八年级数学分式的加减
数学八年级上册15.2.2分式的加减(共24张PPT)
1 异分母分数相加减,先通分, 6 变为同分母的分数,再加减 .
请计思算考
1 2b
1 3d
(d 5 b b6dFra bibliotek),1 2b
1 d3
(
d 1b b6d
);
类比:异分母的分式应该如何加减?
11
bd
1 1 异分母分式相加减 bd
d b d b 分式的通分 bd bd bd bd 依据:分式基本性质
解:原式=
x
2 1
x x
1 1
2 (x 1) = x 1
= 3 x; x 1
分母不同,先 化为同分母.
注意:(1-x)=-(x-1)
(2) 1 1 ; 2 p 3q 2 p 3q
解:原式= 2p 3q 2p 3q (2p 3q)(2p 3q) (2 p 3q)(2 p 3q)
(2 p 3q) (2 p 3q) (2 p 3q)(2 p 3q)
人教版 数学 八年级 上册
掌握分式的加减运算法则并运用其进行计算. 能够进行异分母的分式加减法运算.
观察下列分数加减运算的式子,你想到了什么?
1 2 1 2 3 55 5 5
1 2 12 1 55 5 5
1 2 ?1 2 aa a
1 2 ?1 2 x2 x2 x2
a 2 ?a 2 x 1 x 1 x 1
a2 a2 1 a 1
1 a 1
阅读下面题目的计算过程.
x3 x2 1
2 1
x
x
x3
1 x
1
x
2 x 1 1 x 1
①
= x 32x 1
②
= x32x2
③
= x 1
八年级数学人教版上册第15章分式15.2.2分式的加减(图文详解)第1课时
= 5a2b 3 3a2b 5 8 a2b ab2
= a2b ab2
=
a b
把分子看作一 个整体,先用 括号括起来!
注意:结果要化 为最简分式!
八年级上册第15章分式
1.直接说出运算结果
(1) m x
y x
c x
m y x
c
(2)
m 2abc
n 2bca
d 2cab
八年级上册第15章分式
3.猜一猜, 同分母的分式应该如何加减? 【同分母的分数加减法的法则】 同分母的分数相加减,
分母不变,把分子相加 减. 【同分母的分式加减法的法则】 同分母的分式相加减, 分母不变,把分子相加减. 即: a b a b cc c
八年级上册第15章分式
例1 计算:
xy
八年级上册第15章分式
( 2)
1 2 a 1 1 a2
解:原式
1 2 a 1 a2 1
1
2
a 1 (a 1)(a 1)
a 1
2
(a 1)(a 1) (a 1)(a 1)
a 1 (a 1)(a 1)
1 a1
八年级上册第15章分式
例2 计算 (1) 解:原式
八年级上册第15章分式
(2)a22a
4
a
1
2
a2 -4 能分解 :
解:原式
(a
2a 2)(a
2)
(a
a2 2)(a
2)
2a (a 2) (a 2)(a 2)
2a a 2 (a 2)(a 2)
人教版数学八年级上册15.2.2分式的加减(第2课时)教学设计
在学生掌握了分式加减法的基本知识后,我会设计一些课堂练习题,让学生独立完成。这些练习题将涵盖不同难度层次,以便满足不同学生的学习需求。
在学生完成练习题后,我会挑选部分学生的答案进行展示和讲解,针对共性问题进行解答,帮助学生巩固所学知识。
(五)总结归纳
课堂最后,我会组织学生进行总结归纳。首先,让学生回顾本节课所学的分式加减法的运算规则,总结通分、简化分式等关键步骤。然后,我会提问学生:“通过本节课的学习,你们觉得自己在哪些方面有了提高?还有哪些疑问和困惑?”
三、教学重难点和教学设想
(一)教学重难点
1.教学重点:
-理解并掌握分式加减法的运算规则。
-能够将复杂分式简化为最简形式,并进行加减运算。
-学会根据实际问题构建分式加减模型,解决具体问题。
这些重点内容是学生形成分式加减知识体系的基础,也是提高学生数学能力的关键。
2.教学难点:
-异分母分式的加减运算,特别是通分过程中的技巧和方法。
-分式的简化,尤其是含有复杂多项式的分式的化简。
-将实际问题转化为分式加减运算的过程,需要学生具备较强的抽象思维和数学建模力。
针对难点内容,教学中需要设计梯度性、层次性的教学活动,帮助学生逐步突破。
(二)教学设想
1.创设情境,激发兴趣:
-通过生活中的实例,如购物时计算折扣、比较不同物品的价格等,引出分式加减运算的实际意义,激发学生的学习兴趣。
5.总结反思,形成策略:
-在课堂结束前,组织学生进行自我反思,总结分式加减运算的技巧和方法,形成自己的解题策略。
6.创新评价,鼓励进步:
-采用多元化的评价方式,如口头提问、书面作业、小组展示等,全面评估学生的学习效果,鼓励学生的进步。
15.2.2.1 分式的加减 人教版八年级数学上册课件
类比异分母分数加减法,异分母分式加减法如何计算?
请思考 1 + 1 = ( d +b) b d bd
1 - 1 =( d -b) b d bd
1+1 bd
=d+b bd bd
= d +b bd
1-1
异分母分式相加减
bd
分式的通分
=d -b bd bd
依据:分式基本性质 转化 同分母分式相加减
第十五章 分式
15.2.2.1 分式的加减
学习目标
1.掌握分式的加减运算法则并运用其进行计算. 2.能够进行异分母的分式加减法运算.
合作探究
问题1:甲工程队完成一项工程需n 天,
乙工程队要比甲队多用3天才能完成这项工程, 两队共同工作一天完成这项工程的几分之几? (1)甲工程队一天完成这项工程的几分之几? (2)乙工程队一天完成这项工程的几分之几? (3)甲乙两队共同工作一天完成这项工程的几分之几?
增长率
=
本次数据 - 上次数据 上次数据
S3 - S2 - S2 - S1
S2
S1
新知小结 同分母分式的加减法则
同分母分式相加减, 分母不变,把分子相加减
上述法则可用式子表示为
a ± b = a+b cc c
观察下列分数加减运算的式子,你想到了什么?
1+ 2 = 3 55 5
1 - 2 =1-2 =- 1 55 5 5
= 3m+3n n-m
3. 化简
的结果为( C )
4.先化简,再求值::
,其中x=2016.
课堂总结
解:原式 = 1×(2 p - 3q) + 1×(2 p+3q) (2 p+3q)(2 p - 3q) (2 p - 3q)(2 p+3q)
人教版数学八年级上册教学设计15.2.2《分式的加减》
人教版数学八年级上册教学设计15.2.2《分式的加减》一. 教材分析《分式的加减》是人教版数学八年级上册第15章的一部分,这部分内容是学生在学习了分式的概念、分式的乘除的基础上进一步学习的。
分式的加减是分式运算的重要组成部分,也是学生进一步学习代数式运算的基础。
二. 学情分析学生在学习本节内容之前,已经掌握了分式的概念、分式的乘除,对代数式运算有一定的了解。
但是,学生对分式的加减运算可能存在理解上的困难,特别是对于分母不同的情况。
因此,在教学过程中,需要引导学生理解分式加减的实质,掌握相应的运算技巧。
三. 教学目标1.理解分式加减的运算规则,掌握分式加减的运算方法。
2.能够正确进行分式的加减运算,解决实际问题。
3.培养学生的逻辑思维能力,提高学生的数学素养。
四. 教学重难点1.重点:分式加减的运算规则和运算方法。
2.难点:理解分式加减的实质,解决实际问题。
五. 教学方法采用问题驱动法、案例教学法、合作学习法等多种教学方法,引导学生通过自主学习、合作交流,掌握分式的加减运算。
六. 教学准备1.教学PPT2.教学案例七. 教学过程1.导入(5分钟)通过一个实际问题引入分式的加减运算,激发学生的学习兴趣。
2.呈现(10分钟)呈现分式的加减运算规则,引导学生理解分式加减的实质。
3.操练(10分钟)学生分组进行练习,教师巡回指导,帮助学生掌握分式加减的运算方法。
4.巩固(10分钟)出示一些分式加减的题目,让学生独立完成,巩固所学知识。
5.拓展(10分钟)出示一些综合性的题目,让学生进行解答,提高学生的解题能力。
6.小结(5分钟)教师引导学生总结本节课所学内容,巩固知识点。
7.家庭作业(5分钟)布置一些分式加减的练习题,让学生进行巩固。
8.板书(5分钟)教师根据教学内容,进行板书设计,方便学生理解和记忆。
在教学过程中,要注意关注学生的学习情况,对于学生的错误要及时进行纠正,引导学生正确理解分式的加减运算。
同时,要注重培养学生的逻辑思维能力,提高学生的数学素养。
八年级数学分式的加减法
解析
观察分子和分母,可以发 现它们的公因式为 x(x + 2)。将分子和分母分别除 以公因式,得到最简分式 为 2。
例题2
求分式 (x^2 - 4) / (x - 2) 在 x = 3 时的值。
解析
首先观察分式,发现分子 可以因式分解为 (x + 2)(x - 2),分母为 x - 2。将分 子和分母约去公因式 x - 2, 得到最简分式为 x + 2。然 后将 x = 3 代入最简分式 中,得到结果为 5。
对于包含多个项的分式加减法,可以 先将能凑成整数的项分组进行运算, 简化计算过程。
注意
在运算过程中,要时刻保持表达式的 简洁性,及时化简中间结果。
03 分式化简与求值方法
分式化简步骤和技巧
找出分子和分母的公因式
检查结果
在化简分式前,首先需要找出分子和分母 中的公因式。这可以通过观察分子和分母 中的各项,找出它们的公共因子来实现。
计算结果未化简到最简形式
在得出计算结果后,学生容易忽视将结果化简到最简形式的要求, 导致答案不标准或不完整。
练习题及参考答案
1. 计算:(1/x) + (1/y) = ?
【分析】本题考查异分母分式的加法运算。首先观察两个分式的分母不同,因此 需要先通分。通分时可以选择两个分母的最小公倍数xy作为通分后的分母,然后 将分子进行相应的变化,最后进行加法运算。
分式的加减法法则
同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母 的分式,再加减。
易错难点剖析
忽视分式有意义的条件
在解决分式问题时,学生容易忽视分母不能为零的条件,导致计 算错误或得出无意义的结论。
通分时忽视符号变化
八年级数学分式的加减
即
∴
2 R1 R1 50 R1 50R1 R 2 R1 50 2 R1 50
2 R1 5 0 R1 R1 5 0 1 2 R1 50 R R1 R1 50
例8 计算:
1 a b 2a b a b b 4
4a 1 a 4 2 b a b b b 4a 2 4a 4a 2 4aa b 2 2 2 2 b a b b b a b b a b 4a 4a 4ab 4ab 2 2 b a b b a b 4a 2 ab b
2 2 2
2
练习:
1、
x y x 2y 2 2 y 2x y x
2
2
2
2、
x 1 2x 1 1 x x 1 x 1 x 2、分式混合运算顺序
作业
习题16.2
R1欧姆,又知CBD支路的电阻R2比R1大50欧姆, 根据电学有关定律可知总电阻R与R1 、R2满足关系
1 1 1 式 ,试用含有R1的式子表示总电阻R。 R R1 R2 A C D
解:∵
1 1 1 1 B 1 R R1 R2 R1 R1 5 0 R1 5 0 R1 R1 R1 5 0 R1 R1 5 0
练习:
1、 ( 1)
x 1 1 x x
a 2a 3a ( 2) b 1 b 1 b 1
1 1 3 2m n ( 2 ) 2 2 2 ( 1) 2、 2c d 3cd 2m n 2m n
( 3)
a 1 2 2 a b ab
例7在下图的电路中,已测定CAD支路的电阻是
人教版八年级上册数学15.2.2分式的加减第1课时分式的加减课件
2.计算.
(1) x 1 x ; x2 1 1 x
(2)
4a2 4a
2b
b
4a2 b ; 4a2b
解:(1)原式=
x
x 1
1 x
1
x
x x 1 1 x
1
x 1 x x 1 x 1 x 1
x 1; x 1
(2)原式 8a2 2 ; 4a2b b
2.计算.
(1)
1 2c2d
1; 3cd 2
(2) a2 a 1; a 1
解:(1) 1 2c2d
1 3cd 2
3d 6c2d 2
2c 6c2d 2
3d 2c . 6c2d 2
4.计算:
【选自教材P141 练习 第2题(1)(4)】
(1)
1 2c2d
1; 3cd 2
(2) a2 a 1; a 1
(2) a2 a 1 a2 a a 1 a 1
解决问题
问题3 甲工程队完成一项工程需n 天,乙工程队要比甲
队多用3天才能完成这项工程,两队共同工作一天完成这项
工程的几分之几?
解: 1 + 1 = n+3 + n = 2n+3 . n n+3 (n n+3) (n n+3) (n n+3)
即两队共同工作一天完成这项工程的
2n+3 . (n n+3)
S1S2
S1S2
即2011年与2010年相比,森林面积增长率提高了
S1S3 -S22 S1S2
.
< 针对训练 >
【选自教材P141 练习 第2题(2)(3)】
计算:
(1) 3 2m n ;(2) a 1 .
初二数学分式的加减法
分式的加减法(一)学习目标1.能利用分式的基本性质通分.2.会进行同分母分式的加减法.3.会进行异分母分式的加减法.要点梳理要点一、同分母分式的加减同分母分式相加减,分母不变,把分子相加减;上述法则可用式子表为:.要点诠释:(1)“把分子相加减”是把各分式的分子的整体相加减,即各个分子都应用括号,当分子是单项式时,括号可以省略;当分子是多项式时,特别是分子相减时,括号不能省,不然,容易导致符号上的错误.(2)分式的加减法运算的结果必须化成最简分式或整式.要点二、分式的通分与分数的通分类似,利用分式的基本性质,使分式的分子和分母同乘适当的整式,不改变分式的值,把分母不同的分式化成相同分母的分式,这样的分式变形叫做分式的通分.要点诠释:(1)通分的关键是确定各分式的最简公分母:一般取各分母所有因式的最高次幂的积作为公分母.(2)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数与相同字母的最高次幂的乘积;如果各分母都是多项式,就要先把它们分解因式,然后再找最简公分母.(3)约分和通分恰好是相反的两种变形,约分是对一个分式而言,而通分则是针对多个分式而言.要点三、异分母分式的加减异分母分式相加减,先通分,变为同分母的分式,再加减.上述法则可用式子表为:.要点诠释:(1)异分母的分式相加减,先通分是关键.通分后,异分母的分式加减法变成同分母分式的加减法.(2)异分母分式加减法的一般步骤:①通分,②进行同分母分式的加减运算,③把结果化成最简分式.要点四、分式的混合运算与分数的加、减、乘、除混合运算一样,分式的加、减、乘、除混合运算,也是先算乘、除,后算加、减;遇到括号,先算括号内的,按先小括号,再中括号,最后大括号的顺序计算. 分式运算结果必须达到最简,能约分的要约分,保证结果是最简分式或整式.要点诠释:(1)正确运用运算法则:分式的乘除(包括乘方)、加减、符号变化法则是正确进行分式运算的基础,要牢牢掌握.(2)运算顺序:先算乘方,再算乘、除,最后算加、减,遇有括号,先算括号内的.(3)运算律:运算律包括加法和乘法的交换律、结合律,乘法对加法的分配律.能灵活运用运算律,将大大提高运算速度.典型例题类型一、同分母分式的加减1、计算:(1);(2);【变式】计算:(1);(2).类型二、异分母分式的加减2、计算:(1);(2);(3)【变式】计算:(1);(2)类型三、分式的加减运算的应用3、请先化简,再选取一个使原式有意义而你又喜欢的数代入求值.类型四、分式的混合运算4、计算:(1);(2)巩固练习一.选择题1.已知()A.B.C.D.2.等于()A.B.C.D.3.的计算结果是()A.B.C.D.4. 化简,其结果是()A. B. C. D. 5.等于()A.B.C.D.6.等于()A.B.C.D.1二.填空题7. 分式的最简公分母是______.8.分式的最简公分母是______.9.计算的结果是____________.10. ____________.11. _________.12.若=2,=3,则=______.三.解答题13. 计算下列各题:(1)(2)(3)(4)14.已知,用“+”或“-”连结M、N,有三种不同的形式:M+N、M-N、N-M,请你任选其中一种进行计算,并化简求值,其中∶=5∶2.15.已知,求代数式的值.【答案与解析】解:(1);(2)【总结升华】本例为同分母分式加减法的运算,计算时注意运算符号,结果一定要化简.【变式】计算:(1);(2). 答案与解析【答案】解:(1).(2)。
八年级-人教版-数学-上册-第3课时-分式的加减
2011 年的森林面积增长率是_____S_2______,
S2 S1
2010 年的森林面积增长率是_____S_1______, 2011 年与2010年相比,森林面积增长率提高了___S_3_S_2S_2___S_2 S_1_S_1_.
3.观察上述两个问题中列出的式子
1 1 n n3
分析:本题中“森林面积增长率”的含义是什么?
本年的森林面积增长率等于本年与上年的森林面积之差再除以
上年的森林面积,即
本年的森林面积-上年的森林面积
本年的森林面积增长率=
.
上年的森林面积
2.2009年、2010 年、2011 年某地的森林面积(单位:km2)分 别是 S1,S2,S3,2011 年与2010年相比,森林面积增长率提高了多 少?
例3 你能应用本节课所学知识解决“问题 1”和“问题 2”吗?
2.2009 年、2010 年、2011年某地的森林面积(单位:km2)
分别是 S1,S2,S3,2011 年与2010 年相比,森林面积增长率提高 了多少?
解: S3 S2 S2 S1
S2
S1
S1(S3 S2 ) S2 (S2 S1) S1S3 S1S2 S22 S1S2 S1S3 S22 .
若加减运算中含有整式,可将其分母视为 1,然后进行通分.
归纳
计算异分母的分式相加减的步骤 (1)通分:将异分母的分式转化成同分母的分式; (2)加减:写成分母不变、分子相加减的形式; (3)合并:分子去括号、合并同类项; (4)约分:分子、分母约分,将结果化成最简分 式或整式.
例3 你能应用本节课所学知识解决“问题 1”和“问题 2”吗?
1
甲工程队一天完成这项工程的______n______,
精品 八年级数学上册 分式同步讲义 分式的加减运算 同步练习题
4.下列算式中正确的是( A.
b c bc a a 2a
b c bd a d ac
C.
b c bd a d ac
) D. )
D.
b c bc ad a d ac
5.x 克盐溶解在 a 克水中,取这种盐水 m 克,其中含盐( A.A.
mx 克 a
x2 x 6
(2)
x 1 3( x 1) 2 x4 x2
(3) x y
4 xy 4 xy x y x y x y
(4) a
a a 2 2a 1 ; a 1 a 2 4 a 2
22.若
(4)
n2 4mn m 2 2mn mn mn mn
例 2.计算下列各分式: (1)
3 1 2x 2 x2 2 x x 4
(2)
2x 2 x 1 x 1
(3)
1 1 2 4 2 1 x 1 x 1 x 1 x 4
(4)
x 2 3x 6 x 3x 2
2
x 2 5x 2 x 5x 6
2
例 3.先化简,再求值:
7 1 2 2 2 1 , 其 中 x - . 2 x x x
第 1 页 共 8 页
八年级数学上册 同步讲义
例 4.已知
x5 A B ,求代数式 A 3 B 4 A 2 B 2 4 AB 3 的值. ( x 1)( x 3) x 1 x 5
a3 2 -a -a-1= a 1 x 2 4x x2பைடு நூலகம்- 2 = ( x 2)( x 4) x 4
人教版八年级数学上册教案《分式的加减》
《分式的加减》◆教材分析教学对象是八年级学生,从知识的角度看,在学习本章前,学生已经掌握了用字母表示数、列简单代数式,会把一些简单的实际问题中的数量关系用代数式表示出来,并会进行分式的乘除运算,基本掌握通分,能够确定几个分式的最简公分母;从数学活动经验、思维特征、学习习惯看,通过对分式的前期研究,运用类比分数的有关概念及性质、运算联想引申出分式的有关概念及性质、运算得习惯已基本形成。
通过第三学段三个学期的学习,思维水平也有了进一步地提升,理性思考能力明显提高,具备类比分数的加减运算法则探究出分式加减运算法则的能力。
但经验性思维依然占主导地位,部分学生的学习积极性、主动性不强,加之经历分数运算、因式分解的两次分流,分式加减运算既是前面代数运算的综合,又是分式概念及运算的难点内容之一,因此,对异分母分式加减和运用分式加减法则运算法则之后所涉及的诸如正确进行整式运算、分式化简等易出现差错,教学中应通过训练加以强化。
◆教学目标【知识与能力目标】1.熟练掌握同分母分式的加减运算2.掌握异分母分式的加减法则及通分的过程与方法.3. 会进行简单的分式的四则混合运算.【过程与方法目标】1、体验知识的化归,提高思维的灵活性,培养学生整体思考和分析问题的能力.2、经历分式混合运算法则的探究过程,进一步领会类比的数学思想.【情感态度价值观目标】让学生充分参与到数学学习的过程中来,使学生在整体思考中开阔视野,养成良好品格,渗透化归对立统一的辩证观点. 【教学重点】1.分式的加减法.2.熟练地进行分式的混合运算.【教学难点】1.异分母分式的加减法及简单的分式混合运算.2.熟练地进行分式的混合运算.一、引入新课(课件展示)问题1:甲工程队完成一项工程需n 天,乙工程队要比甲工程队多用3天才能完成这项工程,两队共同工作一天完成这项工程的几分之几?一个工程问题,题意比较简单,只是用字母n 天来表示甲工程队完成一项工程的时间,乙工程队完成这一项工程的时间可表示为n+3天,两队共同工作一天完成这项工程的311++n n .这样引出分式的加减法的实际背景 问题2:2010年,2011年,2012年某地的森林面积(单位:公顷)分别是S1,S2,S3,2012年与2011年相比,森林面积增长率提高了多少?问题2的目的与问题1一样,从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.让学生回忆分数的加减法法则,类比分数的加减法,分式的加减法的实质与分数的加减法相同,请学生自己说出分式的加减法法则.分式的加减法的实质与分数的加减法相同,你能说出分式的加减法法则?请同学们说出2243291,31,21xy y x y x 的最简公分母是什么?你能说出最简公分母的确定方法吗?二、讲授新课分式的加减法法则:同分母分式相加减,分母不变,把分子相加减。
八年级数学知识点:分式的加减
八年级数学知识点整理:分式的加减分式的四则运算1.同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减。
用字母表示为:a/c±b/c=(a±b)/c2.异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进展计算。
用字母表示为:a/b ±c/d=(ad±cb)/bd3.分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
用字母表示为:a/b * c/d=ac/bd4.分式的除法法则:(1).两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。
a/b÷c/d=ad/bc(2).除以一个分式,等于乘以这个分式的倒数:a/b÷c/d=a/b*d/c不管什么样的计算,其过程都是需要大家急躁和细心的。
一、约分与通分:1.约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分;分式约分:将分子、分母中的公因式约去,叫做分式的约分。
分式约分的依据是分式的根本性质,即分式的分子、分母都除以同一个不等于零的整式,分式的值不变。
约分的方法和步骤包括:(1)当分子、分母是单项式时,公因式是一样因式的最低次幂与系数的最大公约数的积;(2)当分子、分母是多项式时,应先将多项式分解因式,约去公因式。
2.通分:依据分式的根本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通。
分式通分:将几个异分母的分式化成同分母的分式,这种变形叫分式的通分。
(1)当几个分式的分母是单项式时,各分式的最简公分母是系数的`最小公倍数、一样字母的最高次幂的全部不同字母的积;(2)假如各分母都是多项式,应先把各个分母按某一字母降幂或升幂排列,再分解因式,找出最简公分母;(3)通分后的各分式的分母一样,通分后的各分式分别与原来的分式相等;(4)通分和约分是两种截然不同的变形.约分是针对一个分式而言,通分是针对多个分式而言;约分是将一个分式化简,而通分是将一个分式化繁。
八年级数学分式加减知识点
八年级数学分式加减知识点在初中数学中,分式加减是一个非常重要的知识点,也是难点之一。
分式加减需要掌握一定的知识和技巧,下面我们一起来详细了解一下。
一、基本概念先来回顾一下分式的基本概念:分式是由分数线分开的两个代数式,其中分母不能为零。
分子是分式的上部,分母是分式的下部。
例如,5/6 中的 5 是分子,6 是分母。
分式除法可以转化为乘法。
例如,a/b ÷ c/d 可以转化为 a/b ×d/c。
二、分式加减1.分母相同的分式加减:如果两个分式的分母相同,那么只需要将它们的分子相加或相减,然后将结果的分子写在原来的分母下面即可。
例如,(1/2) + (3/2) = (1+3)/2 = 4/2 = 2。
(2/5) - (1/5) = (2-1)/5 = 1/5。
2.分母不同的分式加减:如果两个分式的分母不同,那么需要将它们的分母化为相同的通分式,然后再将分子相加或相减,最后将结果的分子写在通分母下面。
例如,(1/2) + (1/3),通分式为 6。
将 (1/2) 化为 (3/6),将 (1/3) 化为 (2/6)。
(3/6) + (2/6) = 5/6。
再来看一个例子,(2/5) + (3/4)。
通分式为 20,将 (2/5) 化为 (8/20),将 (3/4) 化为 (15/20)。
(8/20) + (15/20) = 23/20。
3.含有整数的分式加减:如果分式中含有整数,那么首先需要将整数转化为分式,然后再进行加减运算。
例如,(1/2) + 3 = (1/2) + (6/2) = 7/2。
(2/3) - 4 = (2/3) - (12/3) = -10/3。
4.分式加减的混合运算:如果分式加减涉及到混合运算,那么需要先将混合数转化为带分数形式,然后再进行加减运算。
例如,1 1/3 + (1/2) - 2/3。
先将 1 1/3 转化为 4/3,然后化通分得到 (16/12) + (6/12) - (8/12) = 14/12 = 7/6。
北师大版数学八年级下册5.3《分式的加减法》教案
(4)实际问题的应用:将实际问题转化为分式模型时,学生可能会对问题情境的理解和分析出现偏差。
举例:在速度问题中,学生可能不理解速度与时间、路程之间的关系,从而错误地建立分式模型。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解分式加减法的基本概念。分式加减法是指对分母相同的分式进行加减运算,或者通过通分将分母不同的分式转化为分母相同的分式后再进行加减运算。它在解决实际问题中有着广泛的应用,如计算合并速度、比较不同单位下的量等。
2.案例分析:接下来,我们来看一个具体的案例。假设有两辆汽车,一辆以速度\( \frac{60}{2} \)公里/小时行驶,另一辆以\( \frac{50}{3} \)公里/小时行驶,如何计算它们的总速度?通过这个案例,我们将学习如何运用分式加减法解决实际问题。
北师大版数学八年级下册5.3《分式的加减法》教案
一、教学内容
本节课选自北师大版数学八年级下册第五章第三节《分式的加减法》。教学内容主要包括以下方面:
1.掌握分式加减法的运算规则。
2.能够正确计算分式加减法,并进行化简。
3.了解分式加减法在实际问题中的应用。
具体内容包括:
(1)同分母分式的加减运算。
(2)异分母分式的加减运算,需要先通分,再进行加减。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。比如,通过模拟两辆车的行驶,演示如何通过分式加减法计算总速度。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“分式加减法在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。