山东省淄博市高一上学期数学第一次月考试卷
高一上学期第一次月考数学试卷(含答案解析)
高一上学期第一次月考数学试卷(含答案解析)考试时间:120分钟;总分:150分学校:___________姓名:___________班级:___________考号:___________第I 卷(选择题)一、单选题(本大题共8小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1. 若集合A ={x|x >2},B ={x|−2⩽x ⩽3},则A ∩B =( )A. (2,3)B. (2,3]C. [2,3]D. [−2,3]2. 如图所示的Venn 图中,已知A ,B 是非空集合,定义A ∗B 表示阴影部分的集合.若A ={x |0≤x <3},B ={y |y >2},则A ∗B =( )A. {x |x >3}B. {x |2≤x ≤3}C. {x |2<x <3}D. {x |x ≥3}3. 中国清朝数学家李善兰在859年翻译《代数学》中首次将“function ”译做“函数”,沿用至今.为什么这么翻译,书中解释说“凡此变数中函彼变数者,则此为彼之函数.”这个解释说明了函数的内涵:只要有一个法则,使得取值范围中的每一个值x ,有一个确定的y 和它对应就行了,不管这个对应的法则是公式、图象、表格还是其它形式.已知函数f(x)由如表给出,则f(f(−2)+1)的值为( )A. 1B. 2C. 3D. 44. 命题“∀x >1,x −1>lnx ”的否定为( )A. ∀x ≤1,x −1≤lnxB. ∀x >1,x −1≤lnxC. ∃x ≤1,x −1≤lnxD. ∃x >1,x −1≤lnx5. 设M =2a(a −2)+7,N =(a −2)(a −3),则M 与N 的大小关系是( )A. M >NB. M =NC. M <ND. 无法确定6. f(2x −1)的定义域为[0,1),则f(1−3x)的定义域为( )A. (−2,4]B. (−2,12]C. (0,23]D. (0,16] 7. 已知x ∈R ,则“(x −2)(x −3)≤0成立”是“|x −2|+|x −3|=1成立”的条件.( )A. 充分不必要B. 必要不充分C. 充分必要D. 既不充分也不必要 8. 已知集合A ={x|3−x x ≥2)},则∁R A =( ) A. {x|x >1}B. {x|x ≤0或x >1}C. {x|0<x <1}D. {x|x <0或x >1}二、多选题(本大题共4小题,共20.0分。
高一上学期第一次月考数学试卷(新题型:19题)(基础篇)(原卷版)
2024-2025学年高一上学期第一次月考数学试卷(基础篇)【人教A版(2019)】(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上;2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效;3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效;4.测试范围:必修第一册第一章、第二章;5.考试结束后,将本试卷和答题卡一并交回.第I卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。
1.(5分)(24-25高一上·河北廊坊·开学考试)下列各组对象能构成集合的是()A.2023年参加“两会”的代表B.北京冬奥会上受欢迎的运动项目C.π的近似值D.我校跑步速度快的学生2.(5分)(23-24高一上·北京·期中)命题pp:∀xx>2,xx2−1>0,则¬pp是()A.∀xx>2,xx2−1≤0B.∀xx≤2,xx2−1>0C.∃xx>2,xx2−1≤0D.∃xx≤2,xx2−1≤03.(5分)(23-24高二下·福建龙岩·阶段练习)下列不等式中,可以作为xx<2的一个必要不充分条件的是()A.1<xx<3B.xx<3C.xx<1D.0<xx<14.(5分)(24-25高三上·山西晋中·阶段练习)下列关系中:①0∈{0},②∅ {0},③{0,1}⊆{(0,1)},④{(aa,bb)}= {(bb,aa)}正确的个数为()A.1 B.2 C.3 D.45.(5分)(24-25高三上·江苏南通·阶段练习)若变量x,y满足约束条件3≤2xx+yy≤9,6≤xx−yy≤9,则zz=xx+2yy的最小值为()A.-7 B.-6 C.-5 D.-46.(5分)(23-24高二下·云南曲靖·期末)已知全集UU={1,3,5,7,9},MM=�xx|xx>4且xx∈UU},NN={3,7,9},则MM∩(∁UU NN)=()A.{1,5}B.{5}C.{1,3,5}D.{3,5}7.(5分)(23-24高一上·陕西渭南·期末)已知不等式aaxx2+bbxx+2>0的解集为{xx∣xx<−2或xx>−1},则不等式2xx2+bbxx+aa<0的解集为()A.�xx�−1<xx<12�B.{xx∣xx<−1或xx>12}C.�xx�−1<xx<−12�D.{xx∣xx<−2或xx>1}8.(5分)(24-25高三上·江苏徐州·开学考试)已知aa>bb≥0且6aa+bb+2aa−bb=1,则2aa+bb的最小值为()A.12 B.8√3C.16 D.8√6二、多项选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目的要求,全部选对的得6分,部分选对的得部分分,有选错的得0分。
山东省淄博市临淄中学2013-2014学年高一12月月考数学
(试卷总分150分,共34题,考试时间120分钟)一;选择题(每题3分,共72分)1.下列各角中,与60°角终边相同的角是( ) A .-300° B .-60° C .600° D .1380°2.cos300︒= (A)2-(B)-12 (C)12(D) 2 3.已知)2,3(-P 为角α终边上的一点,那么αcos 的值等于( )A. 32-B. 53- C. 13133 D. 13133-4.函数sin(),24x x R π-∈的最小正周期为A. 2πB. πC.2πD.4π5.若sin α<0且tan α>0,则α的终边在( )A .第一象限B .第二象限C .第三象限D .第四象限6. 下列四组函数中,表示相等函数的一组是( )A.()||f x x =,()g x =()f x =2()g x =C. 21()1x f x x -=-,()1g x x =+ D.()f x =()g x =7.已知sin α=23,tan α=255,则cos α=( )A.13B.53C.73D.558.一个扇形的弧长与面积的数值都是6,这个扇形中心角的弧度数是( ) A .1 B .2 C .3 D .49.若 4.7,α=则α是( )A 、第一象限角B 、第二象限角C 、第三象限角D 、第四象限角10..三个数26.0=a ,6.02log =b ,6.02=c 之间的大小关系是( ) A.b c a <<B.c b a <<C. c a b <<D.a c b <<11若log 2 a <0,b⎪⎭⎫⎝⎛21>1,则( ).A .a >1,b >0B .a >1,b <0C .0<a <1,b >0D .0<a <1,b <012函数1()52x f x x -=+-的零点所在的区间为( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)13要得到函数)63cos(π-=x y 的图象,只需将x y 3cos =的图象( )A .向右平移6πB .向左平移6πC .向右平移18πD .向左平移18π14.下列函数中,最小正周期为π,且图象关于直线3π=x 对称的是( )A .)32sin(π-=x y B .)62sin(π-=x y C .)62sin(π+=x y D .⎪⎭⎫⎝⎛+=32sin πx y 15.若函数()ϕ+=x y 2sin 为偶函数,则ϕ的一个值可以是( ) A .πϕ-= B .2πϕ-= C .πϕ2= D .4πϕ=16. 已知sin(x+12π)=31,则cos(x+127π)=( ) A 、 32 B 、31 C 、 - 31D 、017.集合A={x |2<x ≤5},B={}|x x a <若A B ≠∅ 则a 的取值范围为( )A.a<2 B.a>2 C.a≥2 D.a≤218.已知α是三角形的一个内角且32cos sin =α+α,则此三角形是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形 19.下列关系式中正确的是 ( )A .sin 11°<cos 10°<sin 168°B .sin 168°<sin 11°<cos 10°C .sin 11°<sin 168°<cos 10°D .sin 168°<cos 10°<sin 11°20.函数()sin()3f x x π=-的一个单调增区间是 ( )A .(5,66ππ-)B .(51,66ππ)C .(,22ππ-)D .(2,33ππ-)21.函数⎥⎦⎤⎢⎣⎡-∈=32,6,sin ππx x y 的值域是( ) A 、[]1,1- B 、⎥⎦⎤⎢⎣⎡-1,21 C ⎥⎦⎤⎢⎣⎡-23,21 D 、⎥⎦⎤⎢⎣⎡23,21 22..将函数y =sin(x -π3)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向右平移π3个单位,得到的图象对应的解析式是( ) A .y =sin 12x B .y =sin(12x -π2)C .y =sin(12x -π6)D .y =sin(2x -π6)23..关于函数f (x )=4sin(2x +π3)(x ∈R),下列说法正确的是( )A.函数y =f (x )的表达式可改写为y =4cos(2x -π6); B 函数y =f (x )是以2π为最小正周期的周期函数; C 函数y =f (x )的图象关于点(-π3,0)对称; D 函数y =f (x )的图象关于直线x =-π6对称.24. 函数y=x|cosx|的大致图像是( )A B C D二:填空题(每题3分,共15分)25.函数f (x )=sin(3x 4+3π2)的奇偶性为( )(填:奇函数,偶函数,非奇非偶函数)26.化简 40cos 40sin 21-= .27.设()f x 是R 上的奇函数,且当[)0,x ∈+∞时,()(21)x f x x -=+,则(),0x ∈-∞时,()f x = .28.若α是第一象限的角,则π-α是第______象限的角29关于下列命题:①函数sin y x =在第一象限是增函数;②函数)4(2cos x y -=π是偶函数; ③函数)32sin(4π-=x y 的一个对称中心是(6π,0);④函数)4sin(π+=x y 在闭区间]2,2[ππ-上是增函数; 写出所有正确的命题的题号: 。
高一数学第一次月考试题与答案
2017-2018学年度高一数学9月月考试卷本试卷分第Ⅰ卷和第Ⅱ卷两部分,共150分,考试时间120分钟。
学校:___________姓名:___________班级:___________考号:___________分卷I一、选择题(共12小题,每小题5.0分,共60分)1.已知集合M ={x ∈N +|2x ≥x 2},N ={-1,0,1,2},则(∁R M )∩N 等于( ) A . ∅ B . {-1} C . {1,2} D . {-1,0}2.已知集合P ={4,5,6},Q ={1,2,3},定义P ⊕Q ={x |x =p -q ,p ∈P ,q ∈Q },则集合P ⊕Q 的所有真子集的个数为( )A . 32B . 31C . 30D . 以上都不对3.定义A -B ={x |x ∈A ,且x ∉B },若A ={1,2,4,6,8,10},B ={1,4,8},则A -B 等于( ) A . {4,8} B . {1,2,6,10} C . {1} D . {2,6,10}4.下列各组函数中,表示同一个函数的是( ) A .y =x -1和y =B .y =x 0和y =1C .f (x )=x 2和g (x )=(x +1)2 D .f (x )=和g (x )=5.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶.与以上事件吻合得最好的图像是( )A .B .C .D .6.下列三个函数:①y =3-x ;②y =;③y =x 2+2x -10.其中值域为R 的函数有( ) A .0个 B .1个 C .2个 D .3个 7.一次函数g (x )满足g [g (x )]=9x +8,则g (x )是( ) A .g (x )=9x +8 B .g (x )=3x +8C .g (x )=-3x -4D .g (x )=3x +2或g (x )=-3x -4 8.下列函数中,在[1,+∞)上为增函数的是( ) A .y =(x -2)2 B .y =|x -1| C .y =D .y =-(x +1)2 9.若非空数集A ={x |2a + ≤x ≤3a -5},B ={x |3≤x ≤ },则能使A ⊆B 成立的所有a 的集合是( ) A . {a | ≤a ≤9} B . {a |6≤a ≤9} C . {a |a ≤9} D . ∅10.若函数f (x )= ,, , ,φ(x )=, , , ,则当x <0时,f (φ(x ))为( ) A . -x B . -x 2C .XD .x 2 11.若函数f (x )=的最小值为f (0),则实数m 的取值范围是( )A . [-1,2]B . [-1,0]C . [1,2]D . [0,2]12.已知函数f (x )=4x 2-kx -8在区间(5,20)上既没有最大值也没有最小值,则实数k 的取值范围是( )A. [160,+∞) B. (-∞,40]C. (-∞,4 ]∪[ 6 ,+∞) D. (-∞, ]∪[8 ,+∞)分卷II二、填空题(共4小题,每小题5.0分,共20分)13.已知M={2,a,b},N={2a,2,b2},且M=N,则有序实数对(a,b)的值为________.14.已知函数y=f(x2-1)的定义域为{x|-2<x<3},则函数y=f(3x-1)的定义域为____________.15.设函数f(x)=, ,, ,若f(f(a))=2,则a=_________.16.已知函数y=f(x)的定义域为{1,2,3},值域为{1,2,3}的子集,且满足f[f(x)]=f(x),则这样的函数有________个.三、解答题(共6小题,,共70分)17.(10分)用单调性的定义证明函数f(x)=2x2+4x在[-1,+∞)上是增函数.18(12分).根据下列函数解析式求f(x).(1)已知f(x+1)=2x2+5x+2;(2)已知f=x3+3-1;(3)已知af(x)+f(-x)=bx,其中a≠± 19(12分).已知集合A={x| ≤x<7},B={x|3<x<10},C={x|x<a}.(1)求A∪B,(∁R A)∩B;(2)若A∩C≠∅,求a的取值范围.20(12分).经市场调查,某超市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t(天)的函数,且销售量近似满足g(t)=80-2t,价格近似满足f(t)=20-|t-10|.(1)试写出该种商品的日销售额y与时间t( ≤t≤ )的函数表达式;(2)求该种商品的日销售额y的最大值与最小值.21(12分).已知函数f(x)=(x-a)2-(a2+1)在区间[0,2]上的最大值为g(a),最小值为h(a)(a∈R).(1)求g(a)和h(a);(2)作出g (a )和h (a )的图像,并分别指出g (a )的最小值和h (a )的最大值各为多少?22(12分).已知函数f (x )的定义域是(0,+∞),当x >1时,f (x )>0,且f (x ·y )=f (x )+f (y ). (1)求f (1)的值;(2)证明:f (x )在定义域上是增函数;(3)如果f (3)=-1,求满足不等式f (x )-f (x - )≥ 的x 的取值范围.2017-2018学年度高一数学9月月考试卷答案解析1.【答案】D【解析】因为M ={1,2},所以(∁R M )∩N ={-1,0},故正确答案为D. 2.【答案】B【解析】由所定义的运算可知P ⊕Q ={1,2,3,4,5}, ∴P ⊕Q 的所有真子集的个数为25-1=31.故选B. 3.【答案】D【解析】A -B 是由所有属于A 但不属于B 的元素组成,所以A -B ={2,6,10}.故选D. 4.【答案】D【解析】A 中的函数定义域不同;B 中y =x 0的x 不能取0;C 中两函数的对应关系不同,故选D. 5.【答案】C【解析】考查四个选项,横坐标表示时间,纵坐标表示的是离开学校的距离,由此知,此函数图像一定是下降的,由此排除A ;再由小明骑车上学,开始时匀速行驶,可得出图像开始一段是直线下降型,又途中因交通堵塞停留了一段时间,故此时有一段函数图像与x轴平行,由此排除D,后为了赶时间加快速度行驶,此一段时间段内函数图像下降的比较快,由此可确定C正确,B不正确.故选C.6.【答案】B【解析】7.【答案】D【解析】∵g(x)为一次函数,∴设g(x)=kx+b,∴g[g(x)]=k(kx+b)+b=k2x+kx+b,又∵g[g(x)]=9x+8,∴9,8,解得3,或3,4,∴g(x)=3x+2或g(x)=-3x-4.故选D.8.【答案】B【解析】y=(x-2)2在[2,+∞)上为增函数,在(-∞,2]为减函数;y=|x-1|= , ,,在[1,+∞)上为增函数,故选B.9.【答案】B 10.【答案】B【解析】x<0时,φ(x)=-x2<0,∴f(φ(x))=-x2.11.【答案】D【解析】当x≤ 时,f(x)=(x-m)2,f(x)min=f(0)=m2,所以对称轴x=m≥ .当x>0时,f(x)=x++m≥ +m=2+m,当且仅当x=,即x=1时取等号,所以f(x)min=2+m.因为f(x)的最小值为m2,所以m2≤ +m,所以 ≤m≤ .12.【答案】C【解析】由于二次函数f(x)=4x2-kx-8在区间(5,20)上既没有最大值也没有最小值,因此函数f(x)=4x2-kx-8在区间(5,20)上是单调函数.二次函数f(x)=4x2-kx-8图像的对称轴方程为x=8,因此8≤5或8≥ ,所以k≤4 或k≥ 6 .13.【答案】(0,1)或(4,)【解析】∵M={2,a,b},N={2a,2,b2},且M=N,∴或即或或4当a=0,b=0时,集合M={2,0,0}不成立,∴有序实数对(a,b)的值为(0,1)或(4,),故答案为(0,1)或(4,).14.【答案】{x| ≤x<3}【解析】∵函数y=f(x2-1)的定义域为{x|-2<x<3},∴-2<x<3.令g(x)=x2-1,则- ≤g(x)<8,故- ≤3x-1<8,即 ≤x<3,∴函数y=f(3x-1)的定义域为{x| ≤x<3}.15.【答案】【解析】若a≤ ,则f(a)=a2+2a+2=(a+1)2+1>0,所以-(a2+2a+2)2=2,无解;若a>0,则f(a)=-a2<0,所以(-a2)2+2(-a2)+2=2,解得a=.故a=.16.【答案】10【解析】∵f[f(x)]=f(x),∴f(x)=x,①若f:{ , ,3}→{ , ,3},可以有f(1)=1,f(2)=2,f(3)=3,此时只有1个函数;②若f:{ , ,3}→{ },此时满足f(1)=1;同理有f:{ , ,3}→{ };f:{ , ,3}→{3},共有3类不同的映射,因此有3个函数;③首先任选两个元素作为值域,则有3种情况.例如选出1,2,且对应关系f:{ , ,3}→{ , },此时满足f(1)=1,f(2)=2.则3可以对应1或2,又有2种情况,所以共有3× =6个函数.综上所述,一共有1+3+6=10个函数.17.【答案】设x1,x2是区间[-1,+∞)上的任意两个实数,且x1<x2,则f(x1)-f(x2)=(2+4x1)-(2+4x2)=2(-)+4(x1-x2)=2(x1-x2)(x1+x2+2).∵- ≤x1<x2,∴x1-x2<0,x1+x2+2>0,∴f(x1)-f(x2)<0,即f(x1)<f(x2),∴f(x)在[-1,+∞)上是增函数.18.【答案】(1)方法一(换元法)设x+1=t,则x=t-1,∴f(t)=2(t-1)2+5(t-1)+2=2t2+t-1,∴f(x)=2x2+x-1.方法二(整体代入法)∵f(x+1)=2x2+5x+2=2(x+1)2+(x+1)-1,∴f(x)=2x2+x-1.(2)(整体代入法)∵f=x3+3-1=3-3x2·-3x·-1=3-3-1,∴f(x)=x3-3x-1(x≥ 或x≤-2).(3)在原式中以-x替换x,得af(-x)+f(x)=-bx,于是得+ - = ,- + =-消去f(-x),得f(x)=.故f(x)的解析式为f(x)=x(a≠± ).19.【答案】(1)因为A={x| ≤x<7},B={x|3<x<10},所以A∪B={x| ≤x<10}.因为A={x| ≤x<7},所以∁R A={x|x<2或x≥7},则(∁R A)∩B={x|7≤x<10}.(2)因为A={x| ≤x<7},C={x|x<a},且A∩C≠∅,所以a>2.20.【答案】(1)y=g(t)·f(t)=(80-2t)·( -|t-10|)=(40-t)(40-|t-10|)=3 4 , ,4 5 ,(2)当 ≤t<10时,y的取值范围是[1 200,1 225],在t=5时,y取得最大值1 225;当 ≤t≤ 时,y的取值范围是[600,1 200],在t=20时,y取得最小值600.综上,第5天,日销售额y取得最大值1 225元;第20天,日销售额y取得最小值600元.21.【答案】( )∵f(x)=(x-a)2-(a2+1),又x∈[ , ],∴当a≤ 时,g(a)=f(2)=3-4a,h(a)=f(0)=-1;当0<a≤ 时,g(a)=f(2)=3-4a,h(a)=f(a)=-(a2+1);当1<a<2时,g(a)=f(0)=-1,h(a)=f(a)=-(a2+1);当a≥ 时,g(a)=f(0)=-1,h(a)=f(2)=3-4a.综上可知g(a)=3 4h(a)=3 4(2)g(a)和h(a)的图像分别为:由图像可知,函数y=g(a)的最小值为-1,函数y=h(a)的最大值为-1.【解析】22.【答案】(1)解令x=y=1,得f(1)=2f(1),故f(1)=0.(2)证明令y=,得f(1)=f(x)+f()=0,故f()=-f(x).任取x1,x2∈( ,+∞),且x1<x2,则f(x2)-f(x1)=f(x2)+f()=f().由于>1,故f()>0,从而f(x2)>f(x1).∴f(x)在(0,+∞)上是增函数.(3)解由于f(3)=-1,而f(3)=-f(3),故f(3)=1.在f(x·y)=f(x)+f(y)中,令x=y=3,得f(9)=f(3)+f(3)=2.故所给不等式可化为f(x)-f(x- )≥f(9),∴f(x)≥f[9(x-2)],∴x≤94.又∴ <x≤94,∴x的取值范围是94.【解析】。
高一数学第一次月考试卷及答案
上学期第一次考试高一数学试卷一、选择题(每小题5分;共60分)1. 在①{}10,1,2⊆;②{}{}10,1,2∈;③{}{}0,1,20,1,2⊆; ④∅⊂;≠{}0上述四个关系中;错误..的个数是( ) A. 1个 B. 2个C. 3个D. 4个2. 已知全集U =R ;集合{}|A x y x ==-;{}2|1B y y x ==-;那么集合()U C A B =( )A .(],0-∞B .()0,1C .(]0,1D . [)0,13. 已知集合⎭⎬⎫⎩⎨⎧∈+==Z k k x x M ,42ππ;⎭⎬⎫⎩⎨⎧∈+==Z k k x x N ,24ππ;则 ( )A .M NB .N MC .N M =D .φ=N M 4. 函数2()(31)2f x x a x a =+++在(,4)-∞上为减函数;则实数a 的取值范围是( ) A .3a ≤- B .3a ≤ C .5a ≤ D .3a =- 5. 集合,A B 各有两个元素;A B 中有一个元素;若集合C 同时满足:(1)()C A B ⊆;(2)()C A B ⊇;则满足条件C 的个数为 ( ) A.1 B.2 C.3 D.4 6. 函数(5)||y x x =--的递减区间是 ( ) A. (5,)+∞ B.(,0)-∞C. (,0)(5,)-∞+∞D. 5(,0)(,)2-∞+∞,7. 设P M ,是两个非空集合;定义M 与P 的差集为{}P x M x x P M ∉∈=-且;则()P M M --等于( )A. PB. P MC. P MD. M8. 若函数()y f x =的定义域是[0,2];则函数(2)()1f xg x x =-的定义域是( )A .[0,1)(1,2]B .[0,1)(1,4]C .[0,1)D .(1,4]9. 不等式()()a x a x 224210-++-≥的解集是空集;则实数a 的范围为( )A .6(2,)5-B .6[2,)5-C .6[2,]5-D .6[2,){2}5-2(21)1,0()(2),0b x b x f x x b x x -+->⎧=⎨-+-≤⎩在R 上为增函数;则实数b 的取值范围为( )A .[1,2]B .1(,2]2C .(1,2]D .1(,2)211. 设集合34M x m x m ⎧⎫=≤≤+⎨⎬⎩⎭;13N x n x n ⎧⎫=-≤≤⎨⎬⎩⎭;且,M N 都是集合 {}01x x ≤≤的子集合;如果把b a -叫做集合{}x a x b ≤≤的“长度”;那么集合MN 的“长度”的最小值是( ) A.23 B.512C.13 D.112 12. 对实数a 和b ;定义运算“⊗”:,1.1a ab a b b a b -≤⎧⊗=⎨->⎩设函数()()22()2f x x x x =-⊗-;x R ∈;若函数()y f x c =-的图象与x 轴恰有两个公共点;则实数c 的取值范围是( )A .(]3,21,2⎛⎫-∞-- ⎪⎝⎭B .(]3,21,4⎛⎫-∞--- ⎪⎝⎭C .111,,44⎛⎫⎛⎫-+∞ ⎪ ⎪⎝⎭⎝⎭D .311,,44⎛⎫⎡⎫--+∞ ⎪⎪⎢⎝⎭⎣⎭二、填空题(每小题5分;共20分)13.函数22,0()1,0x x f x x x -≤⎧=⎨+>⎩,若[()]0f f a =;则a = . 14.已知集合{}12,3,1--=m A ;集合{}2,3m B =;若A B ⊆;则实数m = .15.某果园现有100棵果树;平均每一棵树结600个果子.根据经验估计;每多种一颗树;平均每棵树就会少结5个果子.设果园增种x 棵果树;果园果子总个数为y 个;则果园里增种 棵果树;果子总个数最多.16.定义在R 上的函数)(x f 满足2)1(),,(2)()()(=∈++=+f R y x xy y f x f y x f ;则=-)3(f .三、解答题(共70分) 17.(本题满分10分)设{}0222=++=ax x x A ;A ∈2.(Ⅰ) 求a 的值;并写出集合A 的所有子集;(Ⅱ) 已知{}5,2-=B ;设全集B A U =;求)()(B C A C U U .已知集合32{|1}2xA x x -=>-+; (I )若B A ⊆;{|121}B x m x m =+<<-;求实数m 的取值范围; (II )若A B ⊆;{|621}B x m x m =-<<-;求实数m 的取值范围.19.(本题满分12分)已知函数223()1x f x x-=+. (I)计算(3)f ;(4)f ;1()3f 及1()4f 的值; (II)由(I)的结果猜想一个普遍的结论;并加以证明;(III)求值:111(1)(2)...(2015)()()...()232015f f f f f f +++++++. 20.(本题满分12分)已知函数(]2()23,0,3f x ax x x =-+∈.(I)当1a =时;求函数()f x 的值域;(II)若集合{()0,03}A x f x x ==<≤≠∅;求实数a 的取值范围.已知定义在区间()+∞,0上的函数)(x f 满足1122()()()x f f x f x x =-;且当1>x 时;0)(<x f .(I )求)1(f 的值;(II )判断)(x f 的单调性并予以证明;(III )若,1)3(-=f 解不等式2-2f x >().22.(本题满分12分)已知函数2()(2)f x x a x b =+++;2)1(-=-f ;对于R x ∈;x x f 2)(≥恒成立. (Ⅰ)求函数)(x f 的解析式;(Ⅱ)设函数4)()(-=xx f x g . ①证明:函数)(x g 在区间在),1[+∞上是增函数;②是否存在正实数n m <;当n x m ≤≤时函数)(x g 的值域为]2,2[++n m .若存在;求出n m ,的值;若不存在;则说明理由.上学期第一次考试 高一数学试卷参考答案1-5:BCAAD 6-10:DBCBA 11-12:DB13. 0 14. 1 15. 10 16. 617.解:(1)A ∈2 0228=++∴a 5-=∴a02522=+-∴x x ;解得122x x ==或 ;A={2;21}A 的子集为φ;{2};{21};{2;21} ---------------5分 (2) U A B =⋃={2;21;-5} ()()U U C A U C B ={21;-5} ---------------10分18.解:解不等式3212xx ->-+;得25x -<<;即(2,5)A =- (1)B A ⊆①当B =∅时;则211m m -≤+;即2m ≤;符合题意; ②当B ≠∅时;则有212215m m m >⎧⎪+≥-⎨⎪-≤⎩解得:23m <≤综上:(,3]m ∈-∞(2)要使A B ⊆;则B ≠∅;所以有21662215m m m m ->-⎧⎪-≤-⎨⎪-≥⎩解得:34m ≤≤19.解:(1)解得3(3)5f =-;13(4)17f =-;113()35f =;147()417f = (2)猜想:1()()2f x f x+=;证明如下。
山东省淄博市桓台第一中学2024-2025学年高一上学期10月月考数学试题
山东省淄博市桓台第一中学2024-2025学年高一上学期10月月考数学试题一、单选题1.已知集合(){},3A x y x y =+=,集合(){},1B x y x y =-=,则A B ⋂等于( ) A .{2,1}B .(){2,1}C .{2,1}x y ==D .()2,12.已知集合{}2,3,4,7A ⊆,且A 中至少有一个奇数,则这样的集合A 的个数为( ) A .11B .12C .13D .143.已知集合1|,6M x x m m ⎧⎫==+∈⎨⎬⎩⎭Z ,1|,23n N x x n ⎧⎫==-∈⎨⎬⎩⎭Z ,1|,26p P x x p ⎧⎫==+∈⎨⎬⎩⎭Z ,则M 、N 、P 的关系满足( ). A .M N P =⊂ B .M N P ⊂= C .M N P ⊂⊂ D .N P M ⊂⊂4.设R a ∈,则“9a >”是“119a <”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件5.已知函数()23132f x x x +=++,则A .30B .6C .9D .206.已知函数(1)f x +的定义域为(-2,0),则(21)f x -的定义域为( )A .(-1,0)B .(-2,0)C .(0,1)D .1,02⎛⎫- ⎪⎝⎭7.已知关于x 的不等式22430(0)x ax a a -+<<的解集为()12x x ,,则1212ax x x x ++的最大值是( ) AB.CD.二、多选题8.下列各组函数中,两个函数是同一函数的有( )A .()f x =与()g x =B .()f x x =与()g xC .()xf x x =与()1,01,0x g x x >⎧=⎨-<⎩ D .()21f x x x =-+与()21g t t t =-+9.下列命题为真命题的是( ) A .2,1x x ∃∈≤RB .22a b =是a b =的必要不充分条件C .集合{}2(,)|x y y x =与集合{}2|y y x =表示同一集合 D .设全集为R ,若A B ⊆,则R R C B C A ⊆10.以下结论正确的是( )A .函数1y x x=+的最小值是2; B .若,R a b ∈且0ab >,则2b aa b+≥;C .y =的最小值是2;D .函数12(0)y x x x=++<的最大值为0.11.若x ,y 满足221+-=x y xy ,则( )A .1x y +≤B .2x y +≥-C .222x y +≤D .221x y +≥三、填空题12.若集合{}213A x x =-<,2103x B xx ⎧⎫+=<⎨⎬-⎩⎭,则A B =I . 13.某班举行数学、物理、化学三科竞赛,每人至少参加一科,已知参加数学竞赛的有27人,参加物理竞赛的有25人,参加化学竞赛的有27人,其中同时只参加数学、物理两科的有10人,同时只参加物理、化学两科的有7人,同时只参加数学、化学两科的有11人,而参加数学、物理、化学三科的有4人,则全班共有人.四、解答题14.设全集为R ,集合{}2560A x x x =-->,{}121B x a x a =+<<-(1)若4a =,求A B U ,A B ⋂R ð;(2)若()A B =∅R I ð,求实数a 的取值范围. 15.已知25x y <+<,36x y <-<. (1)求x 的取值范围; (2)求x yx y-+的取值范围; (3)求23x y -的取值范围.16.已知函数22,1(),122,2x x f x x x x x +≤⎧⎪=<<⎨⎪≥⎩ (1)求3(3),,[(0)]2f f f f ⎛⎫⎪⎝⎭;(2)画出函数()f x 的图象; (3)若()5f a ≤,求a 的取值范围.17.设函数2()(1)2(R)f x ax a x a a =+-+-∈(1)若不等式()2f x ≥-对一切实数x 恒成立,求a 的取值范围; (2)解关于x 的不等式:()1f x a <-.。
山东省淄博市雪宫中学高一数学文月考试卷含解析
山东省淄博市雪宫中学高一数学文月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 若a=20.5,b=logπ3,c=log2,则有()A.a>b>c B.b>a>c C.c>a>b D.b>c>a参考答案:A【考点】对数值大小的比较.【分析】利用对数和指数函数的单调性即可得出.【解答】解:∵a=20.5>20=1,0<b=logπ3<logππ=1,<log21=0.∴a>b>c.故选:A.2. 若某几何体的三视图如图所示,则这个几何体的直观图可以是()A. B.C. D.参考答案:D试题分析:由已知中三视图的上部分有两个矩形,一个三角形,故该几何体上部分是一个三棱柱,下部分是三个矩形,故该几何体下部分是一个四棱柱.考点:三视图.3. 某单位有业务人员120人,管理人员24人,后勤人员16人.现用分层抽样的方法,从该单位职工中抽取一个容量为n的样本,已知从管理人员中抽取3人,则n为()A.20B.30C.40D.50参考答案:A【考点】分层抽样方法.【分析】用分层抽样的方法,各层抽取的比例相等,只需计算出管理人员中的抽样比,再乘以总认识即可.【解答】解:管理人员中的抽样比,而此单位的总人数为120+24+16=160,故n=160×=20故选A4. 在等差数列中,=()A.24 B.22 C.20 D.-8参考答案:A5. 若,且,则满足上述要求的集合M的个数是()A.1B.2C.3D.4参考答案:D6. 函数f(x)=4x3+k?+1(k∈R),若f(2)=8,则f(﹣2)的值为()A.﹣6 B.﹣7 C.6 D.7参考答案:A【考点】函数的值.【分析】由已知得f(2)=4×+1=8,从而得到=﹣25,由此能求出f(﹣2).【解答】解:∵f(x)=4x3+k?+1(k∈R),f(2)=8,∴f(2)=4×+1=8,解得=﹣25,∴f(﹣2)=4×(﹣8)+k?+1=﹣32﹣+1=﹣32﹣(﹣25)+1=﹣6.故选:A.7. 函数f(x)=的定义域为R,则实数m的取值范围是( )A.(0,1] B.[0,1] C.(﹣∞,0)∪(1,+∞)D.(﹣∞,0)∪[1,+∞)参考答案:B【考点】函数恒成立问题;函数的定义域及其求法.【专题】计算题;函数的性质及应用.【分析】函数的定义域是一切实数,即mx2﹣6mx+m+8≥0对任意x∈R恒成立,结合二次函数的图象,只要考虑m和△即可.【解答】解:函数y=的定义域是一切实数,即mx2+4mx+m+3≥0对任意x∈R恒成立当m=0时,有3>0,显然成立;当m≠0时,有即解之得 0<m≤1.综上所述得0≤m≤1.故选B.【点评】本题主要考查了二次型不等式恒成立问题,解题的关键是不要忘掉对m=0的讨论,同时考查了转化的思想,属于中档题.8. 已知函数f(x)=,则f[f(0)+2]等于()A.2 B.3 C.4 D.6参考答案:C【考点】函数的值.【分析】先求出f(0)+2=(2×0﹣1)+2=1,从而f[f(0)+2]=f(1),由此能求出结果.【解答】解:∵函数f(x)=,∴f(0)+2=(2×0﹣1)+2=1,∴f[f(0)+2]=f(1)=1+3=4.故选:C.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.9. 直线的倾斜角为()A. B. C. D.参考答案:B【分析】根据直线斜率可知,根据直线倾斜角的范围可求得结果.【详解】由直线方程可得直线斜率:设直线倾斜角为,则又本题正确选项:【点睛】本题考查直线倾斜角的求解,关键是明确直线倾斜角与斜率之间的关系.10. 函数f(x)=4x2-mx+5在区间上是增函数,在区间上是减函数,实数m的值等于A、8B、-8C、16D、-16 ()参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11. 设向量=(﹣1,3),=(2,x),若∥,则x= .参考答案:﹣6【考点】平行向量与共线向量. 【分析】利用向量共线定理即可得出.【解答】解:∵∥,∴﹣x ﹣6=0,解得x=﹣6. 故答案为:﹣6.12.为三角形的外心,,,,若=+则___________.参考答案:略13. (4分)在五个数字1,2,3,4,5中,若随机取出三个数字,则剩下两个数字都是奇数的概率是 _________ (结果用数值表示).参考答案:14. (5分)若定义运算a ?b=,则函数f (x )=x ?(2﹣x)的值域是 .参考答案:(﹣∞,1]考点: 函数的值域. 专题: 函数的性质及应用.分析: 根据题意求出f (x )的解析式,再判断出函数的单调性,即可得到答案.解答: 由a ?b=得,f (x )=x ?(2﹣x )=,∴f(x )在(﹣∞,1)上是增函数,在[1,+∞)上是减函数, ∴f(x )≤1,则函数f (x )的值域是:(﹣∞,1], 故答案为:(﹣∞,1].点评: 本题考查分段函数的值域,即每段值域的并集,也是一个新定义运算问题:取两者中较小的一个,求出函数的解析式并判断出其单调性是解题的关键.15. 已知向量,,且与共线,则的值为__________.参考答案:2由=(1,),=(﹣2,λ),且与共线,得,∴.则+=(1,)+(﹣2,﹣2)=(﹣1,﹣),∴|+|=.故答案为:2.16. 若角α是第三象限角,则角的终边在 .参考答案:第二或第四象限,第一或第二象限或终边在y 轴的正半轴上 17. 设是等差数列的前项和,且,则下列结论一定正确的有 ________ (1) (2) (3)(4)(5)和均为的最大值参考答案:(1)(2)(5)三、 解答题:本大题共5小题,共72分。
高一数学上学期第一次月考试题附答案
已知 A = {x | x ∈ R, x2 + (m + 2)x + 1 = 0} , B={x|x 是正实数},若 A B = ∅ ,求实数 m 的取值范围.
(22)(本小题满分 10 分) 已知 p:|1- x − 1 |≤2,q:x2-2x+1-m2≤0(m>0)的解集依次为 A、B,
3 且(CUB) (CUA)。求实数 a 的取值范围。
(18)(本小题满分 8 分)
已知集合 P = {y | y = −x2 + 2x + 5, x ∈ R} , Q = {y | y = 3x − 4, x ∈ R} , 求PQ,PQ.
(19)(本小题满分 10 分)
已知 A= {x | −2 < x ≤ 5} ,=B {x | 2m −1 ≤ x ≤ m +1},且 A B = B ,
-N)等于( ).
A. M N
B. M N
C.M
D.N
第Ⅱ卷(非选择题 共 72 分)
考生注意事项: 请在.答.题.纸.上.书.写.作.答.,.在.试.题.卷.上.书.写.作.答.无.效...
二、填空题:本大题共 4 小题,每小题 4 分,共 16 分.把答案填在答题纸的相应
位置.
(13)设集合 A = {x | (x − 2)2 ≤ 4} ,B={1,2,3,4},则 A B =__________.
A. −16 ≤ a < 0
B. a > −16 C. −16 < a ≤ 0
)
D. a < 0
(9)已知 M 有 3 个真子集,集合 N 有 7 个真子集,那么 M∪N 的元素个数为( )
A.有 5 个元素
高一数学上学期第一次月考试题(B卷)-人教版高一全册数学试题
2016-2017学年度万全中学第一次月考卷数学试卷(B 卷)考试X 围:第一章;考试时间:120分钟;注意事项:1.答题前填写好自己的某某、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题【共12个小题,每个题4分,共计48分】 1.已知R 是实数集,21xx ⎧⎫M =<⎨⎬⎩⎭,{}1y y x N ==-,则RN M =( )A .()1,2B .[]0,2C .∅D .[]1,2 2.满足条件M ∪{1}={1,2,3}的集合M 的个数是( ) A .1 B .2 C .3 D .43.设全集U ={1,2,3,4},集合S ={1,3},T ={4},则等于( )A 、{2,4}B 、{4}C 、ΦD 、{1,3,4}4.已知全集R U =,{}{}1,0)3(-<=<+=x x M x x x N ,则图中阴影部分表示的集合是( )A .{}13-<<-x x B.{}03<<-x x C.{}01<≤-x x D.{}3-<x5.设集合2{|1}P x x ==,那么集合P 的真子集个数是() A .3 B .4 C .7 D .86.函数y=x 2﹣2x ﹣1在闭区间[0,3]上的最大值与最小值的和是( ) A .﹣1 B .0 C .1 D .27.定义在R 上的函数()f x 对任意两个不相等实数,a b ,则必有( ) A.()f x 在R 上是增函数 B.()f x 在R 上是减函数 C.函数()f x 是先增加后减少 D.函数()f x 是先减少后增加 8.已知函数f(x)为奇函数,且当x>0时, f(x) =x 2f(-1)=( ) A .-2 B .0 C .1 D .29.下列函数中,既是奇函数又是增函数的为( ) A .1y x =+B .3y x =- C.||y x x = 10.若11x -≤≤时,函数()21f x ax a =++的值有正值也有负值,则a 的取值X 围是( )A .13a ≥-B .1a ≤-C .113a -<<-D .以上都不对 11.已知函数)(x f y =在R 上是增函数,且(21)(34)f m f m +>-,则m 的取值X 围是( ) A .(-)5,∞B .(5,)+∞C12.若定义在R 上的偶函数()f x 对任意12,[0,)∈+∞x x 12()≠x x ,有A .(3)(2)(1)<-<f f fB .(1)(2)(3)<-<f f fC .(1)(3)(2)<<-f f fD .(2)(3)(1)-<<f f f第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题【每小题4分,共计16分】13.已知全集U =R ,集合A ={x|x ≤-2,x ∈R},B ={x|x <1,x ∈R},则(∁U A)∩B =.14.已知集合}012|{2=+-=x ax x A 有且只有一个元素,则a 的值的集合..(.用列举法表示......).是. 15.2()24f x x x =-+的单调减区间是.16.若函数2122+-+=x )a (x y ,在(]4,∞-上是减少的,则a 的取值X 围是三、解答题17,18题每题10分,19,20,21每题12分,写出必要的解题和证明步骤。
新人教A版(2019)高一上学期第一次月考数学试卷
新人教A 版(2019)高一上学期第一次月考数 学 试 卷考生注意: 1.本试卷分第Ⅰ卷(选择题)和第二卷(非选择题)两部分,共150分,考试时间120分钟.2.请将各题答案填写在答题卡上.第Ⅰ卷(选择题 共60分)一、单项选择题(每小题5分,共40分)1. 已知集合{}14<>=x x x M 或,{}1+==x y x N ,则=N M 【 】 (A )()+∞∞-, (B )()()+∞-,41,1 (C )∅ (D )[)()+∞-,41,12. 设()x f 是定义在R 上的奇函数,当x ≥0时,()x x x f -=22,则()=-1f 【 】 (A )3- (B )1- (C )1 (D )33. 已知函数()1+=x f y 的定义域是[]2,1-,且0<a ,则函数()1-=ax f y 的定义域为【 】(A )⎥⎦⎤⎢⎣⎡a a 1,3 (B )⎥⎦⎤⎢⎣⎡a a 1,4 (C )⎥⎦⎤⎢⎣⎡--a a 2,1 (D )⎥⎦⎤⎢⎣⎡0,3a4. 设全集U 是实数集R ,{}22>-<=x x x A 或,{}31≤≤=x x B .如下图所示,则阴影部分所表示的集合为 【 】(A ){}12<≤-x x (B ){}32≤≤-x x (C ){}32>≤x x x 或 (D ){}22≤≤-x x5. 设{}4,3,2,1=A ,{}4,2=B ,若A S ⊆且∅≠B S ,则符合条件的集合S 的个数是 【 】(A )4 (B )10 (C )11 (D )126. 函数()()112+-+=x m mx x f 在区间(]1,∞-上为减函数,则实数m 的取值范围是 【 】(A )⎥⎦⎤ ⎝⎛31,0 (B )⎪⎭⎫⎢⎣⎡31,0 (C )⎥⎦⎤⎢⎣⎡31,0 (D )⎪⎭⎫ ⎝⎛31,0 7. 若函数ax y =与xby -=在()+∞,0上都是减函数,则()bx ax x f +=2在()+∞,0上是【 】 (A )增函数 (B )减函数 (C )先增后减 (D )先减后增 8. 已知定义在R 上的偶函数()x f ,对任意[)+∞∈,0,21x x (21x x ≠),都有()()01212<--x x x f x f ,则 【 】 (A )()()()123f f f <-< (B )()()()321f f f <-< (C )()()()312f f f <<- (D )()()()213-<<f f f9. 若函数()()⎪⎩⎪⎨⎧≤+->=1,1321,x x a x x a x f 是R 上的减函数,则实数a 的取值范围是 【 】(A )⎪⎭⎫ ⎝⎛1,32 (B )⎪⎭⎫⎢⎣⎡1,43 (C )⎥⎦⎤ ⎝⎛43,32 (D )⎪⎭⎫ ⎝⎛+∞,32 10. 函数()x x x f ++=12的值域是 【 】(A )[)+∞,0 (B )(]0,∞- (C )⎪⎭⎫⎢⎣⎡+∞-,21(D )[)+∞,1 11. 在函数x y =([]1,1-∈x )的图象上有一点()t t P ,,此函数图象与x 轴、直线1-=x 及t x =围成图形的面积为S(如图所示的阴影部分),则S 与t 的函数关系的图象为 【 】(A ) (B )(C ) (D )12. 已知21,x x 是方程()()053222=+++--a a x a x (a 为实数)的两个实根,则2221x x +的最大值为 【 】 (A )18 (B )19 (C )20 (D )不存在第Ⅱ卷 非选择题(共90分)二、填空题(每小题5分,共20分)13. 集合A 中有m 个元素,若A 中增加一个元素,则A 的真子集增加的个数为__________. 14. 已知全集=U R ,集合{}43≤≤-=x x A ,集合{}121-<<+=a x a x B ,且⊆A C U B ,则实数a 的取值范围是__________.15. 设函数()x x x f 422+-=在[]n m ,上的值域为[]2,6-,则n m +的取值范围是_________.16. 已知函数()⎩⎨⎧<+-≥=3,63,92x x x x x f ,则不等式()()4322-<-x f x x f 的解集是_________.三、解答题(共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分10分)已知集合{}1127≤-≤-=x x A ,{}24x y x B -==. (1)求B A 及(C R A )B ;(2)若{}22+≤≤=a x a x C ,且A C ⊆,求实数a 的取值范围.已知函数()xax x x f ++=22,[)+∞∈,1x .(1)当21=a 时,求函数()x f 的最小值;(2)若对任意[)+∞∈,1x ,()0>x f 恒成立,试求实数a 的取值范围; (3)讨论函数的单调性.19.(本题满分12分) 已知函数()n mx x x f +=,()22=f ,且方程()x x f 2=有一个根为21.(1)求n m ,的值;(2)求()()()()⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛+⎪⎭⎫⎝⎛++++514131215432f f f f f f f f 的值.旅行社为某旅游团包飞机去旅游,其中旅行社的包机费为15 000元.旅游团中每人的飞机票按以下方式与旅行社结算:若旅游团人数在30人及30人以下,飞机票每张收费900元;若旅游团人数多于30人,则给予优惠,每多一人,机票费每张减少10元,但旅游团人数最多为75人. (1)写出飞机票的价格关于旅游团人数的函数; (2)旅游团人数为多少时,旅行社可获得最大利润?21.(本题满分12分)设函数()x f y =(∈x R 且0≠x )对任意非零实数21,x x 恒有()()()2121x f x f x x f +=,且对任意1>x ,()0<x f . (1)求()1-f 及()1f 的值; (2)判断函数()x f 的奇偶性;(3)求不等式()⎪⎭⎫⎝⎛-+23x f x f ≤0的解集.函数()21x bax x f ++=是定义在()1,1-上的奇函数,且5221=⎪⎭⎫ ⎝⎛f . (1)确定函数()x f 的解析式;(2)用定义法证明()x f 在()1,1-上是增函数; (3)解不等式()()01<+-t f t f .新人教A 版(2019)高一上学期第一次月考数 学 试 卷 答 案 解 析考生注意: 1.本试卷分第Ⅰ卷(选择题)和第二卷(非选择题)两部分,共150分,考试时间120分钟.2.请将各题答案填写在答题卡上.第Ⅰ卷(选择题 共60分)一、单项选择题(每小题5分,共40分)1. 已知集合{}14<>=x x x M 或,{}1+==x y x N ,则=N M 【 】 (A )()+∞∞-, (B )()()+∞-,41,1 (C )∅ (D )[)()+∞-,41,1 答案 【 D 】解析 本题考查集合的基本运算. ∵{}{}11-≥=+==x x x y x N ∴=N M [)()+∞-,41,1 . ∴选择答案【 D 】.2. 设()x f 是定义在R 上的奇函数,当x ≥0时,()x x x f -=22,则()=-1f 【 】 (A )3- (B )1- (C )1 (D )3 答案 【 B 】解析 本题考查奇函数的性质.∵当x ≥0时,()x x x f -=22,∴()11=f . ∵()x f 是定义在R 上的奇函数 ∴()()111-=-=-f f . ∴选择答案【 B 】.3. 已知函数()1+=x f y 的定义域是[]2,1-,且0<a ,则函数()1-=ax f y 的定义域为【 】(A )⎥⎦⎤⎢⎣⎡a a 1,3 (B )⎥⎦⎤⎢⎣⎡a a 1,4 (C )⎥⎦⎤⎢⎣⎡--a a 2,1 (D )⎥⎦⎤⎢⎣⎡0,3a答案 【 B 】解析 本题考查求抽象函数的定义域. ∵函数()1+=x f y 的定义域是[]2,1- ∴1-≤x ≤2,∴0≤x ≤3. ∴函数()x f 的取值范围是[]3,0.令0≤1-ax ≤3(0<a ),解之得:a 4≤x ≤a 1. ∴函数()1-=ax f y 的定义域为⎥⎦⎤⎢⎣⎡a a 1,4.∴选择答案【 B 】.4. 设全集U 是实数集R ,{}22>-<=x x x A 或,{}31≤≤=x x B .如下图所示,则阴影部分所表示的集合为 【 】(A ){}12<≤-x x (B ){}32≤≤-x x (C ){}32>≤x x x 或 (D ){}22≤≤-x x 答案 【 A 】解析 本题考查集合表示的Venn 图法.由Venn 图可知,阴影部分表示的集合为C U (B A ). ∵{}22>-<=x x x A 或,{}31≤≤=x x B ∴{}12≥-<=x x x B A 或 . ∴C U (B A )={}12<≤-x x . ∴选择答案【 A 】.5. 设{}4,3,2,1=A ,{}4,2=B ,若A S ⊆且∅≠B S ,则符合条件的集合S 的个数是 【 】(A )4 (B )10 (C )11 (D )12答案 【 D 】解析 本题考查集合之间的基本关系和确定有限集的子集的个数. ∵∅≠B S ,∴∅≠S ,且集合S 中含有元素2或4. ∵{}4,3,2,1=A ,∴集合A 含有15124=-个子集. ∵A S ⊆,集合S 中含有元素2或4 ∴集合S 不能为{}1,{}3,{}3,1.∴符合条件的集合S 的个数是12315=-. ∴选择答案【 D 】.6. 函数()()112+-+=x m mx x f 在区间(]1,∞-上为减函数,则实数m 的取值范围是 【 】(A )⎥⎦⎤ ⎝⎛31,0 (B )⎪⎭⎫⎢⎣⎡31,0 (C )⎥⎦⎤⎢⎣⎡31,0 (D )⎪⎭⎫ ⎝⎛31,0答案 【 C 】解析 本题考查根据函数的单调性确定参数的值或取值范围. 当0=m 时,()1+-=x x f ,符合题意;当0≠m 时,显然,0>m ,函数()x f 的图象开口向上,对称轴为直线mmx 21-=. ∵函数()x f 在区间(]1,∞-上为减函数 ∴mm21-≥1,解之得:m <0≤31.综上所述,实数m 的取值范围是⎥⎦⎤⎢⎣⎡31,0.∴选择答案【 C 】. 7. 若函数ax y =与xby -=在()+∞,0上都是减函数,则()bx ax x f +=2在()+∞,0上是【 】 (A )增函数 (B )减函数 (C )先增后减 (D )先减后增 答案 【 B 】解析 本题考查函数的单调性. ∵函数ax y =与xby -=在()+∞,0上都是减函数 ∴0,0>-<b a ,0<b .∴函数()bx ax x f +=2的图象开口向下,对称轴为直线02<-=abx∴函数()x f 在()+∞,0上是减函数. ∴选择答案【 B 】.8. 已知定义在R 上的偶函数()x f ,对任意[)+∞∈,0,21x x (21x x ≠),都有()()01212<--x x x f x f ,则 【 】 (A )()()()123f f f <-< (B )()()()321f f f <-< (C )()()()312f f f <<- (D )()()()213-<<f f f 答案 【 A 】解析 本题考查偶函数的图象和性质. 由题意可知,函数()x f 在[)+∞,0上单调递减. ∴()()()123f f f <<.∵()x f 是定义在R 上的偶函数,∴()()22f f =-. ∴()()()123f f f <-<. ∴选择答案【 A 】.9. 若函数()()⎪⎩⎪⎨⎧≤+->=1,1321,x x a x x a x f 是R 上的减函数,则实数a 的取值范围是 【 】(A )⎪⎭⎫ ⎝⎛1,32 (B )⎪⎭⎫⎢⎣⎡1,43 (C )⎥⎦⎤ ⎝⎛43,32 (D )⎪⎭⎫ ⎝⎛+∞,32 答案 【 C 】解析 本题考查分段函数的单调性.总结 解决分段函数的单调性问题时,一般要从两个方面考虑: (1)分段函数的每一段上具有相同的单调性,由此列出相关式子;(2)要考虑端点处的衔接情况:从左到右每一段的最大值都大于或等于后一段的最小值.由此列出另一相关式子.由题意可知:⎪⎩⎪⎨⎧≥+-<->aa a a 1320320,解之得:a <32≤43.∴实数a 的取值范围是⎥⎦⎤⎝⎛43,32.∴选择答案【 C 】.10. 函数()x x x f ++=12的值域是 【 】(A )[)+∞,0 (B )(]0,∞- (C )⎪⎭⎫⎢⎣⎡+∞-,21(D )[)+∞,1 答案 【 C 】解析 本题考查用换元法求函数的值域. 换元法形如d cx b ax y +++=()0≠a 的函数常用换元法求值域.具体做法是:先令d cx t +=(t ≥0),用t 表示出x ,并标明t 的取值范围,并代入函数解析式,将y 表示成关于t 的二次函数,最后用配方法求出值域.用换元法求函数的值域时,注意换元后要标明新元的取值范围.函数()x f 的定义域为⎪⎭⎫⎢⎣⎡+∞-,21. 令12+=x t ,则[)+∞∈,0t ,21212-=t x . ()()1121212122-+=-+==t t t x f y .∵[)+∞∈,0t ,∴当0=t ,即21-=x 时,y 取得最小值,最小值为21min -=y .∴函数()x f 的值域为⎪⎭⎫⎢⎣⎡+∞-,21. ∴选择答案【 C 】. 另解: 单调性法函数()x f 的定义域为⎪⎭⎫⎢⎣⎡+∞-,21. ∵函数12+=x y 和x y =在⎪⎭⎫⎢⎣⎡+∞-,21上均为增函数 ∴函数()x x x f ++=12在⎪⎭⎫⎢⎣⎡+∞-,21上为增函数. ∴()2121min -=⎪⎭⎫ ⎝⎛-=f x f .∴函数()x f 的值域为⎪⎭⎫⎢⎣⎡+∞-,21. ∴选择答案【 C 】.11. 在函数x y =([]1,1-∈x )的图象上有一点()t t P ,,此函数图象与x 轴、直线1-=x 及t x =围成图形的面积为S(如图所示的阴影部分),则S 与t 的函数关系的图象为 【 】(A ) (B)(C ) (D )答案 【 B 】解析 本题考查分段函数的图象.当1-≤t ≤0时,()()21212111212+-=-⨯-⨯-⨯⨯=t t t S ; 当t <0≤1时,212121212+=⋅+=t t t S .∴[](]⎪⎪⎩⎪⎪⎨⎧∈+-∈+-=1,0,21210,1,212122t t t t S ,其图象大致如图(B )所示. ∴选择答案【 B 】.12. 已知21,x x 是方程()()053222=+++--a a x a x (a 为实数)的两个实根,则2221x x +的最大值为 【 】 (A )18 (B )19 (C )20 (D )不存在 答案 【 A 】解析 本题考查求函数的最值.由题意可知:()[]()534222++---=∆a a a ≥0,解之得:4-≤a ≤34-. ∴实数a 的取值范围是⎥⎦⎤⎢⎣⎡--34,4.由根与系数的关系定理可得:53,222121++=-=+a a x x a x x .∴()()()61053222222212212221---=++--=-+=+a a a a a x x x x x x ()1952++-=a .∵⎥⎦⎤⎢⎣⎡--∈34,4a∴()()1819119542max 2221=+-=++--=+x x . ∴选择答案【 A 】.第Ⅱ卷 非选择题(共90分)二、填空题(每小题5分,共20分)13. 集合A 中有m 个元素,若A 中增加一个元素,则A 的真子集增加的个数为__________. 答案 m 2解析 本题考查确定集合真子集的个数. 增加元素前,集合A 的真子集的个数为12-m , 增加一个元素后,集合A 的真子集的个数为121-+m . ∵()m m m m m 222121211=-=---++ ∴A 的真子集增加的个数为m 2.14. 已知全集=U R ,集合{}43≤≤-=x x A ,集合{}121-<<+=a x a x B ,且⊆A C U B ,则实数a 的取值范围是__________. 答案 (][)+∞∞-,32,解析 本题考查根据集合之间的基本关系确定参数的值或取值范围. ∵{}121-<<+=a x a x B ,∴C U B {}121-≥+≤=a x a x x 或. 当∅=B 时, C U B =R ,满足题意,此时1+a ≥12-a ,解之得:a ≤2;当∅≠B 时,则有⎩⎨⎧≥+-<+41121a a a 或⎩⎨⎧-≤--<+312121a a a ,解之得:a ≥3或无解.综上所述,实数a 的取值范围是(][)+∞∞-,32, .15. 设函数()x x x f 422+-=在[]n m ,上的值域为[]2,6-,则n m +的取值范围是_________. 答案 []4,0解析 本题考查函数的值域.()()2124222+--=+-=x x x x f .令6422-=+-x x ,解之得:3,121=-=x x . 画出函数()x f 的图象如下图所示:∙x∵函数()x f 在[]n m ,上的值域为[]2,6- ∴1-≤m ≤1,1≤n ≤3.∴0≤n m +≤4,即n m +的取值范围是[]4,0.(注意n m ,在各取值范围内的一组取值需保证函数的值域为[]2,6-)16. 已知函数()⎩⎨⎧<+-≥=3,63,92x x x x x f ,则不等式()()4322-<-x f xx f 的解集是_________.答案 ()3,1解析 本题考查利用分段函数的单调性求解不等式.注意数形结合的思想方法. 画出函数()x f 的图象如下:∵()()4322-<-x f x x f∴结合函数()x f 的图象,则有⎩⎨⎧<--<-3243222x x x x x ,解之得:31<<x .∴原不等式的解集为()3,1.三、解答题(共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分10分)已知集合{}1127≤-≤-=x x A ,{}24x y x B -==. (1)求B A 及(C R A )B ;(2)若{}22+≤≤=a x a x C ,且A C ⊆,求实数a 的取值范围. 解:(1)解不等式7-≤12-x ≤1得:3-≤x ≤1. 解不等式24x -≥0得:2-≤x ≤2. ∴{}13≤≤-=x x A ,{}22≤≤-=x x B . ∴C R A {}13>-<=x x x 或,{}23≤≤-=x x B A . ∴(C R A ){}21≤<=x x B ;(2)当∅=C 时,满足A C ⊆,此时22+>a a ,解之得:2-<a ;当∅≠C 时,则有⎪⎩⎪⎨⎧≤+-≥+≤122322a a a a ,解之得:2-≤a ≤21-.综上所述,实数a 的取值范围是⎥⎦⎤⎝⎛-∞-21,. Z18.(本题满分12分)已知函数()xax x x f ++=22,[)+∞∈,1x .(1)当21=a 时,求函数()x f 的最小值;(2)若对任意[)+∞∈,1x ,()0>x f 恒成立,试求实数a 的取值范围; (3)讨论函数的单调性.解:(1)当21=a 时,()221++=x x x f ,[)+∞∈,1x .∵函数()x f 在[)+∞,1上单调递增 ∴()()271min ==f x f ; (2)∵对任意[)+∞∈,1x ,()0>x f 恒成立 ∴对任意[)+∞∈,1x ,x x a 22-->恒成立.设()x x x g 22--=,[)+∞∈,1x ,只需()max x g a >即可. ∵()()11222++-=--=x x x x g ,[)+∞∈,1x∴()()31max -==g x g ,∴3->a . ∴实数a 的取值范围是()+∞-,3;(3)()222++=++=xax x a x x x f ,[)+∞∈,1x .当a ≤0时,函数()x f 在[)+∞,1上单调递增;当⎩⎨⎧≤>1a a ,即a <0≤1时,函数()x f 在[)+∞,1上单调递增; 当1>a ,即1>a 时,函数()x f 在[]a ,1上单调递减,在[]+∞,a 上单调递增.19.(本题满分12分) 已知函数()n mx x x f +=,()22=f ,且方程()x x f 2=有一个根为21.(1)求n m ,的值;(2)求()()()()⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛+⎪⎭⎫⎝⎛++++514131215432f f f f f f f f 的值. 解:(1)由题意可得:⎪⎪⎪⎩⎪⎪⎪⎨⎧⨯=+=+2122121222n m n m ,解之得:⎪⎪⎩⎪⎪⎨⎧==3131n m ;(2)由(1)知,()13+=x xx f . ∴()()31131313113131=++=+++=+++=⎪⎭⎫ ⎝⎛+x x x x x xx x x x f x f .∴()()()()⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++++514131215432f f f f f f f f ()()()()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+=515414313212f f f f f f f f 1243=⨯=.20.(本题满分12分)旅行社为某旅游团包飞机去旅游,其中旅行社的包机费为15 000元.旅游团中每人的飞机票按以下方式与旅行社结算:若旅游团人数在30人及30人以下,飞机票每张收费900元;若旅游团人数多于30人,则给予优惠,每多一人,机票费每张减少10元,但旅游团人数最多为75人. (1)写出飞机票的价格关于旅游团人数的函数; (2)旅游团人数为多少时,旅行社可获得最大利润? 解:(1)设飞机票价格为y 元,旅游团的人数为x . 当1≤x ≤30,∈x N*时,900=y ;当x <30≤75,∈x N*时,()1200103010900+-=--=x x y .∴⎩⎨⎧∈≤<+-∈≤≤=*,7530,120010*,301,900N x x x N x x y ;(2)设旅游团的利润为()x f ,则有()⎩⎨⎧∈≤<-+-∈≤≤-=*,7530,150*********,301,150009002N x x x x N x x x x f . 当1≤x ≤30,∈x N*时,()()12000150003090030max =-⨯==f x f ; 当x <30≤75,∈x N*时,()()2100060102+--=x x f . ∴()()2100060max ==f x f . ∵2100012000<∴当旅游团人数为60人时,旅行社可获得最大利润. 21.(本题满分12分)设函数()x f y =(∈x R 且0≠x )对任意非零实数21,x x 恒有()()()2121x f x f x x f +=,且对任意1>x ,()0<x f . (1)求()1-f 及()1f 的值;(2)判断函数()x f 的奇偶性;(3)求不等式()⎪⎭⎫⎝⎛-+23x f x f ≤0的解集.解:(1)令121==x x ,则()()121f f =,∴()01=f . 令121-==x x ,则()()121-=f f ,∴()01=-f ; (2)由题意可知,函数()x f 的定义域关于原点对称. 令1,21-==x x x ,则有()()()()x f f x f x f =-+=-1. ∴函数()x f 是偶函数;(3)任取()+∞∈,0,21x x ,且21x x <,则有()()()()()⎪⎭⎫⎝⎛=-⎪⎭⎫ ⎝⎛+=-⎪⎭⎫ ⎝⎛⋅=-121121112112x x f x f x x f x f x f x x x f x f x f .∵()+∞∈,0,21x x ,21x x <,∴112>x x . ∵函数()x f 对任意1>x ,()0<x f ,∴012<⎪⎭⎫⎝⎛x x f .∴()()()()2112,0x f x f x f x f ><-. ∴函数()x f 在()+∞,0上单调递减.∵()⎪⎭⎫ ⎝⎛-+23x f x f ≤0,∴⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-x x f x x f 23232≤0()1f =. ∴⎪⎭⎫⎝⎛-x x f 232≤()1f ∴x x 232-≥1,解之得:x ≤21-或x ≥2.∴原不等式的解集为[)+∞⎥⎦⎤⎝⎛-∞-,221, .22.(本题满分12分) 函数()21x b ax x f ++=是定义在()1,1-上的奇函数,且5221=⎪⎭⎫ ⎝⎛f . (1)确定函数()x f 的解析式;(2)用定义法证明()x f 在()1,1-上是增函数;(3)解不等式()()01<+-t f t f .解:(1)∵函数()x f 是定义在()1,1-上的奇函数 ∴()00==b f ,∴()21x axx f +=. ∵5221=⎪⎭⎫ ⎝⎛f ,∴5252=a ,解之得:1=a .∴()21xx x f +=; (2)证明: 任取()1,1,21-∈x x ,且21x x <,则有()()()()()()222121212222112111111x x x x x x x x x x x f x f ++--=+-+=-. ∵()1,1,21-∈x x ,21x x <∴0,01,01212221<->+>+x x x x ,121<x x . ∴0121>-x x ,()()()()011122212121<++--x x x x x x∴()()()()2121,0x f x f x f x f <<-. ∴()x f 在()1,1-上是增函数;(3)∵()()01<+-t f t f ,∴()()t f t f -<-1. ∵函数()x f 是奇函数 ∴()()t f t f -<-1∵函数()x f 是定义在()1,1-上的增函数∴⎪⎩⎪⎨⎧-<-<<-<-<-tt t t 111111,解之得:210<<t .∴原不等式的解集为⎪⎭⎫⎝⎛21,0.。
2021-2022学年高一上学期第一次月考(10月)数学试卷(含答案)
2021-2022学年高一上学期第一次月考(10月)数学试卷(时间120分钟,满分150分)题号一二三四五总分得分一、单选题(本大题共8小题,共40.0分)1.若集合A={x|x2-2x>0},B={-1,1,2,3}.则A∩B=()A. {-1,1}B. {1,2}C. {1,3}D. {-1.3}2.已知命题p:∀x∈R,x>sin x,则p的否定形式为()A. ∃x∈R,x< sin xB. ∃x∈R,x≤sin xC. ∀x∈R,x≤sin xD. ∀x∈R,x< sin x3.使不等式成立的一个充分不必要条件是( )A. B.C. 或D.4.以下五个写法中:①{0}∈{0,1,2};②∅⊆{1,2};③{0,1,2}={2,0,1};④0∈∅;⑤A∩∅=A,正确的个数有()A. 1个B. 2个C. 3个D. 4个5.若a>b>0,c<d<0,则下列结论正确的是()A. ac>bdB. ad>bcC. ac<bdD. ad<bc6.已知集合M满足{1,2}M{1,2,3,4,5},那么集合M的个数为( )A. 个B. 个C. 个D. 个7.若{a2,0,-1}={a,b,0},则a2019+b2019的值为()A. -1B. 0C. 1D. 28.已知,,若p是q的必要不充分条件,则m的取值范围为( )A. B.C. D.二、多选题(本大题共4小题,共20.0分)9.下列判断错误的是( )A. 若,,则B. {菱形}{矩形}={正方形}C. 方程组的解集为D. 如果,那么10.下列各不等式,其中不正确的是( )A.B.C.D.11.在研究集合时,经常遇到有关集合中元素的个数问题.我们把含有限个元素的集合A叫做有限集,用card(A)表示有限集合A中元素的个数.已知有限集A⊆R,设集合M={xy|x∈A,y∈A,x≠y},N={x-y|x∈A,y∈A,x>y},则下列说法正确的是()A. 若card(A)=4,则card(M)+card(N)可能是10B. 若card(A)=4,则card(M)+card(N)不可能是12C. 若card(A)=5,则card(M)+card(N)可能是20D. 若card(A)=5,则card(M)+card(N)不可能是912.已知a>0,b>0,且a+b=1,则()A. a2+b2≥B. 2a﹣b>C. log2a+log2b≥﹣2D.三、单空题(本大题共3小题,共15.0分)13.给出下列结论:①2ab是a2+b2的最小值;②设a>0,b>0,2的最大值是a+b;③+的最小值是2;④若x>0,则cos x+≥2=2;⑤若a>b>0,>>.其中正确结论的编号是______ .(写出所有正确的编号)14.设集合A={x|1< x<4}, B={x|2x5},则A(B) .15.将集合M={1,2,…12}的元素分成不相交的三个子集:M=A∪B∪C,其中A={a1,a2,a3,a4}B={b1,b2,b3,b4}C={c1,c2,c3,c4},c1<c2<c3<c4,且a k+b k=c k,k=1,2,3,4,则集合C为:______ .四、多空题(本大题共1小题,共5.0分)16.已知a,b都是正数,且ab+a+b=3,则ab的最大值是 ,的最小值是 .五、解答题(本大题共6小题,共70.0分)17.判断下列命题是全称量词命题还是存在量词命题,请写出它们的否定,并判断其真假:(1)对任意x R,+x+20都成立;(2)x R,使.18.记函数f(x)=+log2(x+1)的定义域M,函数g(x)=2x的值域为N,求:(1)M,N.(2)M∩N,M∪N,∁R M.19.已知函数f(x)=(x>0)的值域为集合A,(1)若全集U=R,求C U A;(2)对任意x∈(0,],不等式f(x)+a≥0恒成立,求实数a的范围;(3)设P是函数f(x)的图象上任意一点,过点P分别向直线y=x和y轴作垂线,垂足分别为A、B,求•的值.20.(1)已知x>0,y>0,x+2y=8,求xy的最大值:(2)已知常数a>0,b>0和变量x>0,y>0满足a+b=10,+=1,x+y的最小值为18,求的值.21.用作差法比较2x2+5x+3与x2+4x+2的大小.22.(1)已知命题:“对于任意x R,f(x)=+2ax+1的值都不小于0”是假命题,求实数a的取值范围;(2)若命题“x R,+ax-4a0”为真命题,求实数a的取值范围.答案和解析1.【答案】D【解析】解:A={x|x<0,或x>2};∴A∩B={-1,3}.故选:D.可求出集合A,然后进行交集的运算即可.考查描述法、列举法的定义,一元二次不等式的解法,以及交集的运算.2.【答案】B【解析】命题中“”与“”相对,则p:x∈R,x≤sin x.3.【答案】A【解析】【分析】本题考查充分不必要条件,属于基础题.先求出的解集,考虑该解集与各选项中的集合的包含关系后可得不等式成立的充分不必要条件.【解答】解:因为1+>0>0x(x+1)>0,所以x>0或x<-1,需要是不等式1+>0成立的一个充分不必要条件则需要满足是(-,-1)(0,+)的真子集的只有A,故选项为:A.4.【答案】B【解析】【分析】本题考查的知识点是元素与集合关系,空集的性质及集合相等的概念,熟练掌握集合的基本概念及性质是解答本题的关键.根据“∈”用于表示集合与元素的关系,可判断①的真假;根据空集的性质,可判断②④⑤的正误;根据合元素的无序性,可判断③的对错,进而得到答案.【解答】解:“∈”用于表示集合与元素的关系,故:①{0}∈{0,1,2}错误;空集是任一集合的子集,故②∅⊆{1,2}正确;根据集合元素的无序性,可得③{0,1,2}={2,0,1}正确;空集不包含任何元素,故④0∈∅错误;空集与任一集合的交集均为空集,故⑤A∩∅=A错误故选B5.【答案】C【解析】【分析】本题考查了不等式的性质,属于基础题.根据不等式的基本性质即可得出.【解答】解:∵a>b>0,c<d<0,∴ac<bc,bc<bd,∴ac<bd,故选C.6.【答案】C【解析】【分析】本题考查集合的关系,属于基础题.由题可得集合M为集合{3,4,5}的真子集和集合{1,2}的并集, 由此可得答案.【解答】解:由题可得集合M为集合{3,4,5}的真子集和集合{1,2}的并集,因为{3,4,5}的真子集有-1=7个,所以集合M的个数为7个.故选:C.7.【答案】B【解析】解:由{a2,0,-1}={a,b,0},得①或②解①,得a=0(舍去)或1,b=-1,解②,得a=-1,b=1,所以a=-1,b=1或a=1,b=-1.所以a2019+b2019=(-1)2019+12109=0或a2019+b2019=12109+(-1)2019=0.故选:B.由集合相等的概念求出a,b的值,然后代入要计算的式子求值.本题考查了集合相等的概念,考查了集合中元素的互异性,是基础题,也是易错题.8.【答案】B【解析】【分析】本题考查充分必要条件,属于基础题.先求出命题p和命题q对应的集合,再利用集合包含关系求出m的取值范围即可.【解答】解:由4x-m<0,得,所以,由,得,所以,若p是q的必要不充分条件,所以[-1,2]是的真子集,所以,解得m>8.故选项为:B.9.【答案】AC【解析】【分析】本题考查不等式的性质、集合的运算,属基础题.根据不等式的性质判断AD,由集合的运算和表示法判断BC.【解答】解:对A,若a>b,c>d,如a=1,b=-1,c=1,d=-1,则ac=bd,故A错误;对B,因为既是菱形又是矩形的图形是正方形,故B正确;对C,方程组的解集为{(2,1)},故C错误;对D,若a< b<0,则,则,故D正确.所以错误的选项为AC.10.【答案】ACD【解析】【分析】本题考查基本不等式的应用,求解时注意基本不等式成立的条件,考查分类讨论思想的应用,属于中档题.对于A:验证当a=1时即可判断;对于B:利用基本不等式进行计算即可;对于C:当a<0,b<0时,<0,即可判断;对于D:当x=0时,+=1,即可判断.【解答】解:对A项,当a=1时,+1=2a,则A错误;对B项,当x>0时,|x+|=x+2=2,当且仅当x=1时,等号成立,当x<0时,|x+|=-x+2=2,当且仅当x=-1时,等号成立, 则B正确;对C项,当a<0,b<0时,<0,则C错误;对D项,当x=0时,+=1,则D错误;故选:ACD11.【答案】AC【解析】解:由题意可知,若不出现重复元素,则当card(A)=4时,card(M)+card (N)=12,而当card(A)=5时,card(M)+card(N)=20,故B错误,C正确;若A={1,2,3,5},则M={2,3,5,6,10,15},N={1,2,3,4},此时card(M)+card(N)=10,故A正确;若A={-2,-1,0,1,2},则M={-4,-2,-1,0,2},N={1,2,3,4},此时card(M)+card(N)=9,故D错误;故选:AC.根据新定义对应各个选项逐个判断即可.本题考查了新定义的应用以及集合元素的性质,考查了学生的逻辑推理能力以及运算求解能力,属于基础题.12.【答案】ABD【解析】【分析】本题考查不等式的性质的应用,基本不等式的应用,主要考查学生的运算能力和转换能力及思维能力.直接利用不等式的性质的应用和基本不等式的应用求出结果.【解答】解:①已知a>0,b>0,且a+b=1,所以(a+b)2=a2+b2+2ab ≤2a2+2b2,则,当且仅当a=b=时,等号成立,故A正确.②由于a>0,b>0,且a+b=1,则a>0>b-1,即a-b>-1,则,故B正确.③,当且仅当a=b=时,等号成立,故C错误.④由于a>0,b>0,且a+b=1,,故,当且仅当时,等号成立,故D正确.故选:ABD.13.【答案】⑤【解析】解:①中当a=b时才有最小值2ab,故错误;②中当a=b时才有最大值,故错误;③中=时,x无解,故最小值是不是2,故错误;④中需cos x为正值时成立,故错误;⑤根据均值不等式可得不等式成立,故正确.故答案为⑤.根据均值定理等号成立的条件可判断①②③,根据均值定理要求为正值可判断④,根据均值定理可证明⑤.考查了均值定理的应用和均值定理成立的条件,属于基础题型,应熟练掌握.14.【答案】{x|1< x<2}.【解析】【分析】本题考查集合的运算,属于基础题.直接根据补集和交集的运算律运算即可.【解答】解:A={x|1< x<4}, B={x|2x5},B={x|x<2或x>5}, A(B)={x|1< x<2}.故答案为:{x|1< x<2}.15.【答案】{8,9,10,12},{7,9,11,12},{6,10,11,12}【解析】解:由,得,所以,先不考虑搭配情况,设c1<c2<c3<c4,则c4=12,c1+c2+c3=27,故3c3>27,10≤c3≤11,且c2≤9;若c3=10,则c1+c2=17,c2≥9,所以c2=9,c1=8;于是C={8,9,10,12};若c3=11,则c1+c2=16,c2≤10,得c2>8,故c2只能取9或10,c1只能取7与6;分别得C={7,9,11,12},C={6,10,11,12};另一方面,三种情况都对应有相应的子集A和B,例如以下的表:因此子集C的三种情况都合条件.故答案为::{8,9,10,12},{7,9,11,12},{6,10,11,12}.由,得,所以,由此入手能够求出集合C.本题考查集合的交、并、补的混合运算,是中档题.解题时要认真审题,仔细解答,注意合理地进行等价转化.16.【答案】14-3【解析】【分析】本题考查了基本不等式,由3=ab+a+b ab+2,所以ab+2-30可得ab的最大值,再由b=代入式子,结合基本不等式可得答案【解答】解:因为3=ab+a+b ab+2,所以ab+2-30,解得01,当且仅当a=b=1时取等号,所以ab的最大值是1 .因为ab+a+b=3,所以b=,结合,得到.所以a+2b=a+2=a+2(-1+)=a+1+-34-3,当且仅当a+1=,即时取等号,则a+2b的最小值是4-3 .故答案为1;4-3.17.【答案】解:(1)由于命题中含有全称量词“任意的”,因此,该命题是全称量词命题.又因为“任意的”的否定为“存在一个”,所以其否定是:存在一个x∈R,使x2+x+2=0成立,即“∃x∈R,使x2+x+2=0.”因为△=-7<0,所以方程x2+x+2=0无实数解,此命题为假命题.(2)由于“:∃x∈R”表示存在一个实数x,即命题中含有存在量词“存在一个”,因此,该命题是存在量词命题.又因为“存在一个”的否定为“任意一个”,所以其否定是:对任意一个实数x,都有x2+3x+20成立.即“∀x∈R,有x2+3x+20”.因为△=1>0,所以对∀:x∈R,x2+3x+20总成立错误,此命题是假命题.【解析】本题考查命题的判断,全称量词命题和存在量词命题的否定,命题真假的判定,主要考查学生对基础知识的理解能力,属于基础题.(1)全称量词命题否定是存在量词命题,然后由一元二次方程根的判别式判断真假.(2)存在量词命题否定是全称量词命题,然后利用一元二次不等式恒成立的条件判断真假.18.【答案】解:(1)解得,-1<x≤3,∴M=(-1,3],且N=(0,+∞);(2)M∩N=(0,3],M∪N=(-1,+∞),∁R M=(-∞,-1]∪(3,+∞).【解析】(1)容易得出f(x)的定义域M=(-1,3],g(x)的值域N=(0,+∞);(2)进行交集、并集和补集的运算即可.本题考查了函数定义域和值域的定义及求法,对数函数的定义域,指数函数的值域,交集、并集和补集的运算,考查了计算能力,属于基础题.19.【答案】解:(1)由已知得,x>0,则f(x)=x+≥2…(1分)当且仅当x=时,即x=等号成立,∴A=[2,+∞)…(3分)所以,C U A=(-∞,2)…(4分)(2)由题得a≥-(x+)…(5分)函数y=-(x+)在(0,]的最大值为-…(9分)∴a≥-…(10分)(3)设P(x0,x0+),则直线PA的方程为y-(x0+)=-(x-x0),即y=-x+2x0+…(11分)由得A(x0+,2x0+)…(13分)又B(0,x0+),…(14分)所以=(,-),=(-x0,0),故=(-x0)=-1 …(16分)【解析】(1)根据二阶矩阵运算的法则化得f(x)的解析式,再利用基本不等式得集合A,由补集的含义即可写出答案;(2)由题得a≥-(x+),只须求出a大于等于函数y=-(x+)在(0,]的最大值,再利用函数的单调性得出函数y=-(x+)在(0,]的最大值,即可实数a的范围;(3)先设P(x0,x0+),写出直线PA的方程,再与直线y=x的方程联立,得A点的坐标,最后利用向量数量积的坐标运算计算即得答案.本题考查二阶矩阵、补集的含义、平面向量数量积的运算等,考查运算能力,属于基础题.20.【答案】解:(1)因为x>0,y>0,x+2y=8,所以xy=x2y=8,当且仅当x=2y=4时,等号成立,所以xy的最大值是8.(2)因为a>0,b>0和变量x>0,y>0满足a+b=10,+=1,所以,当且仅当=时,等号成立,又因为x+y的最小值为18, 所以a+b+2=18,因为a+b=10, 解得ab=16,∴ a=2,b=8或a=8,b=2.【解析】本题主要考查基本不等式求最值,属于中档题.(1)通过基本不等式中的和为定值积有最大值,进行配凑进行求解即可;(2)根据基本不等式中1的代换,先求出最值,然后根据通过两方程联立进行求解即可21.【答案】解:∵2x2+5x+3-(x2+4x+2)=x2+x+1=(x+)2+>0,∴2x2+5x+3>x2+4x+2.【解析】本题采用作差法比较大小,解题的关键是正确配方.作差,再进行配方,与0比较,即可得到结论.22.【答案】(1)解:命题:“对于任意x R,f(x)=+2ax+1的值都不小于0”是假命题等价于命题:“存在x R,使f(x)=+2ax+1的值小于0”是真命题,所以=-4>0,解得a<-1或a>1;(2)解:因为命题“x R,+ax-4a0”为真命题,所以=-4(-4a)0,解得:-16a0.【解析】本题以命题的真假判断为载体考查二次不等式恒成立问题,属于中档题. (1)命题:“对于任意x R,f(x)=+2ax+1的值都不小于0”是假命题等价于命题:“存在x R,使f(x)=+2ax+1的值小于0”是真命题,结合二次函数的图象和性质,可求出实数a的取值范围.(2)将条件转化为+ax-4a0恒成立,必须0,从而解出实数a的取值范围.。
高一上学期第一次月考数学试卷(附带答案)
高一上学期第一次月考数学试卷(附带答案)(满分:150分;考试时间:120分钟)学校:___________班级:___________姓名:___________考号:___________一.单选题。
(本题共8小题,共40分,每小题只有一个正确选项。
)1.直线√3x -y +2=0的倾斜角是( )A.150°B.120°C.60°D.30°2.过点P (﹣2,m )和Q (m ,4)的直线斜率等于1,那么m 的值等于( )A.1或3B.1C.4D.1或43.直线l 经过直线x -2y+4=0和直线x + y -2=0的交点,且与直线x+3y+5=0垂直,则直线l 的方程为( )A.3x -y+2=0B.3x+y+2=0C.x -3y+2=0D.x+3y+2=04.已知直线l 1:mx+y -1=0,l 2:(4m -3)x+my -1=0,若l 1⊥l 2,则实数m 的值为( )A.0B.12C.2D.0或125.对于圆C :x 2+y 2-4x+1=0,下列说法正确的是( )A.点4(1,﹣1)在圆C 的内部B.圆C 的圆心为(﹣2,0)C.圆C 的半径为3D.圆C 与直线y=3相切6.在平面直角坐标系xOy 中,以点(0,1)为圆心且与直线x -y -1=0相切的圆的标准方程为( )A.(x -1)2+y 2=4B.(x -1)2+y 2=1C.x 2+(y -1)2=√2D.x 2+(y -1)2=27.已知直线l 1:x+2y+t 2=0,l 2:2x+4y+2t -3=0,则当l 1与l 2间的距离最短时,求实数t 的值为( )A.1B.12C.13D.28.已知点A(2,﹣3),B(﹣3,﹣2),若直线l:mx+y -m -1=0与线段AB 相交,则实数m 的取值范围是( )A.[﹣34,4]B.[15,+∞)C.(﹣∞,﹣34]∪[4,+∞)D.[﹣4,34]二.多选题.(每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,错选的得0分。
高一上学期第一次月考数学试卷
高一数学上学期第一次月考试题第I卷(选择题)一、单选题(本大题共8小题,共40.0分)1.若A、B是全集I的真子集,则下列四个命题:①A∩B=A;,是x∈A的必要不充分条件.其中与命题A⊆B等价的有()A. 1个B. 2个C. 3个D. 4个2.命题“∃x∈R,x2+2x+2<0”的否定是()A. ∃x∈R,x2+2x+2≥0B. ∃x∈R,x2+2x+2>0C. ∀x∈R,x2+2x+2≥0D. ∀x∉R,x2+2x+2>03.已知t>0,则y=t2−4t+1t的最小值为()A. −2B. 12C. 1D. 24.设a∈R,若关于x的不等式x2−ax+1≥0在1≤x≤2上有解,则()A. a≤2B. a≥2C. a≤52D. a≥525.已知非零实数a,b满足a>b,则下列不等式一定成立的是()A. a+b>0B. a2>b2C. 1a <1bD. a2+b2>2ab6.已知集合,B={x|3<x<22},且A∩B=A,则实数a的取值范围是()A. (−∞,9]B. (−∞,9)C. [2,9]D. (2,9)7.对于实数x,“|x|<1”是“x<1”的()条件A. 充分不必要B. 必要不充分C. 充要D. 既不充分也不必要8.已知实数a>0,b>0,且9a+b=ab,若不等式a+b≥−x2+2x+18−m对任意实数x恒成立,则实数m的取值范围为()A. [3,+∞)B. (−∞,3]C. (−∞,6]D. [6,+∞)二、多选题(本大题共4小题,共20.0分)9.已知a>0,b>0,则下列说法不正确的有()A. 1a−b >1aB. 若a+b≥2,则ab≥1C. 若a+b≥2,则ab≤1D. a3+b3≥a2b+ab210.下列命题为真命题的是()A.B. a2=b2是a=b的必要不充分条件C. 集合{(x,y)|y=x2}与集合{y|y=x2}表示同一集合D. 设全集为R,若A⊆B,则∁R B⊆∁R A11.设集合M={x|x=6k+1,k∈Z},N={x|x=6k+4,k∈Z},P={x|x=3k−2,k∈Z},则下列说法中正确的是()A. M=N⫋PB. (M∪N)⫋PC. M∩N=⌀D. ∁P M=N12.给定数集M,若对于任意a,b∈M,有a+b∈M,且a−b∈M,则称集合M为闭集合,则下列说法中不正确的是()A. M={−4,−2,0,2,4)为闭集合B. 正整数集是闭集合C. M={n|n=3k,k∈Z)为闭集合D. 若集合A1,A2为闭集合,则A1∪A2也为闭集合第II卷(非选择题)三、单空题(本大题共2小题,共10.0分)13.已知不等式(a−3)x2+2(a−3)x−6<0对一切x∈R恒成立,则实数a的取值范围_______.14.已知集合A={x|x2−6x+8=0},B={x|mx−4=0},且B∩A=B,则实数m所取到的值构成的集合C=,则A∪C=.四、解答题(本大题共8小题,共96.0分)15.在①A∩B=A,②A∩(∁R B)=A,③A∩B=⌀这三个条件中任选一个,补充到下面的问题中,求解下列问题:已知集合A={x|a−1<x<2a+3},B={x|x2−2x−8≤0}.(1)当a=2时,求A∪B;(2)若_______________,求实数a的取值范围.注:如果选择多个条件分别解答按第一个解答计分.16.已知集合A={x|0<ax+1≤5},集合B={x|−1<x≤2}.2(1)若A⊆B,求实数a的取值范围;(2)若B⊆A,求实数a的取值范围;(3)A、B能否相等?若能,求出a的值;若不能,试说明理由.17.设全集为实数集R,A={x|−1≤x<4},B={x|−5<x<2},C={x|1−2a<x<2a}.(1)若C=⌀,求实数a的取值范围;(2)若C≠⌀,且C⊆(A∩B),求实数a的取值范围.18.设y=mx2+(1−m)x+m−2.(1)若不等式y≥−2对一切实数x恒成立,求实数m的取值范围;(2)在(1)的条件下,求m2+2m+5的最小值;m+1(3)解关于x的不等式mx2+(1−m)x+m−2<m−1(m∈R).19.已知定义在R上的函数f(x)=x2+(x−2)a−3x+2(其中a∈R).(1)若关于x的不等式f(x)<0的解集为(−2,2),求实数a的值;(2)若不等式f(x)−x+3≥0对任意x>2恒成立,求a的取值范围.20.已知集合A={x|x2+2x−3<0},集合B={x||x+a|<1}.(1)若a=3,求A∩B和A∪B;(2)设命题p:x∈A,命题q:x∈B,若p是q成立的必要不充分条件,求实数a的取值范围.21.设集合A={|xx2+2x−3<0},集合B={|x−a−1<x<−a+1}.(1)若a=3,求A∪B和A∩B;(2)设命题p:x∈A,命题q:x∈∁R B,若q是p成立的必要不充分条件,求实数a的取值范围.22.已知m>0,n>0,关于x的不等式x2−mx−20<0的解集为{x|−2<x<n}.(1)求m,n的值;(2)正实数a,b满足na+mb=2,求15a +1b的最小值.答案和解析1.【答案】B【解析】【分析】本题主要考查了集合的包含关系的判断及应用,考查集合的基本运算,考查了Venn图的应用,属于中档题.根据集合的交集、并集、补集的定义结合Venn图判断集合间的关系,从而求出结论.【解答】解:由A⊆B得Venn图,①A∩B=A⇔A⊆B; ②A∪B=A⇔B⊆A; ③A∩(∁I B)=⌀⇔A⊆B; ④A∩B=I,与A、B是全集I的真子集矛盾,不可能存在;⑤x∈B是x∈A的必要不充分条件⇔A⫋B;故和命题A⊆B等价的有①③共2个,故选:B2.【答案】C【解析】【分析】本题考查存在量词命题的否定,属于基础题.根据存在量词命题的否定为全称量词命题,即可求出结果.【解答】解:因为存在量词命题的否定为全称量词命题, 所以命题“∃x ∈ R ,x 2+2x +2<0”的否定是: ∀x ∈ R ,x 2+2x +2≥0. 故选C .3.【答案】A【解析】 【分析】本题主要考查利用基本不等式求最值,属于基础题.对原式进行化简,利用基本不等式求最值即可,注意等号取得的条件. 【解答】 解:t >0,则 y =t 2−4t+1t=t +1t−4≥2√t ·1t−4=−2,当且仅当t =1t ,即t =1时,等号成立, 则y =t 2−4t+1t的最小值为−2.故选A .4.【答案】C【解析】 【分析】本题主要考查了含参一元二次不等式中参数的取值范围,属于中档题. 根据题意得不等式对应的二次函数f (x )=x 2−ax +1的图象开口向上,分别讨论三种情况即可.【解答】解:由题意得:二次函数f (x )=x 2−ax +1的图象开口向上, 当,满足题意,当{Δ>0f(1)≥0或 f(2)≥0,解得a <−2或2<a ≤52, 当,满足题意,综上所述:a⩽52.故选C.5.【答案】D【解析】【分析】本题考查不等关系,不等式性质,是基础题.通过给变量取特殊值,举反例来说明某个命题不正确,利用不等式性质证明命题正确即可.【解答】解:对于A,令a=−1,b=−2,故A错误,对于B,a2−b2=(a+b)(a−b),符号不确定,故B错误,对于C,令a=1,b=−2,故C错误,对于D,∵a>b,a2+b2−2ab=(a−b)2>0,∴a2+b2>2ab,故D正确.故选D.6.【答案】B【解析】【分析】本题考查了描述法、交集的定义及运算,子集的定义,分类讨论的思想,考查了计算能力.根据A∩B=A可得出A⊆B,从而可讨论A是否为空集:A=⌀时,a+1>3a−5;A≠⌀时,{a+1≤3a−5 a+1>33a−5<22,解出a的范围即可.【解答】解:∵A∩B=A,∴A⊆B,且A={x|a+1≤x≤3a−5},B={x|3<x<22},∴①A=⌀时,a+1>3a−5,解得a<3,满足题意;②A≠⌀时,{a+1≤3a−5 a+1>33a−5<22,解得3≤a<9,∴综上得,实数a的取值范围是(−∞,9).故选:B.7.【答案】A【解析】【分析】本题考查充分条件、必要条件的判断,要注意准确理解概念和方法,属于基础题.双向推理,即从左右互推进行判断即可得解.【解答】解:当|x|<1时,显然有x<1成立,但是由x<1,未必有|x|<1,如x=−2<1,但|x|>1,故“|x|<1”是“x<1”的充分不必要条件;故选:A.8.【答案】A【解析】【分析】本题考查恒成立问题,考查利用基本不等式求最值,训练了分离变量法求字母的取值问题,是中档题.利用基本不等式求得a+b的最小值,把问题转化为m≥f(x)恒成立的类型,求解f(x)的最大值即可.【解答】解:∵9a+b=ab,∴1a +9b=1,且a,b为正数,∴a+b=(a+b)(1a+9b)=10+ba+9ab⩾10+2√ba⋅9ab=16;当且仅当ba =9ab,即a=4, b=12时,(a+b)min=16;若不等式a+b≥−x2+2x+18−m对任意实数x恒成立,则16≥−x2+2x+18−m对任意实数x恒成立,即m≥−x2+2x+2对任意实数x恒成立,∵−x2+2x+2=−(x−1)2+3⩽3,∴m≥3,故选:A.9.【答案】ABC【解析】【分析】本题考查了不等式性质,灵活运用不等式的性质是解决本题的关键,属于中档题.由题意和不等式的性质,逐个选项验证即可.【解答】解:对于A,若a>0,b>0,且a<b,则a−b<0,则1a−b <1a,故选项A说法不正确;对于B,若a=1.9,b=0.1,则满足a+b≥2,而ab=0.19,不满足ab≥1,故选项B 说法不正确;对于C,若a=3,b=2,满足a+b⩾2,,而ab=6不满足ab≤1,故选项C说法不正确;对于D,已知a>0,b>0,则(a3+b3)−(a2b+ab2)=a3+b3−a2b−ab2=a2(a−b)+b2(b−a)=(a−b)(a2−b2)=(a+b)(a−b)2⩾0,当a=b时,等号成立,故选项D成立.故选ABC.10.【答案】ABD【解析】【分析】本题考查了真假命题的判定,必要条件、充分条件与充要条件的判断,考查了集合的相等,子集的定义,属于中档题.根据必要条件、充分条件与充要条件的判断、集合的相等及子集的定义逐项判断即可.【解答】解:对于A,当x=0时,x2⩽1,故A是真命题;对于B,当a2=b2时,则a=±b,当a=b时,则a2=b2,则a2=b2是a=b的必要不充分条件,故B是真命题;对于C,集合{(x,y)∣y=x2}与集合{y|y=x2}不表示同一集合,前者为点集,后者为数集,故C是假命题;对于D,根据子集定义,A⊆B时,集合A中元素,全都在集合B中,不在集合B中的元素一定不会在集合A中,当x∈∁R B时,就是x在集合R内,不在集合B中,故x一定不在集合A中,不在集合A中就一定在集合A的补集内,故x∈∁R A,D正确.故选ABD.11.【答案】CD【解析】【分析】本题主要考查了集合的含义、集合的交集、并集、补集运算、集合间的关系,属于中档题.根据集合的意义及集合运算分析解答.【解答】解:集合M表示所有被6除余数为1的整数,集合N表示所有被6除余数为4的整数,所以M不等于N,又因为被6除余数分为0,1,2,3,4,5六类,A选项错误,C选项正确;因为M∪N={x|x=6k+1,k∈Z}∪{x|x=6k+4,k∈Z}={x|x=6k+1或x=6k+4,k∈Z}所以M∪N={x|x=2k·3+1或x=(2k+1)·3+1,k∈Z}={x|x=3m+1,m∈Z},因为P={x|x=3k−2,k∈Z}={x|x=3(n+1)−2,n∈Z}={x|x=3n+1,n∈Z},所以M∪N=P,所以,所以B选项错误,D选项正确,故选CD.12.【答案】ABD【解析】【分析】本题考查集合中的新定义问题,考查分析问题、解决问题的能力,属于中档题.根据闭集合的定义,对选项进行逐一判断,可得出答案.【解答】解:A.当集合M={−4,−2,0,2,4}时,2,4∈M,而2+4∉M,所以集合M不为闭集合.B.设a,b是任意的两个正整数,当a<b时,a−b<0不是正整数,所以正整数集不为闭集合.C.当M={n|n=3k,k∈Z}时,设a=3k1,b=3k2,k1,k2∈Z,则a+b=3(k1+k2)∈M,a−b=3(k1−k2)∈M,k1,k2∈Z,所以集合M是闭集合.D.设A 1={n|n=3k,k∈Z},A2={n|n=2k,k∈Z}由C可知,集合A1,A2为闭集合,2,3∈A1∪A2,而2+3∉A1∪A2,此时A1∪A2不为闭集合.所以说法中不正确的是ABD故选ABD.13.【答案】(−3,3]【解析】解:由题意,a =3时,不等式等价于−6<0,显然恒成立。
高一上学期第一次月考数学试卷(附答案解析)
高一上学期第一次月考数学试卷(附答案解析)考试时间:120分钟;满分:150分学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、单选题(本大题共8小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1. 已知全集U={0,1,2,3},集合A={0,1,3},B={0,2,3},则∁U(A∩B)=( )A. {0,1}B. {1,2}C. {0,2}D. {0,3}2. 下列结论正确的是( )A. 若ac>bc,则a>bB. 若a2>b2,则a>bC. 若a>b,c<0,则ac<bcD. 若√a<√b,则a>b3. 已知命题p:∀x>0,x2≥2,则它的否定为( )A. ∀x>0,x2<2B. ∀x≤0,x2<2C. ∃x≤0,x2<2D. ∃x>0,x2<24. 已知a>0且a≠1,则“log a(a−b)>1”是“(a−1)−b<0“成立的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件5. 若S是由“我和我的祖国”中的所有字组成的集合,则S中元素个数是( )A. 4B. 5C. 6D. 76. 若函数f(x)=ax2−4x+c的值域为[1,+∞),则1c−1+9a的最小值为( )A. 1B. 2C. 3D. 47. 设集合A={x|1<x<2},B={x|x>a},若A∩B=A,则a的范围是( )A. a≥2B. a≤1C. a≥1D. a≤28. 若不等式2kx2+kx−38<0对一切实数x都成立,则k的取值范围为( )A. −3<k<0B. −3≤k<0C. −3≤k≤0D. −3<k≤0二、多选题(本大题共4小题,共20.0分。
2013-2014学年高一数学上学期第一次月考试题及答案(新人教A版 第57套)
山东省淄博市临淄中学2013-2014学年高一数学上学期第一次月考试题新人教A 版两部分,共150分,考试时间120分钟第Ⅰ卷(选择题 共60分)一;选择题(每题3分,共20个小题。
每小题只有一个选项正确)1.方程组⎩⎨⎧-=-=+11y x y x 的解集是( )A 、{}1,0==y xB 、{}1,0C 、{})1,0(D 、{}10),(==y x y x 或2.已知()()()x x f x x x ⎧+<=⎨-+≥⎩211231 , 则()f =2 ( )A 、-7B 、 2C 、-1D 、53.已知{}x x ,0,12∈,则实数x 的值为( )A 、0B 、1C 、-1D 、1±4.已知集合{}{}P M P M 则,3,2,1,3,1==的真子集的个数是( )A 、6 B 、8 C 、3 D 、75.若集合A ={x |x 2-x <0},B={x |0<x <3},则A ∩B 等于( )A.{x |0<x <1}B.{x |0<x <3}C.{x |1<x <3}D.¢6.函数245y x mx =-+的对称轴为2x =-,则当1x =时,y 的值为( )A 7- B 1 C 17 D 257.若函数xa x f =)(在),0(+∞上为增函数,则a 的取值范围是( )A .)0,(-∞ B .),0(+∞ C .R D .]1,1[-8.如图所示,不可能表示函数的是( )9.下列各组函数)()(x g x f 与的图象相同的是( )A 2)()(,)(x x g x x f ==B 22)1()(,)(+==x x g x x fC 0)(,1)(x x g x f ==D ⎩⎨⎧-==x x x g x x f )(|,|)( )0()0(<≥x x 10.在区间()+∞,0上不是增函数的是( )A 、y =2x+1B 、132+=x yC 、xy 2=D 、122++=x x y 11.函数1()f x x x=-的图像关于( ) A .y 轴对称 B .直线x y -=对称C . 坐标原点对称D . 直线x y =对称 12.设集合{|12},{|}.A x x B x x a =<<=<若,A B ⊆则a 的范围是( )A .2a ≥B .1a ≤C .1a ≥D .2a ≤13..下列对应关系:( )①{1,4,9},{3,2,1,1,2,3},A B ==---f :x x →的平方根②,,A R B R ==f :x x →的倒数③,,A R B R ==f :22x x →-④{}{}1,0,1,1,0,1,A B f =-=-:A 中的数平方其中是A 到B 的映射的是A .①③B .②④C .③④D .②③14.已知y =f(x)是奇函数,当x>0时,f(x)=x(1+x),那么当x<0时,f(x)的解析式是( )A 、x(1+x)B 、x(1-x)C 、-x(1-x)D 、-x(1+x)15.已知8)(3-+=bx ax x f ,且f (-2)=10,那么f (2)等于( )A 、-26B 、-18C 、-10D 、1016.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数, 则实数a 的取值范围是( )A .3a ≤-B .3a ≥-C .5a ≤D .3a ≥17.、给出以下函数:①2432)(x x x f +=;②x x x f 2)(3-=;③)0()(2>=x x x f ;其中偶函数的个数是( )个A 、1B 、2C 、3D 、418..设[][]b a,f(x),0x x )f(x )f(x ,,,212121在则--如果>∈b a x x 上是单调( )函数 .A 增 B 减 C 奇 D 偶19.若函数f (x )是定义在R 上的偶函数,在]0,(-∞上是减函数,且f,则使得f (x )<0的x 的取值范围是( ) (A) ∞,2);(B)∞); (C) ∞⋃∞); (D) 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省淄博市高一上学期数学第一次月考试卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共12题;共24分)
1. (2分) (2019高一上·扬州月考) 若集合,,则()
A . {0}
B . {1}
C . {0,1}
D . {-1,0,1}
2. (2分)与函数y=x(x≥0)相等的函数是()
A . y=
B . y=
C . y=() 2
D . y=
3. (2分)已知全集U=R,设集合,集合,则为()
A .
B .
C .
D .
4. (2分) (2019高一上·昆明月考) 下列说法正确的是()
A . 对于任何实数,都成立
B . 对于任何实数,都成立
C . 对于任何实数,,总有
D . 对于任何实数,,总有
5. (2分) (2019高一上·河南月考) 函数的定义域为()
A .
B .
C .
D .
6. (2分) (2019高一上·儋州期中) 设,给出下列四个图形,其中能表示从集合到集合的函数关系的有().
A . 个
B . 个
C . 个
D . 个
7. (2分)函数的定义域为()
A .
B .
C .
D .
8. (2分)甲、乙两种商品在过去一段时间内的价格走势如图所示.假设某人持有资金120万元,他可以在t1至t4的任意时刻买卖这两种商品,且买卖能够立即成交(其他费用忽略不计).如果他在t4时刻卖出所有商品,那么他将获得的最大利润是()
A . 40万元
B . 60万元
C . 120万元
D . 140万元
9. (2分) (2019高一上·盐城月考) 已知函数为偶函数,且在上单调递增,则的解集为()
A .
B .
C .
D .
10. (2分) (2020高一上·黄山期末) 已知函数,则()
A . 1
B . 2
C . 3
D . 6
11. (2分)下列说法中,正确的是()
A . 当x>0且x≠1时,
B . 当x>0时,
C . 当x≥2时,的最小值为2
D . 当0<x≤2时,无最大值
12. (2分)(2019·天津模拟) 函数的单调递减区间为()
A .
B .
C .
D .
二、填空题 (共4题;共4分)
13. (1分) (2018高一上·阜城月考) 函数在区间上是增函数,则的取值范围是________.
14. (1分)已知函数f(x)=ax3﹣bx+1,a,b∈R,若f(﹣1)=﹣2,则f(1)=________.
15. (1分)(2018·南充模拟) 已知函数(且)恒过定点,则
________.
16. (1分)(2017·达州模拟) 若函数在某区间[a,b]上的值域为[ta,tb],则t的取值范围________.
三、解答题 (共6题;共65分)
17. (10分) (2019高一上·沈阳月考) 已知集合,或.
(1)若,求.
(2)若,求的取值范围.
18. (10分) (2019高一上·上饶期中) 已知集合A={x|1≤x≤3},B={x|x>2}.
(Ⅰ)分别求A∩B,(∁RB)∪A;
(Ⅱ)已知集合C={x|1<x<a},若C⊆A,求实数a的取值集合.
19. (10分) (2016高一上·吉林期中) 已知函数f(x)= .
(1)判断函数在区间[1,+∞)上的单调性,并用定义证明你的结论.
(2)求该函数在区间[1,4]上的最大值与最小值.
20. (15分) (2016高一上·黑龙江期中) 已知函数y=f(x)(x≠0)对于任意的x,y∈R且x,y≠0满足f (xy)=f(x)+f(y).
(1)求f(1),f(﹣1)的值;
(2)求证:y=f(x)为偶函数;
(3)若y=f(x)在(0,+∞)上是增函数,解不等式.
21. (10分)已知函数f(x)=a﹣
(1)若2f(1)=f(2),求a的值;
(2)判断f(x)在(﹣∞,0)上的单调性并用定义证明.
22. (10分) (2016高二上·上杭期中) 设f(x)=ax2﹣(a+1)x+1
(1)解关于x的不等式f(x)>0;
(2)若对任意的a∈[﹣1,1],不等式f(x)>0恒成立,求x的取值范围.
参考答案一、单选题 (共12题;共24分)
答案:1-1、
考点:
解析:
答案:2-1、
考点:
解析:
答案:3-1、
考点:
解析:
答案:4-1、
考点:
解析:
答案:5-1、考点:
解析:
答案:6-1、考点:
解析:
答案:7-1、考点:
解析:
答案:8-1、考点:
解析:
答案:9-1、考点:
解析:
答案:10-1、考点:
解析:
答案:11-1、考点:
解析:
答案:12-1、考点:
解析:
二、填空题 (共4题;共4分)答案:13-1、
考点:
解析:
答案:14-1、
考点:
解析:
答案:15-1、考点:
解析:
答案:16-1、考点:
解析:
三、解答题 (共6题;共65分)答案:17-1、
答案:17-2、考点:
解析:
答案:18-1、考点:
解析:
答案:19-1、答案:19-2、考点:
解析:
答案:20-1、答案:20-2、
答案:20-3、考点:
解析:
答案:21-1、
答案:21-2、考点:
解析:
答案:22-1、
答案:22-2、考点:
解析:。