数学分析第一章 实数集与函数
华东师大第五版数学分析第一章第一节
令 = − , 则为正数且 = + , 但这与假设 < + 相矛盾. 从而
必有 ≤ .
1.2 绝对值与不等式
,
≥ 0,
定义: = ቊ
−, < 0.
实数绝对值的性质:
➢ 正定性: = − ≥ 0; 当且仅当 = 0时有 = 0.
其中0 , 0 为非负整数, , ( = 1,2, ⋯ )为整数, 0 ≤ ≤ 9, 0 ≤
≤ 9, 若有
= ,
= 0,1,2, ⋯
则称与相等,记为 = ;若0 > 0 或存在非负整数,使得
= ( = 0,1,2, ⋯ ) 而+1 > +1 ,
• 实数具有阿基米德(Archimedes)性,即对任何, ∈ R, 若 > >
0, 则存在正整数, 使得 > .
• 实数集具有稠密性, 即任何两个不相等的实数之间必有另一个实
数, 且既有有理数,也有无理数.
• 实数集与数轴上的点有着一一对应关系.
例2 设, ∈ R. 证明:若对任何正数, 有 < + , 则 ≤ .
似分别规定为
= −0 . 1 2 ⋯ − 10− 与ҧ = −0 . 1 2 ⋯ .
注:
0 ≤ 1 ≤ 2 ≤ ⋯
ҧ0 ≥ ҧ1 ≥ ҧ2 ≥ ⋯
实数的不足近似与过剩近似是用有限小数研究无限小数的重要
工具.
命题
设 = 0 . 1 2 ⋯ 与 = 0 . 1 2 ⋯为两个实数,则 >
的等价条件是:存在非负整数,使得
《数学分析》第一章 实数集与函数
❖实数的性质
1.实数集R对加,减,乘,除(除数不为0)四则运算是 封闭的.即任意两个实数和,差,积,商(除数不为0) 仍然是实数. 2.实数集是有序的.即任意两个实数a, b必满足下 述三个关系之一: a < b, a = b, a > b .
由二项展开式
(1+ h)n 1+ nh + n(n 1) h2 + n(n 1)(n 2) h3 + + hn ,
2!
3!
有 (1+ h)n >上式右端任何一项.
今日作业 P4,3, 4, 6, 7
§1.2 数集·确界原理
一、区间与邻域 二、上确界、下确界
一、区间与邻域
1.集合: 具有某种特定性质的事物的总体.
❖实数的性质
3.实数集的大小关系具有传递性.即若a > b, b > c,则有
a>c. 4.实数具有阿基米德性 , 即对任何 a, b R, 若 b > a > 0
则存在正整数 n, 使得na > b.
5.实数集R具有稠密性.即任何两个不相等的实数之间必 有另一个实数,且既有有理数,也有无理数.
绝对值定义:
a, a0 | a | a , a < 0
从数轴上看的绝对值就是到原点的距离:
-a
a
0
绝对值的一些主要性质 1. | a | | a | 0 当且仅当 a 0 时 | a | 0 2 . -|a| a |a| 3. |a|< h -h < a < h ; | a | h h a h , h > 0 4. a b a b a + b 5. | ab || a | | b | 6. a | a | , b 0
数学分析(考研必看)
数学分析第一章实数集与函数§1.实数一、 实数及其性质1. 实数的定义:实数,是有理数和无理数的总称。
2. 实数的六大性质:①(四则运算封闭性):实数集R 对加、减、乘、除(除数不为0)四则运算封闭,即任意两个实数的和、差、积、商(除数不为0)仍然是实数。
②(有序性):实数集是有序的,即任意两个实数a, b 必满足以下三种关系之一:a<b 、a=b 、a>b 。
③(传递性):实数的大小关系具有传递性,即若a>b, b>c 则a>c 。
④(阿基米德性):实数具有阿基米德性,即对任何a, b ∈R, 若b>a>0,则存在正整数na>b.⑤(稠密性):实数集R 具有稠密性,即任意两个不相等的实数之间必有另外一个实数,且既有有理数也有无理数。
⑥实数集R 与数轴上点一一对应。
二、 绝对值与不等式1. 实数绝对值的性质: ①0;00a a a a =-≥==当且仅当时有 ②-a a a ≤≤ ③;a h h a h a h h a h <<=>-<<≤<=>-≤≤ ④a b a b a b -≤±≤+三角不等式⑤ab a b = ⑥(0)a a b b b=≠ §2数集·确界原理一、 区间与邻域1. 有限区间:开区间:{}x a x b <<记作(),a b ;闭区间:{}x a x b ≤≤记作[],a b ;半开半闭区间:{}x a x b ≤<记作[),a b ,{}x a x b <≤记作(],a b无限区间:(]{},a x a -∞=≤,(){},a x x a -∞=≤,(){},a x x a +∞=>,(){},x x R -∞+∞=-∞<<+∞=2. 邻域:设a R ∈,0>,满足绝对值不等式x a -<的全体实数x 的集合称为点a 的邻域,记作();U a 或写作()U a ,即有(){}();,U a x x a a a =-<=-+。
数学分析知识点总结
数学分析知识点总结第一章实数集与函数§1实数授课章节:第一章实数集与函数——§1实数教学目的:使学生掌握实数的基本性质.教学重点:(1)理解并熟练运用实数的有序性、稠密性和封闭性;(2)牢记并熟练运用实数绝对值的有关性质以及几个常见的不等式.(它们是分析论证的重要工具)教学难点:实数集的概念及其应用.教学方法:讲授.(部分内容自学)教学程序:引言上节课中,我们与大家共同探讨了《数学分析》这门课程的研究对象、主要内容等话题.从本节课开始,我们就基本按照教材顺序给大家介绍这门课程的主要内容.首先,从大家都较为熟悉的实数和函数开始.[问题]为什么从“实数”开始.答:《数学分析》研究的基本对象是函数,但这里的“函数”是定义在“实数集”上的(后继课《复变函数》研究的是定义在复数集上的函数).为此,我们要先了解一下实数的有关性质.一、实数及其性质1、实数.[问题]有理数与无理数的表示不统一,这对统一讨论实数是不利的.为以下讨论的需要,我们把“有限小数”(包括整数)也表示为“无限小数”.为此作如下规定:对于正有限小数其中,记;对于正整数则记;对于负有限小数(包括负整数),则先将表示为无限小数,现在所得的小数之前加负号.0表示为0=例:;利用上述规定,任何实数都可用一个确定的无限小数来表示.在此规定下,如何比较实数的大小?2、两实数大小的比较1)定义1给定两个非负实数,. 其中为非负整数,为整数,.若有,则称与相等,记为;若或存在非负整数,使得,而,则称大于或小于,分别记为或.对于负实数、,若按上述规定分别有或,则分别称为与(或).规定:任何非负实数大于任何负实数.2)实数比较大小的等价条件(通过有限小数来比较).定义2(不足近似与过剩近似):为非负实数,称有理数为实数的位不足近似;称为实数的位过剩近似,.对于负实数,其位不足近似;位过剩近似.注:实数的不足近似当增大时不减,即有;过剩近似当n增大时不增,即有.命题:记,为两个实数,则的等价条件是:存在非负整数n,使(其中为的位不足近似,为的位过剩近似).命题应用例1.设为实数,,证明存在有理数,满足.证明:由,知:存在非负整数n,使得.令,则r为有理数,且.即.3、实数常用性质(详见附录Ⅱ.).1)封闭性(实数集对)四则运算是封闭的.即任意两个实数的和、差、积、商(除数不为0)仍是实数.2)有序性:,关系,三者必居其一,也只居其一.3)传递性:,.4)阿基米德性:使得.5)稠密性:两个不等的实数之间总有另一个实数.6)一一对应关系:实数集与数轴上的点有着一一对应关系.例2.设,证明:若对任何正数,有,则.(提示:反证法.利用“有序性”,取)二、绝对值与不等式1、绝对值的定义实数的绝对值的定义为.2、几何意义从数轴看,数的绝对值就是点到原点的距离.表示就是数轴上点与之间的距离.3、性质1)(非负性);2);3),;4)对任何有(三角不等式);5);6)().三、几个重要不等式1、2、均值不等式:对记(算术平均值)(几何平均值)(调和平均值)有平均值不等式:即:等号当且仅当时成立.3、Bernoulli不等式:(在中学已用数学归纳法证明过)有不等式当且,且时,有严格不等式证:由且4、利用二项展开式得到的不等式:对由二项展开式有上式右端任何一项.[练习]P4.5[课堂小结]:实数:.[作业]P4.1.(1),2.(2)、(3),3§2数集和确界原理授课章节:第一章实数集与函数——§2数集和确界原理教学目的:使学生掌握确界原理,建立起实数确界的清晰概念.教学要求:(1)掌握邻域的概念;(2)理解实数确界的定义及确界原理,并在有关命题的证明中正确地加以运用.教学重点:确界的概念及其有关性质(确界原理).教学难点:确界的定义及其应用.教学方法:讲授为主.教学程序:先通过练习形式复习上节课的内容,以检验学习效果,此后导入新课.引言。
华东师范大学本科生数学分析教案
数学分析教案第一章 第一章 实数集与函数§1 实数(一) 教学目的:掌握实数的基本概念和最常见的不等式,以备以后各章应用. (二) 教学内容:实数的基本性质和绝对值的不等式. (1) 基本要求:实数的有序性,稠密性,阿基米德性. (2) 较高要求:实数的四则运算. (三) 教学建议:(1) 本节主要复习中学的有关实数的知识.(2) 讲清用无限小数统一表示实数的意义以及引入不足近似值与过剩近似值的作用.§2 数集.确界原理(一) 教学目的:掌握实数的区间与邻域概念,掌握集合的有界性和确界概念. (二) 教学内容:实数的区间与邻域;集合的上下界,上确界和下确界;确界原理.(1) 基本要求:掌握实数的区间与邻域概念;分清最大值与上确界的联系与区别;结合具体集合,能指出其确界;能用一种方式,证明集合 A 的上确界为 λ.即: ,,λ≤∈∀x A x 且 ,λ<∀a ∃0x 0,x A ∈a >;或 ,,λ≤∈∀x A x 且 ,,00A x ∈∃>∀ε ελ->0x .(2) 较高要求:掌握确界原理的证明,并用确界原理认识实数的完备性. (三) 教学建议:(1) 此节重点是确界概念和确界原理.不可强行要求一步到位,对多数学生可只布置证明具体集合的确界的习题.(2) 此节难点亦是确界概念和确界原理.对较好学生可布置证明抽象集合的确界的习题.§3 函数概念(一) 教学目的:掌握函数概念和不同的表示方法.(二) 教学内容:函数的定义与表示法;复合函数与反函数;初等函数. (1) 基本要求:掌握函数的定义与表示法;理解复合函数与反函数;懂得初等函数的定义,认识狄利克莱函数和黎曼函数.(2) 较高要求:函数是一种关系或映射的进一步的认识. (三) 教学建议:通过狄利克莱函数和黎曼函数,使学生对函数的认识从具体上升到抽象.§4 具有某些特性的函数(一) 教学目的:掌握函数的有界性,单调性,奇偶性和周期性. (二) 教学内容:有界函数,单调函数,奇函数,偶函数和周期函数. (三) 教学建议:(1) 本节的重点是通过对函数的有界性的分析,培养学生了解研究抽象函数性质的方法.(2) 本节的难点是要求用分析的方法定义函数的无界性.对较好学生可初步教会他们用分析语言表述否命题的方法.第二章 第二章 数列极限§1 数列极限概念(一) 教学目的:掌握数列极限概念,学会证明数列极限的基本方法. (二) 教学内容:数列极限.(1) 基本要求:理解数列极限的分析定义,学会证明数列极限的基本方法,懂得数列极限的分析定义中 ε与 N 的关系.(2) 较高要求:学会若干种用数列极限的分析定义证明极限的特殊技巧. (三)教学建议:(1) 本节的重点是数列极限的分析定义,要强调这一定义在分析中的重要性.具体教学中先教会他们证明 ∞→n lim 01=k n ; ∞→n lim n a 0=;( )1||<a ,然后教会他们用这些无穷小量来控制有关的变量(适当放大但仍小于这些无穷小量). (2) 本节的难点仍是数列极限的分析定义.对较好学生可要求他们用数列极限的分析定义证明较复杂的数列极限,还可要求他们深入理解数列极限的分析定义.§2 数列极限的性质(一) 教学目的:掌握数列极限的主要性质,学会利用数列极限的性质求数列的极限. (二) 教学内容:数列极限的唯一性,有界性,保号性,保不等式性,迫敛性,四则运算法则和数列的子列及有关子列的定理.(1) 基本要求:理解数列极限的唯一性,有界性,保号性,保不等式性,迫敛性,四则运算法则,并会用其中某些性质计算具体的数列的极限.(2) 较高要求:掌握这些性质的较难的证明方法,以及证明抽象形式的数列极限的方法. (三) 教学建议:(1) 本节的重点是数列极限的性质的证明与运用.可对多数学生重点讲解其中几个性质的证明,多布置利用这些性质求具体数列极限的习题. (2) 本节的难点是数列极限性质的分析证明.对较好的学生,要求能够掌握这些性质的证明方法,并且会用这些性质计算较复杂的数列极限,例如: ∞→n limnn =1,等.§3 数列极限存在的条件(一) 教学目的:掌握单调有界定理,理解柯西收敛准则. (二) 教学内容:单调有界定理,柯西收敛准则.(1) 基本要求:掌握单调有界定理的证明,会用单调有界定理证明数列极限的存在性,其中包括 1lim(1)n n n →∞+存在的证明.理解柯西收敛准则的直观意义.(2) 较高要求:会用单调有界定理证明数列极限的存在性,会用柯西收敛准则判别抽象数列(极限)的敛散性.(三) 教学建议:(1) 本节的重点是数列单调有界定理.对多数学生要求会用单调有界定理证明数列极限的存在性.(2) 本节的难点是柯西收敛准则.要求较好学生能够用柯西收敛准则判别数列的敛散性.第三章 函数极限 1 函数极限概念(一) 教学目的:掌握各种函数极限的分析定义,能够用分析定义证明和计算函数的极限. (二) 教学内容:各种函数极限的分析定义.基本要求:掌握当 0x x →; ∞→x ; ∞+→x ; ∞-→x ; +→0x x ;-→0x x 时函数极限的分析定义,并且会用函数极限的分析定义证明和计算较简单的函数极限.(三) 教学建议:本节的重点是各种函数极限的分析定义.对多数学生要求主要掌握当 0x x →时函数极限的分析定义,并用函数极限的分析定义求函数的极限.§2 函数极限的性质(一) 教学目的:掌握函数极限的性质.(二) 教学内容:函数极限的唯一性,有界性,保号性,保不等式性,迫敛性,四则运算法则.(1) 基本要求:掌握函数极限的唯一性,有界性,保号性,保不等式性,迫敛性,四则运算法则,并会用这些性质计算函数的极限.(2) 较高要求:理解函数极限的局部性质,并对这些局部性质作进一步的理论性的认识. (三) 教学建议:(1) (1) 本节的重点是函数极限的各种性质.由于这些性质类似于数列极限中相应的性质,可着重强调其中某些性质与数列极限的相应性质的区别和联系. (2) 本节的难点是函数极限的局部性质.对较好学生,要求懂得这些局部的 δ(的大小)不仅与 ε有关,而且与点 0x 有关,为以后讲解函数的一致连续性作准备.§3 函数极限存在的条件(一) 教学目的:掌握函数极限的归结原理和函数极限的单调有界定理,理解函数极限的柯西准则.(二) 教学内容:函数极限的归结;函数极限的单调有界定理;函数极限的柯西准则. (1) 基本要求:掌握函数极限的归结,理解函数极限的柯西准则. (2) 较高要求:能够写出各种函数极限的归结原理和柯西准则. (三) 教学建议:(1) 本节的重点是函数极限的归结原理.要着重强调归结原理中数列的任意性. (2) 本节的难点是函数极限的柯西准则.要求较好学生能够熟练地写出和运用各种函数极限的归结原理和柯西准则.§4两个重要的极限(一) 教学目的:掌握两个重要极限: 0lim →x 1sin =x x ; ∞→x lim xx ⎪⎭⎫⎝⎛+11e =.(二) 教学内容:两个重要极限: 0lim →x 1sin =x x; ∞→x limxx ⎪⎭⎫⎝⎛+11e =.(1) 基本要求:掌握 0lim→x 1sin =xx的证明方法,利用两个重要极限计算函数极限与数列极限.(2) 较高要求:掌握 ∞→x lim xx ⎪⎭⎫⎝⎛+11e =证明方法.(三) 教学建议:(1) 本节的重点是与两个重要的函数极限有关的计算与证明.可用方法:1)()(sin lim 0)(=→x x x ϕϕϕ; e x x x =⎪⎪⎭⎫⎝⎛+∞→)()()(11lim ψψψ,其中 )(x ϕ、 )(x ψ分别为任一趋于0或趋于∞的函数.(2) 本节的难点是利用迫敛性证明 ∞→x lim xx ⎪⎭⎫⎝⎛+11e =.§5 无穷小量与无穷大量(一) 教学目的:掌握无穷小量与无穷大量以及它们的阶数的概念.(二) 教学内容:无穷小量与无穷大量,高阶无穷小,同阶无穷小,等阶无穷小,无穷大. (1) 基本要求:掌握无穷小量与无穷大量以及它们的阶数的概念. (2) 较高要求:能够写出无穷小量与无穷大量的分析定义,并用分析定义证明无穷小量与无穷大量.在计算及证明中,熟练使用“ o ”与“ O ”. (三) 教学建议:(1) 本节的重点是无穷小量与无穷大量以及它们的阶数的概念. (2) (2) 本节的难点是熟练使用“ o ”与“ O ”进行运算.第四章 第四章 函数的连续性§1 连续性概念(一) 教学目的:掌握函数连续性概念.(二) 教学内容:函数在一点和在区间上连续的定义,间断点的分类.(1) 基本要求:掌握函数连续性概念,可去间断点,跳跃间断点,第二类间断点,区间上的连续函数的定义.(2) 较高要求:讨论黎曼函数的连续性. (三) 教学建议:(1) (1) 函数连续性概念是本节的重点.对学生要求懂得函数在一点和在区间上连续的定义,间断点的 分类.(2) 本节的难点是用较高的分析方法、技巧证明函数的连续性,可在此节中对较好学生布置有关习题.§2 连续函数的性质(一) 教学目的:掌握连续函数的局部性质和闭区间上连续函数的整体性质.(二) 教学内容:连续函数的局部保号性,局部有界性,四则运算;闭区间上连续函数的最大最小值定理,有界性定理,介值性定理,反函数的连续性,一致连续性.(1) 基本要求:掌握函数局部性质概念,可去间断点,跳跃间断点,第二类间断点;了解闭区间上连续函数的性质.(2) 较高要求:对一致连续性的深入理解.(三)教学建议:(1)函数连续性概念是本节的重点.要求学生掌握函数在一点和在区间上连续的定义,间断点的分类,了解连续函数的整体性质.对一致连续性作出几何上的解释.(2)(2)本节的难点是连续函数的整体性质,尤其是一致连续性和非一致连续性的特征.可在此节中对较好学生布置判别函数一致连续性的习题.§3 初等函数的连续性(一) 教学目的:了解指数函数的定义,掌握初等函数的连续性.(二) 教学内容:指数函数的定义;初等函数的连续性.(1) 基本要求:掌握初等函数的连续性.(2) 较高要求:掌握指数函数的严格定义.(三)教学建议:(1) 本节的重点是初等函数的连续性.要求学生会用初等函数的连续性计算极限.(2) 本节的难点是理解和掌握指数函数的性质.第五章导数和微分§1 导数的概念(一) 教学目的:掌握导数的概念,了解费马定理、达布定理.(二) 教学内容:函数的导数,函数的左导数,右导数,有限增量公式,导函数.(1) 基本要求:掌握函数在一点处的导数是差商的极限.了解导数的几何意义,理解费马定理.(2) 较高要求:理解达布定理.(三) 教学建议:(1) 本节的重点是导数的定义和导数的几何意义.会用定义计算函数在一点处的导数.(2) 本节的难点是达布定理.对较好学生可布置运用达布定理的习题.§2 求导法则(一) 教学目的:熟练掌握求导法则和熟记基本初等函数的求导公式.(二) 教学内容:导数的四则运算,反函数求导,复合函数的求导,基本初等函数的求导公式.基本要求:熟练掌握求导法则和熟记基本初等函数的求导公式.(三) 教学建议:求导法则的掌握和运用对以后的学习至关重要,要安排专门时间督促和检查学生学习情况.§3 参变量函数的导数(一) 教学目的:掌握参变量函数的导数的求导法则.(二) 教学内容:参变量函数的导数的求导法则.基本要求:熟练掌握参变量函数的导数的求导法则.(三) 教学建议:通过足量习题使学生掌握参变量函数的导数的求导法则.§4高阶导数(一) 教学目的:掌握高阶导数的概念,了解求高阶导数的莱布尼茨公式.(二) 教学内容:高阶导数;求高阶导数的莱布尼茨公式.(1)基本要求:掌握高阶导数的定义,能够计算给定函数的高阶导数.(2) 较高要求:掌握并理解参变量函数的二阶导数的求导公式.(三) 教学建议:(1) 本节的重点是高阶导数的概念和计算.要求学生熟练掌握.(2) 本节的难点是高阶导数的莱布尼茨公式,特别是参变量函数的二阶导数.要强调对参变量求导与对自变量求导的区别.可要求较好学生掌握求参变量函数的二阶导数.§5 微分(一) 教学目的:掌握微分的概念和微分的运算方法,了解高阶微分和微分在近似计算中的应用.(二) 教学内容:微分的概念,微分的运算法则,高阶微分,微分在近似计算中的应用.(1) 基本要求:掌握微分的概念,微分的运算法则,一阶微分形式的不变性.(2) 较高要求:掌握高阶微分的概念.(三) 教学建议:(1) 本节的重点是掌握微分的概念,要讲清微分是全增量的线性主部.(2) 本节的难点是高阶微分,可要求较好学生掌握这些概念.第六章微分中值定理及其应用§1 拉格朗日定理和函数的单调性(一) 教学目的:掌握罗尔中值定理和拉格朗日中值定理,会用导数判别函数的单调性.(二) 教学内容:罗尔中值定理;拉格朗日中值定理.(1) 基本要求:掌握罗尔中值定理和拉格朗日中值定理,会用导数判别函数的单调性.(2) 较高要求:掌握导数极限定理.(三) 教学建议:(1)(1)本节的重点是掌握罗尔中值定理和拉格朗日中值定理,要求牢记定理的条件与结论,知道证明的方法.(2)(2)本节的难点是用拉格朗日中值定理证明有关定理与解答有关习题.可要求较好学生掌握通过设辅助函数来运用微分中值定理.§2 柯西中值定理和不定式极限(一) 教学目的:了解柯西中值定理,掌握用洛必达法则求不定式极限. (二) 教学内容:柯西中值定理;洛必达法则的使用.(1) 基本要求:了解柯西中值定理,掌握用洛必达法则求各种不定式极限.(2) 较高要求:掌握洛必达法则 0型定理的证明.(三) 教学建议:(1) (1) 本节的重点是掌握用洛必达法则求各种不定式极限.可强调洛必达法则的重要性,并总结求各 种不定式极限的方法. (2) 本节的难点是掌握洛必达法则定理的证明,特别是 ∞∞型的证明.§3 泰勒公式(一) 教学目的:理解带佩亚诺余项和带拉格朗日余项的泰勒公式、麦克劳林公式.(二) 教学内容:带佩亚诺余项和带拉格朗日余项的泰勒公式、麦克劳林公式及其在近似计算中的应用.(1) 基本要求:了解带佩亚诺余项和带拉格朗日余项的泰勒公式、麦克劳林公式,熟记六个常见函数的麦克劳林公式. (2) 较高要求:用泰勒公式计算某些 0型极限.(三) 教学建议:(1) 本节的重点是理解带佩亚诺余项和带拉格朗日余项的泰勒公式、麦克劳林公式. (2) 本节的难点是掌握带佩亚诺余项和带拉格朗日余项的泰勒公式、麦克劳林公式的证明.对较好学生可要求掌握证明的方法. §4函数的极值与最大(小)值(一) 教学目的:掌握函数的极值与最大(小)值的概念. (二) 教学内容:函数的极值与最值.(1) 基本要求:掌握函数的极值的第一、二充分条件;学会求闭区间上连续函数的最值及其应用.(2) 较高要求:掌握函数的极值的第三充分条件. (三) 教学建议:教会学生以函数的不可导点和导函数(以及二阶导数)的零点(稳定点)分割函数定义域,作自变量、导函数(以及二阶导数)、函数的性态表,这个表给出函数的单调区间,凸区间,极值.这对后面的函数作图也有帮助.§5 函数的凸性与拐点(一) 教学目的:掌握函数的凸性与拐点的概念,应用函数的凸性证明不等式. (二) 教学内容:函数的凸性与拐点.(1) 基本要求:掌握函数的凸性与拐点的概念,应用函数的凸性证明不等式.(2) 较高要求:运用詹森不等式证明或构造不等式,左、右导数的存在与连续的关系. (三) 教学建议:(1) 教给学生判断凸性的充分条件即可,例如导函数单调. (2) 本节的难点是运用詹森不等式证明不等式.§6 函数图象的讨论(一) 教学目的:掌握函数图象的大致描绘.(二) 教学内容:作函数图象.(1) 基本要求:掌握直角坐标系下显式函数图象的大致描绘.(2) 较高要求:能描绘参数形式的函数图象.(三)教学建议:教会学生根据函数的性态表,以及函数的单调区间,凸区间,大致描绘函数图象.第七章实数的完备性§1关于实数集完备性的基本定理(一)教学目的:掌握区间套定理和柯西判别准则的证明,了解有限覆盖定理和聚点定理(较熟练运用致密性定理).(二)教学内容:区间套定理、柯西判别准则的证明;聚点定理;有限覆盖定理.(1) 基本要求:掌握和运用区间套定理、致密性定理.(2)较高要求:掌握聚点定理和有限覆盖定理的证明与运用.(三) 教学建议:(1)(1)本节的重点是区间套定理和致密性定理.教会学生在什么样情况下应用区间套定理和致密性定理以及如何应用区间套定理和致密性定理.(2) 本节的难点是掌握聚点定理和有限覆盖定理.教会较好学生如何应用聚点定理和有限覆盖定理.§2 闭区间上的连续函数性质的证明(一) 教学目的:证明闭区间上的连续函数性质.(二) 教学内容:闭区间上的连续函数有界性的证明;闭区间上的连续函数的最大(小)值定理的证明;闭区间上的连续函数介值定理的证明;闭区间上的连续函数一致连续性的证明.(1)(1)基本要求:掌握用有限覆盖定理或用致密性定理证明闭区间上连续函数的有界性;用确界原理证明闭区间上的连续函数的最大(小)值定理;用区间套定理证明闭区间上的连续函数介值定理.(2) 较高要求:掌握用有限覆盖定理证明闭区间上的连续函数的有界性和一致连续性.(三) 教学建议:(1) 本节的重点是证明闭区间上的连续函数的性质.(2) 本节的难点是掌握用有限覆盖定理证明闭区间上的连续函数的一致连续性以及实数完备性的六大定理的等价性证明,对较好学生可布置这方面的习题.第八章不定积分§1不定积分的概念与基本积分公式(一) 教学目的:掌握原函数的概念和基本积分公式(二) 教学内容:原函数的概念;基本积分公式;不定积分的几何意义.基本要求:熟练掌握原函数的概念和基本积分公式.(三) 教学建议:(1) 不定积分是以后各种积分计算的基础,要求熟记基本积分公式表.(2) 适当扩充基本积分公式表.§2 换元积分法与分部积分法(一) 教学目的:掌握第一、二换元积分法与分部积分法.(二) 教学内容:第一、二换元积分法;分部积分法.基本要求:熟练掌握第一、二换元积分法与分部积分法.(三) 教学建议:(1) 布置足量的有关换元积分法与分部积分法的计算题.(2) 总结分部积分法的几种形式:升幂法,降幂法和循环法.§3 有理函数和可化为有理函数的不定积分(一) 教学目的:会计算有理函数和可化为有理函数的不定积分.(二) 教学内容:有理函数的不定积分;三角函数有理式的不定积分;某些无理根式的不定积分.(1) 基本要求:有理函数的不定积分;三角函数有理式的不定积分;某些无理根式的不定积分.(2) 较高要求:利用欧拉代换求某些无理根式的不定积分.(三) 教学建议:(1) 适当布置有理函数的不定积分,三角函数有理式的不定积分,某些无理根式的不定积分的习题.(2) 本节的难点是利用欧拉代换求某些无理根式的不定积分,可要求较好学生掌握.第九章定积分§1 定积分的概念(一) 教学目的:引进定积分的概念.(二) 教学内容:定积分的定义.基本要求:掌握定积分的定义,了解定积分的几何意义和物理意义.(三) 教学建议:要求掌握定积分的定义,并了解定积分的几何意义.§2 牛顿-莱布尼茨公式(一) 教学目的:熟练掌握和应用牛顿-莱布尼茨公式.(二) 教学内容:牛顿-莱布尼茨公式.(1) 基本要求:熟练掌握和应用牛顿-莱布尼茨公式.(2) 较高要求:利用定积分的定义来处理一些特殊的极限.(三) 教学建议:(1) 要求能证明并应用牛顿-莱布尼茨公式.(2) 利用定积分的定义来处理一些特殊的极限是一个难点,对学习较好的学生可布置这种类型的题目.§3 可积条件(一) 教学目的:理解定积分的充分条件,必要条件和充要条件.(二) 教学内容:定积分的充分条件和必要条件;可积函数类(1) 基本要求:掌握定积分的第一、二充要条件.(2) 较高要求:掌握定积分的第三充要条件.(三) 教学建议:(1) 理解定积分的第一、二充要条件是本节的重点,要求学生必须掌握.(2) 证明定积分的第一、二、三充要条件是本节的难点.对较好学生可要求掌握这些定理的证明以及证明某些函数的不可积性.§4定积分的性质(一) 教学目的:掌握定积分的性质.(二) 教学内容:定积分的基本性质;积分第一中值定理.(1) 基本要求:掌握定积分的基本性质和积分第一中值定理.(2) 较高要求:较难的积分不等式的证明.(三) 教学建议:(1) 定积分的基本性质和积分第一中值定理是本节的重点,要求学生必须掌握并灵活应用.(2) 较难的积分不等式的证明是本节的难点.对较好学生可布置这方面的习题.§5 微积分学基本定理(一) 教学目的:掌握微积分学基本定理.(二) 教学内容:变上限的定积分;变下限的定积分;微积分学基本定理;积分第二中值定理,换元积分法;分部积分法;泰勒公式的积分型余项.(1) 基本要求:掌握变限的定积分的概念;掌握微积分学基本定理和换元积分法及分部积分法.(2) 较高要求:掌握积分第二中值定理和泰勒公式的积分型余项.(三)教学建议:(1) 微积分学基本定理是本节的重点,要求学生必须掌握微积分学基本定理完整的条件与结论.(2) 积分第二中值定理和泰勒公式的积分型余项是本节的难点.对较好学生要求他们了解这些内容.第十章定积分的应用§1平面图形的面积(一) 教学目的:掌握平面图形面积的计算公式.(二) 教学内容:平面图形面积的计算公式.(1) 基本要求:掌握平面图形面积的计算公式,包括参量方程及极坐标方程所定义的平面图形面积的计算公式.(2) 较高要求:提出微元法的要领.(三) 教学建议:(1)本节的重点是平面图形面积的计算公式,要求学生必须熟记并在应用中熟练掌握.(二) 教学内容:无穷积分;瑕积分.基本要求:掌握无穷积分与瑕积分的定义与计算方法.(三) 教学建议:讲清反常积分是变限积分的极限.(2) 领会微元法的要领.§2 由平行截面面积求体积(一) 教学目的:掌握由平行截面面积求体积的计算公式(二) 教学内容:由平行截面面积求体积的计算公式.基本要求:掌握由平行截面面积求体积的计算公式.(三) 教学建议:(1) 要求学生必须熟记由平行截面面积求体积的计算公式并在应用中熟练掌握.(2) 进一步领会微元法的要领.§3 平面曲线的弧长与曲率(一) 教学目的:掌握平面曲线的弧长与曲率(二) 教学内容:平面曲线的弧长与曲率的计算公式.(1) 基本要求:掌握平面曲线的弧长计算公式.(2) 较高要求:掌握平面曲线的曲率计算公式.(三) 教学建议:(1) 要求学生必须熟记平面曲线的弧长计算公式.(2) 对较好学生可要求他们掌握平面曲线的曲率计算公式.§4 旋转曲面的面积(一) 教学目的:掌握旋转曲面的面积计算公式.(二) 教学内容:旋转曲面的面积计算公式.基本要求:掌握求旋转曲面的面积的计算公式,包括求由参数方程定义的旋转曲面的面积;掌握平面曲线的曲率的计算公式.(三) 教学建议:要求学生必须熟记旋转曲面面积的计算公式,掌握由参数方程定义的旋转曲面的面积.§5 定积分在物理中的某些应用(一) 教学目的:掌握定积分在物理中的应用的基本方法.(二) 教学内容:液体静压力;引力;功与平均功率.(1) 基本要求:要求学生掌握求液体静压力、引力、功与平均功率的计算公式.(2) 较高要求:要求学生运用微元法导出求液体静压力、引力、功与平均功率的计算公式.(三) 教学建议:要求学生必须理解和会用求液体静压力、引力、功与平均功率的计算公式.十一章反常积分§1反常积分的概念(一) 教学目的:掌握反常积分的定义与计算方法.。
数学分析一电子教案.doc
数学分析(一)电子教案杨小康第一章 实数集与函数本章教学要求:1.加深理解实数的稠密性、绝对值不等式。
2.深入理解一元函数的概念、分段函数的几何特性(尤其是函数有界、无界的分析定义),掌握复合函数、单调函数、奇函数和偶函数;3.理解反函数、周期函数;4.对基本初等函数和初等函数要熟练掌握其运算、几何形状,对以前没有接触过的Dirichlet 函数,符号函数,Gauss 函数等要熟悉。
5.掌握区间与邻域、掌握和应用确界概念、确界原理。
§ 1实数教学目的:熟练掌握实数及主要性质、绝对值概念及其不等式性质。
教学内容:实数的基本性质和绝对值的不等式. 基本要求:1)掌握实数的基本性质:实数的有序性,稠密性,阿基米德性,实数的四则运算。
2)掌握和熟练运用几个重要的绝对值不等式。
一.实数及其性质:有理数:(,0)p q q ⎧≠⎪⎨⎪⎩p 能用互质分数 为整数,表示的数;q有限十进小数或无限十进循环小数表示的数 例1 设 p 正整数,若p 不是完全平方数,则p 是无理数证明:反证法。
若p 是有理数,则p 可表示成:mnp =,从而整数p 可表示成: 22mn p =⇒ p 是完全平方数,矛盾若规定: 012012..(1)999n n a a a a a a a a =-L L L L 则有限十进小数都能表示成无限循环小数。
例如:001.2 记为 Λ999000.2 ;0 记为 Λ000.0 ;8- 记为 999.7- 实数大小的比较定义1 给定两个非负实数ΛΛΛΛn n b b b b y a a a a x 210210.,.==其中 k k b a , 为非负整数,9,0≤≤k k b a 。
若有1) Λ,2,1,0,==k b a k k 则称 x 与 y 相等,记为 y x =2) 若存在非负整数 l ,使得),,2,1,0(,l k b a k k Λ==,而11++>l l b a ,则称x 大于 y (或 y 小于 x ),分别记为 y x >(或x y <)。
《数学分析》第一章 实数集与函数 1
( ∞ , b ) = { x x < b}
无限区间
x obxFra bibliotek区间长度的定义: 区间长度的定义: 两端点间的距离(线段的长度 称为区间的长度 两端点间的距离 线段的长度)称为区间的长度 线段的长度 称为区间的长度.
3.邻域: 3.邻域: 设a与δ是两个实数 , 且δ > 0. 邻域
数集{ x x a < δ }称为点a的δ邻域 ,
o a x b 称为闭区间, { x a ≤ x ≤ b} 称为闭区间 记作 [a , b] o a
b
x
{ x a ≤ x < b} { x a < x ≤ b}
称为半开区间, 称为半开区间 记作 [a , b ) 称为半开区间, 称为半开区间 记作 (a , b] 有限区间
[a ,+∞ ) = { x a ≤ x }
a a≥0 a = a a < 0 运算性质: 运算性质 ab = a b ;
5.绝对值: 5.绝对值: 绝对值
( a ≥ 0)
a a = ; b b
绝对值不等式: 绝对值不等式
a b ≤ a ± b ≤ a + b.
x ≤ a ( a > 0) x ≥ a ( a > 0)
a ≤ x ≤ a;
点a叫做这邻域的中心 , δ 叫做这邻域的半径 .
U δ (a ) = { x a δ < x < a + δ }.
δ
δ
x
a aδ a+δ 0 点a的去心的 δ邻域 , 记作 U δ (a ).
U δ (a ) = { x 0 < x a < δ }.
4.常量与变量: 4.常量与变量: 常量与变量 在某过程中数值保持不变的量称为常量 在某过程中数值保持不变的量称为常量, 常量 而数值变化的量称为变量 变量. 而数值变化的量称为变量 注意 常量与变量是相对"过程"而言的. 常量与变量是相对"过程"而言的 常量与变量的表示方法: 常量与变量的表示方法: 通常用字母a, 等表示常量, 通常用字母 b, c等表示常量 等表示常量 用字母x, 等表示 等表示变 用字母 y, t等表示变量.
数学分析教案(华东师大版)第一章实数集与函数
第一章实数集与函数导言数学分析课程简介( 2 学时 )一、数学分析(mathematical analysis)简介:1.背景: 从切线、面积、计算32sin、实数定义等问题引入.2.极限 ( limit ) ——变量数学的基本运算:3.数学分析的基本内容:数学分析以极限为基本思想和基本运算研究变实值函数.主要研究微分(differential)和积分(integration)两种特殊的极限运算,利用这两种运算从微观和宏观两个方面研究函数, 并依据这些运算引进并研究一些非初等函数. 数学分析基本上是连续函数的微积分理论.微积运算是高等数学的基本运算.数学分析与微积分(calculus)的区别.二、数学分析的形成过程:1.孕育于古希腊时期:在我国,很早就有极限思想. 纪元前三世纪, Archimedes就有了积分思想.2.十七世纪以前是一个漫长的酝酿时期,是微积分思想的发展、成果的积累时期.3.十七世纪下半叶到十九世纪上半叶——微积分的创建时期.4.十九世纪上半叶到二十世纪上半叶——分析学理论的完善和重建时期:三、数学分析课的特点:逻辑性很强, 很细致, 很深刻; 先难后易, 是说开头四章有一定的难度, 倘能努力学懂前四章(或前四章的), 后面的学习就会容易一些; 只要在课堂上专心听讲, 一般是可以听得懂的, 但即便能听懂, 习题还是难以顺利完成. 这是因为数学分析技巧性很强, 只了解基本的理论和方法, 不辅以相应的技巧, 是很难顺利应用理论和方法的. 论证训练是数学分析课基本的,也是重要的内容之一, 也是最难的内容之一. 一般懂得了证明后, 能把证明准确、严密、简练地用数学的语言和符号书写出来,似乎是更难的一件事. 因此, 理解证明的思维方式, 学习基本的证明方法, 掌握叙述和书写证明的一般语言和格式, 是数学分析教学贯穿始终的一项任务.有鉴于此, 建议的学习方法是: 预习, 课堂上认真听讲, 必须记笔记,但要注意以听为主, 力争在课堂上能听懂七、八成. 课后不要急于完成作业, 先认真整理笔记, 补充课堂讲授中太简或跳过的推导, 阅读教科书, 学习证明或推导的叙述和书写. 基本掌握了课堂教学内容后, 再去做作业. 在学习中, 要养成多想问题的习惯.四、课堂讲授方法:1.关于教材及参考书:这是大学与中学教学不同的地方, 本课程主要从以下教科书中取材:[1]华东师范大学数学系编,数学分析,高等教育出版社,2001;[2]刘玉琏傅沛仁编,数学分析讲义,高等教育出版社,1992;[3]谢惠民,恽自求等数学分析习题课讲义,高等教育出版社,2003;[4]马振民,数学分析的方法与技巧选讲,兰州大学出版社,1999;[5]林源渠,方企勤数学分析解题指南,北京大学出版社,2003.2.本课程按[1]的逻辑顺序并在其中取材.本课程为适应教学改革的要求,只介绍数学分析最基本的内容,并加强实践环节,注重学生的创新能力的培养。
数学分析第一章
前页 后页 返回
设
k
是满足
k n
a
的最大的正整数,即
k +1 n
> a.
于是, a < k + 1 < k + 2 < b, 则 k + 1, k + 2 是
nn
nn
a 与 b 之间的有理数, 而 k + 1 + π 是 a 与 b 之间 n 4n
的无理数.
例2 若a,b R,对 > 0,a < b + ,则 a b.
3.实数集的大小关系具有传递性.即若a > b, b > c,则有
a>c.
4.实数具有阿基米德性 , 即对任何 a, b R, 若 b > a > 0
则存在正整数 n, 使得na > b.
5.实数集R具有稠密性.即任何两个不相等的实数之间必 有另一个实数,且既有有理数,也有无理数.
6.实数集R与数轴上的点具有一一对应关系.即任一实数 都对应数轴上唯一的一点,反之,数轴上的每一点也都唯 一的代表一个实数.
证 倘若a > b,设 a b > 0, 则 a b + ,
与 a < b + 矛盾.
前页 后页 返回
(6)实数与数轴上的点一一对应
实数集 R与数轴上的点可建立一一对应关系.
1. 这种对应关系,粗略地可这样描述: 设 P 是数轴上的一点 (不妨设在 0的右边), 若 P 在 整数 n与 n + 1之间,则 a0 n. 把(n, n + 1]十等分, 若点 P 在第 i 个区间,则 a1 i. 类似可得到 an, n 2, 3, L . 这时, 令点 p 对应于 a0 .a1a2 L an L .
第一章实数集与函数
《数学分析》科目考试大纲考试内容及要求:第一章实数集与函数(一)考核知识点1.实数集的性质2.确界定义和确界原理3.函数的概念及表示法,分段函数,基本初等函数的性质及其图形,初等函数4. 具有某些特性的函数(二)考核要求1. 实数集的性质(1)熟练掌握:(i)实数及其性质;(ii)绝对值与不等式.(2)深刻理解:(i)实数有序性,大小关系的传递性,稠密性,阿基米德性,实数集对四则运算的封闭性以及实数集与数轴上的点的一一对应关系;(ii)绝对值的定义及性质.(3)简单应用:(i)会比较实数的大小,能在数轴上表示不等式的解;(ii)会利用绝对值的性质证明简单的不等式.(4)综合应用:会利用实数的性质和绝对值的性质证明有关的不等式,会解简单的不等式.2. 确界定义和确界原理(1)熟练掌握:(i)区间与邻域;(ii)有界集、无界集与确界原理.(2)深刻理解:(i)区间与邻域的定义及表示法;(ii)确界的定义及确界原理.(3)简单应用:用区间表示不等式的解,证明数集的有界性,求数集的上、下确界.(4)综合应用:会用确界的定义证明某个实数是某数集的上确界(或下确界),证明某数集无界.3. 函数的概念(1)熟练掌握:(i)函数的定义;(ii)函数的表示法;(iii)函数的四则运算;(iv)复合函数;(v)反函数;(vi)初等函数.(2)深刻理解:(i)函数概念的两大要素;(ii)分段函数,掌握整数部分函数,小数部分函数,符号函数,狄利克雷和黎曼函数;(iii)函数能够进行四则运算的条件;(iv)复合函数中内函数的值域与外函数的定义域的关系;(v)反函数存在的条件.(3)简单应用:会求函数的定义域、值域,比较几个函数的大小,会求分段函数和复合函数的表达式,能熟练地描绘六类基本初等函数的图像.(4)综合应用:作简单的复合函数的图像,求函数的反函数,证明有关的不等式,会建立简单应用问题的函数关系.4. 具有某些特性的函数(1)熟练掌握:(i)有界函数;(ii)单调函数;(iii)奇函数和偶函数;(iv)周期函数.(2)深刻理解:(i)有界函数和无界函数的定义;(ii)单调函数的定义及其图像的性质;(iii)奇函数和偶函数的定义及其图像的性质;(iv)周期函数的定义及其图像的性质..(3)简单应用:(i)会求函数的上下界,判断无界函数;(ii)判断函数的单调性;(iii)判断周期函数;(iv)判断函数的奇偶性.(4)综合应用:利用函数的各种特性解决简单的应用问题.第二章数列极限(一) 考核知识点1.数列极限的定义2.收敛数列的性质3.数列极限存在的条件(二) 考核要求1. 数列极限的定义ε定义,数(1)熟练掌握:数列的敛散性概念,数列极限的N-列极限的几何意义.ε定义”的逻辑结构,深刻理(2)深刻理解:数列极限的“N-ε定义”解ε的任意性,N的相应性;用“N-ε定义”的证明数列的极限的表述方法;“N-否定说法.(3)简单应用:能够通过观察法初步判断数列的敛散性.ε语言”证明数列的极限存在.(4)综合应用:会用“N-2. 收敛数列的性质(1)熟练掌握:数列极限的唯一性,有界性,收敛数列的保号性,保不等式性,迫敛性,数列极限的四则运算法则,数列子列的概念.(2)深刻理解:收敛数列诸性质的证明.(3)简单应用:运用收敛数列的四则运算法则计算数列的极限.(4)综合应用:运用数列极限的唯一性,收敛数列的有界性、保号性,数列极限的迫敛性等证明数列的各种性质,判断发散数列.3.数列极限存在的条件(1)熟练掌握:(i)单调有界原理;(ii)柯西收敛准则.(2)深刻理解: 单调有界原理和柯西收敛准则的实质及其否定命题.(3)简单应用:会用单调有界原理证明某些极限的存在性.(4)综合应用:会用单调有界原理和柯西收敛准则证明某些极限问题,会用柯西收敛准则的否定命题证明数列发散.第三章 函数极限(一) 考核知识点1.函数极限的定义2.函数极限的性质3.函数极限存在的条件4.两个重要的极限5.无穷大量与无穷小量(二) 考核要求1.函数极限的定义(1)熟练掌握:(i )∞→x 时函数极限的定义;(ii )0x x →时函数极限的定义.(2)深刻理解:(i )A x f x =∞→)(lim 的“X -ε定义”的逻辑结构,深刻理解ε的任意性,X 的相应性;用“X-ε定义”证明函数极限的表述方法;“X -ε定义”的否定说法.(ii )A x f x x =→)(lim 0的“δε-定义”的逻辑结构,深刻理解ε的任意性,δ的相应性;用“δε-定义”证明函数极限的表述方法;单侧极限和极限A x f x x =→)(lim 0存在的充要条件;“δε-定义”的否定说法.(3)简单应用: 会用“A x f x =∞→)(lim 的X -ε定义”和“A x f x x =→)(lim 0的δε-定义”证明简单函数的极限.(4)综合应用: 会用“A x f x =∞→)(lim 的X -ε定义”和“A x f x x =→)(lim 0的δε-定义”等分析语言证明一般的函数极限问题;用极限存在的充要条件证明极限不存在.2.函数极限的性质(1)熟练掌握:函数极限的唯一性,有极限的函数的局部有界性、局部保号性、保不等式性,函数极限的迫敛性,函数极限的四则运算法则.(2)深刻理解:函数极限诸性质的证明.(3)简单应用:运用函数极限的四则运算法则计算函数的极限.(4)综合应用:运用函数极限的唯一性,局部有界性、局部保号性,函数极限的迫敛性等证明函数的各种性质.3.函数极限存在的条件(1)熟练掌握:(i )归结原则;(ii )柯西收敛准则.(2)深刻理解:归结原则和柯西收敛准则的实质.(3)简单应用:会用归结原则证明函数的极限不存在,用柯西收敛准则证明函数极限存在.(4)综合应用:用柯西收敛准则的否定命题证明函数极限不存在.4.两个重要的极限(1)熟练掌握:1sin lim 0=→x x x ,e x xx =⎪⎭⎫ ⎝⎛+∞→11lim . (2)深刻理解:两个重要极限的证明.(3)简单应用:利用两个重要极限求极限的方法.(4)综合应用:综合利用归结原则和两个重要极限求极限的方法.5.无穷小量与无穷大量(1)熟练掌握:无穷小量,无穷大量.(2)深刻理解:无穷小量和无穷大量的性质和关系,无穷小量的比较.(3)简单应用:无穷小量的比较方法,用无穷小量和无穷大量求极限.(4)综合应用:用等价无穷小求极限.第四章 函数的连续性(一)考核知识点1.连续性概念2.连续函数的性质3.初等函数的连续性(二)考核要求1. 连续性概念(1)熟练掌握:函数在一点的连续性,区间上的连续函数,间断点及其分类.(2)深刻理解:函数在一点左、右连续的概念,函数在一点的连续的充要条件.(3)简单应用:用定义证明函数在一点连续.(4)综合应用:利用函数在一点的连续的充要条件证明函数在一点连续.2.连续函数的性质(1)熟练掌握:连续函数的局部性质,闭区间上连续函数的基本性质,反函数的连续性,复合函数的连续性.(2)深刻理解:一致连续性.(3)简单应用:用连续函数求极限.(4)综合应用:证明函数的一致连续性,利用闭区间上连续函数的基本性质论证某些问题.3.初等函数的连续性(1)熟练掌握:基本初等函数的连续性.(2)深刻理解:初等函数在其定义的区间内连续.(3)简单应用:证明基本初等函数在定义域内连续,判断初等函数间断点的类型.(4)综合应用:证明一般初等函数在定义域内连续,判断分段函数间断点的类型.第五章导数与微分(一)考核知识点1.导数的概念2.求导法则3.参变量函数的导数4.高阶导数5.微分(二)考核要求1.导数的概念(1)熟练掌握:导数的定义,导函数.(2)深刻理解:函数在一点的变化率,左、右导数,导数的几何意义,导函数的介值性,函数可导与连续的关系.(3)简单应用:会求函数的平均变化率,确定曲线切线的斜率,求函数的稳定点.(4)综合应用:求分段函数的导数,运用导数概念证明曲线的某些几何性质.2.求导法则(1)熟练掌握:导数的四则运算,反函数的导数,复合导数的导数,基本求导法则与公式.(2)深刻理解:导数的四则运算、反函数的导数、复合导数的导数、基本求导法则与公式的证明.(3)简单应用:会用各种求导法则计算初等函数的导数.(4)综合应用:综合运用各种求导法则计算函数的导数.3.参变量函数的导数(1)熟练掌握:参变量函数的导数的定义.(2)深刻理解:参变量函数的导数的几何意义.(3)简单应用:会求参变量函数所确定函数的导数.(4)综合应用:利用参变量函数的导数证明曲线的某些几何性质.4.高阶导数(1)熟练掌握:高阶导数的定义.(2)深刻理解:高阶导函数的概念.(3)简单应用:高阶导数的计算.(4)综合应用:利用莱布尼茨公式计算高阶导数,计算参变量函数的高阶导数.5.微分(1)熟练掌握:微分概念.(2)深刻理解:微分的几何意义,导数与微分的关系,一阶微分形式的不变性.(3)简单应用:微分的计算.(4)综合应用:高阶微分的计算,微分在近似计算中的应用.第六章微分中值定理及其应用(一)考核知识点1.拉格朗日定理和函数单调性2.柯西中值定理和不定式极限3.泰勒公式4.函数的极值与最值5.函数的凸性与拐点,函数图像的讨论(二)考核要求1.拉格朗日定理和函数单调性(1)熟练掌握:罗尔中值定理,拉格朗日中值定理,函数单调性.(2)深刻理解:罗尔中值定理和拉格朗日中值定理的条件与结论、证明方法,它们的几何意义.(3)简单应用:判断函数是否满足罗尔中值定理和拉格朗日中值定理,会求简单函数的中值点.(4)综合应用:用拉格朗日中值定理证明函数的单调性,利用拉格朗日中值定理和函数的单调性,证明某些恒等式和不等式.2. 柯西中值定理和不定式极限(1)熟练掌握:柯西中值定理,不定式的极限.(2)深刻理解:柯西中值定理的证明方法,求不定式极限的方法.(3)简单应用:求不定式的极限.(4)综合应用:用柯西中值定理证明某些带中值的等式.3. 泰勒公式(1)熟练掌握:泰勒定理,泰勒公式,麦克劳林公式.(2)深刻理解:泰勒定理的实质,泰勒公式与拉格朗日中值定理的关系.(3)简单应用:利用泰勒定理展开六种函数的麦克劳林公式,余项估计.(4)综合应用:利用泰勒公式和等价无穷小变换计算极限,泰勒公式在近似计算上的应用.4. 函数的极值与最大〔小〕值(1)熟练掌握:函数的极值与最值,取极值的必要条件,驻点.(2)深刻理解:判断极值的两个充分条件.(3)简单应用:会求函数极值与最值.(4)综合应用:证明某些不等式,解决求最值的应用问题.5. 函数的凸性与拐点,函数图像的讨论(1)熟练掌握:函数图像的凸性与拐点,函数图像的性态.(2)深刻理解:凸函数,函数为凸函数的充要条件,曲线的渐近线.(3)简单应用:判断函数图像的凸性与拐点,渐近线的求法,函数图像的性态的讨论,简单函数图像的描绘.(4)综合应用:利用函数的凸性证明不等式.第七章实数的完备性(一)考核知识点1.关于实数集完备性的基本定理2.闭区间上连续函数性质的证明(二)考核要求1.关于实数集完备性的基本定理(1)熟练掌握:实数集完备性的意义,实数集完备性的几个基本定理.(2)深刻理解:区间套定理、柯西收敛准则、聚点定理、有限覆盖定理的条件和结论,它们的证明方法,理解有理数集不满足完备性定理的原因(3)简单应用:会求数集的聚点、确界.(4)综合应用:实数集完备性的几个基本定理的等价性证明.2. 闭区间上连续函数性质的证明(1)熟练掌握:闭区间上连续函数的有界性,有最大、最小值性,介值性和一致连续性.(2)深刻理解:闭区间上连续函数性质的证明思路和方法.第八章不定积分(一)考核知识点1.不定积分概念与基本积分公式2.换元积分法与分部积分法3.有理函数和可化为有理函数的不定积分(二)考核要求1.不定积分概念与基本积分公式(1)熟练掌握:原函数、不定积分及二者的区别,基本积分表.(2)深刻理解:原函数与导数的关系,不定积分的基本性质,不定积分的几何意义.(3)简单应用:会求简单初等函数的不定积分.(4)综合应用:根据不定积分的几何意义求曲线方程.2.换元积分法与分部积分法(1)熟练掌握:换元积分法,分部积分法.(2)深刻理解:换元积分法与复合函数求导法则的关系,分部积分法与乘积求导法的关系.(3)简单应用:会用换元积分法与分部积分法计算简单函数的不定积分.(4)综合应用:综合运用换元积分法与分部积分法计算某些函数的不定积分,证明某些递推公式.3.有理函数和可化为有理函数的不定积分(1)熟练掌握:有理函数、三角函数有理式和某些无理函数的不定积分.(2)深刻理解:以上各种不定积分的计算步骤.(3)应用:会算有理函数、三角函数有理式和某些无理函数的不定积分.第九章定积分(一)考核知识点1.定积分概念和性质2.可积条件3.微积分学基本定理·定积分的计算(二)考核要求1.定积分概念和性质(1)熟练掌握:定积分的实际背景,黎曼和,定积分的性质.(2)深刻理解:构造积分和的方法,定积分及其性质的几何意义.(3)简单应用:用定积分定义计算简单函数的定积分,利用定积分的性质比较积分的大小,估计积分值.(4)综合应用:用定积分定义计算某些复杂和式的极限,利用定积分的性质证明不等式,论证函数的某些性质.2.可积条件(1)熟练掌握:可积的必要条件和充分条件,可积函数类.(2)深刻理解:达布和,可积准则及其证明方法.(3)简单应用:判断函数的可积性.(4)综合应用:论证可积函数的某些性质.3.微积分学基本定理和定积分的计算(1)熟练掌握:变限定积分所确定的函数及其性质,微积分学基本定理.(2)深刻理解:微积分学基本定理的实质,原函数的存在性.(3)简单应用:用牛顿——莱布尼茨公式计算定积分,用换元积分法与分部积分法计算定积分.(4)综合应用:综合运用各种方法计算定积分.第十章定积分的应用(一)考核知识点:平面图形的面积,由平行截面面积求体积,平面曲线的弧长,旋转曲面的面积(二)考核要求1.熟练掌握:用定积分表达和计算一些几何量.2.深刻理解:定积分的应用的实质—微元法.3.应用:计算平面图形的面积,由平行截面面积求体积,平面曲线的弧长,旋转曲面的面积.第十一章反常积分(一)考核知识点1.反常积分概念2.无穷积分的性质与收敛判别3.瑕积分的性质与收敛判别(二)考核要求1.反常积分概念(1)熟练掌握:两类反常积分的定义.(2)深刻理解:反常积分即变限定积分的极限.2.无穷积分的性质与收敛判别(1)熟练掌握:无穷积分的性质,条件收敛,绝对收敛.(2)深刻理解:比较判别法,狄利克雷判别法,阿贝尔判别法.(3)简单应用:计算无穷积分,判别无穷积分的收敛性.(4)综合应用:运用无穷积分的性质和判别法论证某些问题.3.瑕积分的性质与收敛判别(1)熟练掌握:瑕积分的性质,条件收敛,绝对收敛.(2)深刻理解:比较判别法.(3)简单应用:计算,瑕积分,判别瑕积分的收敛性.(4)综合应用:运用瑕积分的性质和判别法论证某些问题.第十二章数项级数(一)考核知识点1.级数的收敛性2.正项级数和一般项级数(二)考核要求1. 级数的收敛性(1)熟练掌握:数项级数的定义.(2)深刻理解:级数收敛、发散的概念,收敛级数的性质,级数收敛的柯西准则.(3)简单应用:判断级数的收敛和发散.(4)综合应用:应用柯西准则讨论级数的敛散性.2.正项级数(1)熟练掌握:正项级数收敛的必要条件,正项级数的比较原则.(2)深刻理解:正项级数收敛比式判别法,根式判别法和积分判别法.(3)简单应用:判别正项级数的收敛性.(4)综合应用:运用正项级数收敛的必要条件,比较原则和几个判别法等论证一些问题.3.一般项级数(1)熟练掌握:交错级数的概念,条件收敛与绝对收敛的概念及关系,莱布尼茨判别法.(2)深刻理解:绝对收敛级数的性质,狄利克雷判别法,阿贝尔判别法.(3)应用:判别一般项级数的收敛性.第十三章函数列与函数项级数(一)考核知识点1.一致收敛性2.一致收敛函数列与函数项级数的性质(二)考核要求1.一致收敛性(1)熟练掌握:函数列与函数项级数的一致收敛性的定义,一致收敛的充要条件.(2)深刻理解:一致收敛定义的否定叙述,一致收敛的柯西准则,函数列与函数项级数一致收敛性的判别法(3)应用:会用一致收敛性的定义或判别法判别函数列的一致收敛性,用M判别法,狄利克雷判别法,阿贝尔判别法判别一些函数级数的一致收敛性.2.一致收敛函数列与函数项级数的性质(1)熟练掌握:一致收敛函数列的极限函数与函数项级数的和函数.(2)深刻理解:连续性,可积性,可微性定理.(3)简单应用:由定理讨论函数项级数的和函数的连续性,可积性,可微性.(4)综合应用:由定理证明和函数的分析性质,计算函数项级数的积分.第十四章幂级数(一)考核知识点1.幂级数2.函数的幂级数展开式(二)考核要求1.幂级数(1)熟练掌握:幂级数的定义.(2)深刻理解:幂级数的性质.(3)应用:幂级数的计算,求幂级数的收敛半径、收敛域.2.函数的幂级数展开式(1)熟练掌握:泰勒级数定义.(2)深刻理解:泰勒级数和麦克劳林级数.(3)简单应用:六个常用的初等函数的麦克劳林级数.(4)综合应用:把一些简单的函数展成泰勒级数或麦克劳林级数.第十六章多元函数的极限与连续(一)考核知识点1.平面点集与多元函数2.二元函数的极限和连续性(二)考核要求1.平面点集与多元函数(1)熟练掌握:二元函数和二元函数极限的定义.弄清二重极限与累次极限的区别极其联系.(2)深刻理解:平面点集的一些概念:邻域、内点、界点、聚点、开区域、闭区域、有界区域、无界区域等.完备性定理.(3)简单应用:求函数的定义域,画定义域的图形,说明何种点集.(4)综合应用:判断平面点集的性质及其平面点集的聚点与界点.2.二元函数的极限和连续性(1)熟练掌握:二元函数的极限和连续性的概念.(2)深刻理解:累次极限和二元连续函数的性质.(3)简单应用:求累次极限,运用连续性定理.(4)综合应用:会求函数的极限.讨论函数的连续性.第十七章多元函数微分学(一)考核知识点1.可微性2.复合函数微分法3.方向导数与梯度及泰勒公式与极值问题(二)考核要求1.可微性(1)熟练掌握:可微与全微分定义.可微性几何意义及应用.(2)深刻理解:可微性条件.(3)简单应用:可微性充分条件.(4)综合应用:求函数的导数.2.复合函数微分法(1)熟练掌握:复合函数的有关定义.(2)深刻理解:复合函数的全微分(3)简单应用:复合函数的求导法则.(4)综合应用:求函数的偏导数或导数.3.方向导数与梯度及泰勒公式与极值问题(1)熟练掌握:方向导数与梯度的定义.(2)深刻理解:中值定理和极值充分条件.(3)简单应用:熟练计算偏导数和高阶偏导数.(4)综合应用:运用泰勒公式解决极值问题.第十八章隐函数定理及其应用(一)考核知识点1.隐函数及隐函数组2.几何应用和条件极值(二)考核要求1.隐函数及隐函数组(1)熟练掌握:隐函数及隐函数组的概念,反函数组与坐标变换.(2)深刻理解:隐函数定理和隐函数组的定理.(3)简单应用:隐函数存在性的条件分析.(4)综合应用:对隐函数求导.2.几何应用和条件极值(1)熟练掌握:平面曲线、空间曲线的切线于法平面,曲面的切平面与法线.(2)深刻理解:条件极值.(3)简单应用:拉格朗日函数.(4)综合应用:应用拉格朗日乘数法求函数的条件极值.第十九章含参量积分(一)考核知识点1.含参量正常积分2.含参量反常积分(二)考核要求1. 含参量正常积分(1)熟练掌握:含参量积分的定义.(2)深刻理解:含参量积分的连续性、可微性、可积性.(3)简单应用:累次积分.(4)综合应用:求函数的积分.2. 含参量反常积分(1)熟练掌握:含参量反常积分的定义.(2)深刻理解:含参量反常积分的性质.(3)简单应用:一致收敛及其判别法.(4)综合应用:证明一致收敛性.第二十章曲线积分(一)考核知识点1.第一型曲线积分2.第二型曲线积分(二)考核要求1. 第一型曲线积分(1)熟练掌握:第一型曲线积分的定义.(2)深刻理解:第一型曲线积分的性质.(3)应用:第一型曲线积分的计算.2. 第二型曲线积分(1)熟练掌握:第二型曲线积分的定义.(2)深刻理解:第二型曲线积分的性质,第二型曲线积分与第一型曲线积分的关系.(3)应用:第二型曲线积分的计算.第二十一章重积分(一)考核知识点1.二重积分的概念及直角坐标系下二重积分的计算2.格林公式•曲线积分与路线的无关性3.二重积分的变量变换与三重积分4.重积分的应用(二)考核要求1.二重积分的概念及直角坐标系下二重积分的计算(1)熟练掌握:二重积分的概念极其存在性,平面图形的存在性.(2)深刻理解:二重积分的性质.二元函数的可积性定理.(3)简单应用:直角坐标系下二重积分的计算.(4)综合应用:计算二重积分及二重积分所围的区域.2. 格林公式•曲线积分与路线的无关性(1)熟练掌握:连通区域的概念,(2)深刻理解:格林公式,积分与路线的无关性定理.(3)简单应用:验证积分与路线无关并会求积分.(4)综合应用:应用格林公式计算曲线积分.3.二重积分的变量变换与三重积分(1)熟练掌握:三重积分的概念.(2)深刻理解:二重积分的可积函数类与性质,二重积分的变量变换公式与化三重积分为累次积分.(3)简单应用:用极坐标计算二重积分,会三重积分换元法.(4)综合应用:对积分进行极坐标变换并计算二重积分.计算三重积分及累次积分.第二十二章曲面积分(一)考核知识点1.第一型曲面积分和第二型曲面积分2.高斯公式与托克斯公式(二)考核要求1.第一型曲面积分和第二型曲面积分(1)熟练掌握:第一型曲面积分和第二型曲面积分的定义及二者之间的关系.(2)深刻理解:第一型曲面积分和第二型曲面积分的物理背景.(3)应用:第一型曲面积分和第二型曲面积分的计算.2.高斯公式与托克斯公式(1)熟练掌握:高斯公式和斯托克斯公式的物理意义.(2)深刻理解:高斯公式和斯托克斯公式及其证明过程.(3)应用:用高斯公式和斯托克斯公式计算曲面积分.。
数学分析第一章
第一章 实数集与函数§1 实数Ⅰ.教学目的与要求1.理解实数的概念,掌握实数的表示方法2.了解实数的性质, 并在有关命题中正确地加以应用3.理解绝对值的概念,掌握绝对值的性质,并在有关命题中正确地加以应用. Ⅱ.教学重点与难点重点: 实数的定义及性质、绝对值与不等式.难点: 实数的定义及其应用.Ⅲ.讲授内容一 实数及其性质实数的组成:实数由有理数与无理数两部分组成.有理数的表示:有理数可用分数形式q p(p ˛q 为整数,q ≠0)表示,也可用有限十进小数或无限十进循环小数来表示.无理数:无限十进不循环小数则称为无理数.有理数和无理数统称为实数.有限小数(包括整数)也表示为无限小数.规定如下:对于正有限小数(包括整数)x,当x=a 0.a1a 2n a K 时,其中0,9≤≤i a i=1,2,K n, na ,0≠0a 为非负整数,记x=a 0.a 1a 2-n a (K 1)̣.999 9,K而当x=a 1为正整数时,则记x=(a 0—1).999 9…,例如2.001记为2.000 999 9…;对于负有限小数(包括负整数)y ,则先将—y 表示为无限小数,再在所得无限小数之前加负号,例如—8记为—7.999 9…;又规定数0表示为0.000 0….于是,任何实数都可用一个确定的无限小数来表示.我们已经熟知比较两个有理数大小的方法.现定义两个实数的大小关系. 定义1 给定两个非负实数x= 0a .a a 1n a K ,K y=,.210K K n b b b b其中00,b a 为非负整数,k k b a ,(k=1,2,…)为整数,0≤a k ≤9,0≤b k ≤9.若有==k b a k k ,0,1,2,,K 则称x 与y 相等,记为x=y ;若00b a >或存在非负整数L ,使得 a k =b k (k=0,1,2,…,L)而11++>l l b a ,则称x 大于y 或y 小于x ,分别记为x>y 或y<x .对于负实数x ,y ,若按上述规定分别有y x -=-与y x ->-,则分别称x=y 与x<y(或y>x).另外,自然规定任何非负实数大于任何负实数.定义2 : x =a 0.a 1a 2n a K K 为非负实数.称有理=n x a 0.1a a 2n a K K 为实数x 的n 位不足近似,而有理数=n x nn x 101+称为x 的n 位过剩近似,n=0,1,2,K . 对于负实数ΛΛn a a a a a x 3210.-=,其n 位不足近似与过剩近似分别规定为n n n a a a a a x 101.3210--=Λ与=n x n a a a a a Λ3210.-. 注 不难看出,实数x 的不足近似n x 当n 增大时不减,即有x 0≤x 1≤x 2≤…,而过剩近似n x 当n 增大时不增,即有0x ≥1x ≥2x ≥….命题 设x=a 0.a 1a2K 与y=b 0.b 1b 2…为两个实数,则x>y 的等价条件是:存在非负整数n ,使得 x n >n y ,其中x n 表示x 的n 位不足近似,n y 表示y 的n 位过剩近似.例1 设x 、y 为实数,x<y.证明:存在有理数r 满足x y r <<.证 由于x y <,故存在非负整数n,使得n n y x <,令 r=),(21n n y x + 则r 为有理数,且有 x ,y y r x n n ≤<<≤即得 x<r<y .全体实数构成的集合记为R,即 R =}.|{为实数x x实数的主要性质:1.实数集R 对加、减、乘、除(除数不为0)四则运算是封闭的,即任意两个实数的和、差、积、商(除数不为0)仍然是实数.2.实数集是有序的,即任意两实数a 、b 必须满足下述三个关系之一:a <b, a =b ,a >b .3.实数的大小关系具有传递性,即若a >b ,b >c ,则有a >c .4.实数具有阿基米德(Archimedes)性,即对任何a 、b ∈R ,若b >a >0,则存在正整数n ,使得n a >b .5.实数集R 具有稠密性,即任何两个不相等的实数之间必有另一个实数,且既有有理数(见例1),也有无理数.6.如果在一直线(通常画成水平直线)上确定一点O 作为原点,指定一个方向为正向(通常把指向右方的方向规定为正向),并规定一个单位长度,则称此直线为数轴.任一实数都对应数轴上唯一的一点;反之,数轴上的每一点也都唯一地代表一个实数.于是,实数集R 与数轴上的点有着一一对应关系.因此在以后的叙述中,常把“实数a ”与“数轴上的点a ”看作具有相同的含义﹒例2 设a 、b ∈R .证明:若对任何正数ε有a <b +ε,则a ≤b .证 用反证法.倘若结论不成立,则根据实数集的有序性,有a >b .令a =εb -,则ε为正数且ε+=b a ,但这与假设a <b ε+相矛盾.从而必有a ≤b .二 绝对值与不等式实数a 的绝对值定义为⎩⎨⎧<-≥=.0,,0,a a a a a 从数轴上看,数a 的绝对值a 就是点a 到原点的距离.实数的绝对值有如下一些性质:1. a a -=≥0;当且仅当a =0时有a =0.2.a -≤a ≤a .3.a h <h a h <<-⇔;()0>≤≤-⇔≤h h a h h a ﹒4.对于任何a 、b ∈R 有如下的三角形不等式:b a b a b a +≤±≤-.5.b a ab =.6.()0≠=b ba b a . 下面只证明性质4,其余性质由学生自行证明.由性质2有.,b b b a a a ≤≤-≤≤-两式相加后得到 .)(b a b a b a +≤+≤+-根据性质3,上式等价于.b a b a +≤+ ()1将(1)式b 换成b -,(1)式右边不变,即得b a b a +≤-,这就证明了性质4不等式的右半部分.又由)式有据(1,b b a a +-=.b b a a +-≤从而得.b a b a -≤- ()2 将(2)式中b 换成b -,即得得性质4.b a b a +≤-证.Ⅳ 小结与提问:本节要求学生掌握实数的概念及其性质,牢记并熟练运用实数绝对值的有关性质以及常见的不等式,并在有关命题证明中正确地加以运用.3、4、5、6、7、8、9.Ⅴ课外作业:P4。
1第一章 实数集与函数1
结论显然成立. 结论显然成立.
1 1 当 a+b < 且 a − b < 时, 2 2 1 1 1 − b = 1 − ( a + b) + ( a − b) 2 2
≥ 1− 1 1 1 1 1 a + b − a − b > 1− − = . 2 2 4 4 2
所以
综上可知平均不等式成立. 综上可知平均不等式成立.
退出
n +1 . 证明: 例3 证明:∀n > 2, n < n ! < 2
n
证:
又 故不等式成立. 故不等式成立 退出
1 证明: 例4 证明:∀a, b ∈ R, max { a + b , a − b , 1 − b } ≥ . 2
证: 当 a + b ≥
减
整数
除
有理数
极限
实数. 实数.
Hale Waihona Puke 自然数—— 一个一个地数,数出来的数称为自然数. 一个一个地数,数出来的数称为自然数. 自然数 自然数与其相反数构成的整体称为整数. 整数 —— 自然数与其相反数构成的整体称为整数. 有理数—— 能表为分数的数称为有理数.(可公度的数 能表为分数的数称为有理数. 可公度的数 可公度的数) 有理数 无理数—— 不可公度的数.(不能表为分数的数 不可公度的数. 不能表为分数的数 不能表为分数的数) 无理数 退出
此与题设矛盾, 此与题设矛盾,
∴
为无理数. 为无理数. 退出
2、基本性质 、 (1) 四则运算封闭 —— 实数参与四则运算,其结果仍 实数参与四则运算, 是实数. 是实数. (2) 有序性 —— 有且只有一个成立. 有且只有一个成立. (3) 阿基米德性 —— (4) 稠密性 —— (5) 连续性 —— 数轴上的点与点之间无间隙. 数轴上的点与点之间无间隙. (6) 数与形 —— 实数与数轴上的点构成一一对应. 退出 实数与数轴上的点构成一一对应.
《数学分析》(上册)第一章实数集与函数试题和答案
第一章实数集与函数§1实数1、设a 为有理数,x 为无理数,试证明:⑴x a +是无理数.⑵当0≠a 时,ax 是无理数.证: ⑴ 假设x a +是有理数,则x a x a =-+)(是有理数,这与题设x 为无理数相矛盾, 故x a +是无理数.⑵假设ax 是有理数,则x aax=为有理数,这与题设x 为无理数相矛盾 故ax 是无理数.1、 试在数轴上表示出下列不等式的解: ⑴ 0)1(2>-x x ;⑵⑶2、 设a 、R b ∈.证明:若对任何正数ε有ε<-b a ,则b a =. 证:用反证法.倘若结论不成立,则根据实数集有序性,有b a >或b a <; 若b a >,则又由绝对值定义知:b a b a -=-.令b a -=ε,则ε为正数,但这与ε<-=-b a b a 矛盾; 若b a <,则又由绝对值定义知:a b b a -=-.令a b -=ε,则ε为正数,但这与ε<-=-a b b a 矛盾; 从而必有b a =. 3、 设0≠x ,证明21≥+xx ,并说明其中等号何时成立. 证:因x 与x 1同号,从而21211=⋅≥+=+xx x x x x , 等号当且仅当xx 1=,即1±=x 时成立.4、 证明:对任何R x ∈,有⑴ 121≥-+-x x ;⑵2321≥-+-+-x x x 证: ⑴因为21111-=+-≤--x x x ,所以121≥-+-x x .⑵因为21132-+-≤-≤--x x x x , 所以2321≥-+-+-x x x5、 设a 、b 、+∈R c (+R 表示全体正实数的集合),证明:c b c a b a -≤+-+2222证:对任意的正实数a 、b 、c 有)(22222c b a bc a +≤,两端同时加244c b a +,有224222222242c b a c a b a bc a c b a +++≤++, 即))(()(222222c a b a bc a ++≤+bc c a b a a 2))((2222222-≤++-,两端再同加22c b +,则有c b c a b a -≤+-+2222其几何意义为:当c b ≠时,以),(b a ,),(c a ,)0,0(三点为顶点的三角形,其两边之差小于第三边. 当c b =时,此三角形变为以),(c a ,)0,0(为端点的线段,此时等号成立6、 设0,0>>b x ,且b a ≠,证明x b x a ++介于1与ba之间. 证:因为x b a b x b x a +-=++-1,)()(x b b a b x b a x b x a +-=-++,且0,0>>b x 所以当b a >时, b ax b x a <++<1; 当b a <时, 1<++<xb xa b a ; 故x b x a ++总介于1与ba 之间.7、 设p 为正整数,证明:若p 不是完全平方数,则p 是无理数证:假设p 是有理数,则存在正整数m 、n 使nmp =,且m 与n 互素. 于是22m p n =.可见n 能整除2m .由于m 与n 互素,从而它们的最大公因数为1,由辗转相除法知:存在整数u 、v 使1=+nv mu .从而m mnv u m =+2因n 能整除2m ,又能整除mnv ,故能整除其和,于是n 可整除m ,这样1=n 因此2m p =.这与p 不是完全平方数相矛盾, 故p 是无理数8、 设a 与b 为已知实数,试用不等式符号(不用绝对值符号)表示下列不等式的解: ⑴ b x a x -<-;⑵b x a x -<-;⑶b a x <-2.解: ⑴原不等式等价于11<---bx ba 这又等价于20<--<b x b a 即⎩⎨⎧-<-<>b x b a b x 220或⎩⎨⎧->-><b x b a bx 220即⎪⎪⎩⎪⎪⎨⎧>+>>b a b a x b x 2或⎪⎪⎩⎪⎪⎨⎧<+<<ba b a x b x 2故当b a >时,不等式的解为2ba x +>当b a <时,不等式的解为2ba x +<当b a =时,不等式无解.⑵原不等式等价于⎩⎨⎧-<->b x a x b x 且⎩⎨⎧-<->b x x a bx即⎩⎨⎧>>b a b x 且⎪⎩⎪⎨⎧+>>2b a x bx 故当b a >时,21bx +>; 当b a ≤时,不等式无解. ⑶当0≤b 时,显然原不等式无解,当0>b 时原不等式等价于b a x b a +<<-2因此①当0≤+b a 或0≤b 时,无解②当0>+b a 且0>b 时,有解 Ⅰ 如果b a ≥,则解为b a x b a +<<-即b a x b a +<<-或b a x b a +>>--Ⅱ 如果b a <,则解为b a x +< 即b a x b a +<<+-§2数集 确界原理1、 用区间表示下列不等式的解: ⑴01≥--x x ;⑵61≤+xx ; ⑶0))()((>---c x b x a x (a 、b 、c 为常数,且c b a <<)⑷22sin ≥x 解 ⑴原不等式等价于以下不等式组⎩⎨⎧≥--<011x x x 或⎩⎨⎧≥--≥011x x x前一不等式组的解为21≤x ,后一不等式组无解. 所以原不等式的解为⎥⎦⎤ ⎝⎛∞-∈21,x ⑵不等式61≤+xx 等价于616≤+≤-x x这又等价于不等式组⎩⎨⎧≤+≤->x x x x 61602或⎩⎨⎧-≤+≤<xx x x 61602前一不等式组的解为]223,223[+-∈x ,后一不等式组解为]223,223[+---∈x . 因此原不等式解为 ]223,223[]223,223[+-+---∈x⑶令))()(()(c x b x a x x f ---=,则由c b a <<知:⎪⎩⎪⎨⎧∞+∈>-∞∈<= ;),(),(,0;),(),(,0)(c b a x c b a x x f因此0)(>x f 当且仅当 ;),(),(∞+∈c b a x因此原不等式的解为 ),(),(∞+∈c b a x .⑷当]43,4[ππ∈x 时22sin ≥x .由正弦函数的周期性知22sin ≥x 的解是]432,42[ππππ++∈k k x ,其中k 是整数2、设S 为非空数集,试给出下列概念的定义:⑴数集S 没有上界; ⑵数集S 无界.解: ⑴设S 为一非空数集,若对任意的0>M ,总存在S x ∈0,使M x >0,则称数集S 没有上界 ⑵设S 为一非空数集,若对任意的0>M ,总存在S x ∈0,使M x >0,则称数集S 无界3、证明:由(3)式确定的数集有上界,无下界. 证:{}22R x x y y S ∈-==.对任意的R x ∈,222≤-=x y 所以数集S 有上界2而对任意的0>M ,取m x +=31,则S M M x y ∈--=--===1322211, 但M y -<1,因此数集S 无下界4、 求下列数集的上、下确界,并依定义加以验证. ⑴{}22<=x x S⑵{},!为自然数n n x x S ==; ⑶{})1,0(内的无理数为x x S =; ⑷⎩⎨⎧=-==},2,1,211 n x x S n 解: ⑴2sup =S ,2inf -=S ,以下依定义加以验证.由22<x 知22<<-x ,因之对任意的S x ∈,有2<x 且2->x ,即2,2-分别是S 的上、下界.又对任意的0>ε,不妨设22<ε,于是存在220ε-=x ,221ε+-=x使0x 、1x S ∈,但ε->20x ,ε+-<21x ,所以2sup =S ,2inf -=S⑵+∞=S sup ,1inf =S ,以下依定义加以验证. 对任意的S x ∈,+∞<≤x 1,所以1是S 的下界.对任意的自然数n ,+∞<!n ,所以+∞=S sup ;对任意的0>ε,存在S x ∈==1!11,使ε+<11x ,所以1inf =S ⑶1sup =S ,0inf =S ,以下依定义加以验证.对任意的S x ∈,有10<<x ,所以1、0分别是S 的上、下界.又对任意的0>ε,取εη<<0,且使η-1为无理数,则η-1S ∈,εη->-11 所以1sup =S ;由η的取法知η是无理数,S ∈η,εεη+=<0,所以0inf =S⑷1sup =S ,21inf =S ,以下依定义加以验证. 对任意的S x ∈,有121≤≤x ,所以1、21分别是S 的上、下界.对任意的0>ε,必存在自然数k ,使S x k k ∈-=211,且ε->-=1211k k x所以1sup =S又S x ∈=-=21211,ε+<=-=2121211x 所以21inf =S5. 设S 为非空有下界数集.证明:S S S min inf =⇔∈=ξξ证:设S S ∈=inf ξ,则对一切S x ∈有ξ≥x ,而S ∈ξ,故ξ是数集S 中最小的数,即S min =ξ. 设S min =ξ,则S ∈ξ,下面验证S inf =ξ. Ⅰ 对一切S x ∈,有ξ≥x ,即ξ是S 的下界. Ⅱ 对任何ξβ>,只须取S x ∈=ξ0,则β<0x ,从而ξ不是S 的下界,故S inf =ξ.6.设S 为非空数集,定义}{S x x S ∈-=-,证明:⑴S S sup inf -=-⑵S S inf sup -=-证: ⑴设-=S inf ξ,由下确界的定义知,对任意的-∈S x ,有ξ≥x ,且对任意的0>ε,存在-∈S x 0,使εξ+<0x由}{S x x S ∈-=-知, 对任意的S x ∈-,ξ-≤-x ,且存在S x ∈-0,使εξ-->-0x ,由上确界的定义知ξ-=-S sup ,即S S sup inf -=-. 同理可证⑵式成立.7.设B A 、皆为非空有界数集,定义数集},,{B y A x y x z z B A ∈∈+==+. 证明: ⑴B A B A sup sup )sup(+=+ ⑵B A B A inf inf )inf(+=+ 证: ⑴设1sup η=A ,2sup η=B .对任意的B A z +∈,存在A x ∈,B y ∈,使y x z +=. 于是1η≤x ,2η≤y ,从而21ηη+≤z对任意的0>ε,必存在A x ∈0,B y ∈0且210εη->x ,220εη->y ,则存在B A y x z +∈+=000,使εηη-+>)(210z ,所以B A B A sup sup )sup(21+=+=+ηη ⑵同理可证8.设x a a ,1,0≠>为有理数,证明:{{⎪⎩⎪⎨⎧<>=<<,1}inf ,1}sup a r a a r a a rxr r x r x ,当为有理数,当为有理数证: 只证1>a 的情况, 1<a 的情况可以类似地予以证明.设}{x r r a E r<=,为有理数.因为1>a ,r a 严格递增,故对任意的有理数x r <,有x r a a <,即x a 是E 的一个上界.对任意的0>ε,不妨设x a <ε,于是必存在有理数x r <0,使得xr x a a a <<-0ε.事实上,由x a log 递增知:xx a a <-<ε0等价于x a a xa x a =<-log )(log ε取有理数0r ,使得x r a xa <<-0)(log ε.所以E a xsup =,即}{sup 为有理数r aa rxr x<=§4具有某些特征的函数1、证明:21)(x xx f +=是R 上的有界函数. 证: 利用不等式212x x +≤有2112211)(22≤+=+=x x xx x f 对一切的),(∞+-∞∈x 都成立 故21)(x xx f +=是R 上的有界函数2、⑴证明陈述无界函数的定义; ⑵证明:21)(x x f =为)1,0(上的无界函数. ⑶举出函数f 的例子,使f 为闭区间]1,0[上的无界函数.解: ⑴设)(x f 在D 上有定义,若对任意的正数M ,都存在D x ∈0,使M x f >)(0,则称函数)(x f 为D 上的无界函数.⑵对任意的正数M ,存在)1,0(110∈+=M x ,使M M x x f >+==11)(2所以21)(xx f =为)1,0(上的无界函数. ⑶设⎪⎩⎪⎨⎧=∈=0,0]1,0(,1)(x x x x f .下证)(x f 为无界函数0>∀M ,]1,0(110∈+=∃M x ,使得M M x f >+=1)(0 所以⎪⎩⎪⎨⎧=∈=0,0]1,0(,1)(x x x x f 是闭区间[0,1]上的无界函数.3、 证明下列函数在指定区间上的单调性: ⑴13-=x y 在),(∞+-∞内严格递增; ⑵x y sin =在]2,2[ππ-上严格递增;⑶x y cos =在],0[π上严格递减.证: ⑴任取1x 、),(2∞+-∞∈x ,21x x <, 则0)(3)13()13()()(212121<-=---=-x x x x x f x f , 可见)()(21x f x f <,所以13-=x y 在),(∞+-∞内严格递增. ⑵任取1x 、]2,2[2ππ-∈x ,21x x <,则有22221ππ<+<-x x ,02221<-≤-x x π, 因此02cos21>+x x ,02sin 21<-x x , 从而02sin 2cos 2sin sin )()(21212121<-+=-=-x x x x x x x f x f , 故)()(21x f x f <,所以x y sin =在]2,2[ππ-上严格递增.⑶任取1x 、],0[2π∈x ,21x x <,则π<+<2021x x ,02221<-≤-x x π, 从而02sin21>+x x ,02sin 21<-x x 02sin 2sin2cos cos )()(21212121>-+-=-=-x x x x x x x f x f 故)()(21x f x f >,所以x y cos =在],0[π上严格递减.4、 判别下列函数的奇偶性:(1)12)(24-+=x x x f ;(2) x x x f sin )(+=;(3)22)(x e x x f -=; (4))1lg()(2x x x f -+=解(1)因)(121)(2)()(2424x f x x x x x f =-+=--+-=-, 故12)(24-+=x x x f 是偶函数. (2)因),()sin ()sin()()(x f x x x x x f -=+-=-+-=-故x x x f sin )(+=是奇函数.(3)因)()()(222)(2x f e x e x x f x x ==-=----,故22)(x e x x f -=是偶函数. (4))()1lg(11lg)1lg())(1lg()(2222x f x x x x x x x x x f -=++-=++=++-=-++-=-故)1lg()(2x x x f -+=是奇函数.5、 求下列函数的周期:(1)x x f 2cos )(=;(2)x x f 3tan )(=;(3)3sin 22cos )(xx x f +=. 解 (1) )2cos 1(21cos )(2x x x f +==,而x 2cos 1+的周期是π,所以x x f 2cos )(=的周期是π. (2))3tan(x 的周期是3π,所以x x f 3tan )(=的周期是3π. (3)2cos x 的周期是π4,3sin x 的周期是π6,所以3sin 22cos )(xx x f +=的周期是π12.6、 设)(x f 为定义在],[a a -上的任一函数,证明: (1) ],[),()()(a a x x f x f x F -∈-+=为偶函数; (2) ],[),()()(a a x x f x f x G -∈--=为奇函数; (3) f 可表示为某个奇函数与某个偶函数之和.证 (1)由已知函数)(x F 的定义域关于原点对称且],,[a a x -∈∀)()()()()()(x F x f x f x f x f x F =-+=+-=-.故)(x F 为],[a a -的偶函数.(2) 由已知函数)(x G 的定义域关于原点对称且],,[a a x -∈∀有)()]()([)()()(x G x f x f x f x f x G -=---=--=-.故)(x G 为],[a a -的奇函数.(3)由(1)(2)知: ),(2)()(x f x G x F =+从而)(21)(212)()()(x G x F x G x F x f +=+=,而)(x F ,)(x G 分别是偶函数和奇函数.显然)(21x F 也是偶函数, )(21x G 也是奇函数.从而f 可表示为某个奇函数与某个偶函数之和.7、 设)(x f ,)(x g 为定义在D 上的有界函数,且对任一)()(,x g x f D x ≤∈,证明:(1))(sup )(sup x g x f Dx D x ∈∈≤;(2) )(inf )(inf x g x f Dx D x ∈∈≤. 证 (1)假设)(sup )(sup x g x f Dx D x ∈∈>. 令))(sup )(sup (21x g x f D x D x ∈∈-=ε,则0>ε 由上确界定义知,存在D x ∈0,))(sup )(sup (21)(sup )(0x g x f x f x f Dx D x D x ∈∈∈+=->ε,又对任意的D x ∈,<)(x g ))(sup )(sup (21)(sup x g x f x g D x D x D x ∈∈∈+=+ε. 由此知)()(0x g x f >,这与题设)()()(D x x g x f ∈∀≤相矛盾,所以)(sup )(sup x g x f D x D x ∈∈≤.(2)同理可证结论成立.8、 设f 为定义在D 上的有界函数,证明:(1) )(inf )}({sup x f x f Dx D x ∈∈-=-;(2) )(sup )}({inf x f x f Dx D x ∈∈-=- 证: (1)令ξ=∈)(inf x f Dx .由下确界的定义知,对任意的D x ∈,ξ≥)(x f ,即ξ-≤-)(x f , 可见ξ-是)(x f -的一个上界;对任意的0>ε,存在D x ∈0,使εξ+<)(0x f ,即εξ-->-)(0x f ,可见ξ-是)(x f -的上界中最小者.所以)(inf )}({sup x f x f Dx D x ∈∈-=-=-ξ(2)同理可证结论成立.9、 证明:函数x x f tan )(=在)2,2(ππ-内为无界函数,但在)2,2(ππ-内任一闭区间[]b a ,上有界.证: (1)对任意的正数M ,取)1arctan(0+=M x , 则220ππ<<-x ,M M M x >+=+=1)1(tan(arctantan 0 所以x x f tan )(=在)2,2(ππ-内是无界函数. (2)任取[]b a ,)2,2(ππ-∈,由于x tan 在[]b a ,上是严格递增的,从而b x a tan tan tan ≤≤对任意的[]b a x ,∈都成立.令}tan ,tan max{a a M =,则对一切的[]b a x ,∈,有M x ≤tan ,所以x x f tan )(=在)2,2(ππ-内任一闭区间[]b a ,上有界.10、 讨论狄利克雷函数⎩⎨⎧=为无理数时当为有理数时当x x x D ,0,1)(的周期性、单调性、有界性。
华师大版数学分析第一章实数集与函数1.3函数概念ppt
3、由基本初等函数经过有限次四则运算与复合运算 所得到的函数,统称为初等函数。
7、试问y=|x|是初等函数吗? 解:y=|x|= = ; u=x2; 可见 y=|x|是由基本初等函数有限次复合而成的函数, ∴y=|x|是初等函数.
8、确定下列初等函数的存在域: (1)y=sin(sinx);(2)y=lg(lgx); (3)y=arcsin(lg );(4)y=lg(arcsin ).
9、下列函数是由哪些基本初等函数复合而成: (1)y=(1+x)20; (2)y=(arcsinx2)2;
(3)y=lg(1+
); (4)y=
.
解:(1)y=u20, u=v1+v2, v1=1, v2=x; (2)y=u2, u=arcsinv, v=x2; (3)y=lgu, u=(u1+u2), u1=1, u2= , v=u1+w, w=x2; (4)y=, u=v2, v=sinx.
或f(x)=xsgn x
狄利克雷函数:D(x)= 定义在[0,1]上的黎曼函数: R(x)=
1、试作下列函数的图象: (1)y=x2+1;(2)y=(x+1)2; (3)y=1-(x+1)2;(4)y=sgn(sinx);(5)y= 解:如图:
(1)
(2)
(3)
1、试作下列函数的图象: (1)y=x2+1;(2)y=(x+1)2; (3)y=1-(x+1)2;(4)y=sgn(sinx);(5)y= 解:如图:
注: 两个相同的函数对应法则相同,定义域也相同, 但对应法则的表达形式可能不同,如: f(x)=|x|,x∈R和f(x)= ,x∈R.
函数的三种表示法: 即解析法(或称公式法)、列表法和图象法。 在不同的定义域用不同公式表示的函数称为分段函数。
数学分析1.4函数的性质
x∈D
x∈D
sup f x + g x ≤ sup f x + sup g x .
x∈D
x∈D
x∈D
二、单调函数 定义 3:设 f 为定义在 D 上的函数,若对任何 x1,x2∈D,当 x1< x2 时,总有 (1)f(x1)≢f(x2),则称 f 为 D 上的增函数,当 f(x1)<f(x2)时,称 f 为 D 上的严格增函 数; (2)f(x1)≣f(x2),则称 f 为 D 上的减函数,当 f(x1)>f(x2)时,称 f 为 D 上的严格减函 数. 增函数和减函数统称单调函数,严格增函数和严格减函数统称严格单调函数.
(2)G(-x)=f(-x)-f(x)= -G(x),对任意的 x∈[-a,a]都成立,
∴G(x)=f(x)-f(-x)是[-a,a]上的奇函数.
(3)f(x)= f x +f −x
+(f 2
x
−f
−x
)=F (x )+2 G (x );
(1)中已证 F(x)是[-a,a]上的偶函数;(2)中已证 G(x)是[-a,a]上的奇函数;
r<x1
r<x2
∴ax 当 0<a<1 时,在 R 上严格减.
根据定理 1.2 可知:对数函数 y=logax 当 a>1 时,在 R 上严格增;当 0<a<1 时在 R 上严格减.
三、奇函数和偶函数 定义 4:设 D 为对称于原点的数集,f 为定义在 D 上的函数。若对每一个 x∈D 有 f(-x)= -f(x)(f(-x)=f(x)),则称 f 为 D 上的奇(偶)函数。 从函数图象上看,奇函数的图象关于原点对称;偶函数的图象关于 y 轴对称。
实数集与函数
定义2: 设 x a .a a
0
1 2
a n , 为非负实数,称有理数
x n a0 .a1a 2 a n 为实数x的n位不足近似,而有理数 1 xn xn n 10 称为实数x的n位过剩近似,n 1, 2 , .
对于负实数x a0 .a1a2 an ,其n位不足近似与n位过 剩近似分别规定为 1 xn a0 .a1a2 an n 与 xn a0 .a1a2 an . 10
a k bk, ( k 1, 2 , , l )而a l bl , 则称x大于y或y小于x,分别记为x y或y x;
对于负实数x , y,若按上述规定分别有 x y与 x y, 则分别称x y与x y(或y x)另外,自然规定任何 非负实数 大于任何负实数.
注: (1) 定义1 给出了两个非负实数相等与不等的 定义,请注意它的定义方式.
(2) 定义2 给出非负实数的 n 位不足近似与 n 位过
剩近似,蕴含了重要的数学思想—“逼近”,应引起
同学们的注意.
同时,非负实数的 n 位不足近似与 n 位过剩近似
都是有理数,且它们分别递增、递减.
如 2 1.4142, 则 1.4, 1.5, 1.41, 1.42, 1.414, 1.4142 , , 称 为 2的 不 足 近 似 ; 1.415, 1.4143 , , 称 为 2的 过 剩 近 似 .
y b0 .b1b2 bn 其中a0 , b0为非负整数a k , bk ( k 1, 2 , ) 为整数, 0 a k 9, 0 bk 9. 若有 a k bk,k 1, 2 , , 则称x与y相等,记为 x y; 若a0 b0或存在非负整数l,使得
《数学分析》第一章 实数集与函数 2
y = ex
y = ax
(a > 1)
( 0 ,1)
4,三角函数 , 正弦函数 y = sin x
y = sin x
余弦函数 y = cos x
y = cos x
正切函数 y = tan x
y = tan x
3,对数函数 y = log a x ,
(a > 0, a ≠ 1) y = ln x
恒成立 . 则称f ( x )为周 期函数 , l称为 f ( x )的周期 .
(通常说周期函数的周期是指其最小正周期). 通常说周期函数的周期是指其最小正周期) 周期
3l 2
l 2
l 2
3l 2
三,反函数
y
函数 y = f ( x )
y0
y
反函数 x = ( y )
y0
W
W
o
x0
x
o
x0
x
D
y
D : ( 1,1)
如果自变量在定 y 义域内任取一个数值 时,对应的函数值总 是只有一个, 是只有一个,这种函 W y 数叫做单值函数, 数叫做单值函数,否 则叫与多值函数. 则叫与多值函数.
( x, y)
x
例如, 例如, x + y = a .
2 2 2
o
x
D
定义: 定义: 点集C = {( x , y ) y = f ( x ), x ∈ D} 称为
o
I
x
设函数 f ( x )的定义域为 D , 区间 I ∈ D ,
如果对于区间 I 上任意两点 x1 及 x 2 , 当 x1 < x 2时,
恒有 ( 2) f ( x1 ) > f ( x 2 ),
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数对四则运算封闭
• 有理数,无理数的表示不统一,这对统一讨论 实数是不利的.为以下讨论的需要,我们把 “有限小数”(包括整数)也表示为“无限小 数”.为此作如下规定:
对于正有限小数 x a0 .a1 an ,
其中 0 ai 9,i 1, 2, , n, an 0, a0为非负整数
例 a b, 0, a b . 0, a < b + a b
二. 绝对值与不等式
绝对值定义:
|
a
|
a a
, ,
a 0 a0
从数轴上看的绝对值就是到原点的距离:
-a
0
a
9
绝对值的一些主要性质
1. | a| | a| 0 当且仅当 a0 时 | a| 0 2. -|a|a |a| 3. |a|h -h< a< h; |a| h hah, h0 4. a b ab a b 5. | ab|| a| |b| 6. a |a| , b0
a2 b2 a2 c2 b c 成立,它的几何意义是什么?
13
作业P4,1(1),2(2),3,4,5(2)
b |b|
10
性质 4(三角不等式)的证明:
由性质2
-|a| a |a|, -|b| b |b|
两式相加
-(|a|+|b|)a+b |a|+|b|
由性质 3 上式等价于 |a+b||a|+|b|
把上式的 b 换成 -b 得 |a-b||a|+|b|
由此可推出
| f (x) A | A f (x) A | A | | f (x) | | A |
规定任何非负实数大于任何负实数;对于负实数 x , y ,若按定义 1 有
4
则称 x 大于 y (或 y 小于 x ),分别记为 x y (或 y x )。
规定任何非负实数大于任何负实数;对于负实数 x , y ,若按定义 1 有
x y ,则称 y x
实数的有理数近似表示
定义 2 设 x a0.a1a2 an 为非负实数,称有理数
11
三. 几个重要不等式:
(1) a 2 b2 2 ab ,
sin x 1. sin x x .
(2)对 a1, a2,, an R , 记
M (ai )
a1
a2
an n
1 n
n i 1
ai ,
1
G(ai ) n
a1 a2 an
n i1
ai n ,
(算术平均值) (几何平均值)
(3)Bernoulli不等式
对h 0,由二项式展开式 (1 h)n 1 nh n(n 1) h2 hn
2
有(1 h)n 上式右端任何一项。
思考题:
1、设 a、b R, 是任意正数,恒有关系式 a-b 成立,请问
a、b 之间关系如何? 2、设 a、b、c R , (R 表示全体正实数的集合).有关系式:
H (ai )
1
n 1
1
1
1 n1
n. n1
(调和平均值)
a1 a2
ai ) G(ai ) M (ai ), 等号当且仅当 a1 a2 an 时成立.
12
(3) Bernoulli 不 等式 : (在中学已用数学归纳法证明过)
如: x 32.179834521
x5 32.17983 x6 32.179834
x5 32.17984 x6 32.179835 y 187.834521
y4 187.8346 y5 187.83453
6
y4 187.8345 y5 187.83452
命题:设x a0.a1a2 与y b0.b1b2 为两个实数 ,
记:x a0.a1 (an 1)9999
2
对于正整数 x a0, 则记 x (a0 1).9999
对于负有限小数(包括负整数) y ,则先将 y 表示为无限
小数,再在所得的小数之前加负号.
例: 2.001 2.0009999
3 2.9999 2.001 2.009999 3 2.9999
xn为实a0.数a1ax2 的ann 位为不实足数近x似的值n,位而不有足理xn近数似xn值 , 101而 n 有理 x下n 数页 xn
1 10 n
称为 x 的 n 位过称剩为近x似的值n。位过剩近似值。
对于负实数 x 对 于a0负.a1实a2数 axn a0 .a1a2 an
x
的
n
位不足近x似的值n规位定不为足:近x似 n 值规 a0 .定a1 a为2 :axnn
1a 10 n
0;.a15a2
a
x的n位过剩近似值规定为: xn a0.a1a2 an
比如 2 1.4142,
1.4,1.41,1.414,称为 2的 不足近似值; 1.5,1.42,1.415,称为 2的过剩近似值.
注: 实数x的不足近似xn当n增加时 不减, 过剩近似xn当n增加时不增。
则x y 存在非负整数 n,使得xn yn 。
例2 设x, y为实数, x y;证明存在有理r,数满足 x r y.
7
证明:由x y 存在非负整数n,使得xn yn , 取r xn yn ,则r为有理数,且 2 x xn r yn y.
实数的主要性质
1 四则运算的封闭性。
3
实数大小的比较 定义 1 给定两个非负实数
x a0.a1a2 an , y b0.b1b2 bn 其中 ak , bk 为非负整数, 0 ak , bk 9 。若由
1) ak bk , k 0 , 1 , 2 , 则称 x 与 y 相等,记为 x y 2) 若存在非负整数 l ,使得 ak bk , (k 0 , 1 , 2 , , l) ,而 al1 bl1 , 则称 x 大于 y (或 y 小于 x ),分别记为 x y (或 y x )。
2 有序性: 任意两个实数a,b必满足下列关系之一: a b, a b, a b.
3 传递性: a b,b c a c. 4 Archimedes:即对a,b R,若b a 0,则 存在正整数n,使得na b.
5 稠密性:即任两个不等的实数间必有另一个实数。 8
5 稠密性: 有理数和无理数的稠密性, 给出稠密 6 实数集的几何表示: 数轴: