探索两条直线平行的条件

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.如果直线a、b都和直线c平行,那么a、b就互相平行.( )

[生甲]第1句话是错的.只有在同一平面内的两条不相交的直线才是平行线.

(也可举例:如异面直线.学生只要说清即可).

[生乙]第2句话是错的.因为一条直线的平行线有无数条,只有经过直线外一点,才有且只有一条直线与已知直线平行.

[生丙]第3句是对的,它是平行线的一个性质.

[师]同学们分析得很好.下面我们来看一个生活中的实例

如图,装修工人正在向墙上钉木条,如果木条b与墙壁边缘垂直,那么木条a与墙壁边缘所夹角为多少度时,才能使木条a与木条b平行?

(同学们讨论)

[师]大家可以用课前裁好的线条在桌子上演示.

[生]木条a也与墙壁边缘垂直时,才能使木条a与木条b平行.

[师]大家经过讨论,得到了:若木条b与墙壁边缘垂直时,只有木条a也与墙壁边缘垂直时,才能使木条a与木条b平行.那么在同一平面内,两条直线除不相交外,还可能在什么情况下平行呢?这节课我们就来探索直线平行的条件.

新课讲授[师]大家拿出准备好的纸条,按如下方法来做一做

如图(1)所示,三根木条相交成∠1,∠2,固定木条b、c,转动木条a.

(1)(2)(3)(4)

图2-11

如图(2),在木条a的转动过程中,观察∠2的变化以及它与∠1的大小关系,你发现木条a与木条b的位置关系发生了什么变化?木条a何时与木条b平行?

改变图(1)中∠1的大小,按照上面的方式再做一做.∠1与∠2的大小满足什么关系时,木条a与木条b平行?

[师]同学们先独立操作、观察,找出结论,然后前后四人讨论,得出结论.

(学生动手操作,然后交流,教师指导、巡视)

新课活动

[生甲]在转动木条a的过程中,看到∠1与∠2的大小关系为三种情况:大于、等于、小于;木条a与木条b的位置关系有两种情况:相交与平行;当∠1=∠2时,木条a与木条b平行.

[师]你们同意他的说法吗?

[生齐声]同意.

[师]好,这只是一种情况下得出的结论.如果改变∠1的大小,情况又如何呢?

[生乙]我们观察到的情况与甲同学说的一样.

[生丙]我注意到:只要∠2与∠1的大小相等,那么木条a、b就平行.

[师]是这样的吗?

[生齐声]是.

[师]好.由此可以看到:木条a、b的位置关系与∠1、∠2的大小关系密切相关,当∠1等于∠2时,木条a、b所在的直线就平行.那么∠1、∠2是什么样的角呢?

看图:

图2-12

直线AB、CD与直线l相交(或者说两条直线AB、CD被第三条直线l 所截),构成八个角.∠1与∠2这两个角分别在直线CD、AB的上方,并且都在直线l的右侧,像这样具有位置相同的一对角称为同位角(corresponding angles),∠3与∠4也是同位角.

辨别同位角时要注意位置上的两个“同”字,在第三条直线的同旁,被截两直线的同方向.

下面大家看这个图中,还有没有其他的同位角呢?

[生甲]∠5与∠6是同位角.这两个角在直线l的右侧,又在直线CD、AB的下方.

[生乙]∠7与∠8是同位角.这两个角分别在直线CD、AB的下方,并且在直线l的左侧.

[师]很好,大家了解了同位角后,想一想刚才我们得到的:“当∠1=∠2时,木条a、b所在的直线平行”这个结论应该怎么叙述?

[生]从图中可知:∠1与∠2是同位角.所以可以这样说:同位角相等,两条直线平行.

[师]好,这样我们就得到直线平行的条件:同位角相等.即:平行线的判定:

同位角相等,两直线平行.

用几何符号表示:∠1=∠2→a∥b

在上学期,我们学过了利用移动三角尺的方法来画平行线,那现在大家来分组讨论讨论.

怎样用移动三角尺的方法画两条平行线?你能用这种方法过已知直

线外一点画它的平行线吗?请说出其中的道理.(课件——画平行线)

(学生分组操作、讨论)

[生甲](学生一边操作,一边叙述).先画一条直线,用一个三角尺的一边与这条直线重合,然后把第二个三角尺紧靠第一个三角尺,第二个三角尺不动,移动第一个三角尺,这样就可以画出与已知直线平行的直线.

用这种方法可以作:过已知直线外一点画它的平行线.

(图如下:AB∥CD,点P在CD上.)

图2-13

[生乙]画直线CD与AB平行的过程中,实际上使用了一个三角尺的一边和另一个三角尺的一个角.一个三角尺不动,在另一个三角尺平移的过程中,那个角的大小不变,而且从一个位置平移到另一个位置,两个位置上的那个角构成了同位角关系.“同位角相等,两直线平行.”

[师]同学们分析得很好.在画已知直线的平行线时,实际就用到了“同位角相等,两直线平行”这个直线平行的条件.(参看课件——同位角相等,两直线平行)

好,下面大家动手画一画:过直线外一点画这条直线的平行线.

(学生动手操作,教师指导)

[师]好,同学们画得很好.接下来我们做练习,以巩固本节所学内容.

小结提升

本节课我们主要探讨了直线平行的条件:“同位角相等,两直线平行”.还认识了同位角,并且会用三角尺过已知直线外一点作这条直线的平行线.

到现在为止,我们就有了几种判定两直线平行的方法:小组讨论交流,人人讨论,人人发言总结所学判定方法:

(1)定义(不常用)

(2)如果两条直线都与第三条直线平行,那么这两条直线互相平行.

(3)同位角相等,两直线平行.

课堂达标

已知如图2-16,直线AB、CD被MN所截,∠1=∠2,则直线AB与CD 的位置关系如何?还有没有其他的证明方法?

图2-16

[过程]让学生观察、思考、猜想、验证.培养学生初步的论证能力.假设AB与CD平行.则需要∠3=∠2,但∠1=∠3(对顶角相等)且∠1=∠2(已知),所以∠3=∠2.这样猜想得以论证.其他的论证方法与前面一样,只是找的同位角不一样.在讨论过程中,要让学生找到其他的三对同位角,并可验证.

相关文档
最新文档