2
f (t ) cos( nt ) d t
bn
T
2
T 2 T 2
f (t ) sin( nt ) d t
可见, an 是n的偶函数, bn是n的奇函数。
▲ ■ 第 3页
其他形式
f (t ) A0 2
将上式同频率项合并,可写为n 1
1 2
An
2
n
| Fn |
2
直流和n次谐波分量在1电阻上消耗的平均功率之和。 n≥0时, |Fn| = An/2。 证明 这是Parseval定理在傅里叶级数情况下的具体体现。
▲
■
第 9页
bn An sin n
bn n arctan a n
n的偶函数:an , An , |Fn | n的奇函数: bn ,n
▲ ■ 第 8页
四、周期信号的功率——Parseval等式
周期信号一般是功率信号,其平均功率为
1 T
T 0
f (t )dt (
傅里叶级数
b
则称ϕ 与 ψ 在 [a , b] 上是正交的, 或在 [a , b]上具有正 上具有正 上是正交 正交的 交性. 由此三角函数系(4)在 交性 由此三角函数系 在 [ − π, π ] 上具有正交性 上具有正交性 正交性. 或者说(5)是正交函数系. 或者说 是正交函数系. 是正交函数系
山西大同大学数计学院
二、以 2π 为周期的函数的傅里叶级数
现应用三角函数系(5)的正交性来讨论三角级数 现应用三角函数系 的正交性来讨论三角级数(4) 的正交性来讨论三角级数 之间的关系. 与级数(4)的系数 的和函数 f 与级数 的系数 a0 , an , bn 之间的关系 定理15.2 若在整个数轴上 定理 a0 ∞ f ( x ) = + ∑ (an cos nx + bn sin nx ) (9) 2 n=1 且等式右边级数一致收敛, 则有如下关系式: 且等式右边级数一致收敛, 则有如下关系式: 1 π an = ∫ f ( x )cos nxdx , n = 0,1,2,L , (10a ) π −π 1 π bn = ∫ f ( x )sin nxdx , n = 1,2,L , (10b ) π −π
所产生的一般形式的三角级数. 所产生的一般形式的三角级数. 容易验证,若三角级数( )收敛, 容易验证,若三角级数(4)收敛,则它的和一定是一 为周期的函数. 个以 2π 为周期的函数. 关于三角级数( )的收敛性有如下定理: 关于三角级数(4)的收敛性有如下定理:
山西大同大学数计学院
定理 15.1 若级数 | a0 | ∞ + ∑ (| an | + | bn |). 2 n =1 收敛,则级数(4)在整个数轴上绝对收敛且一致收敛. (4)在整个数轴上绝对收敛且一致收敛 收敛,则级数(4)在整个数轴上绝对收敛且一致收敛. 对任何实数x, 证 对任何实数 ,由于
傅里叶级数理解傅里叶级数的概念和计算方法
傅里叶级数理解傅里叶级数的概念和计算方法傅里叶级数:理解傅里叶级数的概念和计算方法傅里叶级数是一种数学工具,用于将任意周期函数分解成一系列正弦和余弦函数的和。
它是由法国数学家傅里叶提出的,具有重要的物理和工程应用。
本文将介绍傅里叶级数的概念和计算方法。
一、傅里叶级数的概念傅里叶级数的核心思想是利用正弦和余弦函数的线性组合来表示周期函数。
对于一个周期为T的函数f(t),如果它满足一定条件(可积、狄利克雷条件等),则可以用以下公式表示:f(t) = a0 + Σ(an*cos(nωt) + bn*sin(nωt))其中,a0、an、bn是待确定的系数,n表示正整数,ω=2π/T是角频率。
a0表示直流分量,即周期函数在一个周期内的平均值。
an和bn表示交流分量,分别代表正弦和余弦函数的振幅。
二、傅里叶级数的计算方法1. 计算a0:将周期函数在一个周期内的积分除以周期T即可得到a0。
2. 计算an和bn:将周期函数与正弦或余弦函数相乘后在一个周期内积分,最后除以周期T即可得到an或bn。
3. 根据需要确定级数的取舍:当n趋向于无穷大时,傅里叶级数能准确地还原原始函数。
但实际应用中,通常会根据需要截断级数,只考虑前几项的和来逼近原函数。
三、傅里叶级数的应用傅里叶级数在物理和工程领域有广泛的应用。
以下是一些常见的应用领域:1. 信号处理:傅里叶级数可以将信号分解成不同频率的分量,用于信号滤波、降噪等处理。
2. 电路分析:傅里叶级数可以将电路中的周期性电信号转化为频域上的分布,用于电路分析和设计。
3. 通信系统:傅里叶级数是调制和解调过程的基础,用于信号的传输和接收。
4. 图像处理:傅里叶级数在图像压缩、频域滤波和图像识别等方面有重要应用。
四、总结傅里叶级数是将任意周期函数分解成正弦和余弦函数的和的数学工具。
通过计算待确定的系数,可以将周期函数用傅里叶级数表示。
傅里叶级数在物理和工程领域的应用广泛,包括信号处理、电路分析、通信系统和图像处理等。
一般周期的傅里叶级数
FFT具有高效性、稳定性和易于实现 等优点,是数字信号处理领域的重要 算法之一。
FFT广泛应用于语音识别、图像处理 、频谱分析、雷达和声呐信号处理等 领域。
小波变换(Wavelet Transform)
定义
小波变换是一种时频分析方法, 它通过小波基函数的伸缩和平移 来分析信号在不同尺度上的变化 特性。小波变换能够提供信号在 不同频率和时间尺度上的信息, 具有多分辨率分析的特点。
周期函数的傅里叶级数展开可以通过傅里叶变换来实现,傅里叶变换将 时域信号转换为频域信号,提供了一种分析信号频率成分的有效方法。
非周期函数的展开
非周期函数的特性
非周期函数没有固定的重复模式,其波形不具有周期性。
非周期函数的近似展开
对于非周期函数,傅里叶级数展开式中的正弦和余弦函数具有连续的频率,这些频率覆盖了整个频域。通过选取一定 数量的频率分量,可以对非周期函数进行近似展开。
三角恒等式
正弦和余弦函数的线性组合
对于任意的实数$a$和$b$,有$sin(a+b) = sin a cos b + cos a sin b$和$cos(a+b) = cos a cos b - sin a sin b$。
三角恒等式的应用
在傅里叶级数展开中,三角恒等式用于将一个复杂的周期函数表示为正弦和余弦函数的线性组合。
其中,a0、an和bn为常数,n为整数 ,Σ表示求和符号,x为自变量。
傅里叶级数的一般形式为:f(x) = a0 + Σ[(an * cos(nx)) + (bn * sin(nx))]
傅里叶级数的历史背景
傅里叶级数的起源可以追溯到18世纪 初,法国数学家让-巴蒂斯特·约瑟夫· 傅里叶在研究热传导问题时提出了该 理论。
傅里叶级数的理解
傅里叶级数的理解
一、傅里叶级数的定义
傅里叶级数是一种将周期函数表示为无穷级数的方法,它是由法国数学家约瑟夫·傅里叶在19世纪初提出的。
傅里叶级数是将一个周期函数表示为无穷个正弦函数和余弦函数的线性组合,其中每个正弦函数和余弦函数都具有一定的幅度和相位。
二、傅里叶级数的展开
傅里叶级数的展开是将一个周期函数表示为无穷个正弦函数和余弦函数的线性组合的过程。
三、傅里叶级数的三角形式
傅里叶级数的另一种表示形式是三角形式,它将每个正弦和余弦函数合并为一个三角函数形式。
这种形式更加简洁,并且可以更容易地看出函数的对称性和周期性。
四、傅里叶系数的计算
傅里叶系数的计算是傅里叶级数展开的关键步骤,它可以通过对函数的积分来得出。
五、傅里叶级数的收敛性
傅里叶级数是一个无穷级数,因此需要满足一定的条件才能收敛到原函数。
傅里叶级数
一、三角函数系的正交性 函数集合
{ 1, cos x , sin x , cos 2 x , sin 2 x ,..., cos nx , sin nx ,... }
称为三角函数系。 1、系中任意两个不同函数的乘积在区间[−π , π ] 上的积分为 0 , 这一性质称为三角函数系的 正交性。 2、 系中任一函数自己与自己的乘积在区间[−π , π ] 上的积分不为0。
ω
y 一列简谐振动, = An sin( nω t + ϕ n ) n = 0,1,2,... 2π 它们有公共周期 T = ω 2π 问: 给了一个复杂的波, 其周期为 , ω 能否将它表示为许多个简谐振动之和?
即:
f (t )
= ∑ An sin( nω t + ϕ n ) ?
n =0
∞
这一展开的物理意义是: 一个复杂的周期运动 可以分解成许多不同频率的简谐振动的叠加。 电工学中, 将这种展开称为 谐波分析 A0 sin ϕ 0 : f ( t ) 的直流分量 A1 sin(ωt + ϕ1 ) : f ( t ) 的一次谐波(或基波)
f ( x ) 的傅里叶系数, 简称傅氏系数。
以傅氏系数构成的三角级数
a0 + ∑ (an cos nx + bn sin nx ) 2 n =1
∞
称为函数 f ( x )的傅里叶级数, 简称傅氏级数。
说明
只要(2)(3)式中的积分存在, 就可求出
傅氏系数 a0、an、bn , ( n = 1,2,...) , 从而, 就得到函数 f ( x ) 的傅氏级数
2
( −1)n +1 cos nx + sin nx n
傅里叶级数
1
an
1
f ( x)cos nxdx
0
x
cos
nxdx
1
n2
2
(1
(1)n )
n 1, 2, 3, .... n0
1
bn f ( x)sin nxdx
1 0
(1)n1
x sin nxdx
n
(n 1, 2, 3, )
在 [ , )上应用收敛定理得:
当 x 时,
定义在[0, ]上的函数展开为Fourier级数: 设 f (x) 在[0, ]上有定义,
( 1 ) 要把 f ( x) 展成正弦级数 :
f ( x) x (0, ]
令 F ( x) 0
x0
---f ( x)的奇式延拓.
f ( x) x [ , 0)
则F( x)在[ , ]上为奇函数, F( x)的Fourier级数为
2
4x
例 6 把 f ( x) 2 x 在 (0, 2)内展成以4为周期的 2
正弦级数,并作出其和函数在[4, 4]上的图形.
解:把 f (x) 延拓成(2, 2)上的奇函数
an 0,
bn
2 l
l 0
f (x) sin n x dx
l
2
(1
x ) sin
n
x
dx
2
0
2
2
n
2 x 2 sin nx x (0, 2)
定理1 (Dirichlet(狄利克雷 )收敛定理)
设 f ( x)以2 为周期, 在[ , ]上满足:
1.连续或只有有限个第一类间断点, Dirichlet条件
2.只有有限个极值点,
则 f ( x) 的Fourier级数
傅里叶级数
得信号的傅立叶展开式为: 得信号的傅立叶展开式为:
f (t ) = 1 4 1 1 sin(Ωt ) + sin(3Ωt ) + sin(5Ωt ) + ⋯ + sin( nΩt ) + ⋯, n = 1,3,5,⋯ π 3 5 n
它只含一、 奇次谐波分量。 它只含一、三、五、…奇次谐波分量。
n
因为傅里叶系数 将
an b 和
n
Fn =
1 1 1 An e jϕn = ( An cos ϕ n + jAn sin ϕ n ) = (an + jbn ) 2 2 2
系数公式带入上式得
1 Fn = T
∫
T 2
−T 2
1 f (t ) cos(nΩt )dt − j T
∫
T 2
−T 2
f (t ) sin(nΩt )dt
0, 2 = [1 − cos(nπ )] = 4 nπ nπ ,
n = 2,4,6,⋯ n = 1,3,5,⋯
将系数代入下面的式子: 将系数代入下面的式子:
∞ a0 ∞ f (t ) = + ∑ an cos(nΩt ) + ∑ bn sin( nΩt ) 2 n =1 n =1
某函数是否为奇(或偶)函数不仅与周期函数 某函数是否为奇(或偶)函数不仅与周期函数 的波形有关 而且与时间坐标原点的选择 有关, 时间坐标原点的选择有关 的波形有关,而且与时间坐标原点的选择有关 如下图是三角波的偶函数。 。如下图是三角波的偶函数。 f (t )
T 1 − 2 T 2
0
f (t )
坐标原点左移
∑Aeϕe
n
n
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
an
1
f ( x) cos nxdx
x cos nx d x
1
0
1 x sin nx cos nx 0 1 cos n 2 n n n 2
机动 目录 上页 下页 返回 结束
, n 2k 1 1 cos n an ( k 1 , 2 , ) 2 n 0, n 2k 1 1 0 (1) n 1 bn f ( x) sin nx d x x sin nxdx n ( n 1, 2, ) 1 2 cos x sin x sin 2 x 2 4 2 1 1 2 cos 3x sin 3x sin 4 x 3 4 3 2 1 2 cos 5 x sin 5 x 5 5 ( x , x (2k 1) , k 0 , 1 , 2 , ) 0 ( ) 说明: 当 x (2k 1) 时, 级数收敛于
bn
f ( x ) sin nx d x
1
②
(n 1, 2 , )
机动
目录
上页
下页
返回
结束
定理 1. 组成三角级数的函数系 正交 , 即其中任意两个不同的函数之积在
上的积分等于 0 .
证:
cos k x cos n x d x
1 cos nx d x 1 sin nx d x 0
2
o
x
x cos nx sin nx x sin nx d x n n2 0 2 2 cos n ( 1) n 1 ( n 1 , 2 , 3 , ) n n
机动 目录 上页 下页
2
0
返回
结束
根据收敛定理可得 f (x) 的正弦级数:
1
1
2 x sin nx cos nx n n2
机动 目录 上页 下页
0
结束
返回
( 2 k 41)2 , n 2k 1 2 2 ( cos n 1 ) n 0 , n 2k ( k 1 , 2 , ) 1 f ( x ) sin nx d x 1 1 cos x 2 cos 3 x 2 cos 5 x 5 2 3
1
②
(n 1, 2 , )
由公式 ② 确定的
称为函数 的傅里
的傅里叶系数 ; 以
的傅里叶级数 .
叶系数为系数的三角级数 ① 称为
傅里叶 目录
上页
下页
返回
结束
定理3 (收敛定理, 展开定理) 设 f (x) 是周期为2的 周期函数, 并满足狄利克雷( Dirichlet )条件:
1) 在一个周期内连续或只有有限个第一类间断点;
( 1) n1 sin nx f ( x ) 2 o n n 1 1 1 2(sin x sin 2 x sin 3 x ) 2 3
级数的部分和
y
x
n=5 n=4 n=2 n=1 n=3
逼近 f (x) 的情况见右图.
a k cos 2 k x d x
(利用正交性)
ak
f ( x ) cos k x d x
1
( k 1 , 2 , )
类似地, 用 sin k x 乘 ① 式两边, 再逐项积分可得
bk
f ( x ) sin k x d x
1
( k 1 , 2 , )
2) 在一个周期内只有有限个极值点,
则 f (x) 的傅里叶级数收敛 , 且有
注意: 函数展成 傅里叶级数的条 件比展成幂级数 的条件低得多.
f ( x ) f ( x ) x 为间断点 , 2 其中 an , bn 为 f (x) 的傅里叶系数 . ( 证明略 )
简介 目录 上页 下页 返回 结束
1 1d x 2 cos n x d x
2
2
sin 2 n x d x
1 cos 2n x 1 cos 2n x 2 cos n x , sin n x 2 2
机动 目录 上页 下页 返回 结束
二、函数展开成傅里叶级数
机动 目ቤተ መጻሕፍቲ ባይዱ 上页 下页 返回 结束
例1. 设 f (x) 是周期为 2 的周期函数 , 它在 上的表达式为
1 , x 0 f ( x) 1, 0 x
将 f (x) 展成傅里叶级数. 解: 先求傅里叶系数
1
y
o
x
1
(1) cos nx d x
说明: 利用此展式可求出几个特殊的级数的和.
当 x = 0 时, f (0) = 0 , 得
机动
目录
上页
下页
返回
结束
三、正弦级数和余弦级数
1. 周期为2 的奇、偶函数的傅里叶级数 定理4 . 对周期为 2 的奇函数 f (x) , 其傅里叶级数为 正弦级数,它的傅里叶系数为
周期为2的偶函数 f (x) , 其傅里叶级数为余弦级数 ,
2 2
机动 目录 上页 下页 返回 结束
2 ( 2k 1) 2
定义在[– ,]上的函数 f (x)的傅氏级数展开法
周期延拓
F ( x)
f ( x) , f ( x 2k ) ,
傅里叶展开
x [ , )
其它
上的傅里叶级数
机动
目录
上页
下页
返回
结束
例3. 将函数
机动
1
目录
上页
下页
返回
结束
例2. 设 f (x) 是周期为 2 的周期函数 , 它在 y 上的表达式为 3 2 2 3 o
x
将 f (x) 展成傅里叶级数. 1 1 0 1 x2 0 解: a0 f ( x) d x x d x 2 2
cos(k n) x cos(k n) x d x 0 同理可证 : sin k x sin n x d x 0 ( k n ) cos k x sin n x d x 0
1 2
机动 目录 上页 下页 返回 结束
但是在三角函数系中两个相同的函数的乘积在 上的积分不等于 0 . 且有
(谐波函数)
A : 为振幅 : 为角频率
Φ : 为初相
机动 目录 上页 下页 返回 结束
想法: 复杂的周期运动 :
An sin n cos n t An cos n sin n t
令
(谐波迭加)
an An sin n , bn An cos n ,
a0 (a n cos n x bn sin n x ). 得函数项级数: 2 n 1
定理 2 . 设 f (x) 是周期为 2 的周期函数 , 且
a0 f ( x ) (a n cos nx bn sin nx ) 2 n 1
①
右端级数可逐项积分, 则有
b 1 f ( x ) sin nx d x ( n 1 , 2 , ) n
机动
目录
上页
下页
返回
结束
a0
1
a0 f ( x ) d x f ( x ) (an cos nx bn sin nx ) 2 n 1
a0 f ( x ) cos k x d x cos kx d x 2 an cos kx cos nx d x bn cos kx sin nx d x n 1
级数 . 解: 将 f (x)延拓成以 2为周期的函数 F(x) , 则
展成傅里叶
y
o
x
a0
2 x 2 0 1 1 a n F ( x ) cos nx d x f ( x ) cos nx dx
2
F ( x)d x f ( x)d x
0
1
1
0
1 cos nx d x
0
( n 0 , 1 , 2 , )
机动 目录 上页 下页 返回 结束
(1) sin nx d x
0
0
1
1
0
1 sin nxdx
2 1 cos nx 1 cos nx n 1 cos n n 0 n 4 2 n , 当 n 1 , 3 , 5 , 1 ( 1)n n 0 , 当n 2 , 4 , 6 , 4 1 1 f ( x ) sin x sin 3 x sin( 2k 1) x 3 2k 1 ( x , x 0 , , 2 , )
机动 目录 上页 下页 返回 结束
sin 3 x sin 5 x sin 7 x sin 9 x f ( x ) sin x ] 3 5 7 9
说明: 1) 根据收敛定理可知,
4
1
y
o
x
11 时,级数收敛于 0 2