2020年河南省高考数学(理科)模拟试卷(10)
2020年河南省、广东省等五岳联考高考数学模拟试卷(理科)(4月份)(附答案详解)

2020年河南省、广东省等五岳联考高考数学模拟试卷(理科)(4月份)一、单选题(本大题共12小题,共60.0分)1. 设集合M ={x|x 2−2x −3<0,x ∈Z},则集合M 的真子集个数为( )A. 8B. 7C. 4D. 32. 已知i 是虚数单位,则化简(1+i1−i )2020的结果为( )A. iB. −iC. −1D. 13. 若干年前,某教师刚退休的月退休金为4000元,月退休金各种用途占比统计图如下面的条形图该教师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折线图.已知目前的月就医费比刚退休时少100元,则目前该教师的月退休金为( )A. 4500元B. 5000元C. 5500元D. 6000元4. 将包括甲、乙、丙在内的8人平均分成两组参加文明交通”志愿者活动,其中一组指挥交通,一组分发宣传资料,则甲、乙至少一人参加指挥交通且甲、丙不在同一组的概率为( )A. 27B. 37C. 17D. 3145. 已知抛物线y 2=4x 的焦点为F ,过点F 和抛物线上一点M(3,2√3)的直线l 交抛物线于另一点N ,则|NF|:|NM|等于( )A. 1:2B. 1:3C. 1:4D. 1:√36. 在所有棱长都相等的直三棱柱ABC −A 1B 1C 1中,D ,E 分别为棱CC 1,AC 的中点,则直线AB 与平面B 1DE 所成角的余弦值为( )A. √3010B. √3020C. √13020D. √70107. 已知点A(4,3),点B 为不等式组{y ≥0x −y ≤0x +2y −6≤0所表示平面区域上的任意一点,则|AB|的最小值为( )A. 5B. 4√55C. √5D. 2√558. 给出下列说法①定义在[a,b]上的偶函数f(x)=x 2−(a +4)x +b 的最大值为20; ②“x =π4”是“tanx =1”的充分不必要条件;③命题“∃x 0∈(0,+∞),x 0+1x 0≥2”的否定形式是“∀x ∈(0,+∞),x +1x <2”其中正确说法的个数为( )A. 0B. 1C. 2D. 39. 已知log m 3>0,a =m log 42,b =m log 32,c =m 20.5,则a ,b ,c 间的大小关系为( )A. a <b <cB. b <a <cC. c <a <bD. b <c <a10. 元代数学家朱世杰在《算学启蒙》中提及如下问题:今有银一秤一斤十两(1秤=15斤,1斤=16两),令甲、乙、丙从上作折半差分之,问:各得几何?其意思是:现有银一秤一斤十两,现将银分给甲、乙、丙三人,他们三人每一个人所得是前一个人所得的一半.若银的数量不变,按此法将银依次分给7个人,则得银最少的一个人得银( )A. 9两B. 266127两C.26663两 D. 250127两11. 在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,若acosB −bcosA =c3,则acosBacosA+bcosB的最大值为( )A. √2B. √22 C. √32 D. 2√3312. 已知f(x)为奇函数,g(x)为偶函数,且f(x)+g(x)=log 3(3x +1),不等式3g(x)−f(x)−t ≥0对x ∈R 恒成立,则t 的最大值为( )A. 1B. 3−2log 32C. 2D. 32log 32−1二、单空题(本大题共4小题,共20.0分)13. 已知向量a ⃗ =(2,−√5),b ⃗ =(1,2√5),则b ⃗ 在a ⃗ 方向上的投影等于______. 14. 在△ABC 中,∠B =2π3,A 、B 是双曲线E 的左、右焦点,点C 在E 上,且BC =12AB ,则E 的离心率为______.15. 已知函数f(x)=cos(ωx +φ)(ω>0,0≤φ≤π)是奇函数,且在[−π6,π4]上单调递减,则ω的最大值是 .16. 已知三棱锥A −BCD 中,平面ABD ⊥平面BCD ,BC ⊥CD ,BC =CD =2,AB =AD =√6,则三棱锥A −BCD 的外接球的体积为______.三、解答题(本大题共7小题,共82.0分)17.已知数列{a n}的前n项和为S n,且S n=12na n+a n−1.(1)求数列{a n}的通项公式;(2)若数列{2a n2}的前n项和为T n,证明:T n<32.18.如图,在以A,B,C,D,E,F为顶点的五面体中,四边形ABEF为正方形,AF⊥DF,AF=2√2FD,∠DFE=∠CEF=45.(1)证明:DC//FE;(2)求二面角D−BE−C的平面角的余弦值.19.已知点P在圆O:x2+y2=9上运动,点P在x轴上的投影为Q,动点M满足4PQ⃗⃗⃗⃗⃗ = 3√2MQ⃗⃗⃗⃗⃗⃗⃗ .(1)求动点M的轨迹E的方程;(2)设G(−3,0),H(3,0),过点F(1,0)的动直线l与曲线E交于A、B两点.问:直线AG与BH的斜率之比是否为定值?若为定值,求出该定值;若不为定值,试说明理由.20.某县为了帮助农户脱贫致富,鼓励农户利用荒地山坡种植果树,某农户考察了三种不同的果树苗A、B、C.经过引种实验发现,引种树苗A的自然成活率为0.7,引种树苗B、C的自然成活率均为p(0.6≤p≤0.8).(1)任取树苗A、B、C各一棵,估计自然成活的棵数为X,求X的分布列及其数学期望;(2)将(1)中的数学期望取得最大值时p的值作为B种树苗自然成活的概率,该农户决定引种n棵B种树苗,引种后没有自然成活的树苗有75%的树苗可经过人栽培技术处理,处理后成活的概率为0.8,其余的树苗不能成活.①求一棵B种树苗最终成活的概率;②若每棵树苗引种最终成活可获利400元,不成活的每棵亏损80元该农户为了获利期望不低于10万元,问至少要引种种树苗多少棵?21.已知函数f(x)=(a−1)x+xlnx的图象在点A(e2,f(e2))(e为自然对数的底数)处的切线斜率为4.(1)求实数a的值;(2)若m∈Z,且m(x−1)<f(x)+1对任意x>1恒成立,求m的最大值.22.以坐标原点为极点,以x轴的非负半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ=√2(θ∈[−π2,π2]),直线l的参数方程为{x=−2+tcosαy=−4+tssinα(t为参数).(1)点A在曲线C上,且曲线C在点A处的切线与直线:x+2y+1=0垂直,求点A的直角坐标;(2)设直线l与曲线C有且只有一个公共点,求直线l的斜率的取值范围.23.设函数f(x)=|x−1|+2|x+1|,x∈R.(1)求不等式f(x)<5的解集;(2)若关于x的不等式f(x)+2<|2t−1|在实数范围内解集为空集,求实数t的取值范围.答案和解析1.【答案】B【解析】解:集合M={x|x|x2−2x−3<0,x∈Z}={x|−1<x<3,x∈Z}={0,1,2},所以集合M的真子集个数为:23−1=7个.故选:B.由列举法得到集合A中的元素个数,再由结论:含有n个元素的集合的真子集数共有:2n−1个,即得答案本题主要考查了集合的子集,一般地,含有n个元素的集合的真子集数共有:2n−1个.2.【答案】D【解析】解:∵1+i1−i =(1+i)2(1−i)(1+i)=i,∴(1+i1−i)2020=i2020=i4×505=1.故选:D.利用复数代数形式的乘除运算化简1+i1−i,再由虚数单位i的运算性质得答案.本题考查复数的代数形式的乘除运算,考查虚数单位i的运算性质,是基础题.3.【答案】B【解析】解:设目前该教师的月退休金为x元,则有10%x=4000×15%−100,解之得x=5000,故选:B.根据题中目前的月就医费比刚退休时少100元可列等式,求出即可.本题考查对条形图,折线图的数据整合能力,属于基础题.4.【答案】B【解析】解:①甲指挥交通,乙不指挥交通,是丙不能指挥交通,故有C52=10种方法,②乙指挥交通,甲不指挥交通,则丙必须指挥交通,故有C52=10种方法,③甲、乙都指挥交通,则丙不能指挥交通,故有C52=10种方法,∴甲、乙至少一人参加指挥交通且甲、丙不在同一组的概率为: p =3C 52C 84=37.故选:B .①甲指挥交通,乙不指挥交通,是丙不能指挥交通,故有C 52=10种方法,乙指挥交通,甲不指挥交通,则丙必须指挥交通,故有C 52=10种方法,甲、乙都指挥交通,则丙不能指挥交通,故有C 52=10种方法,由此能求出甲、乙至少一人参加指挥交通且甲、丙不在同一组的概率.本题考查概率的求法,考查分类讨论思想、列举法等基础知识,考查运算求解能力,是基础题.5.【答案】C【解析】解:抛物线y 2=4x 的焦点为F(1,0),所以k FM =2√33−1=√3,由{y 2=4x y =√3(x −1),可得3x 2−10x +3=0,所以x 1=3,x 2=13, 所以|FN||MN|=x 2+p2x 1+x 2+p=13+13+13+2=14.故选:C .求出抛物线的焦点坐标,通过直线与抛物线方程联立,求出MN 的坐标,然后转化求解|NF|:|NM|即可.本题考查抛物线的焦点弦,抛物线的简单性质以及数形结合的思想的应用,是中档题.6.【答案】C【解析】 【分析】本题考查了利用空间向量求线面角的问题,属于中档题.根据题意,建立空间直角坐标系,将所求的角转化为直线AB 与平面B 1DE 的法向量的夹角来求即可. 【解答】解:因为是所有棱长都相等的直三棱柱ABC −A 1B 1C 1. ∴该棱柱的上下底面是正三角形,侧面都是正方形,设各棱长均为2,取AB 的中点为原点,直线OC ,OB 分为x ,y 轴建立如图所示的空间直角坐标系.则O(0,0,0),B(0,1,0),E(√32,−12,0),D(√3,0,1),B 1(0,1,2). ∴ED⃗⃗⃗⃗⃗ =(√32,12,1),EB 1⃗⃗⃗⃗⃗⃗⃗ =(−√32,32,2), 设平面B 1DE 的法向量m ⃗⃗⃗ =(x,y,z), ∴{m ⃗⃗⃗ ⋅ED⃗⃗⃗⃗⃗ =0m ⃗⃗⃗ ⋅EB 1⃗⃗⃗⃗⃗⃗⃗ =0,∴{√32x +12y +z =0−√32x +32y +2z =0,令x =2,得m ⃗⃗⃗ =(2,6√3,−4√3).∵OB ⃗⃗⃗⃗⃗⃗ =(0,1,0)且AB ⃗⃗⃗⃗⃗ //OB ⃗⃗⃗⃗⃗⃗ . 设所求角为θ,则sinθ=|m⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗⃗ |m ⃗⃗⃗ |OB⃗⃗⃗⃗⃗⃗ |=3√3020, ∴cosθ=√13020. 故选:C .7.【答案】C【解析】解:不等式组{y ≥0x −y ≤0x +2y −6≤0的可行域如图:则|AB|的最小值为A 到B 的距离. 由{x −y =0x +2y −6=0解得B(2,2), |AB|的最小值:√(4−2)2+(3−2)2=√5, 故选:C .画出约束条件的可行域,利用已知条件求解距离的最小值即可.本题考查线性规划的简单应用,是基本知识的考查,考查数形结合以及点到直线的距离公式的应用.8.【答案】D【解析】解:①定义在[a,b]上的偶函数f(x)=x2−(a+4)x+b,所以有f(−x)=f(x),即a=−4,定义域为[a,b],所以b=4,所以函数f(x)在x=±4时取得最大值为20,正确;②由充要条件的定义“x=π4”能推出“tanx=1”成立,而“tanx=1”不能推出“x=π4”成立,所以“x=π4”是“tanx=1”的充分不必要条件正确;③由特称量词命题的否定定义可得命题“∃x0∈(0,+∞),x0+1x0≥2”的否定形式是“∀x∈(0,+∞),x+1x<2”正确;其中正确说法的个数为①②③三个,故选:D.①利用函数的奇偶性和最值可得答案,②由充要条件定义可判断,③由命题的否定定义可判断,从而可得结论.本题考查命题真假判断及充要条件,函数的奇偶性和最值,命题的否定,属基础题.9.【答案】A【解析】【分析】本题考查对数函数和指数函数的性质,属于基础题.利用对数函数和指数函数的性质求解.【解答】解:∵log m3>0,∴m>1,∵0<log42<log32<1,20.5>1,∴a<b<c,故选:A.10.【答案】B【解析】解:由题意共有银:16×16+10=266两,设分银最少的为a两,则7人的分银量构成以a为首项,2为公比的等比数列,则a(1−27)1−2=266,解得a=266127.故选:B.共有银:16×16+10=266两,设分银最少的为a两,则7人的分银量构成以a为首项,2为公比的等比数列,由此利用等比数列前n项和公式能求出结果.本题考查等比数列的首项的求法,考查等比数列的性质等基础知识,考查运算求解能力,是基础题.11.【答案】B【解析】解:因为acosB−bcosA=c3,由正弦定理可得,sinAcosB−sinBcosA=13sinC=13(sinAcosB+sinBcosA),化简可得,tanA=2tanB,则acosBacosA+bcosB=sinAcosBsinAcosA+sinBcosB=1cosAcosB+sinBsinA≤2√sinAcosB,当且仅当cosAcosB=sinBsinA时取等号,=2√tanBtanA =√22,即最大值√22,故选:B.由已知结合正弦定理及和差角公式化简可得tanA=2tanB,然后对所求式子进行化简,结合基本不等式即可求解.本题主要考查了正弦定理及三角恒等变形在求解三角形中的应用,还考查了基本不等式求解最值的应用,属于中档试题.12.【答案】B【解析】解:f(x)为奇函数,g(x)为偶函数,可得f(−x)=−f(x),g(−x)=g(x),由f(x)+g(x)=log3(3x+1),①可得f(−x)+g(−x)=log3(3−x+1),即为−f(x)+g(x)=log3(3−x+1),②联立①②可得f(x)=12x,g(x)=log3(3x+1)−12x,由不等式3g(x)−f(x)−t≥0对x∈R恒成立,可得t ≤3g(x)−f(x)=3log 3(3x+1)−2x =log 3(3x +1)332x恒成立,设ℎ(x)=(3x +1)332x,ℎ′(x)=ln3⋅32x (1+3x )2(3x −2)34x,当x >log 32时,ℎ′(x)>0,ℎ(x)递增,当x <log 32时,ℎ′(x)<0,ℎ(x)递减, 可得x =log 32处ℎ(x)取得极小值,且为最小值3−2log 32, 则t ≤3−2log 32, 故选:B .运用奇偶性的定义,将x 换为−x ,联立两个方程求得f(x),g(x),由题意可得t ≤3g(x)−f(x)的最小值,构造函数ℎ(x),求得导数和单调性、极值和最小值,可得所求范围. 本题考查函数的奇偶性的定义和函数恒成立问题解法,注意运用参数分离和构造函数法,运用导数求得单调性和最值,考查化简运算能力和推理能力,属于中档题.13.【答案】−83【解析】解:向量a ⃗ =(2,−√5),b ⃗ =(1,2√5), 则b ⃗ 在a⃗ 方向上的投影为|b ⃗|cosθ=a ⃗ ⋅b ⃗ |a ⃗ |=√5×2√5√22+(−√5)2=−83.故答案为:−83.根据平面向量投影的定义,计算即可.本题考查了平面向量投影的定义与计算问题,也考查了平面向量的坐标运算问题,是基础题.14.【答案】√7+13【解析】解:由题得,AB =2c ,BC =c ,∠B =23π, 则根据余弦定理可得AC =√AB 2+BC 2−2AB ⋅BC ⋅cosB =√4c 2+c 2−2×2c ×(−12)=√7c ,所以√7c −c =2a ,解得e =√7+13,故答案为√7+13.根据余弦定理可得AC =√7c ,结合双曲线定义,则有√7c −c =2a ,即可解出e .本题考查双曲线离心率的求法,考查余弦定理的应用,属于中档题.15.【答案】2【解析】【分析】本题考查了奇函数的定义,奇函数在原点有定义时,原点处的函数值为0,三角函数的诱导公式,正弦型函数的单调性,考查了计算能力.根据f(x)是奇函数即可得出φ=π2,进而得出f(x)=−sinωx,然后根据题意即可得出[−π6,π4]⊆[−π2ω,π2ω],然后即可得出0<ω≤2,从而得出ω的最大值.【解答】解:∵f(x)是R上的奇函数,∴f(0)=cosφ=0,且0≤φ≤π,∴φ=π2,∴f(x)=cos(ωx+π2)=−sinωx,且ω>0,f(x)在[−π6,π4]上单调递减,∴[−π6,π4]⊆[−π2ω,π2ω],∴π2ω≥π4且−π2ω⩽−π6,解得0<ω≤2,∴ω的最大值是2.故答案为:2.16.【答案】9π2【解析】解:∵AB=AD,取BD中点E,则AE⊥BD ∵平面ABD⊥平面BCD,则AE⊥BD,故AE⊥平面BCD,则球心O在AE上,且BD=2√2,EB=√2,AE=√AD2−BE2=2,设外接球的半径R,则OB2=OE2+EB2,∴R2=2+(2−R)2,解可得,R=32,V=4πR33=43×(32)3=9π2.根据四棱锥的性质可先求出球心的位置,然后根据勾股定理可求半径R,然后代入球的体积公式可求.本题主要通过空间几何体的外接球问题,考查了考生的空间想象能力,推理论证能力,属于中档试题.17.【答案】解:(1)当n=1时,S1=12a1+a1−1=a1,得a1=2,当n≥2时,由S n=12na n+a n−1得,S n−1=12(n−1)a n−1+a n−1−1,作差得,a n=12na n+a n−1−12a n−1−a n−1+1,化简得,na n=(n+1)a n−1,即a na n−1=n+1n,由a n=a na n−1⋅a n−1a n−2…a2a1⋅a1=n+1n⋅nn−1…32⋅2=n+1,综上,a n=n+1(n∈N∗);(2)证明:根据(1)得,当n=1时,2a12=12,当n≥2时,2a n2=2(n+1)2<2n(n+1)=2(1n−1n+1),所以T n=222+232+242+⋯+2(n+1)2<12+2(12−13+13−14+⋯+1n−1n+1)=12+1−2n+1<32,故命题成立.【解析】(1)当n=1时,S1=12a1+a1−1=a1,得a1=2,当n≥2时,由S n=12na n+a n−1得,S n−1=12(n−1)a n−1+a n−1−1,作差化简求出a n的通项公式;(2)根据(1)得,当n=1时,2a12=12,当n≥2时,2a n2=2(n+1)2<2n(n+1)=2(1n−1n+1),根据裂项相消法和放缩法,证明结论成立.本题考查了数列递推式求数列的通项公式和前n项和公式,考查运算能力,中档题.18.【答案】解:(1)证明:∵四边形ABEF 为正方形,∴AB//FE ,∵AB ⊄平面EFDC ,FE ⊂平面EFDC ,∴AB//平面EFDC , ∵AB ⊂平面ABCD ,平面ABCD ∩平面EFDC =DC , ∴DC//AB ,∴DC//FE .(2)解:∵AF ⊥EF ,AF ⊥DF ,∴AF ⊥平面EFDC , ∴平面ABEF ⊥平面EFDC ,作DG ⊥EF ,垂足为G ,则DG ⊥平面ABEF ,∴以G 为原点,GF 为x 轴,在平面ABEF 中,过G 作EF 的垂线为y 轴,GD 为z 轴,建立空间直角坐标系,则题意得∠DFG =∠CEF =45°,设AB =4, 则D(0,0,1),E(−3,0,0),C(−2,0,1),B(−3,4,0),BD ⃗⃗⃗⃗⃗⃗ =(3,−4,1),ED ⃗⃗⃗⃗⃗ =(3,0,1),BC ⃗⃗⃗⃗⃗ =(1,−4,1),EC ⃗⃗⃗⃗⃗ =(1,0,1), 设平面DBE 的法向量m⃗⃗⃗ =(x,y,z), 则{m ⃗⃗⃗ ⋅BD⃗⃗⃗⃗⃗⃗ =3x −4y +z =0m ⃗⃗⃗ ⋅ED ⃗⃗⃗⃗⃗ =3x +z =0,取x =1,得m⃗⃗⃗ =(1,0,−3), 设平面BEC 的法向量n⃗ =(a,b,c), 则{n ⃗ ⋅BC ⃗⃗⃗⃗⃗ =a −4b +c =0n ⃗ ⋅EC ⃗⃗⃗⃗⃗ =a +c =0,取a =1,得n ⃗ =(1,0,−1), 设二面角D −BE −C 的平面角为θ, 则二面角D −BE −C 的平面角的余弦值为: cosθ=|m ⃗⃗⃗ ⋅n ⃗⃗ ||m ⃗⃗⃗ |⋅|n ⃗⃗ |=1√10⋅√2=2√55.【解析】(1)推导出AB//FE ,从而AB//平面EFDC ,进而DC//AB ,由此能证明DC//FE . (2)由AF ⊥EF ,AF ⊥DF ,得AF ⊥平面EFDC ,从而平面ABEF ⊥平面EFDC ,作DG ⊥EF ,垂足为G ,则DG ⊥平面ABEF ,以G 为原点,GF 为x 轴,在平面ABEF 中,过G 作EF 的垂线为y 轴,GD 为z 轴,建立空间直角坐标系,利用向量法能证明二面角D −BE −C 的平面角的余弦值.本题考查线线平行的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.19.【答案】解:(1)设M(x,y),P(x 0,y 0),Q(x 0,0), 则由4PQ ⃗⃗⃗⃗⃗ =3√2MQ ⃗⃗⃗⃗⃗⃗⃗ ,得 4(0,−y 0)=3√2(x 0−x,−y),∴x 0=x ,y 03√24y ,代入圆O :x 2+y 2=9,可得x 29+y 28=1.∴动点M 的轨迹E 的方程为x 29+y 28=1;(2)直线AG 与BH 的斜率之比为定值12. 证明如下:设直线l 为x =my +1,A(x 1,y 1),B(x 2,y 2).联立{x =my +1x 29+y 28=1,得(8m 2+9)y 2+16my −64=0.则y 1+y 2=−16m 8m 2+9,y 1y 2=−648m 2+9. ∴my 1y 2=4(y 1+y 2), 则k AGk BH=y 1x 1+3⋅x 2−3y 2=y 1(my 2−2)(my 1+4)y 2=my 1y 2−2y 1my 1y 2+4y 2=4(y 1+y 2)−2y 14(y 1+y 2)+4y 2=2y 1+4y 24y 1+8y 2=12.【解析】(1)设M(x,y),P(x 0,y 0),Q(x 0,0),则由4PQ ⃗⃗⃗⃗⃗ =3√2MQ⃗⃗⃗⃗⃗⃗⃗ ,得x 0=x ,y 03√24y ,代入圆O :x 2+y 2=9,可得动点M 的轨迹E 的方程;(2)设直线l 为x =my +1,A(x 1,y 1),B(x 2,y 2),联立直线方程与椭圆方程,利用根与系数的关系即可求得直线AG 与BH 的斜率之比为定值12.本题考查轨迹方程的求法,考查直线与椭圆的位置关系,考查计算能力,属于中档题.20.【答案】解:(1)X 的所有可能取值为0,1,2,3,则P(X =0)=0.3(1−p)2=0.3−0.6p +0.3p 2,P(X =1)=0.7(1−p)2+0.3×2p(1−p)=0.1p 2−0.8p +0.7, P(X =2)=2×0.7p(1−p)+0.3p 2=−1.1p 2+1.4p , P(X =3)=0.7p 2, 所以X 的分布列为所以E(X)=1×0.1p 2−0.8p +0.7+2×−1.1p 2+1.4p +3×0.7p 2=2p +0.7. (2)因为0.6≤p ≤0.8,由(1)可知,当p =0.8时,E(X)取得最大值, ①一棵B 种树苗最终成活的概率为0.8+(1−0.8)×0.75×0.8=0.92, ②记Y 为n 棵树苗的成活棵数,则Y ~B(n,0.92),E (Y)=0.92n , ∴(0.92×400−0.08×80)n ≥100000, 解得n ≥100000361.6≈276.55,∴n ≥277,∴该农户至少要种植277棵树苗,才可获利不低于10万元.【解析】(1)X 的所有可能取值为0,1,2,3,然后用p 分别表示出每个X 的取值所对应的概率即可得分布列和数学期望;(2)先结合p 的取值范围和(1)中的结论确定p 的取值,然后就能得到一颗B 种树苗成活的概率;记Y 为n 棵树苗的成活棵数,则Y ~B(n,0.92),再结合二项分布的性质,列出关于n 的不等式,解之并取整即可.本题考查了随机变量的分布列、数学期望等基础知识点,考查了学生数学建模的能力,即把实际问题转化为数学问题,再运算求解的能力,对于考生的综合分析能力提出较高要求,属于中档题.21.【答案】解:(1)∵f(x)=(a −1)x +xlnx ,∴f′(x)=a +lnx ,∵函数f(x)=(a −1)x +xlnx 的图象在点A(e 2,f(e 2))处的切线斜率为4, ∴f′(e 2)=a +lne 2=4,∴a =2.(2)由(1)知f(x)=x +xlnx ,∵m(x −1)<f(x)+1对任意x >1恒成立,∴m <f(x)+1x−1对任意x >1恒成立, 令g(x)=f(x)+1x−1,则g′(x)=(lnx+2)(x−1)−(x+xlnx+1)(x−1)2=x−lnx−3(x−1)2.令μ(x)=x −lnx −3,则μ′(x)=1−1x ,∵x >1,∴μ′(x)>0,∴μ(x)=x −lnx −3在(1,+∞)为增函数. ∵μ(4)=1−ln4<0,μ(5)=2−ln5>0, ∴∃x 0∈(4,5),使得μ(x 0)=x 0−lnx 0−3=0,∴x ∈(1,x 0)时,g′(x)<0,g(x)单调递减,x ∈(x 0,+∞)时,g′(x)>0,g(x)单调递增, ∴g(x)min =g(x 0)=x 0+x 0lnx 0+1x 0−1=x 0+x 0(x 0−3)+1x 0−1=x 0−1,故有m <x 0−1对x >1都成立,∵x 0∈(4,5),x 0−1∈(3,4),∴m 的最大值为3.【解析】(1)f(x)=(a −1)x +xlnx ⇒f′(x)=a +lnx ,依题意,f′(e 2)=a +lne 2=4,可求得a 的值;(2)由(1)知f(x)=x +xlnx ,∀x >1,m(x −1)<f(x)+1⇔m <f(x)+1x−1对任意x >1恒成立,构造函数g(x)=f(x)+1x−1,求g′(x)=x−lnx−3(x−1)2,再令μ(x)=x −lnx −3,分析得到∃x 0∈(4,5),使得μ(x 0)=x 0−lnx 0−3=0,g(x)min =g(x 0)=x 0−1∈(3,4),从而可求得m 的最大值.本题第(1)问考查切线问题,第(2)问考查恒成立问题,通过分离参数后,构造函数,利用导数解决问题,考查转化思想与运算能力,对学生要求较高,属于难题.22.【答案】解:(1)已知曲线C 的极坐标方程为ρ=√2(θ∈[−π2,π2]),转换为直角坐标方程为x 2+y 2=2(x ≥0),A 在曲线C 上,且曲线C 在点A 处的切线与直线:x +2y +1=0垂直, 所以{x 2+y 2=2y =−12xx ≥0,解得{x =2√105y =−√105,即A(2√105,−√105). (2)直线l 的直角坐标方程为y =−4+k(x +2)与半圆x 2+y 2=2(x ≥0)有且只有一个交点, 故√1+k 2=√2,整理得k 2−8k +7=0,解得k =1或7,由于B(0,√2),C(0,−√2)P(−2,−4), 所以k PB =4+√22,k PC =4−√22, 所以直线l 的斜率的范围为(4−√22,4−√22]∪{1}.【解析】(1)直接利用参数方程极坐标方程和直角坐标方程之间的转换的应用求出结果. (2)利用直线和曲线的位置关系的应用建立等量关系,进一步求出范围的值. 本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,点到直线的距离公式的应用,三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题型.23.【答案】解:(1)函数f(x)={−3x −1,x <−1x +3,−1≤x ≤13x +1,x >1,则{x <−1−3x −1<5或{x >13x +1<5或{−1≤x ≤1x +3<5, 解得−2<x <−1或1<x <43或−1≤x ≤1, 则原不等式的解集为(−2,43);(2)关于x 的不等式f(x)+2<|2t −1|在实数范围内解集为空集, 等价为(f(x)+2)min ≥|2t −1|, 由(1)可得f(x)的最小值为f(−1)=2,则2+f(x)的最小值为4,则|2t −1|≤4,解得−32≤t ≤52, 则t 的取值范围是[−32,52].【解析】(1)将f(x)写成分段函数的形式,f(x)<5等价为一次不等式组,解不等式,求并集,可得所求解集;(2)由题意可得(f(x)+2)min ≥|2t −1|,由f(x)的解析式可得f(−1)为最小值,再由绝对值不等式的解法可得所求范围.本题考查绝对值不等式的解法和不等式恒成立问题解法,注意运用转化思想和分类讨论思想,考查化简运算能力和推理能力,属于中档题.。
2020-2021学年河南省六市联考高考数学二模试卷(理科)及答案解析

2020-2021学年河南省六市联考高考数学二模试卷(理科)及答案解析河南省六市联考高考数学二模试卷(理科)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.集合A={x|x2+x≥0},B={x|5x≥5},则A∩B=()A.{x|x≥0或x≤﹣1} B.{x|x≥﹣1} C.{x|x≥1} D.{x|x≥0}2.已知=b+i(a,b∈R),其中i为虚数单位,则a+b=()A.﹣1 B.1 C.2 D.33.下列函数中既是奇函数又在区间,[﹣1,1]上单调递减的是()A.y=sinx B.y=﹣|x+1| C.D.y=(2x+2﹣x)4.下列说法错误的是()A.自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系B.在线性回归分析中,相关系数r的值越大,变量间的相关性越强C.在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高D.在回归分析中,R2为0.98的模型比R2为0.80的模型拟合的效果好5.在明朝程大位《算法统宗》中有这样的一首歌谣:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯”.这首古诗描述的这个宝塔古称浮屠,本题说它一共有7层,每层悬挂的红灯数是上一层的2倍,共有381盏灯,问塔顶有几盏灯?你算出顶层有()盏灯.A.2 B.3 C.5 D.66.执行如图所示的程序框图,若输入x=2,则输出y的值为()A.23 B.11 C.5 D.27.双曲线=1(a>0,b>0)的左、右焦点分别是F1,F2,过F1作倾斜角为45°的直线交双曲线右支于M点,若MF2垂直x轴,则双曲线的离心率为()A.B.C.1+D.1+8.已知实数x,y满足,则z=的最大值是()A.B.1 C.3 D.99.已知某几何体的三视图如图所示(图中数据单位:cm),则这个几何体的体积为()A.20cm3B.22cm3C.24cm3D.26cm310.在△ABC中,BC=7,cosA=,cosC=,若动点P满足=+(1﹣λ)(λ∈R),则点P的轨迹与直线AB、AC所围成的封闭区域的面积为()A.3B.4C.6D.1211.如图,在长方形ABCD中,AB=,BC=1,E为线段DC上一动点,现将△AED沿AE折起,使点D在面ABC上的射影K在直线AE 上,当E从D运动到C,则K所形成轨迹的长度为()A.B.C.D.12.已知函数f(x)=alnx﹣x2+bx存在极小值,且对于b的所有可能取值f(x)的极小值恒大于0,则a的最小值为()A.﹣e3B.﹣e2C.﹣e D.﹣二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上..13.将函数f(x)=sin(2x+φ)(|φ|<)的图象向左平移个单位后的图形关于原点对称,则函数f(x)在[0,]上的最小值为______.14.若y3(x+)n(n∈N*)的展开式中存在常数项,则常数项为______.15.已知等差数列{a n}的公差d≠0,且a1,a3,a13成等比数列,若a1=1,S n是数列{a n}前n项的和,则的最小值为______.16.已知抛物线y2=4x,过其焦点F作直线l交抛物线于A、B两点,M为抛物线的准线与x轴的交点,tan∠AMB=,则|AB|=______.三、解答题:本大题共5小题,满分60分,选做题3小题,考生任作一题,共10分17.已知△ABC中,内角A,B,C的对边分别为a,b,c.(1)若=,且sin2A(2﹣cosC)=cos2B+,求角C的大小;(2)若△ABC为锐角三角形,且A=,a=2,求△ABC面积的取值范围.18.微信是腾讯公司推出的一种手机通讯软件,它支持发送语音短信、视频、图片和文字,一经推出便风靡全国,甚至涌现出一批在微信的朋友圈内销售商品的人(被称为微商).为了调查每天微信用户使用微信的时间情况,某经销化妆品的微商在一广场随机采访男性、女性微信用户各50名.其中每天玩微信时间超过6小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如表:微信控非微信控合计男性26 24 50女性30 20 50合计56 44 100(1)根据以上数据,能否有60%的把握认为“微信控”与“性别”有关?(2)现从参与调查的女性用户中按分层抽样的方法选出5人赠送营养面膜1份,求所抽取的5人中“微信控”和“非微信控”的人数;(3)从(2)中抽选取的5人中再随机抽取3人赠送价值200元的护肤品套装,记这3人中“微信控”的人数为X,试求X的分布列及数学期望.参考公式:,其中n=a+b+c+d.P(K20.50 0.40 0.25 0.05 0.025 0.010≥k0)k00.455 0.708 1.323 3.841 5.024 6.63519.在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是菱形,且AB=AA1,∠A1AB=∠A1AD=60°(1)求证:平面A1BD⊥平面A1AC;(2)若BD=,A1D=2,求二面角A1﹣BD﹣B1的大小.20.已知椭圆C:的左、右焦点分别为F1(﹣c,0)、F2(c,0),P为椭圆C 上任意一点,且最小值为0.(Ⅰ)求曲线C的方程;(Ⅱ)若动直线l2,l2均与椭圆C相切,且l1∥l2,试探究在x轴上是否存在定点B,使得点B到l1,l2的距离之积恒为1?若存在,请求出点B的坐标;若不存在,请说明理由.21.设函数f(x)=e x+ln(x+1)﹣ax.(1)当a=2时,判断函数f(x)在定义域内的单调性;(2)当x≥0时,f(x)≥cosx恒成立,求实数a的取值范围.[选修4-1几何证明选讲]22.自圆O外一点P引圆O的两条割线PAB和PDC,如图所示,其中割线PDC过圆心O.AB= OA,PD=,∠P=15°,(1)求∠PCB的大小;(2)分别球线段BC和PA的长度.[选修4-4坐标系与参数方程]23.已知曲线C的极坐标方程为ρsinθ+2ρcosθ=20,将曲线C1:(α为参数)经过伸缩变换后得到C2(1)求曲线C2的参数方程;(2)若点M在曲线C2上运动,试求出M到曲线C的距离d的取值范围.[选修4-5不等式选讲]24.已知函数f(x)=|x﹣5|﹣|x+a|(1)当a=3时,不等式f(x)≥k+2的解集不是R,求k的取值范围;(2)若不等式f(x)≤1的解集为{x|x≥},求a的值.参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.集合A={x|x2+x≥0},B={x|5x≥5},则A∩B=()A.{x|x≥0或x≤﹣1} B.{x|x≥﹣1} C.{x|x≥1} D.{x|x≥0}【考点】交集及其运算.【分析】分别求解一元二次不等式与指数不等式化简集合A,B,然后利用交集运算得答案.【解答】解:由x2+x≥0,得x≤﹣1或x≥0,∴A={x|x2+x≥0}={x|x≤﹣1或x≥0},由5x≥5,得x≥1,∴B={x|5x≥5}={x|x≥1},∴A∩B={x|x≤﹣1或x≥0}∩{x|x≥1}={x|x≥1}.故选:C.2.已知=b+i(a,b∈R),其中i为虚数单位,则a+b=()A.﹣1 B.1 C.2 D.3【考点】复数代数形式的混合运算.【分析】先化简复数,再利用复数相等,解出a、b,可得结果.【解答】解:由得a+2i=bi﹣1,所以由复数相等的意义知a=﹣1,b=2,所以a+b=1 另解:由得﹣ai+2=b+i(a,b∈R),则﹣a=1,b=2,a+b=1.故选B.3.下列函数中既是奇函数又在区间,[﹣1,1]上单调递减的是()A.y=sinx B.y=﹣|x+1| C.D.y=(2x+2﹣x)【考点】奇偶性与单调性的综合.【分析】判断函数的奇偶性,以及函数的单调性推出结果即可.【解答】解:y=sinx是奇函数,但是,[﹣1,1]上单调增函数.y=﹣|x+1|不是奇函数,对于,因为f(﹣x)==﹣=﹣f(x),所以是奇函数,在[﹣1,1]上单调减函数,y=(2x+2﹣x)是偶函数,[﹣1,1]上单调递增.故选:C.4.下列说法错误的是()A.自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系B.在线性回归分析中,相关系数r的值越大,变量间的相关性越强C.在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高D.在回归分析中,R2为0.98的模型比R2为0.80的模型拟合的效果好【考点】相关系数.【分析】A根据相关关系的定义,判断命题A正确;B线性回归分析的相关系数r的绝对值越接近1,线性相关性越强,判断命题B错误;C一组数据拟合程度的好坏,是残差点分布的带状区域宽度越狭窄,其模型拟合的精度越高,判断命题C正确;D用相关指数R2刻画回归效果时,R2的值越大说明模型拟合效果越好,由此判断命题D正确.【解答】解:对于A,根据相关关系的定义,即可判断自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系是相关关系,∴命题A正确;对于B,线性回归分析中,相关系数r的绝对值越接近1,两个变量的线性相关性越强,反之,线性相关性越弱,∴命题B错误;对于C,残差图中,对于一组数据拟合程度的好坏评价,是残差点分布的带状区域宽度越狭窄,其模型拟合的精度越高,∴命题C正确;对于D,回归分析中,用相关指数R2刻画回归效果时,R2的值越大说明模型拟合效果越好,∴R2为0.98的模型比R2为0.80的模型拟合效果好,命题D正确.故选:B.5.在明朝程大位《算法统宗》中有这样的一首歌谣:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯”.这首古诗描述的这个宝塔古称浮屠,本题说它一共有7层,每层悬挂的红灯数是上一层的2倍,共有381盏灯,问塔顶有几盏灯?你算出顶层有()盏灯.A.2 B.3 C.5 D.6【考点】等比数列的前n项和.【分析】由题意知第七层至第一层的灯的盏数构成一个以a为首项,以2为公比的等比数列,由等比数列的求和公式可得a的方程,解方程可得.【解答】解:设第七层有a盏灯,由题意知第七层至第一层的灯的盏数构成一个以a为首项,以2为公比的等比数列,∴由等比数列的求和公式可得=381,解得a=3,∴顶层有3盏灯,故选:B.6.执行如图所示的程序框图,若输入x=2,则输出y的值为()A.23 B.11 C.5 D.2【考点】程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量y的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:第一次执行循环体后,y=5,不满足输出条件,故x=5,再次执行循环体后,y=11,不满足输出条件,故x=11,再次执行循环体后,y=23,满足输出条件,故输出的y值为23,故选:A.7.双曲线=1(a>0,b>0)的左、右焦点分别是F1,F2,过F1作倾斜角为45°的直线交双曲线右支于M点,若MF2垂直x轴,则双曲线的离心率为()A.B.C.1+D.1+【考点】双曲线的简单性质.【分析】将x=c代入双曲线方程求出点M的坐标,通过解直角三角形列出三参数a,b,c的关系,求出离心率的值.【解答】解:将x=c代入双曲线的方程=1(a>0,b>0)得y=,即M(c,).在△MF1F2中tan45°==1即,解得e==+1.故选:C.8.已知实数x,y满足,则z=的最大值是()A.B.1 C.3 D.9【考点】简单线性规划.【分析】作出不等式组对应的平面区域要使z=最大,则x最小,y最大即可,利用数形结合进行求解即可.【解答】解:作出不等式组对应的平面区域如图:则x≥1,y≥1,要使z=的最大,则x最小,y最大即可,由图象知当z=经过点A时,z取得最大值,由,得x=1,y=3,即A(1,3),则z=的最大值是z==9,故选:D.9.已知某几何体的三视图如图所示(图中数据单位:cm),则这个几何体的体积为()A.20cm3B.22cm3C.24cm3D.26cm3【考点】由三视图求面积、体积.【分析】根据三视图可知几何体是组合体:左边是三棱锥、右边是直四棱锥,由三视图求出几何元素的长度,由柱体、锥体的体积公式求出几何体的体积.【解答】解:根据三视图可知几何体是组合体:左边是三棱锥、右边是直四棱锥,直四棱锥底面是一个边长为1.5、4的矩形,高是3,由俯视图得三棱锥的底面是直角三角形,直角边为1、4,由正视图得高即四棱锥的侧棱为3,∴几何体的体积V=+1.5×4×3=20(cm3)故选:A.10.在△ABC中,BC=7,cosA=,cosC=,若动点P满足=+(1﹣λ)(λ∈R),则点P的轨迹与直线AB、AC所围成的封闭区域的面积为()A.3B.4C.6D.12【考点】轨迹方程.【分析】根据向量加法的几何意义得出P点轨迹,利用正弦定理解出AB,得出△ABC的面积,从而求出围成封闭区域的面积.【解答】解:设=.∵=+(1﹣λ)=+(1﹣λ).∴C,D,P三点共线.∴P点轨迹为直线CD.在△ABC中,sinA=.sinC=.由正弦定理得AB==.sinB=sin (A+C )=sinAcosC+cosAsinC==.∴S △ABC ==.∴S △ACD =S △ABC =.故选:B .11.如图,在长方形ABCD 中,AB=,BC=1,E 为线段DC 上一动点,现将△AED 沿AE 折起,使点D 在面ABC 上的射影K 在直线AE 上,当E 从D 运动到C ,则K 所形成轨迹的长度为()A .B .C .D .【考点】轨迹方程.【分析】根据图形的翻折过程中变与不变的量和位置关系知,若连接D'K ,则D'KA=90°,得到K 点的轨迹是以AD'为直径的圆上一弧,根据长方形的边长得到圆的半径,求得此弧所对的圆心角的弧度数,利用弧长公式求出轨迹长度.【解答】解:由题意,将△AED 沿AE 折起,使平面AED ⊥平面ABC ,在平面AED 内过点D 作DK ⊥AE ,K 为垂足,由翻折的特征知,连接D'K ,则D'KA=90°,故K 点的轨迹是以AD'为直径的圆上一弧,根据长方形知圆半径是,如图当E 与C 重合时,AK==,取O 为AD ′的中点,得到△OAK 是正三角形.故∠K0A=,∴∠K0D'=,其所对的弧长为=,故选:D.12.已知函数f(x)=alnx﹣x2+bx存在极小值,且对于b的所有可能取值f(x)的极小值恒大于0,则a的最小值为()A.﹣e3B.﹣e2C.﹣e D.﹣【考点】利用导数研究函数的极值.【分析】求函数的导数,根据函数存在极小值等价为f′(x)=﹣x+b=0有解,转化为一元二次方程,根据一元二次方程根与判别式△之间的关系进行转化求解即可.【解答】解:函数的定义域为(0,+∞),则函数的导数f′(x)=﹣x+b,若函数f(x)=alnx﹣x2+bx存在极小值,则f′(x)=﹣x+b=0有解,即﹣x2+bx+a=0有两个不等的正根,则,得b>2,(a<0),由f′(x)=0得x1=,x2=,分析易得f(x)的极小值点为x1,∵b>2,(a<0),∴x1==∈(0,),则f(x)极小值=f(x1)=alnx1﹣x12+bx1=alnx1﹣x12+x12﹣a=alnx1+x12﹣a,设g(x)=alnx+x2﹣a,x∈(0,),f(x)的极小值恒大于0等价为g(x)恒大于0,∵g′(x)=+x=<0,∴g(x)在(0,)上单调递减,故g(x)>g()=aln﹣a≥0,得ln≤,即﹣a≤e3,则a≥﹣e3,故a的最小值为是﹣e3,故选:A二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上..13.将函数f(x)=sin(2x+φ)(|φ|<)的图象向左平移个单位后的图形关于原点对称,则函数f(x)在[0,]上的最小值为﹣.【考点】函数y=Asin(ωx+φ)的图象变换.【分析】根据函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,求得φ的值,可得函数的解析式,再利用正弦函数的定义域和值域,求得函数f(x)在[0,]上的最小值.【解答】解:将函数f(x)=sin(2x+φ)(|φ|<)的图象向左平移个单位后,得到y=sin(2x++φ)的图象,再根据所得图象关于原点对称,可得+φ=kπ,即φ=kπ﹣,k∈Z,又|φ|<,∴φ=﹣,f(x)=sin(2x﹣).∵x∈[0,],∴2x﹣∈[﹣,],故当2x﹣=﹣时,f(x)取得最小值为﹣,故答案为:﹣.14.若y3(x+)n(n∈N*)的展开式中存在常数项,则常数项为84 .【考点】二项式系数的性质.【分析】写出二项式(x+)n的展开式的通项,可得y3(x+)n 的展开式的通项,再由x,y的指数为0求得n,r的值,则答案可求.【解答】解:二项式(x+)n的展开式的通项为,则要使y3(x+)n(n∈N*)的展开式中存在常数项,需,即n=9,r=3.∴常数项为:.故答案为:84.15.已知等差数列{a n}的公差d≠0,且a1,a3,a13成等比数列,若a1=1,S n是数列{a n}前n项的和,则的最小值为 4 .【考点】等差数列的性质.【分析】由等比中项的性质、等差数列的通项公式列出方程求公差d,代入等差数列的通项公式、前n项和公式求出a n、S n,代入利用分离常数法化简后,利用基本不等式求出式子的最小值.【解答】解:因为a1,a3,a13成等比数列,所以,又a1=1,所以(1+2d)2=1×(1+12d),解得d=2或d=0(舍去),所以a n=1+(n﹣1)×2=2n﹣1,S n==n2,则====﹣2≥2﹣2=4,当且仅当时取等号,此时n=2,且取到最小值4,故答案为:4.16.已知抛物线y2=4x,过其焦点F作直线l交抛物线于A、B两点,M为抛物线的准线与x轴的交点,tan∠AMB=,则|AB|= 16 .【考点】抛物线的简单性质.【分析】设AB方程y=k(x﹣1),与抛物线方程y2=4x联立,利用tan∠AMB=,建立k的方程,求出k,即可得出结论.【解答】解:焦点F(1,0),M(﹣1,0),设AB方程y=k (x﹣1),设A(x1,y1),B(x2,y2)∵tan∠AMB=,∴=,整理可得2k(x1﹣x2)=(x1+1)(x2+1)+y1y2…(*)y=k(x﹣1),与y2=4x联立可得k2x2﹣(2k2+4)x+k2=0 可得x1x2=1,x1+x2=+2,y1y2=﹣4代入(*)可得2k(x1﹣x2)=?,∴x1﹣x2=,∴(+2)2﹣4=()2,∴k=±,∴x1+x2=+2=14,∴|AB|==16.故答案为:16.三、解答题:本大题共5小题,满分60分,选做题3小题,考生任作一题,共10分17.已知△ABC中,内角A,B,C的对边分别为a,b,c.(1)若=,且sin2A(2﹣cosC)=cos2B+,求角C的大小;(2)若△ABC为锐角三角形,且A=,a=2,求△ABC面积的取值范围.【考点】余弦定理;正弦定理.【分析】(1)利用正弦定理化简可得tanA=tanB,于是C=π﹣2A,代入sin2A(2﹣cosC)=cos2B+化简可求得A;(2)利用正弦定理用B表示出b,c,得到面积S关于B的函数,求出B的范围,得出S的范围.【解答】解:(1)∵,,∴tanA=tanB,∴A=B.∴C=π﹣2A.∵sin2A(2﹣cosC)=cos2B+,∴sin2A(2+cos2A)=cos2A+,即(1﹣cos2A)(2cos2A+1)=cos2A+,解得cos2A=,∵A+B+C=π,A=B,∴A,∴cosA=,∴A=,C=π﹣2A=.(2)由正弦定理得,∴b=2sinB,c=2sinC=2sin()=2sinB+2cosB.∴S==2sin2B+2sinBcosB=sin2B﹣cos2B+1=sin(2B﹣)+1.∵△ABC为锐角三角形,∴,∴.∴<2B﹣<,∴2<sin(2B﹣)≤1+.∴△ABC面积的取值范围是(2,1+].18.微信是腾讯公司推出的一种手机通讯软件,它支持发送语音短信、视频、图片和文字,一经推出便风靡全国,甚至涌现出一批在微信的朋友圈内销售商品的人(被称为微商).为了调查每天微信用户使用微信的时间情况,某经销化妆品的微商在一广场随机采访男性、女性微信用户各50名.其中每天玩微信时间超过6小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如表:微信控非微信控合计男性26 24 50女性30 20 50合计56 44 100(1)根据以上数据,能否有60%的把握认为“微信控”与“性别”有关?(2)现从参与调查的女性用户中按分层抽样的方法选出5人赠送营养面膜1份,求所抽取的5人中“微信控”和“非微信控”的人数;(3)从(2)中抽选取的5人中再随机抽取3人赠送价值200元的护肤品套装,记这3人中“微信控”的人数为X,试求X的分布列及数学期望.参考公式:,其中n=a+b+c+d.P(K20.50 0.40 0.25 0.05 0.025 0.010≥k0)k00.455 0.708 1.323 3.841 5.024 6.635【考点】独立性检验的应用.【分析】(1)计算K2的值,与临界值比较,可得结论;(2)从参与调查的女性用户中按分层抽样的方法,比例为3:2,选出5人赠送营养面膜1份,可得结论.(3)X的取值为1,2,3,再求出X取每一个值的概率,即可求得X的分布列和数学期望.【解答】解:(1)由题意,K2=≈0.65<0.708,∴没有60%的把握认为“微信控”与“性别”有关;(2)从参与调查的女性用户中按分层抽样的方法,比例为3:2,选出5人赠送营养面膜1份,所抽取的5人中“微信控”有3人,“非微信控”的人数有2人;(3)X=1,2,3,则P(X=1)==0.3,P(X=2)==0.6,P(X=3)==0.1.X的分布列为:X 1 2 3P 0.3 0.6 0.1X的数学期望为EX=1×0.3+2×0.6+3×0.1=1.8.19.在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是菱形,且AB=AA1,∠A1AB=∠A1AD=60°(1)求证:平面A1BD⊥平面A1AC;。
高考理科数学模拟试卷(含答案)

高考理科数学模拟试卷(含答案)高考理科数学模拟试卷(含答案)本试卷共分为选择题和非选择题两部分,第Ⅰ卷(选择题)在1至2页,第Ⅱ卷(非选择题)在3至4页,共4页,满分150分,考试时间为120分钟。
注意事项:1.答题前,请务必填写自己的姓名和考籍号。
2.答选择题时,请使用2B铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,请使用橡皮擦擦干净后再选涂其他答案标号。
3.答非选择题时,请使用0.5毫米黑色签字笔,在答题卡规定位置上书写答案。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
5.考试结束后,请只将答题卡交回。
第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={-1.0.1.2.3.4},B={y|y=x,x∈A},则A2B=A){0.1.2}B){0.1.4}C){-1.0.1.2}D){-1.0.1.4}2.已知复数z=1/(1+i),则|z|=A)2B)1C)2D)23.设函数f(x)为奇函数,当x>0时,f(x)=x-2,则f(f(1))=A)-1B)-2C)1D)24.已知单位向量e1,e2的夹角为π/2,则e1-2e2=A)3B)7C)3D)75.已知双曲线2x^2-y^2=1(a>0,b>0)的渐近线方程为y=±3x,则双曲线的离心率是A)10B)10/10C)10D)3/96.在等比数列{an}中,a1>0,则“a1<a4”是“a3<a5”的A)充分不必要条件B)必要不充分条件C)充要条件D)既不充分也不必要条件7.如图所示的程序框图,当其运行结果为31时,则图中判断框①处应填入的是A)i≤6?B)i≤5?C)i≤4?D)i≤3?8.已知a、b为两条不同直线,α、β、γ为三个不同平面,则下列命题中正确的是①若α//β,α//γ,则β//γ;②若a//α,a//β,则α//β;③若α⊥γ,β⊥γ,则α⊥β;④若a⊥α,XXXα,则a//b。
2024届高三数学仿真模拟卷(全国卷)(理科)(考试版)

2024年高考第三次模拟考试高三数学(理科)(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:高考全部内容5.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}24A x x =-≤≤,{}260B x x x =-≥,则A B = ()A .[]2,0-B .[]0,4C .[]2,6-D .[]4,62.已知3i 2z a =(R a ∈,i 是虚数单位),若21322z =,则=a ()A .2B .1C .12D .143.如图,已知AM 是ABC 的边BC 上的中线,若AB a=,AC b = ,则AM 等于()A .()12a b- B .()12a b-- C .()12a b+ D .()12a b-+ 4.已知函数()()πtan 0,02f x x ωϕωϕ⎛⎫=+><< ⎝⎭的最小正周期为2π,直线π3x =是()f x 图象的一条对称轴,则()f x 的单调递减区间为()A .()π5π2π,2πZ 66k k k ⎛⎤-+∈ ⎥⎝⎦B .()5π2π2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦C .()4ππ2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦D .()π2π2π,2πZ 33k k k ⎛⎤-+∈ ⎥⎝⎦5.已知直线l 过点()1,1A 交圆22:4O x y +=于,C D 两点,则“CD =l 的斜率为0”的()A .必要而不充分条件B .充分必要条件C .充分而不必要条件D .即不充分也不必要条件6.甲、乙、丙、丁、戊共5名同学进行唱歌比赛,决出第一名到第五名.丙和丁去询问成绩,回答者对丙说:很遗憾,你和丁都没有得到冠军,对丁说:你当然不会是最差的从这两个回答分析,5人的名次排列方式共有()A .24种B .54种C .96种D .120种7.函数()πln sin 2x x f x x⎛⎫⋅- ⎪⎝⎭=的部分图象大致为()A .B .C.D.8.祖暅是我国南北朝时期伟大的数学家.祖暅原理用现代语言可以描述为“夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的面积总相等,那么这两个几何体的体积相等”.例如,可以用祖暅原理推导半球的体积公式,如图,底面半径和高都为R 的圆柱与半径为R 的半球放置在同一底平面上,然后在圆柱内挖去一个半径为R ,高为R 的圆锥后得到一个新的几何体,用任何一个平行于底面的平面α去截这两个几何体时,所截得的截面面积总相等,由此可证明半球的体积和新几何体的体积相等.若用平行于半球底面的平面α去截半径为R 的半球,且球心到平面α的距离为2R ,则平面α与半球底面之间的几何体的体积是()A3R B3R C3R D3R9.已知函数()21e 3ln ,ln ,ln ,ln 222f x x a f b f c f ⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()A .a b c <<B .b a c <<C .c<a<bD .a c b<<10.已知数列{}n a 满足1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,若81a =,1a 的所有可能取值构成集合M ,则M 中的元素的个数是()A .7个B .6个C .5个D .4个11.如图,已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,点A 在C 上,点B 在y 轴上,A ,2F ,B 三点共线,若直线1BF1AF的斜率为,则双曲线C 的离心率是()AB .32CD .312.已知()f x ,()g x 都是定义在R 上的函数,对任意x ,y 满足()()()()()f x y f x g y g x f y -=-,且()()210f f -=≠,则下列说法正确的是()A .()01f =B .函数()21g x +的图象关于点()1,0对称C .()()110g g +-=D .若()11f =,则()202311n f n ==∑第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分13.已知数列{}n a 的前n 项和2n S n n =+,当9n nS a +取最小值时,n =.14.若函数()sin 1f x x x ωω=-在[]0,2π上恰有5个零点,且在ππ[,415-上单调递增,则正实数ω的取值范围为.15.已知52345012345(23)x a a x a x a x a x a x +=+++++,则123452345a a a a a -+-+=.(用数字作答)16.已知定义在R 上的函数()f x 满足()4()0f x f x '+>,且(01f =),则下列说法正确的是.①()f x 是奇函数;②(0,),()0x f x ∃∈+∞>;③41(1)e f >;④0x ∀>时,41()e xf x <三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知()sin ,5sin 5sin m B A C =+ ,()5sin 6sin ,sin sin n B C C A =--垂直,其中A ,B ,C 为ABC的内角.(1)求cos A 的大小;(2)若BC =ABC 的面积的最大值.18.(12分)2016年10月“蓝瘦香菇”等网络新词突然在网络流行,某社区每月都通过问卷形式进行一次网上调查,现从社区随机抽取了60名居民进行调查.已知上网参与问卷调查次数与参与人数的频数分布如下表:参与调查问卷次数[)0,2[)2,4[)4,6[)6,8[)8,10[]10,12参与调查问卷人数814814106(1)若将参与调查问卷不少于4次的居民称为“关注流行语居民”,请你根据频数分布表,完成22⨯列联表,据此调查你是否有99%的把握认为在此社区内“关注流行语与性别有关”?男女合计关注流行语8不关注流行语合计40(2)从被调查的人中按男女比例随机抽取6人,再从选取的6人中选出3人参加政府听证会,求选出的3人为2男1女的概率.附:参考公式()()()()()22n ad bc K a b c d a c b d -=++++及附表()2P K k ≥0.1000.0500.0100.001k2.7063.8416.63510.82819.(12分)在几何体中,底面ABC 是边长为2的正三角形.⊥AE 平面ABC ,若,5,4,3AE CD BF AE CD BF ===∥∥.(1)求证:平面DEF ⊥平面AEFB ;(2)是否在线段AE 上存在一点P ,使得二面角P DF E --的大小为π3.若存在,求出AP 的长度,若不存在,请说明理由.20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2P ⎛⎫ ⎪⎝⎭在椭圆C 上,且PF 垂直于x 轴.(1)求椭圆C 的方程;(2)直线l 斜率存在,交椭圆C 于,A B 两点,,,A B F 三点不共线,且直线AF 和直线BF 关于PF 对称.(ⅰ)证明:直线l 过定点;(ⅱ)求ABF △面积的最大值.21.(12分)已知函数()2,0eax x f x a =>.(1)当2a =时,求函数()f x 的单调区间和极值;(2)当0x >时,不等式()()2cos ln ln 4f x f x a x x ⎡⎤-≥-⎣⎦恒成立,求a 的取值范围.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程22.在平面直角坐标系xOy 中,曲线C 的参数方程为12cos 2sin x y αα=+⎧⎨=⎩(α为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 42πρθ⎛⎫-= ⎪⎝⎭.(1)求C 的普通方程和l 的直角坐标方程;(2)设直线l 与x 轴相交于点A ,动点B 在C 上,点M 满足AM MB =,点M 的轨迹为E ,试判断曲线C与曲线E 是否有公共点.若有公共点,求出其直角坐标;若没有公共点,请说明理由.选修4-5:不等式选讲23.已知()2122f x x x x =-+-+.(1)求()2f x ≥的解集;(2)记()f x 的最小值为t ,且2(0,0)3a b t a b +=>>,求证:11254a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭.。
2020届河南省郑州市高考数学三模试卷(理科)有答案(加精)

2019年河南省郑州市高考第三次模拟考试数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设命题p:∀x>0,log2x<2x+3,则¬p为()A.∀x>0,log2x≥2x+3 B.∃x>0,log2x≥2x+3C.∃x>0,log2x<2x+3 D.∀x<0,log2x≥2x+32.已知复数m=4﹣xi,n=3+2i,若复数∈R,则实数x的值为()A.﹣6 B.6 C.D.﹣3.已知双曲线+=1,焦点在y轴上,若焦距为4,则a等于()A.B.5 C.7 D.4.已知,则的值等于()A.B.C.D.5.设集合A={x1,x2,x3,x4},x i∈{﹣1,0,1},i={1,2,3,4},那么集合A中满足条件“x12+x22+x32+x42≤3”的元素个数为()A.60 B.65 C.80 D.816.如图是某个几何体的三视图,则这个几何体体积是()A.B.C.D.7.设实数x,y满足,则2xy的最大值为()A.25 B.49 C.12 D.248.已知等比数列{a n},且a6+a8=,则a8(a4+2a6+a8)的值为()A.π2B.4π2C.8π2D.16π29.若实数a、b、c∈R+,且ab+ac+bc+2,则2a+b+c的最小值为()A.B.C.D.10.椭圆+=1的左焦点为F,直线x=a与椭圆相交于点M、N,当△FMN的周长最大时,△FMN的面积是()A.B.C.D.11.四面体A﹣BCD中,AB=CD=10,AC=BD=2,AD=BC=2,则四面体A﹣BCD外接球的表面积为()A.50π B.100πC.200πD.300π12.设函数f(x)满足2x2f(x)+x3f'(x)=e x,f(2)=,则x∈,求函数h(x)的最小值;(2)对任意x∈=﹣cos(+2θ)=﹣cos2(+θ)=﹣=﹣,解得:sin2(+θ)=,∴=±.故选:B.5.设集合A={x1,x2,x3,x4},x i∈{﹣1,0,1},i={1,2,3,4},那么集合A中满足条件“x12+x22+x32+x42≤3”的元素个数为()A.60 B.65 C.80 D.81【考点】1A:集合中元素个数的最值.【分析】将x的取值分为两组:M={0},N={﹣1,1},A中的四个元素中有1个取值为0,2个取值为0,个取值为0,4个取值为0,进行分类讨论,由此能求出集合A中满足条件“x12+x22+x32+x42≤3”的元素个数.【解答】解:集合A={x1,x2,x3,x4},x i∈{﹣1,0,1},i={1,2,3,4},集合A满足条件“x12+x22+x32+x42≤3”,设M={0},N={﹣1,1},①A中的四个元素中有1个取值为0,另外3个从M中取,取法总数有: =32,②A中的四个元素中有2个取值为0,另外2个从M中取,取法总数有: =24,③A中的四个元素中有3个取值为0,另外1个从M中取,取法总数有: =8,④A中的四个元素中有4个取值为0,取法总数有: =1,∴集合A中满足条件“x12+x22+x32+x42≤3”的元素个数为:32+24+8+1=65.故选:B.6.如图是某个几何体的三视图,则这个几何体体积是()A.B.C.D.【考点】L!:由三视图求面积、体积.【分析】由三视图可知:该几何体由一个半圆柱与三棱柱组成的几何体.【解答】解:由三视图可知:该几何体由一个半圆柱与三棱柱组成的几何体.这个几何体体积V=+×()2×2=2+.故选:A.7.设实数x,y满足,则2xy的最大值为()A.25 B.49 C.12 D.24【考点】7C:简单线性规划.【分析】作出不等式组对应的平面区域,利用基本不等式进行求解即可.【解答】解:作出不等式组对应的平面区域如图:由图象知y≤10﹣2x,则2xy≤2x(10﹣2x)=4x(5﹣x))≤4()2=25,当且仅当x=,y=5时,取等号,经检验(,5)在可行域内,故2xy的最大值为25,故选:A.8.已知等比数列{a n},且a6+a8=,则a8(a4+2a6+a8)的值为()A.π2B.4π2C.8π2D.16π2【考点】67:定积分.【分析】先根据定积分的几何意义求出a6+a8==4π,再根据等比数列的性质即可求出.【解答】解:表示以原点为圆心以4为半径的圆的面积的四分之一,故a6+a8==4π,∴a8(a4+2a6+a8)=a8a4+2a8a6+a82=a62+2a8a6+a82=(a6+a8)2=16π2.故选:D9.若实数a、b、c∈R+,且ab+ac+bc+2,则2a+b+c的最小值为()A.B.C.D.【考点】RB:一般形式的柯西不等式.【分析】因为(2a+b+c)2=4a2+b2+c2+4ab+2bc+4ca,与已知等式比较发现,只要利用均值不等式b2+c2≥2bc 即可求出结果.【解答】解:∵ab+ac+bc+2,∴a2+ab+ac+bc=6﹣2(6﹣2)×4=(a2+ab+ac+bc)×4=4a2+4ab+4ac+4bc≤4a2+4ab+b2+c2+4ca+2bc=(2a+b+c)2,所以2a+b+c≥2﹣2,故选D.10.椭圆+=1的左焦点为F,直线x=a与椭圆相交于点M、N,当△FMN的周长最大时,△FMN的面积是()A.B.C.D.【考点】K4:椭圆的简单性质.【分析】设右焦点为F′,连接MF′,NF′,由于|MF′|+|NF′|≥|MN|,可得当直线x=a过右焦点时,△FMN的周长最大.c==1.把c=1代入椭圆标准方程可得: =1,解得y,即可得出此时△FMN的面积S.【解答】解:设右焦点为F′,连接MF′,NF′,∵|MF′|+|NF′|≥|MN|,∴当直线x=a过右焦点时,△FMN的周长最大.由椭圆的定义可得:△FMN的周长的最大值=4a=4.c==1.把c=1代入椭圆标准方程可得: =1,解得y=±.∴此时△FMN的面积S==.故选:C.11.四面体A﹣BCD中,AB=CD=10,AC=BD=2,AD=BC=2,则四面体A﹣BCD外接球的表面积为()A.50π B.100πC.200πD.300π【考点】LE:棱柱、棱锥、棱台的侧面积和表面积.【分析】由题意可采用割补法,考虑到四面体ABCD的四个面为全等的三角形,所以可在其每个面补上一个以10,2,2为三边的三角形作为底面,且以分别为x,y,z,长、两两垂直的侧棱的三棱锥,从而可得到一个长、宽、高分别为x,y,z的长方体,由此能求出球的半径,进而求出球的表面积.【解答】解:由题意可采用割补法,考虑到四面体ABCD的四个面为全等的三角形,所以可在其每个面补上一个以10,2,2为三边的三角形作为底面,且以分别为x,y,z,长、两两垂直的侧棱的三棱锥,从而可得到一个长、宽、高分别为x,y,z的长方体,并且x2+y2=100,x2+z2=136,y2+z2=164,设球半径为R,则有(2R)2=x2+y2+z2=200,∴4R2=200,∴球的表面积为S=4πR2=200π.故选C.12.设函数f(x)满足2x2f(x)+x3f'(x)=e x,f(2)=,则x∈=e2﹣=(x﹣2),当x∈.【考点】9H:平面向量的基本定理及其意义.【分析】根据题意画出图形,结合图形,设外接圆的半径为r,对=p+q两边平方,建立p、q的解析式,利用基本不等式求出p+q的取值范围.【解答】解:如图所示,△ABC中,∠A=,∴∠BOC=;设|=r,则O为△ABC外接圆圆心;∵=p+q,∴==r2,即p2r2+q2r2+2pqr2cos=r2,∴p2+q2﹣pq=1,∴(p+q)2=3pq+1;又M为劣弧AC上一动点,∴0≤p≤1,0≤q≤1,∴p+q≥2,∴pq≤=,∴1≤(p+q)2≤(p+q)2+1,解得1≤(p+q)2≤4,∴1≤p+q≤2;即p+q的取值范围是.故答案为:.三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在△ABC中,角A、B、C所对的边分别是a、b、c,已知sinB+sinC=msinA(m∈R),且a2﹣4bc=0.(1)当a=2,时,求b、c的值;(2)若角A为锐角,求m的取值范围.【考点】HR:余弦定理.【分析】(1)sinB+sinC=msinA(m∈R),利用正弦定理可得:b+c=ma,且a2﹣4bc=0.a=2,时,代入解出即可得出.(2)利用余弦定理、不等式的解法即可得出.【解答】解:(1)由题意得b+c=ma,a2﹣4bc=0.当时,,bc=1.解得.(2).∴,又由b+c=ma可得m>0,所以.18.为了研究学生的数学核素养与抽象(能力指标x)、推理(能力指标y)、建模(能力指标z)的相关性,并将它们各自量化为1、2、3三个等级,再用综合指标w=x+y+z的值评定学生的数学核心素养;若w≥7,则数学核心素养为一级;若5≤w≤6,则数学核心素养为二级;若3≤w≤4,则数学核心素养为三级,为了了解某校学生的数学核素养,调查人员随机访问了某校10名学生,得到如下结果:(2)从数学核心素养等级是一级的学生中任取一人,其综合指标为a,从数学核心素养等级不是一级的学生中任取一人,其综合指标为b,记随机变量X=a﹣b,求随机变量X的分布列及其数学期望.【考点】CH:离散型随机变量的期望与方差;CG:离散型随机变量及其分布列.【分析】(1)由题可知:建模能力一级的学生是A9;建模能力二级的学生是A2,A4,A5,A7,A10;建模能力三级的学生是A1,A3,A6,A8.记“所取的两人的建模能力指标相同”为事件A,利用互斥事件与古典概率计算公式即可得出,P(A).(2)由题可知,数学核心素养一级:A1,A2,A3,A5,A6,A8,数学核心素养不是一级的:A4,A7,A9,A10;X 的可能取值为1,2,3,4,5.利用相互独立事件、互斥事件与古典概率计算公式即可得出P(X=k)及其分布列与数学期望.【解答】解:(1)由题可知:建模能力一级的学生是A9;建模能力二级的学生是A2,A4,A5,A7,A10;建模能力三级的学生是A1,A3,A6,A8.记“所取的两人的建模能力指标相同”为事件A,则.(2)由题可知,数学核心素养一级:A1,A2,A3,A5,A6,A8,数学核心素养不是一级的:A4,A7,A9,A10;X的可能取值为1,2,3,4, 5.;;;;.∴随机变量X的分布列为:∴=.19.如图,在四边形ABCD中,AB∥CD,∠BCD=,四边形ACFE为矩形,且CF⊥平面ABCD,AD=CD=BC=CF.(1)求证:EF⊥平面BCF;(2)点M在线段EF上运动,当点M在什么位置时,平面MAB与平面FCB所成锐二面角最大,并求此时二面角的余弦值.【考点】MT:二面角的平面角及求法;LW:直线与平面垂直的判定.【分析】(1)在梯形ABCD中,设AD=CD=BC=1,由题意求得AB=2,再由余弦定理求得AC2=3,满足AB2=AC2+BC2,得则BC⊥AC.再由CF⊥平面ABCD得AC⊥CF,由线面垂直的判定可得AC⊥平面BCF.进一步得到EF⊥平面BCF;(2)分别以直线CA,CB,CF为x轴,y轴,z轴建立如图所示的空间直角坐标系,设AD=CD=BC=CF=1,令FM=λ(),得到C,A,B,M的坐标,求出平面MAB的一个法向量,由题意可得平面FCB的一个法向量,求出两法向量所成角的余弦值,可得当λ=0时,cosθ有最小值为,此时点M与点F重合.【解答】(1)证明:在梯形ABCD中,∵AB∥CD,设AD=CD=BC=1,又∵,∴AB=2,∴AC2=AB2+BC2﹣2AB•BC•cos60°=3.∴AB2=AC2+BC2.则BC⊥AC.∵CF⊥平面ABCD,AC⊂平面ABCD,∴AC⊥CF,而CF∩BC=C,∴AC⊥平面BCF.∵EF∥AC,∴EF⊥平面BCF;(2)解:分别以直线CA,CB,CF为x轴,y轴,z轴建立如图所示的空间直角坐标系,设AD=CD=BC=CF=1,令FM=λ(),则C(0,0,0),A(,0,0),B(0,1,0),M(λ,0,1),∴=(﹣,1,0),=(λ,﹣1,1),设=(x,y,z)为平面MAB的一个法向量,由得,取x=1,则=(1,,),∵=(1,0,0)是平面FCB的一个法向量,∴cos<>==.∵,∴当λ=0时,cosθ有最小值为,∴点M与点F重合时,平面MAB与平面FCB所成二面角最大,此时二面角的余弦值为.20.已知圆C1:x2+y2=r2(r>0)与直线l0:y=相切,点A为圆C1上一动点,AN⊥x轴于点N,且动点M满足,设动点M的轨迹为曲线C.(1)求动点M的轨迹曲线C的方程;(2)若直线l与曲线C相交于不同的两点P、Q且满足以PQ为直径的圆过坐标原点O,求线段PQ长度的取值范围.【考点】KP:圆锥曲线的范围问题;J3:轨迹方程;KL:直线与椭圆的位置关系.【分析】(1)设动点M(x,y),A(x0,y0),由于AN⊥x轴于点N.推出N(x0,0).通过直线与圆相切,求出圆的方程,然后转化求解曲线C的方程.(2)①假设直线l的斜率存在,设其方程为y=kx+m,设P(x1,y1),Q(x2,y2),联立直线与椭圆方程,结合韦达定理,通过,以及弦长公式,利用基本不等式求出范围.②若直线l的斜率不存在,设OP所在直线方程为y=x,类似①求解即可.【解答】解:(I)设动点M(x,y),A(x0,y0),由于AN⊥x轴于点N.∴N(x0,0).又圆与直线即相切,∴.∴圆.由题意,,得,∴.∴,即∴将代入x2+y2=9,得曲线C的方程为.(II)(1)假设直线l的斜率存在,设其方程为y=kx+m,设P(x1,y1),Q(x2,y2),联立,可得(1+2k2)x2+4kmx+2m2﹣8=0.由求根公式得.(*)∵以PQ为直径的圆过坐标原点O,∴.即.∴x1x2+y1y2=0.即∴x1x2+(kx1+m)(kx2+m)=0.化简可得,.将(*)代入可得,即3m2﹣8k2﹣8=0.即,又.将代入,可得=.∴当且仅当,即时等号成立.又由,∴,∴.(2)若直线l的斜率不存在,因以PQ为直径的圆过坐标原点O,故可设OP所在直线方程为y=x,联立解得,同理求得,故.综上,得.21.已知函数f(x)=(x+a)ln(x+a),g(x)=﹣+ax.(1)函数h(x)=f(e x﹣a)+g'(e x),x∈,求函数h(x)的最小值;(2)对任意x∈上h'(x)≥0,h(x)递增,h(x)的最小值为.②当﹣1<a﹣1<1即0<a<2时,在x∈上h'(x)≤0,h(x)为减函数,在在x∈上h'(x)≥0,h(x)为增函数.∴h(x)的最小值为h(a﹣1)=﹣e a﹣1+a.③当a﹣1≥1即a≥2时,在上h'(x)≤0,h(x)递减,h(x)的最小值为h(1)=(1﹣a)e+a.综上所述,当a≤0时h(x)的最小值为,当0<a<2时h(x)的最小值为﹣e a﹣1+a,当a≥2时,h (x)最小值为(1﹣a)e+a.(II)设,F'(x)=ln(x﹣1)+1+a(x﹣1)(x≥2).①当a≥0时,在x∈[2,+∞)上F'(x)>0,F(x)在x∈[2,+∞)递增,F(x)的最小值为F(2)=0,不可能有f(x﹣a﹣1)﹣g(x)≤0.②当a≤﹣1时,令,解得:,此时∴.∴F'(x)在[2,+∞)上递减.∵F'(x)的最大值为F'(2)=a+1≤0,∴F(x)递减.∴F(x)的最大值为F(2)=0,即f(x﹣a﹣1)﹣g(x)≤0成立.③当﹣1<a<0时,此时,当时,F''(x)>0,F'(x)递增,当时,F''(x)<0,F'(x)递减.∴=﹣ln(﹣a)>0,又由于F'(2)=a+1>0,∴在上F'(x)>0,F(x)递增,又∵F(2)=0,所以在上F(x)>0,显然不合题意.综上所述:a≤﹣1.22.以直角坐标系的原点O为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l的参数方程为,(t为参数,0<θ<π),曲线C的极坐标方程为ρsin2θ﹣2cosθ=0.(1)求曲线C的直角坐标方程;(2)设直线l与曲线C相交于A,B两点,当θ变化时,求|AB|的最小值.【考点】QH:参数方程化成普通方程;Q4:简单曲线的极坐标方程.【分析】(1)利用极坐标与直角坐标的转化方法,求曲线C的直角坐标方程;(2)将直线l的参数方程代入y2=2x,得t2sin2θ﹣2tcosθ﹣1=0,利用参数的几何意义,求|AB|的最小值.【解答】解:(1)由ρsin2θ﹣2cosθ=0,得ρ2sin2θ=2ρcosθ.∴曲线C的直角坐标方程为y2=2x;(2)将直线l的参数方程代入y2=2x,得t2sin2θ﹣2tcosθ﹣1=0.设A,B两点对应的参数分别为t1,t2,则,,==.当时,|AB|的最小值为2.23.已知函数f(x)=|x﹣5|﹣|x﹣2|.(1)若∃x∈R,使得f(x)≤m成立,求m的范围;(2)求不等式x2﹣8x+15+f(x)≤0的解集.【考点】R5:绝对值不等式的解法.【分析】(1)通过讨论x的范围,求出f(x)的分段函数的形式,求出m的范围即可;(2)通过讨论x的范围,求出不等式的解集即可.【解答】解:(1),当2<x<5时,﹣3<7﹣2x<3,所以﹣3≤f(x)≤3,∴m≥﹣3;(2)不等式x2﹣8x+15+f(x)≤0,即﹣f(x)≥x2﹣8x+15由(1)可知,当x≤2时,﹣f(x)≥x2﹣8x+15的解集为空集;当2<x<5时,﹣f(x)≥x2﹣8x+15,即x2﹣10x+22≤0,∴;当x≥5时,﹣f(x)≥x2﹣8x+15,即x2﹣8x+12≤0,∴5≤x≤6;综上,原不等式的解集为.。
2020年河南省洛阳市高考(理科)数学三模试卷 (解析版)

2020年河南省洛阳市高考数学三模试卷(理科)一、选择题(共12小题). 1.设集合A ={x |x−1x+2>0},集合B ={x |﹣5≤2x +1≤3},则集合A ∩B =( )A .[﹣3,﹣2)B .(﹣2,1)C .RD .∅2.已知直线l 1:x sin α+2y ﹣1=0,直线l 2:x ﹣y cos α+3=0,若l 1⊥l 2,则tan2α=( ) A .−23B .−43C .25D .453.已知复数z 满足|z |=1,则|z ﹣1+√3i |的最小值为( ) A .2B .1C .√3D .√24.已知m ,n 为两条不同直线,α,β为两个不同平面,则下列结论正确的为( ) A .α∥β,m ∥α,则m ∥βB .m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥βC .m ⊥n ,m ⊥α,n ∥β,则 α⊥βD .m ⊥α,m ∥n ,α∥β,则n ⊥β5.已知f (x )是偶函数,且在(0,+∞)上单调递增,则函数f (x )可以是( ) A .f (x )=x 4﹣2x 2 B .f (x )=e x +e −x2 C .f (x )=x sin xD .f (x )=13x 2+cos x6.已知圆C :(x ﹣a )2+y 2=4(a ≥2)与直线x ﹣y +2√2−2=0相切,则圆C 与直线x ﹣y ﹣4=0相交所得弦长为( ) A .1B .√2C .2D .2√27.已知函数f (x )=sin x +cos x 的导函数为g (x ),则下列结论中错误的是( ) A .函数f (x )与g (x )有相同的值域和周期 B .函数g (x )的零点都是函数f (x )的极值点C .把函数f (x )的图象向左平移π2个单位,就可以得到函数g (x )的图象D .函数f (x )和g (x )在区间(−π4,π4 )上都是增函数8.若某单位员工每月网购消费金额(单位:元)近似地服从正态分布N (1000,5002),现从该单位任选10名员工,记其中每月网购消费金额恰在500元至2000元之间的人数为ξ,则ξ的数学期望为( )参考数据:若随机变量X 服从正态分布N (μ,σ2),则P (μ﹣σ<X ≤μ+σ)=0.6827,P (μ﹣2σ<X <μ+2σ)=0.9545,P (μ﹣3σ<X ≤μ+3σ)=0.9973. A .2.718 B .6.827C .8.186D .9.5459.(2x +1)(x 3√x)5的展开式中x 3系数为( ) A .180B .90C .20D .1010.已知锐角三角形△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .且b =2a sin B ,则cos B +sin C 的取值范围为( ) A .(0,√3] B .(1,√3] C .(√32,32)D .(12,√32)11.设双曲线E :x 2a 2−y 2b 2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,离心率为e ,P在双曲线E 的右支上,且PF 1⊥PF 2,Q 为线段PF 1,与双曲线E 左支的交点,若∠PQF 2=30°,则e 2=( ) A .7﹣2√3B .1+√3C .2√3−1D .72√312.已知函数f (x )={3x −x 3,x ≤0xe x +lnx+1x,x >0,若关于x 的方程f 2(x )﹣mf (x )﹣1=0恰好有6个不相等的实根,则实数m 的取值范围是( ) A .(﹣2,1e +1 )B .(﹣2,0 )∪( 0,1e+1 ) C .(−32,2e+1e 2+e) D .( −32,0 )∪( 0,2e+1e 2+e)二、填空题:本大题共4小题,每小题5分,共20分.13.已知向量a →,b →满足:a →=(1,√3),|b →|=√2,(a →−b →)⊥b →,则向量a →,b →的夹角为 .14.已知非负实数x ,y 满足{x −y −1≥02x +y −4≤0,则z =y+1x+1的最大值是 .15.已知直线l 经过抛物线C :y 2=4x 的焦点F ,l 与C 交于A ,B 两点,其中点A 在第四象限,若AF →=2FB →,则直线l 的斜率为 .16.如图,在三棱锥A ﹣BCD 中,AB =CD =2,AC =BD =√3,BC =AD =√5,E ,F 分别是AB ,CD 的中点.若用一个与直线EF 垂直的平面去截该三棱锥.与棱AC ,AD ,BD,BC分别交于M,N,P,Q四点,则四边形MNPQ面积的最大值为.三、解答题:本大题共6个小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤.17.已知数列{a n}的首项a1=1,其前n项和为S n,且满足S n+1=2S n+n+1.(1)求证:数列{a n+1}是等比数列;(2)令b n=n(a n+1),求数列{b n}的前n项和T n.18.如图.长方体ABCD﹣A1B1C1D1的底面ABCD为正方形,AB=√2,AA1=3,E为棱AA1上一点,AE=1,F为棱B1C1上任意一点C.(1)求证:BE⊥EF;(2)求二面角C﹣B1E﹣C1的余弦值.19.已知平面内动点P与点A(﹣2,0),B(2,0)连线的斜率之积为−3 4.(1)求动点P的轨迹E的方程;(2)过点F(1,0)的直线与曲线E交于P,Q两点,直线AP,AQ与直线x=4分别交于M,N两点.求证:以MN为直径的圆恒过定点.20.某地为鼓励群众参与“全民读书活动”,增加参与读书的趣味性.主办方设计这样一个小游戏:参与者抛掷一枚质地均匀的骰子(正方体,六个面上分别标注1,2,3,4,5,6六个数字).若朝上的点数为偶数.则继续抛掷一次.若朝上的点数为奇数,则停止游戏,照这样的规则进行,最多允许抛掷3次.每位参与者只能参加一次游戏.(1)求游戏结束时朝上点数之和为5的概率;(2)参与者可以选择两种方案:方案一:游戏结束时,若朝上的点数之和为偶数,奖励3本不同的畅销书;若朝上的点数之和为奇数,奖励1本畅销书.方案二:游戏结束时,最后一次朝上的点数为偶数,奖励5本不同的畅销书,否则,无奖励.试分析哪一种方案能使游戏参与者获得更多畅销书奖励?并说明判断的理由.21.设函数f(x)=lnx,g(x)=a(x﹣1).(1)若对任意x∈(0,+∞),f(x)≤g(x)恒成立,求a的取值集合;(2)设x n=n2(n∈N*),点A n(x n,f(x n)),点A n+1(x n+1,f(x n+1)),直线A n A n+1的斜率为k n,求证:k1+k2+…+k n<2(n∈N*).请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题记分,作答时,用2B 铅笔在答题卡上把所选题目对应的题号后的方框涂黑.[选修4-4:坐标系与参数方程]22.在平面直角坐标系中,曲线C的参数方程为{x=√3cosαy=sinα(α为参数),以坐标原点O为极点,以x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsin(θ+π6)=12.(1)求曲线C的普通方程和直线l的直角坐标方程;(2)已知点A(2,1),点B为曲线C上的动点,求线段AB的中点M到直线l的距离的最大值.并求此时点B的坐标.[选修4-5:不等式选讲]23.已知a,b,c是正实数,且a+b+2c=1.(1)求1a +1b+1c的最小值;(2)求证:a2+b2+c2≥16.参考答案一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合A ={x |x−1x+2>0},集合B ={x |﹣5≤2x +1≤3},则集合A ∩B =( )A .[﹣3,﹣2)B .(﹣2,1)C .RD .∅【分析】可以求出集合A ,B ,然后进行交集的运算即可. 解:∵A ={x |x <﹣2,或x >1},B ={x |﹣3≤x ≤1}, ∴A ∩B =[﹣3,﹣2). 故选:A .2.已知直线l 1:x sin α+2y ﹣1=0,直线l 2:x ﹣y cos α+3=0,若l 1⊥l 2,则tan2α=( ) A .−23B .−43C .25D .45【分析】根据两直线垂直求出sin α与cos α的关系,计算tan α的值,再求tan2α的值. 解:直线l 1:x sin α+2y ﹣1=0,直线l 2:x ﹣y cos α+3=0, 若l 1⊥l 2,则sin α﹣2cos α=0, 即sin α=2cos α, 所以tan α=2, 所以tan2α=2tanα1−tan 2α=2×21−22=−43. 故选:B .3.已知复数z 满足|z |=1,则|z ﹣1+√3i |的最小值为( ) A .2B .1C .√3D .√2【分析】满足|z |=1的复数z ,在以原点为圆心,以1为半径的圆上,|z ﹣1+√3i |表示复数z 在复平面内对应的点Z 到点A (1,−√3)的距离,再利用数形结合法即可求出结果. 解:满足|z |=1的复数z ,在以原点为圆心,以1为半径的圆上,|z ﹣1+√3i |表示复数z 在复平面内对应的点Z 到点A (1,−√3)的距离,如图所示:由OA =2,利用点圆的位置关系,|z ﹣1+√3i |的最小值为2﹣1=1, 故选:B .4.已知m ,n 为两条不同直线,α,β为两个不同平面,则下列结论正确的为( ) A .α∥β,m ∥α,则m ∥βB .m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥βC .m ⊥n ,m ⊥α,n ∥β,则 α⊥βD .m ⊥α,m ∥n ,α∥β,则n ⊥β【分析】由空间中直线与直线、直线与平面的位置关系,逐一核对四个选项得答案. 解:对于A ,若α∥β,m ∥α,则m ∥β或m ⊂β,故A 错误;对于B ,若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β或α与β相交,只有加上条件m 与n 相交时,才有结论α∥β,故B 错误;对于C ,若m ⊥n ,m ⊥α,n ∥β,则 α∥β或α与β相交,故C 错误; 对于D ,若m ⊥α,m ∥n ,则n ⊥α,又α∥β,则n ⊥β,故D 正确. 故选:D .5.已知f (x )是偶函数,且在(0,+∞)上单调递增,则函数f (x )可以是( ) A .f (x )=x 4﹣2x 2 B .f (x )=e x +e −x2 C .f (x )=x sin xD .f (x )=13x 2+cos x【分析】根据题意,依次分析选项中函数的奇偶性与在区间(0,+∞)上的单调性,综合即可得答案.解:根据题意,依次分析选项:对于A ,f (x )=x 4﹣2x 2,其定义域为R ,有f (﹣x )=x 4﹣2x 2=f (x ),是偶函数,其导数f ′(x )=4x 3﹣4x =4x (x 2﹣1),在区间(0,1)上,f ′(x )<0,f (x )为减函数,不符合题意;对于B ,f (x )=e x +e −x 2,其定义域为R ,有f (﹣x )=e x +e −x2=f (x ),是偶函数,其导数f ′(x )=e x −e −x2,在区间(0,+∞)上,f ′(x )>0,f (x )为增函数,符合题意;对于C ,f (x )=x sin x ,其定义域为R ,有f (﹣x )=(﹣x )sin (﹣x )=x sin x =f (x ),是偶函数,有f (π2)=π2>0,但f (3π2)=−3π2<0,在(0,+∞)上不是增函数,不符合题意;对于D ,(x )=13x 2+cos x ,其定义域为R ,有f (﹣x )=13(﹣x )2+cos (﹣x )=13x 2+cos x=f (x ),是偶函数,有f (0)=1,f (π3)=π227+12<1,在(0,+∞)上不是增函数,不符合题意; 故选:B .6.已知圆C :(x ﹣a )2+y 2=4(a ≥2)与直线x ﹣y +2√2−2=0相切,则圆C 与直线x ﹣y ﹣4=0相交所得弦长为( ) A .1B .√2C .2D .2√2【分析】根据题意,分析圆C 的半径,由直线与圆的位置关系可得圆心C 到直线x ﹣y +2√2−2=0的距离,由平行线间的公式计算直线x ﹣y +2√2−2=0与x ﹣y ﹣4=0之间的距离,分析可得圆心C 到直线x ﹣y ﹣4=0的距离,由直线与圆的位置关系分析可得答案.解:根据题意,圆C :(x ﹣a )2+y 2=4的半径r =2,圆C :(x ﹣a )2+y 2=4(a ≥2)与直线x ﹣y +2√2−2=0相切,则圆心C 到直线x ﹣y +2√2−2=0的距离为2,直线x ﹣y +2√2−2=0与x ﹣y ﹣4=0平行,两条平行直线的距离d =√2−2−(−4)|1+1=2+√2,又由圆C 与直线x ﹣y ﹣4=0相交,则圆心C 到直线x ﹣y ﹣4=0的距离d ′=√2,则圆C 与直线x ﹣y ﹣4=0相交所得弦长为2×√4−2=2√2; 故选:D .7.已知函数f (x )=sin x +cos x 的导函数为g (x ),则下列结论中错误的是( ) A .函数f (x )与g (x )有相同的值域和周期 B .函数g (x )的零点都是函数f (x )的极值点C .把函数f (x )的图象向左平移π2个单位,就可以得到函数g (x )的图象D .函数f (x )和g (x )在区间(−π4,π4 )上都是增函数【分析】求出函数f (x )的导函数g (x ),再分别判断f (x )、g (x )的值域、极值点和零点,图象平移和单调性问题.解:函数f (x )=sin x +cos x ,∴g (x )=f '(x )=cos x ﹣sin x ,对于A ,f (x )=√2sin (x +π4),g (x )=−√2sin (x −π4),两函数的值域相同,都是[−√2,√2],周期也相同;A 正确;对于B ,若x 0是函数g (x )的零点,则x 0−π4=k π,k ∈Z ; 解得x 0=k π+π4,k ∈Z ;,f (x 0)=√2sin (k π+π4+π4)=±√2, ∴x 0也是函数f (x )的极值点,B 正确; 对于C ,把函数f (x )的图象向左平移π2个单位,得f (x +π2)=sin (x +π2)+cos (x +π2)=cos x ﹣sin x =g (x ),∴C 正确; 对于D ,x ∈(−π4,π4)时,x +π4∈(0,π2),f (x )是单调增函数,x −π4∈(−π2,0),g (x )是单调递减函数,D 错误. 故选:D .8.若某单位员工每月网购消费金额(单位:元)近似地服从正态分布N (1000,5002),现从该单位任选10名员工,记其中每月网购消费金额恰在500元至2000元之间的人数为ξ,则ξ的数学期望为( )参考数据:若随机变量X 服从正态分布N (μ,σ2),则P (μ﹣σ<X ≤μ+σ)=0.6827,P (μ﹣2σ<X <μ+2σ)=0.9545,P (μ﹣3σ<X ≤μ+3σ)=0.9973.A .2.718B .6.827C .8.186D .9.545【分析】先根据已知数据,求出P (500<X ≤1500)和P (0<X <2000),然后利用正态分布曲线的特点得P (500<X <2000)=P (500<X ≤1500)+P (1500<X <2000)=0.8186,而随机变量ξ~B (10,0.8186),最后由二项分布的数学期望求解即可. 解:∵X ~N (1000,5002),∴P (500<X ≤1500)=0.6827,P (0<X <2000)=0.9545,∴P (500<X <2000)=P (500<X ≤1500)+P (1500<X <2000)=0.6827+0.9545−0.68272=0.8186, 而随机变量ξ~B (10,0.8186), ∴E (ξ)=10×0.8186=8.186. 故选:C . 9.(2x +1)(x √x )5的展开式中x 3系数为( ) A .180B .90C .20D .10【分析】求出(x x )5展开式的含x 2与x 3项的系数,再计算(2x +1)(x x)5的展开式中x 3的系数. 解:(x x)5展开式的通项公式为 T r +1=∁5r •x r•(√x)5﹣r =35﹣r •∁5r •x3r−52;令3r−52=2,解得r =3; 令3r−52=3,解得r 不存在;故(2x +1)(x √x)5的展开式中x 3系数为:2×∁53•35﹣3=180. 故选:A .10.已知锐角三角形△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .且b =2a sin B ,则cos B +sin C 的取值范围为( ) A .(0,√3]B .(1,√3]C .(√32,32)D .(12,√32)【分析】由已知结合正弦定理进行化简可求sin A ,进而可求A ,结合锐角三角的条件可求B 的范围,然后结合和差角公式及辅助角公式进行化简后结合正弦函数的性质即可求解.解:因为b =2a sin B ,由正弦定理可得,sin B =2sin A sin B , 因为sin B ≠0, 故sin A =12,因为A 为锐角,故A =π6, 由题意可得,{0<B <12π0<5π6−B <12π, 解可得,13π<B <12π,则cos B +sin C =cos B +sin (5π6−B )=√32sinB +32cosB=√3sin (B +13π)∈(√32,32).故选:C . 11.设双曲线E :x 2a 2−y 2b 2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,离心率为e ,P在双曲线E 的右支上,且PF 1⊥PF 2,Q 为线段PF 1,与双曲线E 左支的交点,若∠PQF 2=30°,则e 2=( ) A .7﹣2√3B .1+√3C .2√3−1D .72√3【分析】设PF 2=m ,根据条件得PQ =√3m ,QF 2=2m ,结合双曲线性质PF 1﹣PF 2=2a ,QF 2﹣QF 1=2a ,进行整理可得m =2(√3−1)a ,再由勾股定理PF 12+PF 22=F 1F 22,得到(7﹣2√3)a 2=c 2即可.解:因为PF 1⊥PF 2,∠PQF 2=30°,所以PQ =√3PF 2,QF 2=2PF 2, 不妨设PF 2=m ,则PQ =√3m ,QF 2=2m , 根据双曲线定义:PF 1﹣PF 2=2a ,QF 2﹣QF 1=2a , 由PF 1﹣PF 2=2a 得PF 1=2a +m ,由QF 2﹣QF 1=2a ,得QF 1=2m ﹣2a ,又因为QF 1=PF 1﹣PQ , 即有2m ﹣2a =2a +m −√3m , 所以m =2(√3−1)a ,在Rt △PF 1F 2中,PF 12+PF 22=F 1F 22,即(2a +m )2+m 2=4c 2,代入得[2a +2(√3−1)a ]2+4(√3−1)2a 2=4c 2, 整理得(7﹣2√3)a 2=c 2,则e 2=c 2a2=7﹣2√3,故选:A .12.已知函数f (x )={3x −x 3,x ≤0xe x+lnx+1x ,x >0,若关于x 的方程f 2(x )﹣mf (x )﹣1=0恰好有6个不相等的实根,则实数m 的取值范围是( ) A .(﹣2,1e +1 )B .(﹣2,0 )∪( 0,1e+1 ) C .(−32,2e+1e 2+e) D .( −32,0 )∪( 0,2e+1e 2+e)【分析】利用导数得到函数f (x )的单调性和极值,画出函数f (x )的大致图象,令t =f (x ),则t 2﹣mt ﹣1=0,由△>0可知方程t 2﹣mt ﹣1=0有两个不相等的实根,设为t 1,t 2,由函数f (x )的图象可知:0<t 1<1+1e,﹣2<t 2<0,设g (t )=t 2﹣mt ﹣1,再利用二次函数的图象和性质列出不等式组即可求出实数m 的取值范围. 解:当x ≤0时,f (x )=3x ﹣x 3,则f '(x )=3﹣3x 2=3(1﹣x )(1+x ), 令f '(x )=0得:x =﹣1,∴当x ∈(﹣∞,﹣1)时,f '(x )<0,f (x )单调递减;当x ∈(﹣1,0)时,f '(x )>0,f (x )单调递增,且f (﹣1)=﹣2,f (0)=0, 当x >0时,f (x )=x e x +lnx+1x ,则f '(x )=1−x e x +−lnx x2,显然f '(1)=0, ∴当x ∈(0,1)时,f '(x )>0,f (x )单调递增;当x ∈(1,+∞)时,f '(x )<0,f(x )单调递减,且f (1)=1e+1, 故函数f (x )的大致图象如图所示:,令t =f (x ),则关于x 的方程f 2(x )﹣mf (x )﹣1=0化为关于t 的方程t 2﹣mt ﹣1=0, ∵△=m 2+4>0,∴方程t 2﹣mt ﹣1=0有两个不相等的实根,设为t 1,t 2, 由韦达定理得:t 1+t 2=m ,t 1t 2=﹣1<0,不妨设t 1>0,t 2<0, ∵关于x 的方程f 2(x )﹣mf (x )﹣1=0恰好有6个不相等的实根, ∴由函数f (x )的图象可知:0<t 1<1+1e,﹣2<t 2<0, 设g (t )=t 2﹣mt ﹣1,则{ g(−2)>0g(0)<0g(1+1e )>0,解得:−32<m <2e+1e 2+e, 故选:C .二、填空题:本大题共4小题,每小题5分,共20分.13.已知向量a →,b →满足:a →=(1,√3),|b →|=√2,(a →−b →)⊥b →,则向量a →,b →的夹角为π4.【分析】根据平面向量的数量积,求出向量a →、b →夹角的余弦值,再求夹角大小. 解:a →=(1,√3),所以|a →|=√12+(√3)2=2,又|b →|=√2,(a →−b →)⊥b →⊥b →,所以a →•b →−b →2=0, 所以a →•b →=b →2=2, 设向量a →,b →的夹角为θ,则cos θ=a →⋅b→|a →|×|b →|=2×2=√22, 又θ∈[0,π], 所以θ=π4. 故答案为:π4.14.已知非负实数x ,y 满足{x −y −1≥02x +y −4≤0,则z =y+1x+1的最大值是 58.【分析】作出不等式组对应的平面区域,利用z =y+1x+1的几何意义进行求解即可. 解:z =y+1x+1的几何意义是可行域内的点与(﹣1,﹣1)连线的斜率, 作出不等式组对应的平面区域如图:则由图象知PA 的斜率最大,由{x −y −1=02x +y −4=0,解得A (53,23)则PA 的斜率k =23+153+1=58,k 的最大值为58, 故答案为:58.15.已知直线l 经过抛物线C :y 2=4x 的焦点F ,l 与C 交于A ,B 两点,其中点A 在第四象限,若AF→=2FB→,则直线l的斜率为﹣2√2.【分析】求得抛物线的焦点和准线方程,设直线l的方程为x=my+1,联立直线方程和抛物线的方程,运用韦达定理,再由向量共线的坐标表示,可得y1,y2的关系,消去y1,y2,可得m的值,进而得到所求直线的斜率.解:y2=4x的焦点F(1,0),设直线l的方程为x=my+1,联立y2=4x,可得y2﹣4my﹣4=0,设A,B的纵坐标分别为y1,y2(y1<0,y2>0),则y1+y2=4m,y1y2=﹣4,①又AF→=2FB→,可得﹣y1=2y2,即y1=﹣2y2,②由①②可得m<0,y1=8m,y2=﹣4m,﹣32m2=﹣4,解得m=−√24,则直线l的斜率为﹣2√2,故答案为:﹣2√2.16.如图,在三棱锥A﹣BCD中,AB=CD=2,AC=BD=√3,BC=AD=√5,E,F分别是AB,CD的中点.若用一个与直线EF垂直的平面去截该三棱锥.与棱AC,AD,BD,BC分别交于M,N,P,Q四点,则四边形MNPQ面积的最大值为√32.【分析】把三棱锥A﹣BCD放置在长方体中,由已知可得四边形MNPQ为平行四边形,再由平行线截线段成比例,可得|PN|+|PQ|=|AB|=2.求出PN与PQ所成角,代入三角形面积公式,再由基本不等式求最值.解:把三棱锥A﹣BCD放置在长方体中,如图,∵E ,F 分别是AB ,CD 的中点,且平面MNPQ ⊥EF , 可知MN ∥PQ ,PN ∥QM ,则四边形MNPQ 为平行四边形, 再由平行线截线段成比例,可得|PN |+|PQ |=|AB |=2.由已知可求得作侧面两条对角线所成锐角为60°,则∠NPQ =60°.∴S 四边形MNPQ =|PN |•|PQ |•sin60°≤√32⋅(|PN|+|PQ|2)2=√32.当且仅当PN |=|PQ |=1时上式等号成立. ∴四边形MNPQ 面积的最大值为√32. 故答案为:√32. 三、解答题:本大题共6个小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤.17.已知数列{a n }的首项a 1=1,其前n 项和为S n ,且满足S n +1=2S n +n +1. (1)求证:数列{a n +1}是等比数列;(2)令b n =n (a n +1),求数列{b n }的前n 项和T n .【分析】(1)先由S n +1=2S n +n +1⇒S n =2S n ﹣1+n ,两式相减得a n +1=2a n +1,进而证明结论;(2)由(1)可得a n +1=2n ,∴b n =n •2n ,再利用错位相减法求出T n 即可. 解:(1)证明:∵S n +1=2S n +n +1①, ∴当 n ≥2 时,S n =2S n ﹣1+n ②, 由①一②得,a n +1=2a n +1,n ≥2,∴a n +1+1=2a n +1+1,n ≥2,即a n +1+1=2(a n +1),n ≥2. 又a 1+a 2=2a 1+2,a 1=1,∴a 2=3,则a 2+1=2(a 1+1)也适合,∴数列{a n+1}是以a1+1=2为首项,公比为2的等比数列;(2)解:由(1)知a n+1=2n,∴b n=n•2n.∴T n=1×21+2×22+3×23+4×24+…+(n﹣1)•2n﹣1+n•2n③,∴2T n=1×22+2×23+3×24+4×25+(n﹣1)•2n+n•2n+1④,由③﹣④得:﹣Tn=1×21+1×22+1×23+…+1×2n﹣n•2n+1=(1﹣n)•2n+1﹣2,∴T n=(n﹣1)•2n+1+2.18.如图.长方体ABCD﹣A1B1C1D1的底面ABCD为正方形,AB=√2,AA1=3,E为棱AA1上一点,AE=1,F为棱B1C1上任意一点C.(1)求证:BE⊥EF;(2)求二面角C﹣B1E﹣C1的余弦值.【分析】(1)先根据勾股定理可得BE⊥B1E,结合长方体的性质可得BE⊥B1C1,进而可证BE⊥平面B1C1E,再由线面垂直的性质得证;(2)建立空间直角坐标系,求出平面CB1E及平面B1C1E的一个法向量,再利用向量的夹角公式即可得解.解:(1)证明:∵AE=1,A1E=2,在长方体ABCD﹣A1B1C1D1中,B1E=√A1E2+A1B12=√6,BE=√AE2+AB2=√3,∴B1B2=B1E2+BE2,即BE⊥B1E,在长方体ABCD﹣A1B1C1D1中,B1C1⊥平面A1ABB1,BE⊂平面A1ABB1,∴BE⊥B1C1,又B1E∩B1C1=B1,∴BE⊥平面B1C1E,又无论点F位置如何,EF⊂平面B1C1E,∴BE ⊥EF ;(2)如图所示,分别以DA ,DC ,DD 1为x ,y ,z 轴建立空间直角坐标系,则B 1(√2,√2,3),E (√2,0,1),C (0,√2,0),B (√2,√2,0),CB 1→=(√2,0,3),EB 1→=(0,√2,2),设平面CB 1E 的法向量为n →=(x ,y ,z ),∴{n →⋅CB 1→=0n →⋅EB 1→=0,即{√2x +3z =0√2y +2z =0,令z =√2,则x =﹣3,y =﹣2,可得平面CB 1E 的一个法向量为n →=(−3,−2,√2), 由(1)可知,BE ⊥平面B 1C 1E ,所以平面B 1C 1E 的一个法向量BE →=(0,−√2,1), ∴cos <BE →,n →>=BE →,⋅n→|BE →|⋅|n →|=3√23×√15=√105,即二面角C ﹣B 1E ﹣C 1的余弦值√105.19.已知平面内动点P 与点A (﹣2,0),B (2,0)连线的斜率之积为−34. (1)求动点P 的轨迹E 的方程;(2)过点F (1,0)的直线与曲线E 交于P ,Q 两点,直线AP ,AQ 与直线x =4分别交于M ,N 两点.求证:以MN 为直径的圆恒过定点.【分析】(1)设点P 的坐标为(x ,y ),则由k PA ⋅k PB =−34可得关于x ,y 的关系式,得到动点P 的轨迹E 的方程;(2)当PQ 的斜率存在时,设PQ 的方程为y =k (x ﹣1),与曲线E 的方程联立,得到关于x 的一元二次方程,写出根与系数的关系,再写出直线APD 方程,求得M ,N 的坐标,结合根与系数的关系得到|MN |,求出线段MN 中点的坐标,可得以MN 为直径的圆的方程,求出以MN 为直径的圆过点D (1,0)和E (7,0).验证当PQ ⊥x 轴时成立,可得以MN 为直径的圆恒过点D (1,0)和E (7,0). 解:(1)设点P 的坐标为(x ,y ),则由k PA ⋅k PB =−34,得y x+2⋅yx−2=−34,整理得x 24+y 23=1( x ≠±2), 即动点P 的轨迹E 的方程为x 24+y 23=1( x ≠±2);证明:(2)当PQ 的斜率存在时,设PQ 的方程为y =k (x ﹣1), 与曲线E 的方程联立,消去y 得(3+4k 2)x 2﹣8k 2x ﹣4k 2﹣12=0. 设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=8k23+4k2,x 1x 2=4k 2−123+4k2.直线AP 的方程为y y 1=x+2x 1+2,令x =4,得y =6y 1x 1+2,即M(4,6y 1x 1+2),同理N(4,6y 2x 2+2). ∴|MN|=6y2x 2+2−6y1x 1+2 =6|k[(x 2−1)(x 1+2)−(x 1−1)(x 2+2)]x 1x 2+2(x 1+x 2)+4|=18|k(x 2−x 1)x 1x 2+2(x 1+x 2)+4|,|x 2﹣x 1|=√(x 1+x 2)2−4x 1x 2=√64k2(3+4k 2)2−4×4k 2−123+4k2=12√1+k 23+4k 2|x 1x 2+2(x 1+x 2)+4|=|4k 2−123+4k 2+2×8k 23+4k 2+4|=36k 23+4k 2. ∴|MN |=6√1+k 2|k|.线段MN 中点的纵坐标为12(6y 1x 1+2+6y 2x 2+2)=3k ⋅(x 1−1x 1+2+x 2−1x 2+2)=−3k.故以MN 为直径的圆的方程为:(x ﹣4)2+(y +3k )2=9(1+k 2)k2. 令y =0得:(x ﹣4)2=9,解得x =1或x =7. 此时以MN 为直径的圆过点D (1,0)和E (7,0).当PQ ⊥x 轴时,P(1,32),Q(1,−32),M(4,3),N(4,−3). 则以MN 为直径的圆的方程为(x ﹣4)2+y 2=9,也过点D ,E . ∴以MN 为直径的圆恒过点D (1,0)和E (7,0).20.某地为鼓励群众参与“全民读书活动”,增加参与读书的趣味性.主办方设计这样一个小游戏:参与者抛掷一枚质地均匀的骰子(正方体,六个面上分别标注1,2,3,4,5,6六个数字).若朝上的点数为偶数.则继续抛掷一次.若朝上的点数为奇数,则停止游戏,照这样的规则进行,最多允许抛掷3次.每位参与者只能参加一次游戏.(1)求游戏结束时朝上点数之和为5的概率;(2)参与者可以选择两种方案:方案一:游戏结束时,若朝上的点数之和为偶数,奖励3本不同的畅销书;若朝上的点数之和为奇数,奖励1本畅销书.方案二:游戏结束时,最后一次朝上的点数为偶数,奖励5本不同的畅销书,否则,无奖励.试分析哪一种方案能使游戏参与者获得更多畅销书奖励?并说明判断的理由.【分析】(1)设事件A:只抛掷1次就结束游戏且朝上点数之和为5,事件B:抛掷2次就结束游戏且朝上点数之和为5,事件C:掷3次结束游戏且朝上点数之和为5,事件A,B,C彼此互斥.然后求解概率即可.(2)方案一:设获得奖励畅销书的本数为X,求出概率得到分布列,然后求解期望.通过比较E(X),E(Y),推出选择方案一能使游戏参与者获得更多畅销书奖励.解:(1)设事件A:只抛掷1次就结束游戏且朝上点数之和为5,事件B:抛掷2次就结束游戏且朝上点数之和为5,事件C:掷3次结束游戏且朝上点数之和为5,事件A,B,C彼此互斥.则P(A)=16,P(B)=16×16+16×16=118,P(C)=16×16×16=1216,游戏结束时朝上点数之和为5,即事件A+B+C,其概率为P(A+B+C)=16+118+1216=49216.(2)方案一:设获得奖励畅销书的本数为X,P(x=3)=18,P(x=1)=78,则X的分布列为:X31P187 8E(X)=3×18+1×78=54.方案二:设获得奖励畅销书的本数为YP(X=5)=18,P(x=0)=78,则Y的分布列为:Y 5P1878E (Y )=5×18+0×78=58,∵E (X )>E (Y ),∴选择方案一能使游戏参与者获得更多畅销书奖励. 21.设函数f (x )=lnx ,g (x )=a (x ﹣1).(1)若对任意x ∈(0,+∞),f (x )≤g (x )恒成立,求a 的取值集合;(2)设x n =n 2(n ∈一、选择题*),点A n (x n ,f (x n )),点A n +1(x n +1,f (x n +1)),直线A n A n +1的斜率为k n ,求证:k 1+k 2+…+k n <2(n ∈N *).【分析】(1)令F (x )=f (x )﹣g (x ),求出函数的导数,通过讨论a 的范围,求出函数的单调区间,求出函数的最大值,得到a 的取值即可; (2)求出k n ,结合ln (1+2n+1n 2)<2n+1n 2,得到k 1+k 2+⋯+k n <112+122+⋯12n ,不等式放缩证明即可.解:(1)令F (x )=f (x )﹣g (x ), F (x )=lnx ﹣a (x ﹣1),F ′(x )=1x −a =1−axx,……(1分) 若a ≤0时,当x >1 时,lnx ﹣a (x ﹣1)>0,不符合题意…… 若a >0,F ′(x )>0得0<x <1a,F ′(x )<0得x >1a, ∴F (x )在(0,1a)上递增,在(1a,+∞)上递减……∴F (x )max =F (1a)=ln 1a−a(1a−1)=−lna +a −1≤0⋯⋯令ϕ(x )=﹣ln x +x −1,ϕ′(x)=−1x +1=x−1x, ∴ϕ(x )在(0,1)上递减,在(1,+∞)上递增 ∴ϕ(x )≥ϕ(1)=0,∴ϕ(a )≥0…… ∴ϕ(a )=0,a =1, 故a 的取值集合为{1}……(2)由题意知,点A n (n 2,lnn 2),点A n +1(((n +1)2,ln (n +1)2), k n =ln(n+1)2−lnn 2(n+1)2−n 2=ln(1+2n+1n2)2n+1⋯⋯由(1)知,当a =1时,lnx ≤x ﹣1(x >0),∴ln (1+2n+1n 2)<2n+1n 2⋯⋯ ∴k n <2n+1n 22n+1=1n 2,∴k 1+k 2+⋯+k n <112+122+⋯12n ⋯⋯ 而112+122+132+⋯+1n 2≤11+11×2+12×3+⋯+1(n−1)n=1+(1−12)+(12−13)+…+(1n−1−1n)=2−1n <2,……∴k 1+k 2+…+k n <2(n ∈N *).请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题记分,作答时,用2B 铅笔在答题卡上把所选题目对应的题号后的方框涂黑.[选修4-4:坐标系与参数方程] 22.在平面直角坐标系中,曲线C 的参数方程为{x =√3cosαy =sinα(α为参数),以坐标原点O为极点,以x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρsin(θ+π6)=12. (1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)已知点A (2,1),点B 为曲线C 上的动点,求线段AB 的中点M 到直线l 的距离的最大值.并求此时点B 的坐标.【分析】(1)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换. (2)利用点到直线的距离公式的应用和三角函数关系式的恒等变换及正弦型函数的性质的应用求出结果.解:(1)曲线C 的参数方程为{x =√3cosαx =sinα(α为参数),可得x3=cosαy =sinα两边平方相加得:(3)2+y 2=1,即曲线C 的普通方程为:x 23+y 2=1.由ρsin(θ+π6)=12可得√32ρsinθ+12ρcosθ=12即直线l 的直角坐标方程为x +√3y −1=0.(2)A (2,1),设点B (√3cosα,sinα),则点M (2+√3cosα2,1+sinα2),点M 到直线l 的距离d =|2+√3cosα2+√3(1+sinα)2−1|2=|√32cosα+√32sinα+√322=|√62sin(α+π4)+√32|2. 当sin(α+π4)=1时,的最大值为√6+√34. 即点M 到直线l 的距离的最大值为√6+√34,此时点的坐标为(√62,√22).[选修4-5:不等式选讲]23.已知a ,b ,c 是正实数,且a +b +2c =1. (1)求1a +1b+1c的最小值;(2)求证:a 2+b 2+c 2≥16.【分析】(1)根据a ,b ,c 是正实数,且a +b +2c =1,可得1a +1b+1c=(1a+1b+1c)(a +b +2c ),然后利用基本不等式求出1a+1b+1c的最小值即可;(2)由柯西不等式可得(12+12+22)(a 2+b 2+c 2)≥(a +b +2c )2,再结合a +b +2c =1,即可证明a 2+b 2+c 2≥16成立.解:(1)∵a ,b ,c 是正实数,且a +b +2c =1. 所以1a +1b+1c=(1a+1b+1c)(a +b +2c )=b a +a b +2c a +a c +2c b +bc+4≥6+4√2, 当且仅当a =b =√2c ,即a =b =2−√22,c =√2−12时等号成立,∴1a+1b+1c的最小值为6+4√2.(2)由柯西不等式可得(12+12+22)(a 2+b 2+c 2)≥(a +b +2c )2=1, 即a 2+b 2+c 2≥16,当且仅当1a=1b=2c,即a =b =16,c =13时等号成立,∴a 2+b 2+c 2≥16成立.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年河南省高考数学(理科)模拟试卷(10)一.选择题(共12小题,满分60分,每小题5分)1.(5分)设集合M={1,2,3},N={x∈Z|x2﹣2x﹣3<0},则M∪N=()A.{1,2,3}B.{﹣1,0,1,2,3}C.{0,1,2,3}D.{1,2}2.(5分)已知复数z满足z+2i∈R,z的共轭复数为z,则z−z=()A.0B.4i C.﹣4i D.﹣43.(5分)数列{a n}满足a n+2﹣a n+1=a n+1﹣a n(n∈N*),且a8=10,则S15=()A.95B.190C.380D.1504.(5分)射线测厚技术原理公式为I=I0e−ρμt,其中I0,I分别为射线穿过被测物前后的强度,e是自然对数的底数,t为被测物厚度,ρ为被测物的密度,μ是被测物对射线的吸收系数.工业上通常用镅241(241Am)低能γ射线测量钢板的厚度.若这种射线对钢板的半价层厚度为0.8,钢的密度为7.6,则这种射线的吸收系数为()(注:半价层厚度是指将已知射线强度减弱为一半的某种物质厚度,ln2≈0.6931,结果精确到0.001)A.0.110B.0.112C.0.114D.0.1165.(5分)函数y=2x−2−x|x|−cosx的图象大致为()A.B.C.D.6.(5分)今年入冬以来,我市天机反复.在下图中统计了我市上个月前15的气温,以及相对去年同期的气温差(今年气温﹣去年气温,单位:摄氏度),以下判断错误的是( )A .今年每天气温都比去年气温低B .今年的气温的平均值比去年低C .今年8﹣12号气温持续上升D .今年8号气温最低7.(5分)在△ABC 中,点D 为AB 边上一点,且AD →=14AB →,则CD →=( )A .34CA →+14CB →B .−34CA →−14CB →C .−34CA →+14CB →D .14CA →+34CB →8.(5分)已知F 为抛物线y 2=4x 的焦点,过点F 且斜率为1的直线交抛物线于A ,B 两点,则||F A |﹣|FB ||的值等于( ) A .8√2B .8C .4√2D .49.(5分)要得到函数y =sin(2x −π6)的图象,只需将函数y =sin(x −π6)的图象( ) A .横坐标缩小到原来的12,纵坐标不变B .横坐标扩大到原来的2倍,纵坐标不变C .纵坐标缩小到原来的12,横坐标不变D .纵坐标扩大到原来的2倍,横坐标不变 10.(5分)设a =ln 3,则b =lg 3,则( ) A .a +b >a ﹣b >abB .a +b >ab >a ﹣bC .a ﹣b >a +b >abD .a ﹣b >ab >a +b11.(5分)已知四棱锥P ﹣ABCD 的五个顶点都在球O 的球面上,AB =AD =CD ,BC ∥AD ,∠ABC =60°,△P AB 是等边三角形,若四棱锥P ﹣ABCD 体积的最大值9√3,则球O 的表面积为( ) A .56πB .54πC .52πD .50π12.(5分)设一个正三棱柱ABC ﹣DEF ,每条棱长都相等,一只蚂蚁从上底面ABC 的某顶点出发,每次只沿着棱爬行并爬到另一个顶点,算一次爬行,若它选择三个方向爬行的概率相等,若蚂蚁爬行10次,仍然在上底面的概率为P 10,则P 10为( ) A .14⋅(13)10+12B .(13)11+12C .(13)11−12D .12⋅(13)10+12二.填空题(共4小题,满分20分,每小题5分) 13.(5分)(√x 3−2x )4的展开式中,常数项是 .14.(5分)已知实数x ,y 满足约束条件{x ≤2x −y +1≥02x +y −4≥0,则z =3x +y 的取值范围为 .15.(5分)若双曲线x 2m−y 2=1与x 23−y 22=1有相同的焦点,则实数m = .16.(5分)已知函数f (x )=13x 3−ex 2+ax ,g(x)=lnx x ,对于任意的x 1∈[12,e],存在x 2∈[12,e],使f '(x 1)≤g (x 2),则实数a 的取值范围为 ;若不等式f (x )+16x 3<xg (x )有且仅有一个整数解,则实数a 的取值范围为 .三.解答题(共5小题,满分60分,每小题12分)17.(12分)已知数列{a n }满足a 1=1,a n =2a n ﹣1+2n ﹣1(n ≥2),数列{b n }满足b n =a n +2n +3. (Ⅰ)求证数列{b n }是等比数列; (Ⅱ)求数列{a n }的前n 项和S n .18.(12分)四棱锥S ﹣ABCD 中,底面ABCD 是边长为2的正方形,侧面SAD 为正三角形,SC =2√2,E 为AD 的中点. (Ⅰ)证明:平面SAD ⊥平面ABCD ; (Ⅱ)求直线SB 与平面SEC 所成角的正弦值.19.(12分)如图,已知椭圆E 的右焦点为F 2(1,0),P ,Q 为椭圆上的两个动点,△PQF 2周长的最大值为8.(Ⅰ)求椭圆E的标准方程;(Ⅱ)直线1经过F2,交椭圆E于点A,B,直线m与直线l的倾斜角互补,且交椭圆E 于点M,N,|MN|2=4|AB|,求证:直线m与直线l的交点T在定直线上.20.(12分)某区组织群众性登山健身活动,招募了N名师生志愿者,现将所有志愿者按年龄情况分为15~20,20~25,25~30,30~35,35~40,40~45六组,其频率分布直方图如图所示:已知30~35之间的志愿者共8人.(1)求N和20~30之间的志愿者人数N1;(2)组织者从35~45之间的志愿者(其中共有4名女教师,其余全为男教师)中随机选取3名担任后勤保障工作,记其中女教师的数量为ξ,求随机变量ξ的概率分布列和数学期望.21.(12分)已知函数f(x)=(12x2−ax)lnx−12x2+32ax.(1)讨论函数f(x)的极值点;(2)若f(x)极大值大于1,求a的取值范围.四.解答题(共1小题,满分10分,每小题10分)22.(10分)在直角坐标系xOy中,曲线C1的参数方程为{x=√2+√2cosαy=√2sinα(α是参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=4sinθ.(1)求曲线C1的极坐标方程和曲线C2的直角坐标方程;(2)若射线θ=β(0<β<π2)与曲线C1交于O,A两点,与曲线C2交于O,B两点,求|OA|+|OB|取最大值时tanβ的值.五.解答题(共1小题)23.已知函数f(x)=|x﹣m|﹣|x+2|(m∈R),不等式f(x﹣2)≥0的解集为(﹣∞,4].(1)求m的值;(2)若a>0,b>0,c>3,且a+2b+c=2m,求(a+1)(b+1)(c﹣3)的最大值.2020年河南省高考数学(理科)模拟试卷(10)参考答案与试题解析一.选择题(共12小题,满分60分,每小题5分)1.(5分)设集合M={1,2,3},N={x∈Z|x2﹣2x﹣3<0},则M∪N=()A.{1,2,3}B.{﹣1,0,1,2,3}C.{0,1,2,3}D.{1,2}【解答】解:∵集合M={1,2,3},N={x∈Z|x2﹣2x﹣3<0}={0,1,2},∴M∪N={0,1,2,3}.故选:C.2.(5分)已知复数z满足z+2i∈R,z的共轭复数为z,则z−z=()A.0B.4i C.﹣4i D.﹣4【解答】解:∵z+2i∈R,设z+2i=a∈R,则z=a﹣2i,则z−z=a﹣2i﹣(a+2i)=﹣4i.故选:C.3.(5分)数列{a n}满足a n+2﹣a n+1=a n+1﹣a n(n∈N*),且a8=10,则S15=()A.95B.190C.380D.150【解答】解:∵数列{a n}满足a n+2﹣a n+1=a n+1﹣a n(n∈N*),∴数列{a n}是等差数列,∵a8=10,∴S15=152(a1+a15)=15a8=150.故选:D.4.(5分)射线测厚技术原理公式为I=I0e−ρμt,其中I0,I分别为射线穿过被测物前后的强度,e是自然对数的底数,t为被测物厚度,ρ为被测物的密度,μ是被测物对射线的吸收系数.工业上通常用镅241(241Am)低能γ射线测量钢板的厚度.若这种射线对钢板的半价层厚度为0.8,钢的密度为7.6,则这种射线的吸收系数为()(注:半价层厚度是指将已知射线强度减弱为一半的某种物质厚度,ln2≈0.6931,结果精确到0.001)A.0.110B.0.112C.0.114D.0.116【解答】解:由题意可得,12=1×e﹣7.6×0.8μ,∴﹣ln2=﹣7.6×0.8μ,即6.08μ≈0.6931,则μ≈0.114.∴这种射线的吸收系数为0.114.故选:C.5.(5分)函数y=2x−2−x|x|−cosx的图象大致为()A.B.C.D.【解答】解:f(−x)=2−x−2x|−x|−cos(−x)=−2x−2−x|x|−cosx=−f(x),即函数f(x)在定义域上为奇函数,故排除D;又f(0)=0,f(1)=2−2−11−cos1>0,故排除B、C.故选:A.6.(5分)今年入冬以来,我市天机反复.在下图中统计了我市上个月前15的气温,以及相对去年同期的气温差(今年气温﹣去年气温,单位:摄氏度),以下判断错误的是()A .今年每天气温都比去年气温低B .今年的气温的平均值比去年低C .今年8﹣12号气温持续上升D .今年8号气温最低【解答】解:对于A 选项:观察“相对去年温差”折线图,发现6号相对去年温差为正值,即1号气温比去年高,故A 选项错误;对于B 选项:观察“相对去年温差”折线图,发现除6,7号相对去年温差为正值,5号相对去年温差为0,其余几号相对去年温差为负值,所以今年的气温的平均值比去年低,故B 选项正确;对于C 选项:观察“今年气温”折线图即可发现今年8﹣12号气温持续上升,故选项C 正确;对于D 选项:观察“今年气温”折线图即可发现今年8号气温最低,故选项D 正确; 故选:A .7.(5分)在△ABC 中,点D 为AB 边上一点,且AD →=14AB →,则CD →=( )A .34CA →+14CB →B .−34CA →−14CB →C .−34CA →+14CB →D .14CA →+34CB →【解答】解:作DE ∥BC ,DF ∥AC , 又AD →=14AB →,CD →=CE →+CF →=34CA →+14CB →, 故选:A .8.(5分)已知F 为抛物线y 2=4x 的焦点,过点F 且斜率为1的直线交抛物线于A ,B 两点,则||F A |﹣|FB ||的值等于( ) A .8√2B .8C .4√2D .4【解答】解:F (1,0),故直线AB 的方程为y =x ﹣1, 联立方程组{y 2=4x y =x −1,可得x 2﹣6x +1=0,设A (x 1,y 1),B (x 2,y 2),由根与系数的关系可知x 1+x 2=6,x 1x 2=1. 由抛物线的定义可知:|F A |=x 1+1,|FB |=x 2+1,∴||F A |﹣|FB ||=|x 1﹣x 2|=√(x 1+x 2)2−4x 1x 2=√36−4=4√2. 故选:C .9.(5分)要得到函数y =sin(2x −π6)的图象,只需将函数y =sin(x −π6)的图象( ) A .横坐标缩小到原来的12,纵坐标不变B .横坐标扩大到原来的2倍,纵坐标不变C .纵坐标缩小到原来的12,横坐标不变D .纵坐标扩大到原来的2倍,横坐标不变【解答】解:根据题意,把函数y =sin(x −π6)的图象上各点的纵坐标不变,横坐标缩小到原来的12即可得到y =sin (2x −π6)的图象.故选:A .10.(5分)设a =ln 3,则b =lg 3,则( ) A .a +b >a ﹣b >abB .a +b >ab >a ﹣bC .a ﹣b >a +b >abD .a ﹣b >ab >a +b【解答】解:因为(a +b )﹣(a ﹣b )=2b =2lg 3>0, 所以a +b >a ﹣b , ab =ln 3lg 3>0,a−b ab=1b−1a=1lg3−1ln3=1ln3ln10−1ln3=ln10ln3−1ln3=ln10−1ln3ln 10e ln3=log 310e>1,所以a ﹣b >ab , 所以a +b >a ﹣b >ab , 故选:A .11.(5分)已知四棱锥P ﹣ABCD 的五个顶点都在球O 的球面上,AB =AD =CD ,BC ∥AD ,∠ABC =60°,△P AB 是等边三角形,若四棱锥P ﹣ABCD 体积的最大值9√3,则球O 的表面积为( ) A .56πB .54πC .52πD .50π【解答】解:四棱锥P ﹣ABCD 的五个顶点都在球O 的球面上,如图:四棱锥P ﹣ABCD 体积的最大值9√3,只有平面P AB 与底面ABCD 垂直,并且底面ABCD 面积取得最大值时,几何体的体积最大,因为AB =AD =CD ,BC ∥AD ,∠ABC =60°,可得ABCD 是正六边形的一半,设AB =AD =CD =a , 则四棱锥的体积的最大值为:13×√32a ×3a 2×√32a =9√3, 解得a =2√3.此时,底面ABCD 的外心为E ,外接球的球心为O ,外接球的半径为R , 所以R =(13×32×2√3)2+(2√3)2=√13, 所以外接球的表面积为:4π×(√13)2=52π. 故选:C .12.(5分)设一个正三棱柱ABC ﹣DEF ,每条棱长都相等,一只蚂蚁从上底面ABC 的某顶点出发,每次只沿着棱爬行并爬到另一个顶点,算一次爬行,若它选择三个方向爬行的概率相等,若蚂蚁爬行10次,仍然在上底面的概率为P 10,则P 10为( ) A .14⋅(13)10+12B .(13)11+12C .(13)11−12D .12⋅(13)10+12【解答】解:设蚂蚁爬n 次仍在上底面的概率为P n ,那么它前一步只有两种情况: A :如果本来就在上底面,再走一步要想不掉下去,只有两条路,其概率是23P n ﹣1;B :如果是上一步在下底面,则第n ﹣1步不再上底面的概率是1﹣P n ﹣1,如果爬上来,其概率应是13(1﹣P n ﹣1).A ,B 事件互斥,因此,P n =23P n ﹣1+13(1﹣P n ﹣1); 整理得,P n =13P n ﹣1+13;即P n −12=13(P n ﹣1−12);构造等比数列{P n −12},公比为13,首项为P 1−12=23−12=16,可得P n =12(13)n +12.因此第10次仍然在上底面的概率P 10=12(13)10+12.故选:D .二.填空题(共4小题,满分20分,每小题5分) 13.(5分)(√x 3−2x)4的展开式中,常数项是 ﹣8 . 【解答】解:二项式(√x 3−2x)4的展开式的通项公式为 T r +1=∁4r •(√x 3)4﹣r •(﹣2)r •x ﹣r =∁4r •(﹣2)r •x 4−4r 3.令x 的幂指数4−4r 3=0,解得r =1,∴展开式中的常数项为: T 2=∁41•(﹣2)1=﹣8. 故答案为:﹣8.14.(5分)已知实数x ,y 满足约束条件{x ≤2x −y +1≥02x +y −4≥0,则z =3x +y 的取值范围为 [5,9] .【解答】解:作出所对应的可行域(如图阴影),变形目标函数可得y =﹣3x +z ,作出直线y =﹣3x ,经平移直线知,当直线过点C (1,2)时,z =3x +y 取最小值5, 当直线过点A (2,3)时,z =3x +y 取最大值9, 故z =3x +y 的取值范围为:[5,9] 故答案为:[5,9]. 15.(5分)若双曲线x 2m−y 2=1与x 23−y 22=1有相同的焦点,则实数m = 4 .【解答】解:由双曲线x 23−y 22=1,得c 1=√3+2=√5,则双曲线x 23−y 22=1的焦点坐标为(±√5,0);由双曲线x 2m −y 2=1,得c 2=√m +1,则双曲线x 2m −y 2=1的焦点坐标为(±√m +1,0), ∵双曲线x 2m −y 2=1与x 23−y 22=1有相同的焦点,∴√m +1=√5,即m =4. 故答案为:4.16.(5分)已知函数f (x )=13x 3−ex 2+ax ,g(x)=lnx x ,对于任意的x 1∈[12,e],存在x 2∈[12,e],使f '(x 1)≤g (x 2),则实数a 的取值范围为 (−∞,e +1e −14] ;若不等式f (x )+16x 3<xg (x )有且仅有一个整数解,则实数a 的取值范围为 [2e −2+ln22,3e −92+ln33) .【解答】解:对于任意的x 1∈[12,e],存在x 2∈[12,e],使f '(x 1)≤g (x 2),即函数f ′(x )在[12,e]上的最大值小于等于函数g (x )在[12,e]上的最大值,f ′(x )=x 2﹣2ex +a 的对称轴为x =e ,易知,函数f ′(x )在[12,e]上的最大值为f ′(12)=14−e +a , g ′(x)=1−lnxx 2,令g ′(x )=0,解得x =e , 当x ∈(0,e )时,g ′(x )>0,g (x )为增函数,故函数g (x )在[12,e]上的最大值为g(e)=1e , ∴14−e +a ≤1e,∴a ≤e +1e −14,即实数a 的取值范围为(−∞,e +1e −14]; 不等式f (x )+16x 3<xg (x )即为12x 3−ex 2+ax <lnx ,∴a <lnx x +ex −12x 2有且仅有一个整数解, 令ℎ(x)=lnxx +ex −12x 2,则ℎ′(x)=1−lnxx 2+e −x ,易知,函数h ′(x )在(0,+∞)上为减函数,且h ′(e )=0,∴当x ∈(0,e )时,h ′(x )>0,函数h (x )单调递增, 当x ∈(e ,+∞)时,h ′(x )<0,函数h (x )单调递减, ∴函数h (x )在x =e 处取得最大值, 作函数h (x )的草图如下,由2<e <3,h (2)<h (3)及函数图象可知,要使a <lnx x +ex −12x 2有且仅有一个整数解,则需h(2)≤a<h(3),即2e−2+ln22≤a<3e−92+ln33,故答案为:(−∞,e+1e−14];[2e−2+ln22,3e−92+ln33).三.解答题(共5小题,满分60分,每小题12分)17.(12分)已知数列{a n}满足a1=1,a n=2a n﹣1+2n﹣1(n≥2),数列{b n}满足b n=a n+2n+3.(Ⅰ)求证数列{b n}是等比数列;(Ⅱ)求数列{a n}的前n项和S n.【解答】解:(Ⅰ)证明:当n=1时,a1=1,故b1=6.当n≥2时,a n=2a n﹣1+2n﹣1,则b n=a n+2n+3=2(a n﹣1+2n﹣1+2n+3=2[a n﹣1+2(n﹣1)+3],∴b n=2b n﹣1,∴数列列{b n}是等比数列,首项为6,公比为2.(Ⅱ)由(Ⅰ)得b n=3×2n,∴a n=b n﹣2n﹣3=3×2n﹣2n﹣3,∴S n=3×(2+22+……+2n)﹣[5+7+……+(2n+3)]=3×2(2n−1)2−1−n(5+2n+3)2=3×2n+1﹣n2﹣4n﹣6.18.(12分)四棱锥S﹣ABCD中,底面ABCD是边长为2的正方形,侧面SAD为正三角形,SC=2√2,E为AD的中点.(Ⅰ)证明:平面SAD⊥平面ABCD;(Ⅱ)求直线SB与平面SEC所成角的正弦值.【解答】解:(Ⅰ)证明:∵侧面SAD为正三角形,E为AD的中点,∴SE ⊥AD ,∵底面ABCD 是边长为2的正方形,侧面SAD 为正三角形,SC =2√2,E 为AD 的中点. ∴SE =√4−1=√3,CE =√4+1=√5,∴SE 2+CE 2=SC 2,∴SE ⊥CE , ∵AD ∩CE =E ,∴SE ⊥平面ABCD , ∵SE ⊂平面SAD ,∴平面SAD ⊥平面ABCD .(Ⅱ)解:以E 为原点,EA 为x 轴,过E 作AB 的平行线为y 轴,ES 为z 轴,建立空间直角坐标系,则S (0,0,√3),B (1,2,0),E (0,0,0),C (﹣1,2,0), SB →=(1,2,√3),ES →=(0,0,√3),EC →=(﹣1,2,0), 设平面SEC 的法向量n →=(x ,y ,z ),则{n →⋅ES →=√3z =0n →⋅EC →=−x +2y =0,取y =1,得n →=(2,1,0), 设直线SB 与平面SEC 所成角为θ, 则直线SB 与平面SEC 所成角的正弦值为: sin θ=|SB →⋅n →||SB →|⋅|n →|=4√8⋅√5=√105.19.(12分)如图,已知椭圆E 的右焦点为F 2(1,0),P ,Q 为椭圆上的两个动点,△PQF 2周长的最大值为8.(Ⅰ)求椭圆E 的标准方程;(Ⅱ)直线1经过F 2,交椭圆E 于点A ,B ,直线m 与直线l 的倾斜角互补,且交椭圆E 于点M ,N ,|MN |2=4|AB |,求证:直线m 与直线l 的交点T 在定直线上.【解答】解:(1)由已知,得c =1,4a =8,即a =2,则b =√3, 则椭圆E 的标准方程为x24+y 23=1,(2)若直线l 的斜率不存在,直线m 的斜率也不存在,这与两直线交与点P 矛盾, 即直线l 的斜率存在,设直线l 为y =k (x ﹣1),(k ≠0),直线m 为y =﹣k (x +t ),A (x A ,y A ),B (x B ,y B ),P (x P ,y P ),Q (x Q ,y Q ),将直线m 的带入椭圆方程:(3+4k 2)x 2+8k 2tx +4(k 2t 2﹣3)=0, 则x M +x N =−8k 2t3+4k 2,x M x N=4(k 2t 2−3)3+4k2,则|MN |2=(1+k 2)16(12k 2−3k 2t 2+9)(3+4k 2)2,同理|AB |=√1+k24√9k 2+93+4k2=12(1+k 2)3+4k2,令|MN |2=4|AB |,得t =0,此时△=16k 4t 2﹣16(3+4k 2)(k 2t 2﹣3)>0, 所以直线m :y =﹣kx , 则P (12,−12k ),即P 在定直线x =12上20.(12分)某区组织群众性登山健身活动,招募了N 名师生志愿者,现将所有志愿者按年龄情况分为15~20,20~25,25~30,30~35,35~40,40~45六组,其频率分布直方图如图所示:已知30~35之间的志愿者共8人. (1)求N 和20~30之间的志愿者人数N 1;(2)组织者从35~45之间的志愿者(其中共有4名女教师,其余全为男教师)中随机选取3名担任后勤保障工作,记其中女教师的数量为ξ,求随机变量ξ的概率分布列和数学期望.【解答】解:(1)30﹣35之间的频率为0.04×5=0.2,由于30﹣35之间的志愿者共8人,∴N=80.2=40;20﹣30之间的频率为1﹣(0.01+0.04+0.02+0.01)×5=0.6,∴N1=0.6×40=24;(2)35~45之间共有5×(0.01+0.02)×40=6人,其中4名女教师,2名男教师,从中选取三人,则女教师的数量为ξ的取值可为1,2,3,所以P(ξ=1)=C41C22C63=15;P(ξ=2)=C42C21C63=35;P(ξ=3)=C43C63=15;所以,分布列为ξ123P(ξ=k)153515所以,数学期望为Eξ=1×15+2×35+3×15=2.21.(12分)已知函数f(x)=(12x2−ax)lnx−12x2+32ax.(1)讨论函数f(x)的极值点;(2)若f(x)极大值大于1,求a的取值范围.【解答】解:f′(x)=(x−a)lnx+12x−a−x+32a=(x−a)(lnx−12)(1)①a≤0时,f(x)在(0,√e)单减,(√e,+∞)单增,极小值点为x=√e②0<a<√e时,f(x)在(0,a)单增,(a,√e)单减,(√e,+∞)单增,极小值点为x=√e,极大值点为x=a③a=√e时,f(x)在(0,+∞)单增,无极值点.④a>√e时,f(x)在(0,√e)单增,(√e,a)单减,(a,+∞)单增,极小值点为x=a,极大值点为x=√e.(2)由(1),a≤0和a=√e时,无极大值,不成立.当a>√e时,极大值f(√e)=a√e−e4>1,解得a>√e4√e,∵√e4+√e−√e=√e−3√e 4=√e(1−3e4)<0,∴a>√e.当0<a<√e时,极大值f(a)=12a2(2−lna)>1,得2−lna>2a2,令t=a2,则g(t)=2−12lnt−2t,g′(t)=−12t+2t2=4−t2t2,g(t)在t=4取得极大值g(4)>0,且g(1)=0,而a<√e,t<e,而g(t)在(1,e)单增,∴g(t)>0解为(1,e),则a∈(1,√e),综上a∈(1,√e)∪(√e,+∞).四.解答题(共1小题,满分10分,每小题10分)22.(10分)在直角坐标系xOy中,曲线C1的参数方程为{x=√2+√2cosαy=√2sinα(α是参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=4sinθ.(1)求曲线C1的极坐标方程和曲线C2的直角坐标方程;(2)若射线θ=β(0<β<π2)与曲线C1交于O,A两点,与曲线C2交于O,B两点,求|OA|+|OB|取最大值时tanβ的值.【解答】解:(1)由{x=√2+√2cosαy=√2sinα(α是参数),得x2−2√2x+y2=0,∴ρ2−2√2ρcosθ=0,即ρ=2√2cosθ,∴曲线C1的极坐标方程为ρ=2√2cosθ.由ρ=4sinθ,得ρ2=4ρsinθ,将ρ2=x2+y2,y=ρsinθ代入得:x2+y2=4y,故曲线C2的直角坐标方程为x2+y2﹣4y=0.(2)设点A、B的极坐标分别为(ρ1,θ),(ρ2,θ),将θ=β(0<β<π2)分别代入曲线C1、C2极坐标方程得:ρ1=2√2cosβ,ρ2=4sinβ,则|OA|+|OB|=2√2cosβ+4sinβ=2√6sin(β+φ),其中φ为锐角,且满足sinφ=√33,cosφ=√6 3,当β+φ=π2时,|OA|+|OB|取最大值,此时β=π2−φ,tanβ=tan(π2−φ)=sin(π2−φ)cos(π2−φ)=cosφsinφ=√63√33=√2.五.解答题(共1小题)23.已知函数f(x)=|x﹣m|﹣|x+2|(m∈R),不等式f(x﹣2)≥0的解集为(﹣∞,4].(1)求m的值;(2)若a>0,b>0,c>3,且a+2b+c=2m,求(a+1)(b+1)(c﹣3)的最大值.【解答】解:(1)∵f(x)=|x﹣m|﹣|x+2|,∴f(x﹣2)=|x﹣m﹣2|﹣|x|≥0的解集为(﹣∞,4],∴|x﹣m﹣2|≥|x|,解得m+2=8,即m=6.(2)∵m=6,∴a+2b+c=12.又∵a>0,b>0,c>3,∴(a+1)(b+1)(c−3)=(a+1)(2b+2)(c−3)2≤12[(a+1)+(2b+2)+(c−3)3]3=1 2(a+2b+c3)3=12(123)3=32,当且仅当a+1=2b+2=c﹣3,结合a+2b+c=12解得a=3,b=1,c=7时,等号成立,∴(a+1)(b+1)(c﹣3)的最大值为32.。