排列与排列数公式(一)

合集下载

排列与排列数公式

排列与排列数公式

考点二:排列数的应用
例1:计算 (1) A53
(2)
2
A85 A88
7 A84 A95
总结:排列数公式中连乘积的特点是:第一个因数是n,后面每一个因数都比它前面一个 因数少1,最后一个因数是n-m+1,共有m个因数相乘.
A 例2:用 m 表示下列式子 n
(1)19×18×17×…×10×9等于( )
特殊情况
Ann=__n_!_,1!=__1 ,0!=_1_
思考:排列与排列数有何区别?
[提示] “一个排列”是指:从n个不同的元素中任取m(m≤n)个元素,
按照一定的顺序排成一列,不是数;“排列数”是指从n个不同元素中取出
m(m≤n)个元素的所有排列的个数,是一个数.所以符号A
m n
只表示排列数,
[答案] (1)× (2)√ (3)× (4)√ (5)√
练习
1.判断下列问题是否为排列问题. (1)北京、上海、天津三个民航站之间的直达航线的飞机票的价格(假设来 回的票价相同); (2)选2个小组分别去植树和种菜; (3)选2个小组去种菜; (4)选10人组成一个学习小组; (5)选3个人分别担任班长、学习委员、生活委员; (6)同宿舍4人,每两人互通一封信, (7)同宿舍4人,每两人通一次电话,
全排列的概念
n个不同元素__全_部__取__出____的一个排列
阶乘的概念
把_n_·(_n_-__1_)_·…__·_2_·_1记作n!,读作:n的阶乘
Anm=___n_(_n_-__1_)…__(_n_-__m__+__1_) ____
排列数公式
n! 阶乘式Anm=__n_-__m__!___ (n,m∈N*,m≤n)
练习
而不表示具体的排列.

1.2.1.2排列与排列数公式

1.2.1.2排列与排列数公式

林老师网络编辑整理
21
【习练·破】
1.已知
A
m n
=11×10×9×8×…×5,则m+n为______.
【解析】因为
A
m n
=11×10×9×8×…×5,所以n=11,m=(11-
5)+1=7,m+n=18.
答案:18
林老师网络编辑整理
22
2.计算:
A
6 7

A56
A54
=________.
【解析】A
3
林老师网络编辑整理
28
【素养·探】
在根据排列数的公式解决与其有关问题的过程中,经常
用到核心素养中的数学运算,通过题中条件的分析选择
合适的公式,再将其转化为整式方程求解.
将本例2中的“
3A3x

2A
2 x1

6A2x”改为“ 3A2x

2A
2 x1

A32”,
则结果如何?
林老师网络编辑整理
29
6

8! ,
10 x!
化简得x2-19x+84<0,解得7<x<12,①

x x

8,所以2≤x≤8,②
2 0,
由①②及x∈N*,得x=8.
林老师网络编辑整理
34
【内化·悟】 当含排列数的方程和不等式问题中m的值较小时,适合 排列数公式的哪种形式? 提示:排列数公式的乘积式.
林老师网络编辑整理
35
【类题·通】 解决与排列数有关的方程、不等式问题的注意问题
利用排列数公式展开即得到关于x的方程(或不等式), 但由于x存在于排列数中,故应考虑排列数对x的制约, 避免出现增根.

高中数学选修2-3-排列与组合

高中数学选修2-3-排列与组合

排列与组合知识集结知识元排列与排列数公式知识讲解1.排列及排列数公式【考点归纳】1.定义(1)排列:一般地,从n个不同的元素中任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.(其中被取的对象叫做元素)(2)排列数:从n个不同的元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号表示.2.相关定义:(1)全排列:一般地,n个不同元素全部取出的一个排列,叫做n个不同元素的一个全排列.(2)n的阶乘:正整数由1到n的连乘积,叫做n的阶乘,用n!表示.(规定0!=1)3.排列数公式(1)排列计算公式:=.m,n∈N+,且m≤n.(2)全排列公式:=n•(n﹣1)•(n﹣2)•…•3•2•1=n!.例题精讲排列与排列数公式例1.(x-2)(x-3)(x-4)…(x-15)(x∈N+,x>15)可表示为()A.A B.A C.A D.A例2.若=12,则n=()A.8B.7C.6D.4例3.已知=15,那么=()A.20B.30C.42D.72组合与组合数公式知识讲解1.组合及组合数公式【考点归纳】1.定义(1)组合:一般地,从n个不同元素中,任意取出m(m≤n)个元素并成一组,叫做从n个元素中任取m个元素的一个组合.(2)组合数:从n个不同元素中,任意取出m(m≤n)个元素的所有组合的个数,叫做从n 个不同元素中,任意取出m个元素的组合数,用符号表示.2.组合数公式:=.m,n∈N+,且m≤n.3.组合数的性质:性质1性质2.例题精讲组合与组合数公式例1.'排球单循环赛南方球队比北方球队多9支南方球队总得分是北方球队的9倍求证冠军是一支南方球队(胜得1分败得0分).'例2.'一个袋子里装有大小相同且标有数字1~5的若干个小球,其中标有数字1的小球有1个,标有数字2的小球有2个,…,标有数字5的小球有5个.(Ⅰ)从中任意取出1个小球,求取出的小球标有数字3的概率;(Ⅱ)从中任意取出3个小球,求其中至少有1个小球标有奇数数字的概率;(Ⅲ)从中任意取出2个小球,求小球上所标数字之和为6的概率.'例3.'求C3n38-n+C21+n3n的值.'排列组合的简单计数问题知识讲解1.排列、组合及简单计数问题【知识点的知识】1、排列组合问题的一些解题技巧:①特殊元素优先安排;②合理分类与准确分步;③排列、组合混合问题先选后排;④相邻问题捆绑处理;⑤不相邻问题插空处理;⑥定序问题除法处理;⑦分排问题直排处理;⑧“小集团”排列问题先整体后局部;⑨构造模型;⑩正难则反、等价转化.对于无限制条件的排列组合问题应遵循两个原则:一是按元素的性质分类,二是按时间发生的过程进行分步.对于有限制条件的排列组合问题,通常从以下三个途径考虑:①以元素为主考虑,即先满足特殊元素的要求,再考虑其他元素;②以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;③先不考虑限制条件,计算出排列或组合数,再减去不符合要求的排列或组合数.2、排列、组合问题几大解题方法:(1)直接法;(2)排除法;(3)捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们“局部”的排列.它主要用于解决“元素相邻问题”;(4)插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决“元素不相邻问题”;(5)占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特殊后一般”的解题原则;(6)调序法:当某些元素次序一定时,可用此法;(7)平均法:若把kn个不同元素平均分成k组,每组n个,共有;(8)隔板法:常用于解正整数解组数的问题;(9)定位问题:从n个不同元素中每次取出k个不同元素作排列规定某r个元素都包含在内,并且都排在某r个指定位置则有;(10)指定元素排列组合问题:①从n个不同元素中每次取出k个不同的元素作排列(或组合),规定某r个元素都包含在内.先C后A策略,排列;组合;②从n个不同元素中每次取出k个不同元素作排列(或组合),规定某r个元素都不包含在内.先C后A策略,排列;组合;③从n个不同元素中每次取出k个不同元素作排列(或组合),规定每个排列(或组合)都只包含某r个元素中的s个元素.先C后A策略,排列;组合.例题精讲排列组合的简单计数问题例1.的展开式中,x的系数为___(用数字作答)例2.在的展开式中,x4的系数是____.例3.若,则n的展开式中,含x2项的系数为_______.当堂练习单选题练习1.计算2+3的值是()A.72B.102C.5070D.5100练习2.=()A.30B.24C.20D.15练习3.6本不同的书在书桌上摆成一排,要求甲,乙两本书必须放在两端,丙、丁两本书必须相邻,则不同的摆放方法有()种。

2020届高中数学分册同步讲义(选修2-3) 第1章 1.2.1 第1课时 排列与排列数公式

2020届高中数学分册同步讲义(选修2-3) 第1章 1.2.1 第1课时 排列与排列数公式

§1.2排列与组合1.2.1排列第1课时排列与排列数公式学习目标1.理解并掌握排列的概念.2.理解并掌握排列数公式,能应用排列知识解决简单的实际问题.知识点一排列的定义一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.知识点二排列数的定义及公式1.排列数的定义从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m 个元素的排列数,用符号A m n表示.2.排列数公式A m n=n(n-1)(n-2)…(n-m+1)(n,m∈N*,m≤n)=n!(n-m)!.A n n=n(n-1)(n-2)…2·1=n!(叫做n的阶乘).另外,我们规定0!=1.1.123与321是相同的排列.(×)2.同一个排列中,同一个元素不能重复出现.(√)3.在一个排列中,若交换两个元素的位置,则该排列不发生变化.(×)4.从4个不同元素中任取3个元素,只要元素相同得到的就是相同的排列.(×)一、排列的概念例1判断下列问题是否为排列问题:(1)北京、上海、天津三个民航站之间的直达航线的飞机票的价格(假设来回的票价相同);(2)选2个小组分别去植树和种菜;(3)选2个小组去种菜;(4)选10人组成一个学习小组;(5)选3个人分别担任班长、学习委员、生活委员;(6)某班40名学生在假期相互通信.解(1)中票价只有三种,虽然机票是不同的,但票价是一样的,不存在顺序问题,所以不是排列问题.(2)植树和种菜是不同的,存在顺序问题,属于排列问题.(3)(4)不存在顺序问题,不属于排列问题.(5)中每个人的职务不同,例如甲当班长或当学习委员是不同的,存在顺序问题,属于排列问题.(6)A给B写信与B给A写信是不同的,所以存在着顺序问题,属于排列问题.所以在上述各题中(2)(5)(6)是排列问题,(1)(3)(4)不是排列问题.反思感悟判断一个具体问题是否为排列问题的思路跟踪训练1判断下列问题是否为排列问题.(1)会场有50个座位,要求选出3个座位有多少种方法?若选出3个座位安排三位客人,又有多少种方法?(2)从集合M={1,2,…,9}中,任取两个元素作为a,b,可以得到多少个焦点在x轴上的椭圆方程x2a2+y2b2=1?可以得到多少个焦点在x轴上的双曲线方程x2a2-y2b2=1?(3)平面上有5个点,其中任意三个点不共线,这5个点最多可确定多少条直线?可确定多少条射线?解(1)第一问不是排列问题,第二问是排列问题.“入座”问题同“排队”问题,与顺序有关,故选3个座位安排三位客人是排列问题.(2)第一问不是排列问题,第二问是排列问题.若方程x2a2+y2b2=1表示焦点在x轴上的椭圆,则必有a>b,a,b的大小关系一定;在双曲线x2a2-y2b2=1中,不管a>b还是a<b,方程x2a2-y2b2=1均表示焦点在x轴上的双曲线,且是不同的双曲线,故是排列问题.(3)确定直线不是排列问题,确定射线是排列问题.二、排列数公式的应用命题角度1 利用排列数公式求值例2-1 计算A 315和A 66.解 A 315=15×14×13=2 730, A 66=6×5×4×3×2×1=720. 命题角度2 利用排列数公式化简例2-2 (1)用排列数表示(55-n )(56-n )…(69-n )(n ∈N *且n <55); (2)化简n (n +1)(n +2)(n +3)…(n +m ).解 (1)∵55-n ,56-n ,…,69-n 中的最大数为69-n ,且共有(69-n )-(55-n )+1=15(个)数, ∴(55-n )(56-n )…(69-n )=A 1569-n .(2)由排列数公式可知n (n +1)(n +2)(n +3)…(n +m )=A m +1n +m .命题角度3 利用排列数公式证明例2-3 求证A m n +1-A m n =m A m -1n. 证明 ∵A m n +1-A mn =(n +1)!(n +1-m )!-n !(n -m )!=n !(n -m )!·⎝⎛⎭⎪⎫n +1n +1-m -1=n !(n -m )!·mn +1-m=m ·n !(n +1-m )!=m A m -1n, ∴A m n +1-A m n =m A m -1n. 反思感悟 排列数公式有两种形式,一种是连乘积的形式,另一种是阶乘的形式,若要计算含有数字的排列数的值,常用连乘积的形式进行计算,而要对含有字母的排列数的式子进行变形或作有关的论证时,一般用阶乘式.跟踪训练2 不等式A x 8<6A x -28的解集为( )A .[2,8]B .[2,6]C .(7,12)D .{8} 答案 D解析 由A x 8<6A x -28,得8!(8-x )!<6×8!(10-x )!,化简得x 2-19x +84<0,解得7<x <12,①又⎩⎪⎨⎪⎧x ≤8,x -2≥0,所以2≤x ≤8,② 由①②及x ∈N *,得x =8.三、排列的简单应用例3 用排列数表示下列问题.(1)从100个两两互质的数中取出2个数,其商的个数;(2)由0,1,2,3组成的能被5整除且没有重复数字的四位数的个数;(3)有4名大学生可以到5家单位实习,若每家单位至多招1名新员工,每名大学生至多到1家单位实习,且这4名大学生全部被分配完毕,其分配方案的个数.解 (1)从100个两两互质的数中取出2个数,分别作为商的分子和分母,其排列数为A 2100. (2)因为组成的没有重复数字的四位数能被5整除,所以这个四位数的个位数字一定是“0”,故确定此四位数,只需确定千位数字、百位数字、十位数字即可,其排列数为A 33.(3)可以理解为从5家单位中选出4家单位,分别把4名大学生安排到4家单位,其排列数为A 45. 反思感悟 首先分析问题是不是排列问题,若是排列问题,则利用定义解题.跟踪训练3 京沪高速铁路自北京南站至上海虹桥站,双线铁路全长1 318公里,途经北京、天津、河北、山东、安徽、江苏、上海7个省市,设立包括北京南、天津西、济南西、南京南、苏州北、上海虹桥等在内的21个车站,计算铁路部门要为这21个车站准备多少种不同的火车票?解 对于两个火车站A 和B ,从A 到B 的火车票与从B 到A 的火车票不同,因为每张票对应一个起点站和一个终点站.因此,结果应为从21个不同元素中,每次取出2个不同元素的排列数A 221=21×20=420(种).所以一共需要为这21个车站准备420种不同的火车票.1.排列有两层含义:一是“取出元素”,二是“按照一定顺序排成一列”.这里“一定的顺序”是指每次取出的元素与它所排的“位置”有关,所以,取出的元素与“顺序”有无关系就成为判断问题是否为排列问题的标准.2.排列数公式有两种形式,可以根据要求灵活选用.1.下面问题中,是排列问题的是()A.由1,2,3三个数字组成无重复数字的三位数B.从40人中选5人组成篮球队C.从100人中选2人抽样调查D.从1,2,3,4,5中选2个数组成集合答案 A解析选项A中组成的三位数与数字的排列顺序有关,选项B,C,D只需取出元素即可,与元素的排列顺序无关.2.A39等于()A.9×3 B.93C.9×8×7 D.9×8×7×6×5×4×3答案 C3.若A m10=10×9×…×5,则m=________.答案 64.从1,2,3,4这4个数字中选出3个数字构成无重复数字的三位数有________个.答案245.从n个不同的元素中取出m个(m≤n)元素排成一列,不同排法有________种.答案n(n-1)(n-2)…(n-m+1)一、选择题1.4·5·6·…·(n-1)·n等于()A.A4n B.A n-4nC.n!-4! D.A n-3n答案 D解析因为A m n=n(n-1)(n-2)…(n-m+1).所以A n-3n=n(n-1)(n-2)…[n-(n-3)+1]=n·(n-1)·(n-2)·…·6·5·4.2.将5本不同的数学用书放在同一层书架上,则不同的放法有()A.50 B.60 C.120 D.90答案 C解析5本书进行全排列,A55=120.3.有5名同学被安排在周一至周五值日,已知同学甲只能在周一值日,那么5名同学值日顺序的编排方案共有()A.12种B.24种C.48种D.120种答案 B解析∵同学甲只能在周一值日,∴除同学甲外的4名同学将在周二至周五值日,∴5名同学值日顺序的编排方案共有A44=24(种).4.下列各式中与排列数A m n相等的是()A.n!(n-m+1)!B.n(n-1)(n-2)…(n-m)C.n A m n -1n -m +1 D .A 1n ·A m -1n -1答案 D 解析∵A m n =n !(n -m )!,而A 1n ·A m -1n -1=n ·(n -1)![(n -1)-(m -1)]!=n !(n -m )!,∴A m n =A 1n ·A m -1n -1.5.从1,3,5,7,9这五个数中,每次取出两个不同的数分别为a ,b ,共可得到lg a -lg b 的不同值的个数是( )A .9B .10C .18D .20 答案 C解析 首先从1,3,5,7,9这五个数中任取两个不同的数排列,共有A 25=20(种)排法, 因为31=93,13=39,所以从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a ,b ,共可得到lg a -lg b 的不同值的个数是20-2=18.6.将4张相同的博物馆的参观票分给5名同学,每名同学至多1张,并且票必须分完,那么不同的分法的种数为( ) A .54B .45C .5×4×3×2D .5答案 D解析 由于参观票只有4张,而人数为5人,且每名同学至多1张,故一定有1名同学没有票.因此从5名同学中选出1名没有票的同学,有5种选法.又因为4张参观票是相同的,不加以区分,所以不同的分法有5种. 二、填空题7.若A 42x +1=140·A 3x ,则x =________. 答案 3解析 根据原方程,知x 应满足⎩⎪⎨⎪⎧2x +1≥4,x ≥3,x ∈N *,解得x ≥3,x ∈N *.由排列数公式,得(2x +1)·2x ·(2x -1)·(2x -2)=140x ·(x -1)·(x -2),所以x =3.8.某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了________条毕业留言.(用数字作答)答案 1 560解析 根据题意,得A 240=1 560,故全班共写了1 560条毕业留言.9.高三(一)班学生要安排毕业晚会的4个音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求2个舞蹈节目不连排,则共有________种不同的排法. 答案 3 600解析 不同排法的种数为A 55A 26=3 600(种).10.若把英语单词“good ”的字母顺序写错了,则可能出现的错误共有________种. 答案 11解析 根据题意,因为“good ”四个字母中的两个“O ”是相同的, 则其不同的排列有12×A 44=12种, 而正确的排列只有1种, 则可能出现的错误共有11种.11.5名同学排成一列,甲同学不排排头的排法种数为________.(用数字作答) 答案 96解析 可分两步:第一步,甲同学不排排头,故排头的位置可以从余下的四个同学中选一个排,有A 14种方法;第二步,余下的四个同学全排列,有A 44种不同的排法,根据分步乘法计数原理,所求的排法种数为A 14A 44=96.故填96.12.有3名大学毕业生,到5家招聘员工的公司应聘,若每家公司至多招聘一名新员工,且3名大学毕业生全部被聘用,若不允许兼职,则共有______种不同的招聘方案.(用数字作答) 答案 60解析 将5家招聘员工的公司看作5个不同的位置,从中任选3个位置给3名大学毕业生,则本题即为从5个不同元素中任取3个元素的排列问题.所以不同的招聘方案共有A 35=5×4×3=60(种). 三、解答题13.A ,B ,C ,D 四人站成一排,其中A 不站排头,写出所有的站法. 解 作出“树形图”如下:故所有的站法:BACD,BADC,BCAD,BCDA,BDAC,BDCA,CABD,CADB,CBAD,CBDA,CDAB,CDBA,DACB,DABC,DBAC,DBCA,DCAB,DCBA.14.某国的篮球职业联赛共有16支球队参加.(1)每队与其余各队在主客场分别比赛一次,共要进行多少场比赛?(2)若16支球队恰好8支来自北部赛区,8支来自南部赛区,为增加比赛观赏度,各自赛区分别采用(1)中的赛制决出赛区冠军后,再进行一场总冠军赛,共要进行多少场比赛?解(1)任意两队之间要进行一场主场比赛及一场客场比赛,对应于从16支球队任取两支的一个排列,比赛的总场次是A216=16×15=240.(2)由(1)中的分析,比赛的总场次是A28×2+1=8×7×2+1=113.15.一条铁路有n个车站,为适应客运需要,新增了m个车站,且m>1,客运车票增加了62种,问原有多少个车站?现在有多少个车站?解 由题意可知,原有车票的种数是A 2n 种,现有车票的种数是A 2n +m 种,∴A 2n +m -A 2n =62,即(n +m )(n +m -1)-n (n -1)=62.∴m (2n +m -1)=62=2×31,∵m <2n +m -1,且n ≥2,m ,n ∈N *,∴⎩⎪⎨⎪⎧ m =2,2n +m -1=31,解得m =2,n =15, 故原有15个车站,现有17个车站.。

1-1.2.1第2课时排列与排列数公式

1-1.2.1第2课时排列与排列数公式

栏目导引
排列数与排列数公式
从 n 个 不 同 元 素 中 取 出 m(m≤n) 个 元 素 排列数 的 所有不同排列的个数 ,叫做从 n 个不同 定义 元素中取出 m 个元素的排列数. 排列数 表示法 乘积 形式 形式 性质 备注
工具
Anm
Anm= n(n-1)(n-2)…(n-m+1) .
排列数 公式
工具
第一章 计算原理
栏目导引
(2)1!+2·2!+3·3!+„+n·n!
=(2!-1)+(3!-2!)+(4!-3!)+„+[(n+1)!-n!]
=(n+1)!-1.
[题后感悟]
(1)连续正整数的乘积可以写成某个排列数,其
中最大的数是排列元素的总个数,这是排列数公式的逆用.
(2)应用排列数公式的两种形式时,一般写出它们的式子后, 再提取公因式,然后计算,这样做往往会减少运算量.
数字的两位数?
(2)从1,2,3,4,5,6中选出三个数字,能构成多少个没有重复数
字的三位数?
(3)从1,2,3,4,5,6中选出四个数字,能构成多少个没有重复数 字的四位数? 观察以上问题,你认为从n个不同元素中取出m(m≤n)个元素 排成一列,有多少种不同的排法?排列数公式是什么?
工具
第一章 计算原理
工具
第一章 计算原理
栏目导引
2A85+7A84 An-1m 1· n-mn m A 1.计算:(1) ;(2) . - A88-A95 An-1n 1


2A85+7A84 解析: (1) A88-A95 2×8×7×6×5×4+7×8×7×6×5 = =1. 8×7×6×5×4×3×2×1-9×8×7×6×5 An-1m 1· n-mn A (2) - An-1n 1

10.2排列⑴-排列与排列数公式

10.2排列⑴-排列与排列数公式

1→
2→
3→
4→
5→
复习引入 引例3 引例 由1,2,3,4,5能组成多少个没有重复数 , , , , 能组成多少个没有重复数 字的三位数? 字的三位数? 第1位 第2位 第3位 要得到一个由 , , , , 能组成没有重 解: 要得到一个由1,2,3,4,5能组成没有重 复数字的三位数,可以通过如下三步: 复数字的三位数,可以通过如下三步: 中选1个放到第一位 种放法; ① 从1,2,3,4,5中选 个放到第一位,有5种放法; , , , , 中选 个放到第一位, 种放法 中剩余的4个中选 个放到第二位, ②从1,2,3,4,5中剩余的 个中选 个放到第二位, , , , , 中剩余的 个中选1个放到第二位 种放法; 有4种放法; 种放法 中剩余的3个中选 个放到第二位, ③从1,2,3,4,5中剩余的 个中选 个放到第二位, , , , , 中剩余的 个中选1个放到第二位 种放法. 有3种放法 种放法 根据分步计数原理,得到一个这样的三位数有 根据分步计数原理,得到一个这样的三位数有 N=5×4×3=60种不同的方法, 这样的三位数 个. 种不同的方法, × × = 种不同的方法 这样的三位数60个 把这个计算过程 记为:A3 = 5 × 4 × 3 = 60 5
m n m n
是以上m步的集成的运算公式! 是以上 步的集成的运算公式! 步的集成的运算公式
公式的特点: 公式的特点:
个连续自然数的连乘积; ⑴m个连续自然数的连乘积; 个连续自然数的连乘积 以下依次减1,最小因数是( ⑵最大因数为n以下依次减 ,最小因数是(n-m+1). 最大因数为 以下依次减 )
第1位→4 课堂练习 练习1 从a,b,c,d这4个字母中,每次取出 个 第2位→3 个字母中, 练习 这 个字母中 每次取出3个 按顺序排成一列,共有多少种不同的排法 共有多少种不同的排法? 按顺序排成一列 共有多少种不同的排法? 第3位→2 解:共有4×3×2 = 24个. 记为:A3 = 4 × 3 × 2 = 24 共有 × × 个 4

1.2.1-排列与排列数公式

1.2.1-排列与排列数公式
第16页,共23页。
题型三 排列应用题 【例3】 (14分)(1)从5本不同的书中选出3本送给3名同学,每人各1
本,共有多少种不同的送法? (2)从5种不同的书中买3本送给3名同学,每人各1本,共有多 少种不同的送法?
本题考查使用排列数公式的条件及分步计数原理, 应用排列数公式求排列数.
第17页,共23页。
第22页,共23页。
[正解] 坐在椅子上的6个人是走进屋子的10个人中的任意6个人,
若把人抽象地看成元素,将6把不同的椅子当成不同的位置,则
原问题抽象为从10个元素中取6个元素占据6个不同的位置.显然
是从10个元素中任取6个元素的排列问题.从而,共有A
6 10
=151
200(种)坐法.
在用排列数公式求解时需先对问题是否是排列问题 做出判断.
第7页,共23页。
解 (1)从1,2,3,4这4个数字中取出3个不同的数,有(1,2,3);(1,2,4); (1,3,4);(2,3,4)共4种取法.与顺序无关,不是排列问题. (2)画出下列树形图.
第8页,共23页。
由上面的树形图知所有的三位数为: 123,124,132,134,142,143,213,214,231,234,241,243,312,314,321,324,3 41,342,412,413,421,423,431,432,共24个三位数.所得三位数与顺 序有关,是排列问题. 规律方法 (1)理解判断一个问题是不是排列问题,关键看是否与 元素的顺序有关.若与顺序有关,就是排列问题,与顺序无关, 就不是排列问题,必要时可以变换元素的顺序比较是否有变化. (2)枚举所有排列时注意“树形图法”“列表法”等的应用.
第2页,共23页。
试一试 排列与排列数有何区别? 提示 “一个排列”是指从n个不同的元素中任取m(m≤n)个元素, 按照一定的顺序排成一列,不是数; “排列数”是指从n个不同元素中取出m(m≤n)个元素的所有排列的个 数,是一个数.所以符号A只表示排列数,而不表示具体的排列.

1[1].2.1排列第1课时 排列与排列数公式 课件(人教A版选修2-3)

1[1].2.1排列第1课时 排列与排列数公式 课件(人教A版选修2-3)
1.2
排列与组合
1.2.1 排 列
第1课时 排列与排列数公式
【课标要求】 1.了解排列、排列数的定义. 2.掌握排列数公式的推导方法. 3.能用排列数公式解决简单的排列问题.
【核心扫描】
1. 排列概念的理解.(难点) 2. 排列的简单应用.(重点) 3. 排列与排列数的区别.(易混点)
自学导引
1.排列的定义
【题后反思】
(1)题属于求排列数问题;(2)题不属于求
排列数问题,应注意它们的区别,区分的关键看“事件”是 否符合排列定义,排列的特点是先取后排,特点是序性.
【变式4】 用一颗骰子连掷三次,投掷出的数字顺序排成一个 三位数,此时: (1)各位数字互不相同的三位数有多少个? (2)可以排出多少个不同的数? (3)恰好有两个相同数字的三位数共有多少个?
题型四
排列的简单应用
【例4】 (1)有5个不同的科研小课题,从中选3个由高二(3)班
的3个学习兴趣小组进行研究,每组一个课题,共有多少
种不同的安排方法? (2)有5个不同的科研课题,高二(3)班的3个学习兴趣小组 报名参加,每组限报一项,共有多少种不同的安排方法? 审题指导 根据排列和计数原理的概念解题.
1 (3)性质:An=n!规定 A0=__,0!=1. n n
试 一 试 : 如 果 A m = 17×16×15×…×5×4 , 则 n = n ________,m=________.
提示
因为最大数为17,是17-4+1=14个数的积,
∴n=17,m=14.
名师点睛
1.对排列定义的理解 (1)排列的定义中包括两个基本内容,一是“取出元素”, 二是“按一定的顺序排列”. (2)排列的一个重要特征是每一个排列不仅与选取的元素 有关,而且与这些元素的排列顺序有关,选取的元素不同

排列及计算公式

排列及计算公式

1.排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示.p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m) 表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).两个基本计数原理及应用(1)加法原理和分类计数法1.加法原理2.加法原理的集合形式3.分类的要求每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)(2)乘法原理和分步计数法1.乘法原理2.合理分步的要求任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同[例题分析]排列组合思维方法选讲1.首先明确任务的意义例1. 从1、2、3、……、20这二十个数中任取三个不同的数组成等差数列,这样的不同等差数列有________个。

分析:首先要把复杂的生活背景或其它数学背景转化为一个明确的排列组合问题。

排列与组合

排列与组合

C +C
m n
m-1 n
=C
m n+1
计算:
(1)
( 2)
(3)
C
198 200

2 99
3
C C ; 2C C C
99
3 8 9
3
2 8
.
2 6 9 13
()计算 1 C C C C ; 2 2 2 2 (2)计算C2 C3 C4 C10 ;
0 4 1 5
3 2 3 2 C.C8 C7 C7 C8
3 2 1 D.C8 C7 C11
4、从7人中选出3人分别担任学习委员、宣传委员、体育委 员,则甲、乙两人不都入选的不同选法种数共有( D)
A.C A
2 5
3 3
B.2C A
3 5
3 3
C. A
3 5
D.2C A A
2 5 3 3
3 5
► 探究点二 有关排列与组合问题 例2 (1)[2012· 辽宁卷] 一排9个座位坐了3个三口之家.若每家 人坐在一起,则不同的坐法种数为( ) A.3×3! B.3×(3!)3 C.(3!)4 D.9! (2)将5名支教志愿者分配到3所学校,每所学校至少分1人, 至多分2人,且其中甲、乙2人不到同一所学校,则不同的分配方 法共有( ) A.78种 B.36种 [答案] (1)C (2)D C.60种 D.72种
m
m m m A C A 根据分步计数原理,得到: n n m
因此: 这里 m、n N,且 m n,这个公式叫做组合数 公式.
*
概念讲解
从 n 个不同元中取出m个元素的排列数 :
m n m m
A
C n Am

7.2.1排列与排列数公式1

7.2.1排列与排列数公式1

A
m n1
=右式
∴等式成立.
随堂练习
5 A8 A84 11 n 2n x x 2 ()计算 1 的值; (2) 计算 A A 的值; (3) 解不等式: A 6 A 2n n4 9 6 6 5 A9 A9
(1)
(3)
例4、某信号兵用红、黄、蓝3面旗从上到下挂在竖直的旗扦上 表示信号,每次可以任挂1面、2面或3面,并且不同的顺序表 示不同的信号,一共可以表示多少种不同的信号?

(2)从5名同学中任取两名干某项工作可得到多少中不同的取法?
不是
(3)平面内有10个点,无任何三点共线,由这些点可连射线多少条?

(4)某班有50个人,同学之间亮亮彼此给对方写了一封信,那 么全班共写了多少封信? 是
排列的定义:一般地说,从 n 个不同元素中,任取 m (m≤n) 个不同 的元素,按照一定的顺序排成一列,叫做从 n 个不同元素中取出 m 个元素的一个排列。 用符号 Am 表示排列的个数
9 9 8 648
A9

1
A9
1 9
1
A
9
1 8
0是“特殊元素”,特殊元素要特殊(优先)处理。
A A
2
9 9 8 648
解法二:对排列方法分类思考.符合条件的三位数可分为三类:
1类:0在个位 0
2 9
百位 十位 个位
2类:0在十位
百位 十位 个位
3类:0不在个,十位
解:分为三类: 1 第一类挂一面旗:有 A3 种信号,
2 第二类挂二面旗:有 A3 种信号 3 第三类挂三面旗:有 A3 种信号 1 2 3 由分类计算原理: + A3 + A3 =3+3×2+3×2×1 =15 A3

第九章第2讲排列与组合

第九章第2讲排列与组合

第2讲 排列与组合1.排列与排列数公式 (1)排列与排列数 从n 个不同元素中取出m (m ≤n )个元素――→按照一定的顺序排成一列排列――→所有不同排列的个数排列数 (2)排列数公式A m n=n (n -1)(n -2)…(n -m +1)=n !(n -m )!. (3)排列数的性质 ①A n n =n !;②0!=1. 2.组合与组合数公式 (1)组合与组合数从n 个不同元素中取出m (m ≤n )个元素――→合成一组组合――→所有不同组合的个数组合数(2)组合数公式C mn =A m n A m m =n (n -1)(n -2)…(n -m +1)m !=n !m !(n -m )!.(3)组合数的性质①C 0n =1;②C m n =C n -mn ;③C m n +C m -1n =C m n +1. [做一做]1.某校一年级有5个班,二年级有7个班,三年级有4个班,分年级举行班与班之间的篮球单循环赛,共需进行比赛的场数是( )A .C 25+C 27+C 24B .C 25C 27C 24C .A 25+A 27+A 24D .C 216 答案:A2.用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为( )A .8B .24C .48D .120 答案:C1.辨明两个易误点(1)易混淆排列与组合问题,区分的关键是看选出的元素是否与顺序有关,排列问题与顺序有关,组合问题与顺序无关. (2)计算A m n 时易错算为n (n -1)(n -2)…(n -m ). 2.[做一做]3.(2014·高考大纲全国卷)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种解析:选C.由题意知,选2名男医生、1名女医生的方法有C26C15=75(种).4.在一展览会上,要展出5件艺术作品,其中不同书法作品2件、不同绘画作品2件、标志性建筑设计1件,在展台上将这5件作品排成一排,要求2件书法作品必须相邻,2件绘画作品不能相邻,则该次展出这5件作品不同的摆放方案共有________种.(用数字作答)解析:将2件必须相邻的书法作品看作一个整体,同1件建筑设计展品全排列,再将2件不能相邻的绘画作品插空,故共有A22A22A23=24(种)不同的展出方案.答案:24考点一__排列应用题__________________________3名男生,4名女生,按照不同的要求排队,求不同的排队方案的方法种数.(1)选其中5人排成一排;(2)排成前后两排,前排3人,后排4人;(3)全体站成一排,男、女各站在一起;(4)全体站成一排,男生不能站在一起;(5)全体站成一排,甲不站排头也不站排尾.[解](1)问题即为从7个元素中选出5个全排列,有A57=2 520(种)排法.(2)前排3人,后排4人,相当于排成一排,共有A77=5 040(种)排法.(3)相邻问题(捆绑法):男生必须站在一起,是男生的全排列,有A33种排法;女生必须站在一起,是女生的全排列,有A44种排法;全体男生、女生各视为一个元素,有A22种排法,由分步乘法计数原理知,共有N =A33·A44·A22=288(种).(4)不相邻问题(插空法):先安排女生共有A44种排法,男生在4个女生隔成的五个空中安排共有A35种排法,故N=A44·A35=1 440(种).(5)先安排甲,从除去排头和排尾的5个位中安排甲,有A15=5(种)排法;再安排其他人,有A66=720(种)排法.所以共有A15·A66=3 600(种)排法.在本例条件下,求不同的排队方案的方法种数:(1)甲不在中间也不在两端;(2)甲、乙两人必须排在两端.解:(1)先排甲有4种,其余有A66种,故共有4·A66=2 880(种)排法.(2)先排甲、乙,再排其余5人,共有A22·A55=240(种)排法.[规律方法]考点二__组合应用题__________________________要从5名女生,7名男生中选出5名代表,按下列要求,分别有多少种不同的选法?(1)至少有1名女生入选;(2)男生甲和女生乙入选;(3)男生甲、女生乙至少有一个人入选.[解](1)法一:至少有1名女生入选包括以下几种情况:1女4男,2女3男,3女2男,4女1男,5女.由分类加法计数原理知总选法数为C15C47+C25C37+C35C27+C45C17+C55=771(种).法二:“至少有1名女生入选”的反面是“全是男代表”可用间接法求解.从12名人中任选5人有C512种选法,其中全是男代表的选法有C57种.所以“至少有1名女生入选”的选法有C512-C57=771(种).(2)男生甲和女生乙入选,即只要再从除男生甲和女生乙外的10人中任选3名即可,共有C22C310=120(种)选法.(3)间接法:“男生甲、女生乙至少有一个人入选”的反面是“两人都不入选”,即从其余10人中任选5人有C510种选法,所以“男生甲、女生乙至少有一个人入选”的选法数为C512-C510=540(种).在本例条件下,求至多有2名女生入选的选法种数.解:至多有2名女生入选包括以下几种情况:0女5男,1女4男,2女3男,由分类加法计数原理知总选法数为C57+C15C47+C25C37=546(种).[规律方法]解决组合类问题的方法:(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“最多”含有几个元素的题型:解这类题必须十分重视“至少”与“最多”这两个关键词的含义,谨防重复与漏解.用直接法和间接法都可以求解.通常用直接法分类复杂时,考虑逆向思维,用间接法处理.考点三__排列、组合的综合应用(高频考点)______排列与组合是高考命题的一个热点,多以选择题或填空题的形式呈现,试题难度不大,多为容易题或中档题.高考对排列与组合综合应用题的考查主要有以下四个命题角度:(1)分配问题;(2)排列问题;(3)定位问题;(4)选派问题.(1)(2014·高考四川卷)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种(2)(2015·兰州市、张掖市联合诊断)某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,甲和丙只能同去或同不去,则不同的选派方案共有()A.150种B.300种C.600种D.900种(2)若甲去,则乙不去,丙去,再从剩余的5名教师中选2名,有C25×A44=240种方法;若甲不去,则丙不去,乙可去可不去,从6名教师中选4名,共有C46×A44=360种方法.因此共有600种不同的选派方案.(3)(2014·高考北京卷)把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有________种.[解析](1)第一类:甲在最左端,有A55=5×4×3×2×1=120(种)方法;第二类:乙在最左端,有4A44=4×4×3×2×1=96(种)方法.所以共有120+96=216(种)方法.(3)将产品A与B捆绑在一起,然后与其他三种产品进行全排列,共有A22A44种方法,将产品A,B,C捆绑在一起,且A在中间,然后与其他两种产品进行全排列,共有A22A33种方法.于是符合题意的排法共有A22A44-A22A33=36(种).[答案](1)B(2)C(3)36[规律方法]解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).(1)(2014·高考辽宁卷)6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为()A.144 B.120C.72 D.24(2)(2015·东北三校联合模拟)一个五位自然数a1a2a3a4a5,a i∈{0,1,2,3,4,5},i=1,2,3,4,5,当且仅当a1>a2>a3,a3<a4<a5时称为“凹数”(如32 014,53 134等),则满足条件的五位自然数中“凹数”的个数为()A.110 B.137 C.145 D.146(3)将6名教师分到3所中学任教,一所1名,一所2名,一所3名,则有________种不同的分法.(3)将6名教师分组,分三步完成:第一步,在6名教师中任取1名作为一组,有C16种取法;第二步,在余下的5名教师中任取2名作为一组,有C25种取法;第三步,余下的3名教师作为一组,有C33种取法.根据分步乘法计数原理,共有C16C25C33=60种取法.再将这3组教师分配到3所中学,有A33=6种分法.故共有60×6=360种不同的分法.(4)(2015·保定市调研考试)已知集合M={1,2,3,4,5,6},集合A、B、C为M的非空子集,若∀x∈A、y∈B、z∈C,x<y<z恒成立,则称“A—B—C”为集合M的一个“子集串”,则集合M的“子集串”共有________个.解析:(1)插空法.在已排好的三把椅子产生的4个空档中选出3个插入3人即可.故排法种数为A34=24.故选D.(2)分四种情况进行讨论:①a3是0,a1和a2有C25种排法,a4和a5有C25种排法,则五位自然数中“凹数”有C25C25=100个;②a3是1,有C24C24=36个;③a3是2,有C23C23=9个;④a3是3,有C22C22=1个.由分类加法计数原理知五位自然数中“凹数”共有100+36+9+1=146个.(4)由题意可先分类,再分步:第一类,将6个元素全部取出来,可分两步进行:第一步,取出元素,有C66种取法,第二步,分成三组,共C25种分法,所以共有C66C25个子集串;第二类,从6个元素中取出5个元素,共C56种取法,然后将这5个元素分成三组共C24种分法,所以共有C56C24个子集串;同理含4个元素的子集串数为C46C23;含3个元素的子集串数为C36C22.集合M的子集串共C66C25+C56C24+C46C23+C36C22=111个.答案:(1)D(2)D(3)360(4)111方法思想——分类讨论思想求解排列、组合问题(2014·高考重庆卷)某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72B.120 C.144 D.168[解析]解决该问题分为两类:第一类分两步,先排歌舞类A33,然后利用插空法将剩余3个节目排入左边或右边3个空,故不同排法有A33·2A33=72.第二类也分两步,先排歌舞类A33,然后将剩余3个节目放入中间两空排法有C12A22A22,故不同的排法有A33A22A22C12=48,故共有120种不同排法,故选B.[答案] B[名师点评]对于有附加条件的排列组合问题应遵循两个原则:一是按元素的性质分类,二是按事件发生的过程分类.本题在排歌舞类节目后再进行分类,把剩余3个节目插入两个空还是三个空.1.航空母舰“辽宁舰”在某次舰载机起降飞行训练中,有5架歼-15飞机准备着舰.如果甲、乙两机必须相邻着舰,而甲、丁两机不能相邻着舰,那么不同的着舰方法有()A.12种B.16种C.24种D.36种解析:选D.当甲排在边上时,有2A33=12种方法;当甲不排在边上时,有12A22=24种方法,这样一共有12+24=36种不同的着舰方法.2.(2014·高考浙江卷)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种(用数字作答).解析:把8张奖券分4组有两种分法,一种是分(一等奖,无奖)、(二等奖,无奖)、(三等奖,无奖)、(无奖,无奖)四组,分给4人有A44种分法;另一种是一组两个奖,一组只有一个奖,另两组无奖,共有C23种分法,再分给4人有C23A24种分法,所以不同获奖情况种数为A44+C23A24=24+36=60.答案:601.数列{a n}共有六项,其中四项为1,其余两项各不相同,则满足上述条件的数列{a n}共有() A.30个B.31个C.60个D.61个解析:选A.在数列的六项中,只要考虑两个非1的项的位置,即得不同数列,共有A26=30个不同的数列.2.(2015·昆明市第一次摸底)从4部甲型和5部乙型手机中任意取出3部,其中至少要有甲型与乙型手机各1部,则不同取法共有()A.35种B.70种C.84种D.140种解析:选B.由题知不同取法有C14C25+C24C15=70种.3.(2015·陕西西安检测)某市拟从4个重点项目和6个一般项目中各选2个项目作为本年度要启动的项目,则重点项目A和一般项目B至少有一个被选中的不同选法的种数是()A.15 B.45C.60 D.75解析:选C.从4个重点项目和6个一般项目中各选2个项目作为本年度启动的项目,所有的选法种数是C24×C26=90.重点项目A和一般项目B都没有被选中的选法种数是C23×C25=30,故重点项目A和一般项目B至少有一个被选中的不同选法种数是90-30=60.4.(2015·福建三明调研)将A,B,C,D,E排成一列,要求A,B,C在排列中顺序为“A,B,C”或“C,B,A”(可以不相邻),这样的排列数有()A.12种B.20种C.40种D.60种解析:选C.(排序一定用除法)五个元素没有限制全排列数为A55,由于要求A,B,C的次序一定(按A,B ,C 或C ,B ,A ),故除以这三个元素的全排列A 33,可得A 55A 33×2=40.5.身穿红、黄两种颜色衣服的各有两人,身穿蓝色衣服的有一人,现将这五人排成一行,要求穿相同颜色衣服的人不能相邻,则不同的排法种数为( )A .24B .28C .36D .48解析:选D.穿红色衣服的人相邻的排法有C 14A 22A 33=48种,同理穿黄色衣服的人相邻的排法也有48种.而红色、黄色同时相邻的有A 22·A 22·A 33=24种.故穿相同颜色衣服的不相邻的排法有A 55-2×48+24=48种.6.C 5-n n +C 9-nn +1=________.解析:由组合数的定义得⎩⎪⎨⎪⎧0≤5-n ≤n 0≤9-n ≤n +1,解之得4≤n ≤5,∵n ∈N *,∴n =4或n =5.当n =4时,原式=C 14+C 55=5,当n =5时,原式=C 05+C 46=16. 答案:5或16 7.(2015·潍坊检测)张、王两家夫妇各带1个小孩一起到动物园游玩,购票后排队依次入园,为安全起见,首尾一定要排两位爸爸,另外,两个小孩一定要排在一起,则这6人的入园顺序排法种数为________.(用数字作答)解析:第一步:将两位爸爸排在两端有2种排法;第二步:将两个小孩视作一人与两位妈妈任意排在中间的三个位置上有A 33种排法;第三步:将两个小孩排序有2种排法.故总的排法有2×2×A 33=24(种).答案:24 8.(2015·江苏扬州中学检测)在三位正整数中,若十位数字小于个位和百位数字,则该数为“驼峰数”.比如:“102”“546”为“驼峰数”,由数字1,2,3,4,5这五个数字构成的无重复数字的“驼峰数”的十位上的数字之和为________.解析:三位“驼峰数”中1在十位的有A 24个,2在十位的有A 23个,3在十位上的有A 22个,所以所有三位“驼峰数”的十位上的数字之和为12×1+6×2+2×3=30.答案:309.男运动员6名,女运动员4名,其中男女队长各1名,选派5人外出比赛,在下列情形中各有多少种选派方法?(1)男运动员3名,女运动员2名; (2)至少有1名女运动员.解:(1)任选3名男运动员,方法数为C 36,再选2名女运动员,方法数为C 24,共有C 36·C 24=120(种)方法. (2)法一:至少1名女运动员包括以下几种情况:1女4男,2女3男,3女2男,4女1男, 由分类加法计数原理可得总选法数为 C 14C 46+C 24C 36+C 34C 26+C 44C 16=246(种).法二:“至少有1名女运动员”的反面是“全是男运动员”,因此用间接法求解,不同选法有C 510-C 56=246(种).10.从1到9的9个数字中取3个偶数4个奇数,试问: (1)能组成多少个没有重复数字的七位数?(2)上述七位数中,3个偶数排在一起的有几个?(3)(1)中的七位数中,偶数排在一起,奇数也排在一起的有几个?解:(1)分三步完成:第一步,在4个偶数中取3个,有C 34种情况;第二步,在5个奇数中取4个,有C 45种情况;第三步,3个偶数,4个奇数进行排列,有A 77种情况.所以符合题意的七位数有C 34C 45A 77=100 800(个).(2)上述七位数中,3个偶数排在一起的有C 34C 45A 55A 33=14 400(个).(3)上述七位数中,3个偶数排在一起,4个奇数也排在一起的有C 34C 45A 33A 44A 22=5 760(个).1.5名志愿者分到3所学校支教,每个学校至少去一名志愿者,则不同的分派方法共有( )A .150种B .180种C .200种D .280种解析:选A.依题意5个人分配到3个学校且每校至少去一个人,因此可将5人按人数分成1,2,2与1,1,3两种,当人数是1,2,2时,有C 15C 24C 22A 22×A 33=90(种). 当人数是1,1,3时,则有C 15C 14C 33A 22×A 33=60(种), 因此共有90+60=150(种). 2.(2015·浙江温州十校联考)任取三个互不相等的正整数,其和小于100,则由这三个数构成的不同的等差数列共有( )A .528个B .1 056个C .1 584个D .4 851个解析:选B.先确定等差数列的中间项,再确定第一、三项.设这三个成等差数列的数分别为a ,b ,c .由题意得a +b +c ≤100,即3b ≤100,得b 可以取2,3,…,33,共32个数.第一类,b =2时,a ,c 的取值共有2个(a =1,c =3和a =3,c =1,对应的是两个数列); 第二类,b =3时,a ,c 的取值共有4个; …第三十二类,b =33时,a ,c 的取值共有64个.根据分类加法计数原理,可得满足题意的数列共有2+4+…+64=1 056个.3.甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是__________.(用数字作答)解析:3个人各站一级台阶有A 37=210(种)站法;3个人中有2个人站在一级,另一人站在另一级,有C 23A 27=126(种)站法,共有210+126=336(种)站法.答案:336 4.(2015·山东潍坊五校联考)数字1,2,3,4,5,6按如图形式随机排列,设第一行的数为N 1,其中N 2,N 3分别表示第二、三行中的最大数,则满足N 1<N 2<N 3的所有排列的个数是________.解析:(元素优先法)由题意知6必在第三行,安排6有C 13=3种方法,第三行中剩下的两个空位安排数字有A 25=20种方法,在留下的三个数字中,必有一个最大数,把这个最大数安排在第二行,有C 12=2种方法,剩下的两个数字有A 22=2种排法,按分步乘法计数原理,所有排列的个数是C 13A 25C 12A 22=240.答案:2405.按照下列要求,求分别有多少种不同的方法? (1)6个不同的小球放入4个不同的盒子;(2)6个不同的小球放入4个不同的盒子,每个盒子至少有一个小球.解:(1)每个小球都有4种方法,根据分步乘法计数原理共有46=4 096(种)不同方法.(2)分两类:第1类,6个小球分3,1,1,1放入盒中;第2类,6个小球分2,2,1,1放入盒中,共有C 36·C 14·A 33+C 26·C 24·A 24=1 560(种)不同放法.6.(选做题) 某区有7条南北向街道,5条东西向街道(如图所示).(1)图中共有多少个矩形?(2)从A点到B点最近的走法有多少种?解:(1)在7条竖线中任选2条,5条横线中任选2条,这样4条线可组成1个矩形,故可组成矩形C27·C25=210(个).(2)每条东西向的街道被分成6段,每条南北向的街道被分成4段,从A到B最短的走法,无论怎样走,一定包括10段,其中6段方向相同,另外4段方向相同,每种走法,即是从10段中选出6段,这6段是走东西方向的,共有C610=C410=210(种)走法(同样可从10段中选4段走南北方向,每种选法即是1种走法).所以共有210种走法.。

排列与排列数公式

排列与排列数公式

排列与排列数公式1.排列(1)一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m个元素的一个排列.(2)两个排列相同,当且仅当两个排列的元素完全相同,且元素的排列顺序也相同.排列的定义中包含两个基本内容:一是“取出元素”,二是“按一定顺序排列”.因此,排列要完成的“一件事”是“取出m个元素,再按顺序排列”,“一定的顺序”就是与位置有关,不考虑顺序就不是排列.2.排列数及排列数公式排列数定义从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数表示法A m n全排列n个不同元素全部取出的一个排列,叫做n个元素的一个全排列,这时公式中m=n,即有A n n=n×(n-1)×(n-2)×…×3×2×1阶乘正整数从1到n的连乘积叫做n的阶乘,用n!表示排列数公式乘积式A m n=n(n-1)(n-2)…(n-m+1) 阶乘式A m n=n!(n-m)!性质A n n=n!,0!=1备注n,m∈N*,m≤n排列数是指“从n个不同的元素中取出m个元素的所有排列的个数”,即排列共有多少种形式,它是一个数.因此,A m n只代表排列数,而不表示具体的排列.判断正误(正确的打“√”,错误的打“×”)(1)a,b,c与b,a,c是同一个排列.( )(2)同一个排列中,同一个元素不能重复出现.( )(3)在一个排列中,若交换两个元素的位置,则该排列不发生变化.( )(4)从4个不同元素中任取三个元素,只要元素相同得到的就是相同的排列.( )答案:(1)×(2)√(3)×(4)×下面问题中,是排列问题的是( )A.由1,2,3,4四个数字组成无重复数字的四位数B.从60人中选11人组成足球队C.从100人中选2人抽样调查D.从1,2,3,4,5中选2个数组成集合答案:AA24=________,A33=________.答案:12 6若A m10=10×9×…×5,则m=________.答案:6探究点1 排列的概念判断下列问题是否是排列问题,并说明理由.(1)从甲、乙、丙、丁四名同学中选出两名参加一项活动,其中一名同学参加活动A,另一名同学参加活动B;(2)从甲、乙、丙、丁四名同学中选出两名参加一项活动;(3)从所有互质的三位数中选出两个数求其和;(4)从所有互质的三位数中选出两个数求其商;(5)高二(1)班有四个空位,安排从外校转来的三个学生坐到这四个空位中的三个上.【解】 (1)是排列,因为选出的两名同学参加的是不同的活动,即相当于把选出的同学按顺序安排到两个不同的活动中.(2)不是排列,因为选出的两名同学参加的是同一个活动,没有顺序之分.(3)不是排列,因为选出的两个三位数之和对顺序没有要求.(4)是排列,因为选出的两个三位数之商会因为分子、分母的顺序颠倒而发生变化,且这些三位数是互质的,不会产生选出的数不同而商的结果相同的可能性,故是排列.(5)是排列,可看作从四个空位中选出三个座位,分别安排给三个学生.判断一个具体问题是否为排列问题的方法1.从1,2,3,4四个数字中,任选两个数做加、减、乘、除运算,分别计算它们的结果,在这些问题中,有几种运算可以看作排列问题( )A.1 B.2C.3 D.4解析:选B.因为加法和乘法满足交换律,所以选出两个数做加法和乘法时,结果与两数字位置无关,故不是排列问题.而减法、除法与两数字的位置有关,故是排列问题.2.判断下列问题是否是排列问题:(1)从1到10十个自然数中任取两个数组成直角坐标平面内的点的坐标,可得多少个不同的点的坐标?(2)从10名同学中任抽两名同学去学校开座谈会,有多少种不同的抽取方法?(3)某商场有四个大门,若从一个门进去,购买物品后再从另一个门出来,不同的出入方式共有多少种?解:(1)由于取出的两数组成点的坐标与哪一个数作横坐标,哪一个数作纵坐标的顺序有关,所以这是一个排列问题.(2)因为从10名同学中抽取两人去学校开座谈会的方式不用考虑两人的顺序,所以这不是排列问题.(3)因为从一门进,从另一门出是有顺序的,所以是排列问题.综上,(1)、(3)是排列问题,(2)不是排列问题.探究点2 排列的列举问题四个人A,B,C,D坐成一排照相有多少种坐法?将它们列举出来.【解】先安排A有4种坐法,安排B有3种坐法,安排C有2种坐法,安排D有1种坐法,由分步乘法计数原理,有4×3×2×1=24种.画出树形图:由“树形图”可知,所有坐法为ABCD,ABDC,ACBD,ACDB,ADBC,ADCB,BACD,BADC,BCAD,BCDA,BDAC,BDCA,CABD,CADB,CBAD,CBDA,CDAB,CDBA,DACB,DABC,DBAC,DBCA,DCAB,DCBA.1.[变条件]若本例条件再增加一条“A不坐排头”,则结论如何?解:画出树形图:由“树形图”可知,所有坐法为BACD,BADC,BCAD,BCDA,BDAC,BDCA,CABD,CADB,CBAD,CBDA,CDAB,CDBA,DACB,DABC,DBAC,DBCA,DCAB,DCBA,共18种坐法.2.[变条件]若在本例条件中再增加一条“A,B不相邻”,则结论如何?解:画出树形图:由“树形图”可知,所有坐法为ACBD,ACDB,ADBC,ADCB,BCAD,BCDA,BDAC,BDCA,CADB,CBDA,DACB,DBCA共12种.利用“树形图”法解决简单排列问题的适用范围及策略(1)适用范围:“树形图”在解决排列元素个数不多的问题时,是一种比较有效的表示方式.(2)策略:在操作中先将元素按一定顺序排出,然后以先安排哪个元素为分类标准进行分类,再安排第二个元素,并按此元素分类,依次进行,直到完成一个排列,这样能做到不重不漏,然后再按树形图写出排列.某药品研究所研制了5种消炎药a1,a2,a3,a4,a5,4种退热药b1,b2,b3,b4,现从中取两种消炎药和一种退热药同时进行疗效试验,但a1,a2两种药或同时用或同时不用,a3,b4两种药不能同时使用,试写出所有不同试验方法.解:如图,由树形图可写出所有不同试验方法如下:a 1a 2b 1,a 1a 2b 2,a 1a 2b 3,a 1a 2b 4,a 3a 4b 1,a 3a 4b 2,a 3a 4b 3,a 3a 5b 1,a 3a 5b 2,a 3a 5b 3,a 4a 5b 1,a 4a 5b 2,a 4a 5b 3,a 4a 5b 4,共14种.探究点3 排列数的计算或证明(1)计算2A 58+7A 48A 88-A 59;(2)求证:A m n +1-A m n =m A m -1n . 【解】 (1)2A 58+7A 48A 88-A 59=2×8×7×6×5×4+7×8×7×6×58×7×6×5×4×3×2×1-9×8×7×6×5 =8×7×6×5×(8+7)8×7×6×5×(24-9)=1. (2)法一:因为A mn +1-A mn =(n +1)!(n +1-m )!-n !(n -m )!=n !(n -m )!·(n +1n +1-m -1) =n !(n -m )!·m n +1-m =m ·n !(n +1-m )!=m A m -1n ,所以A mn +1-A mn =m A m -1n .法二:A mn +1表示从n +1个元素中取出m 个元素的排列个数,其中不含元素a 1的有A mn 个. 含有a 1的可这样进行排列:先排a 1,有m 种排法,再从另外n 个元素中取出m -1个元素排在剩下的m -1个位置上,有A m -1n 种排法. 故A mn +1=m A m -1n +A mn , 所以m A m -1n =A mn +1-A mn .排列数公式的形式及选择方法排列数公式有两种形式,一种是连乘积的形式,另一种是阶乘的形式,若要计算含有数字的排列数的值,常用连乘积的形式进行计算,而要对含有字母的排列数的式子进行变形或作有关的论证时,一般用阶乘式.1.A m12=9×10×11×12,则m =( )A .3B .4C .5D .6解析:选B.等式A m 12=9×10×11×12的右边是4个连续自然数的乘积,且最大数为12,故m =4.2.下列各式中与排列数A mn 相等的是( )A.n !(m -n )!B .n (n -1)(n -2)…(n -m ) C.n n -m +1A n -1nD .A 1n ·A m -1n -1解析:选D.因为A mn =n !(n -m )!,A 1n ·A m -1n -1=n ·(n -1)![n -1-(m -1)]!=n ·(n -1)!(n -m )!=n !(n -m )!,所以A m n =A 1n ·A m -1n -1.1.4×5×6×…×(n -1)×n 等于( ) A .A 4n B .A n -4n C .n !-4!D .A n -3n解析:选D.4×5×6×…×(n -1)×n 中共有n -4+1=n -3个因式,最大数为n ,最小数为4,故4×5×6×…×(n -1)×n =A n -3n .2.从1,2,3,4这四个数字中任取两个不同的数字,则可组成不同的两位数有( ) A .9个 B .12个 C .15个D .18个解析:选B.用树形图表示为:由此可知共有12个. 3.A 345!=________.解析:A 345!=4×3×25×4×3×2×1=15.答案:154.从0,1,2,3这四个数字中,每次取出3个不同的数字排成一个三位数,写出其中大于200的所有三位数.解:大于200的三位数的首位是2或3,于是大于200的三位数有:201,203,210,213,230,231,301,302,310,312,320,321.知识结构深化拓展1.判断一个问题是否是排列的思路排列的根本特征是每一个排列不仅与选取的元素有关,而且与元素的排列顺序有关.这就是说,在判断一个问题是否是排列时,可以考虑所取出的元素,任意交换两个,若结果变化,则是排列问题,否则不是排列问题. 2.排列数两个公式的选取技巧(1)排列数的第一个公式A mn =n (n -1)(n -2)…(n -m +1)适用m 已知的排列数的计算以及排列数的方程和不等式.在运用时要注意它的特点,从n 起连续写出m 个数的乘积即可.(2)排列数的第二个公式A mn =n !(n -m )!用于与排列数有关的证明、解方程、解不等式等,在具体运用时,应注意先提取公因式再计算,同时还要注意隐含条件“n 、m ∈N *,m ≤n ”的运用.[易错提醒] 公式中的n ,m 应该满足n ,m ∈N *,m ≤n ,当m >n 时不成立.1.已知下列问题:①从甲、乙、丙三名同学中选出两名分别参加数学、物理兴趣小组;②从甲、乙、丙三名同学中选出两人参加一项活动;③从a ,b ,c ,d 中选出3个字母;④从1,2,3,4,5这五个数字中取出2个数字组成一个两位数.其中是排列问题的有( ) A .1个 B .2个 C .3个D .4个解析:选B.由排列的定义知①④是排列问题. 2.计算A 67-A 56A 45=( )A .12B .24C .30D .36解析:选D.A 67-A 56A 45=7×6×5×4×3×2-6×5×4×3×25×4×3×2=7×6-6=36.3.若α∈N *,且α<27,则(27-α)(28-α)…(34-α)等于( ) A .A 827-α B .A 27-α34-α C .A 734-αD .A 834-α解析:选D.从27-α到34-α共有34-α-(27-α)+1=8个数.所以(27-α)(28-α)…(34-α)=A 834-α.4.甲、乙、丙三人排成一排照相,甲不站在排头的所有排列种数为( ) A .6 B .4 C .8D .10解析:选B.列树形图如下:丙甲—乙乙—甲乙甲—丙丙—甲,共4种. 5.不等式A 2n -1-n <7的解集为( ) A .{n |-1<n <5} B .{1,2,3,4} C .{3,4}D .{4}解析:选C.由不等式A 2n -1-n <7, 得(n -1)(n -2)-n <7, 整理得n 2-4n -5<0, 解得-1<n <5.又因为n -1≥2且n ∈N *, 即n ≥3且n ∈N *, 所以n =3或n =4,故不等式A 2n -1-n <7的解集为{3,4}. 6.2A 412+A 512A 513-A 512=________. 解析:原式=2×12×11×10×9+12×11×10×9×813×12×11×10×9-12×11×10×9×8=2+813-8=2. 答案:27.从a ,b ,c ,d ,e 五个元素中每次取出三个元素,可组成____个以b 为首的不同的排列,它们分别是____________________________________________________________ ________________________________________________________________________. 解析:画出树形图如下:可知共12个,它们分别是bac ,bad ,bae ,bca ,bcd ,bce ,bda ,bdc ,bde ,bea ,bec ,bed .答案:12 bac ,bad ,bae ,bca ,bcd ,bce ,bda ,bdc ,bde ,bea ,bec ,bed 8.若集合P ={x |x =A m 4,m ∈N *},则集合P 中共有________个元素. 解析:因为x =A m4, 所以有m ∈N *且m ≤4,所以P 中的元素为A 14=4,A 24=12,A 34=A 44=24, 即集合P 中有3个元素. 答案:39.判断下列问题是否是排列问题:(1)某班共有50名同学,现要投票选举正、副班长各一人,共有多少种可能的选举结果? (2)从2,3,5,7,9中任取两个数分别作为对数的底数和真数,有多少个不同对数值? (3)从集合M ={1,2,…,9}中,任取相异的两个元素作为a ,b ,可以得到多少个焦点在x轴上的椭圆方程x 2a 2+y 2b2=1?解:(1)是.选出的2人担任正、副班长,与顺序有关,所以该问题是排列问题. (2)是.显然对数值与底数和真数的取值的不同有关系,与顺序有关.(3)不是.焦点在x 轴上的椭圆,方程中的a 、b 必有a >b ,即取出的两个数谁是a ,谁是b 是确定的.10.甲、乙、丙三人相互传球,由甲开始发球,经过5次传球,球仍回到甲手中,不同的传球方法共有多少种?解:由甲开始发球,可发给乙,也可发给丙.若甲发球给乙,其传球方法的树形图如图,共5种.同样甲第一次发球给丙,也有5种情况.由分类加法计数原理,共有5+5=10种不同传球方法.[B 能力提升]11.若S =A 11+A 22+A 33+A 44+…+A 100100,则S 的个位数字是( ) A .8 B .5 C .3D .0解析:选C.因为当n ≥5时,A nn 的个位数字是0,故S 的个位数取决于前四个排列数.又A 11+A 22+A 33+A 44=33,故选C. 12.A 2n +1与A 3n 的大小关系是( ) A .A 2n +1>A 3n B .A 2n +1<A 3n C .A 2n +1=A 3nD .大小关系不定解析:选D.由题意知n ≥3,A 2n +1-A 3n =(n +1)n -n (n -1)(n -2)=-n (n 2-4n +1),当n =3时,A 2n +1-A 3n =6>0,得A 2n +1>A 3n ,当n ≥4时,A 2n +1-A 3n <0,得A 2n +1<A 3n ,即A 2n +1与A 3n 的大小关系不定.故选D. 13.解下列方程或不等式. (1)3A 3x =2A 2x +1+6A 2x ; (2)A x9>6A x -29.解:(1)由排列数公式,得:⎩⎪⎨⎪⎧3x (x -1)(x -2)=2(x +1)x +6x (x -1),①x ≥3,x ∈N *.② 由①,得3x 2-17x +10=0, 解得x =5或x =23,结合②可知x =5是所求方程的根. (2)原不等式可化为:⎩⎪⎨⎪⎧9!(9-x )!>6×9!(9-x +2)!,①2<x ≤9,x ∈N *.②①式等价于(11-x )(10-x )>6,即x 2-21x +104>0,即(x -8)(x -13)>0,11 所以x <8或x >13.结合②得2<x <8,x ∈N *,所以所求不等式的解集为{3,4,5,6,7}.14.(选做题)一条铁路有n 个车站,为适应客运需要,新增了m 个车站,且知m >1,客运车票增加了62种,问原有多少个车站?现在有多少个车站?解:由题意可知,原有车票的种数是A 2n 种,现有车票的种数是A 2n +m 种,所以A 2n +m -A 2n =62, 即(n +m )(n +m -1)-n (n -1)=62,所以m (2n +m -1)=62=2×31,因为m <2n +m -1,且n ≥2,m ,n ∈N *,所以⎩⎪⎨⎪⎧m =2,2n +m -1=31,解得m =2,n =15,故原有15个车站,现有17个车站.。

排列数公式例子(一)

排列数公式例子(一)

排列数公式例子(一)排列数公式在组合数学中,排列数(permutation)是指从一组元素中选取出一部分元素按照一定的顺序排列的方法数。

排列数公式是用来计算排列数的公式。

公式格式排列数公式的一般形式如下:P(n, k) = n! / (n-k)!其中,n代表元素的总个数,k代表选取的元素个数,n!表示n的阶乘。

例子解析下面列举几个例子,通过排列数公式进行解析:例子1:从5个元素中选取2个元素的排列数根据排列数公式,我们可以计算出:P(5, 2) = 5! / (5-2)! = 5! / 3!= 5 × 4 × 3! / 3!= 5 × 4= 20所以,从5个元素中选取2个元素的排列数为20。

例子2:从10个元素中选取4个元素的排列数同样地,根据排列数公式进行计算:P(10, 4) = 10! / (10-4)! = 10! / 6!= 10 × 9 × 8 × 7 × 6! / 6!= 10 × 9 × 8 × 7= 5040所以,从10个元素中选取4个元素的排列数为5040。

例子3:从7个元素中选取7个元素的排列数当选取的元素个数等于总元素个数时,排列数公式简化为:P(7, 7) = 7! / (7-7)! = 7! / 0!由于0!的定义为1,所以:P(7, 7) = 7! / 1= 7!= 7 × 6 × 5 × 4 × 3 × 2 × 1= 5040所以,从7个元素中选取7个元素的排列数也为5040。

总结通过排列数公式,我们可以计算出从一组元素中选取部分元素的排列数。

根据公式,我们可以灵活地进行排列数的计算,以满足不同问题的需求。

例子4:从6个元素中选取3个元素的排列数我们可以使用排列数公式计算:P(6, 3) = 6! / (6-3)! = 6! / 3!= 6 × 5 × 4 × 3! / 3!= 6 × 5 × 4= 120所以,从6个元素中选取3个元素的排列数为120。

排列及排列数的概念和公式

排列及排列数的概念和公式

排列及排列数的概念和公式一、重点和难点:1、掌握排列的概念、排列数及排列数公式和排列的简单应用。

2、重点是排列的定义及排列数公式,难点是“顺序”的判断及公式的抽象性。

二、学法指导:排列:从n 个不同元素中,任取)(n m m ≤个不同元素,按照一定的顺序排成一排,叫做从n 个不同元素中取出m 个元素的一个排列。

定义中规定给出的n 个元素各不同,并且只研究被取出的元素也各不相同的情况。

即如果某个元素已被取出,则这个元素就不能在取了,否则就变成了取出两个相同元素。

由于是从n 个不同元素中取出m 个不同元素,因此必有n m n m =≤当,时,即所有元素都取出的排列,叫做全排列。

定义中的“一定的顺序”是与位置有关的问题,如何判断是否有顺序,最常用的办法是变换元素的位置看结果,如果结果变了,就是有“顺序”;若结果不变,就是无“顺序”。

如:取出数字1,2,3考虑它们的和,则与位置无关。

要分清“排列”和“排列数”这两个不同概念。

一个排列是指从n 个不同元素中取出m 个元素,按照一定的顺序排成一排的一种具体的排法,它不是数,而排列数是指从n 个不同元素中取出m 个元素的所有排列的个数,它是一个数。

在写具体的排列时要按照一定规律写,以免造成重复或遗漏。

排列数公式:)1()1(+--=m n n n P m n ,其特点是:从自然数n 开始,后一个因数比前一个因数少1,最后一个因数是,1+-m n 共m n -个因数相乘。

当n m =时,排列数公式为!n P n n =,其中123)2)(1(!⋅⋅--= n n n n 排列数的两个公式)!(!)1()1(m n n P m n n n P m n m n -=+--=和 ,前一个公式常用于计算具体的排列数的值,后一个公式常用于含字母的排列数的变形和证明有关等式。

三、例题选讲:例题1、计算(1)1201234545=⨯⨯⨯⨯=P(2)3360141516316=⨯⨯=P(3)72012345666=⨯⨯⨯⨯⨯=P(4)!4)!2()]!2()2[()!2(56)1)(2(2222+=--++=⋅++=-+-+n n n n P n n n P n n n n 或 (5)3645123454567255547=⨯⨯⨯⨯⨯-⨯⨯⨯=-P P P(6)m m m m n m n m m m n m P m n m +=+=-⋅--+=-⋅+--211)1()!()!()!1()!1()!()!1( 例题2、求和:)!1(!43!32!21+++++n n 解:作和的数列的通项是:)!1(1!1)!1(1)1()!1(+-=+-+=+n n n n n n , ∴ 原式=)!1(11)!1(1!1!41!31!31!21!211+-=⎥⎦⎤⎢⎣⎡+-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-n n n 例题3、解方程:2213632x x x P P P +=+解:首先⎪⎪⎩⎪⎪⎨⎧≥≥+≥∈2213x x x N x N x x ∈≥⇒,3 ∴ 原方程化为:)1(6)1(3)2)(1(2-++=--x x x x x x x∴∈≥N x x ,3 整理得:071522=+-x x ,解得:217==x x 或(舍)7=∴x 例题4、求证:m n m n m n P mP P 11+-=+证明:左式=m n P m n n m n n n m n m m n n m n n m m n p n 1)!1()!1()!1()1(!)!1(])1[(!)!1(!)!(!+=+-+=+-+=+-++-=+-⋅+- =右式《小结》:利用排列数公式计算是,一般多用连乘积公式,利用排列数公式证明时,一般多用阶乘商公式。

排列与排列数(1)教案

排列与排列数(1)教案

【教学课题】 21.1.1排列与排列数公式【教学班级】【授课教师】【授课类型】新授课【教学课时】2课时【教学目标】1、学习掌握排列、排列数等基本概念,熟练运用这些基本概念解题;2、掌握解排列题的思想方法,适当地分类、分步、构造恰当的解法解决问题。

【教学重点】理解排列、排列数等基本概念。

【教学难点】运用解排列题的思想方法解决实际问题。

【教学方法】启发引导讲练结合【学习过程】一、复习:为了学习排列数公式,我们要复习两条基本原理:(1)分类计数原理(也叫加法原理):完成一件事,有n类相互独立的办法,在第1类办法中有m1种不同方法,在第2类办法中有m2种不同方法,……,在第n类办法中有m n种不同方法,那么完成这件事共有N=m1+m2+…+m n种不同的方法。

(2)分步计数原理(宜称乘法原理):完成一件事,需要分成n个步骤,做第1步有m1种不同方法,做第2步有m2种不同方法,……,做第n步有m n种不同的方法,那么完成这件事共有N=m1×m2×…×m n种不同的方法。

二、新授:1、掌握排列的概念:定义:从n个不同元素中,任取m(m≤n)个元素,按照一定顺序排成一列,叫做从n个元素中每次取出m个元素的一个排列。

根据排列的定义,两个从n个元素里取出m个元素的排列,如果它们所含的元素不同,或者虽含相同的元素,而元素排列的顺序不同,那么这两个排列是不同的。

2、掌握排列数公式:(1)排列数定义:从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记作A m。

n(2)排列数公式:A mn =n ·(n-1)·(n-2)…(n-m+1),这里m, n ∈N *,并且m ≤n ,当m=n 时,有!12)2()1(n n n n A nn=⋅⋯-⋅-⋅= 故)!(!m n n A mn -=,此公式的作用:当对含有字母的排列数的式子进行变形和论证时,常写成这种形式去沟通。

高中数学第一章计数原理1.2排列与组合1.2.1排列第1课时排列与排列数公式

高中数学第一章计数原理1.2排列与组合1.2.1排列第1课时排列与排列数公式

答案 (1)D (2)5 (3)见解析
12/13/2021
答案
解析 (1)27-a,28-a,…,34-a 中最大数为 34-a,一共有 34-a-(27 -a)+1=8 个因式,所以(27-a)·…·(34-a)=A834-a.
(2)解法一:A1248AA611412=841! !2××11182!!!=54! !=5. 5!
12/13/2021
[解] (1)列出每一个起点和终点情况,如图所示.
故符合题意的机票种类有: 北京广州,北京南京,北京天津,广州南京,广州天津,广州北京,南 京天津,南京北京,南京广州,天津北京,天津广州,天津南京,共 12 种.
12/13/2021
答案
(2)由于老师不站左端,故左端位置上只能安排学生.设两名学生分别为 A、B,两名老师分别为 M、N,此问题可分两类:
由此可知所有可能的站法为 AMNB,ANMB,ABMN,ABNM,BMNA, BNMA,BAMN,BANM,共 8 种.
12/13/2021
答案
拓展提升 用树形图解决简单的排列问题是常见的解题方法.它能很好地确定排列 中各元素的先后顺序,利用树形图可具体地列出各种情况,避免排列的重复 和遗漏.
12/13/2021
答案 B
12/13/2021
答案
解析 排列问题是与顺序有关的问题,四个选项中只有 B 中的问题是与 顺序有关的,其他问题都与顺序无关.故选 B.
12/13/2021
2.下列各式中与排列数 Amn 相等的是( )
n! A.m-n!
B.n(n-1)(n-2)…(n-m)
C.n-mn +1Ann-1
D.An1·Amn--11
12/13/2021

排列与排列数、组合与组合数

排列与排列数、组合与组合数

排列与排列数、组合与组合数排列与排列数、组合与组合数排列与排列数1. 从n个不同元素中,任取m(m≤n)个元素,按照⼀定的顺序排成⼀列,叫做从n个不同元素中取出m个元素的⼀种排列。

注意:排列的元素完全相同,顺序也完全相同2. 公式:P m n=n! (n−m)!如何理解这个公式:1. 例1:三名同学,成绩前两名有多少种可能性?1. 第⼀名:3种可能性2. 第⼆名:(3-1)种可能性3. 根据乘法原理,共有3∗(3−1)种可能性2. 例2:七名同学,成绩前五名有多少种可能性?由例⼀,易知有7∗(7−1)∗(7−2)∗...∗(7−5+1)3. 由例1例2进⾏进⼀步推导,⽤m,n代替具体的数字,可得n(n−1)(n−2)(n−3)...(n−m+1)4. 整理可得,n(n−1)(n−2)(n−3)...(n−m+1)=1∗2∗3∗...(n−2)(n−1)n 1∗2∗3∗...(n−m−1)(n−m)(即乘上1∗2∗3∗...(n−m−1)(n−m)1∗2∗3∗...(n−m−1)(n−m),⽬的是得到完整的、从1开始的可以化为阶乘形式的数)5. 继续整理,得到P m n=n! (n−m)!6. 但是通过第3步得到的式⼦,其实是不需要阶乘的从⼤的数字开始往⼩乘,乘⼩的数字那么多个组合与组合数1. 从n个不同元素中,任取m(m≤n)个元素并成⼀组,叫做从n个不同元素中取出m个元素的⼀个组合。

2. 记号:C(n,k)或(n k)3. 公式:(nk)=P(n,k)P(k,k)4. 推导公式:(nk)=k!(k−n)!n!(n−n)!=k!n!(k−n)!5. ⽤更常⽤的m,n来表⽰组合数公式,就得到了(mn)=n!m!(n−m)!6. 理解公式:1. 观察可知,其实组合数就是在排列数公式上除以⼀个m!(P(k,k)其实就等于k!)2. 思考⼀下:组合数与排列数的区别是组合数不要求顺序相同,所以如果按照排列数去求组合数,会出现⼀定数⽬的重复3. 打表找规律():1. 四选三(即m=3,n=4):1. 排列数:共P34=4!(4−3)!=4∗3∗2∗11=24种ABC,ABD,ACB,ACD,ADB,ADC,BAC,BAD,BCA,BCD,BDA,BDC,CAB,CAD,CBA,CBD,CDA,CDB, DAB,DAC,DBA,DBC,DCA,DCB;2. 观察,剔除重复项ABC,ABD,ACD,BCD 4种3. 找规律:保留了246种,即保留了4∗3∗2∗13∗2∗1种,即C mn=P(m,n)m!从⼤的数字开始往⼩乘,乘“⼩的数字那么多”个,再除以“⼩的数字开始往⼩乘,乘⼩的数字那么多个”拓展公式1. C m n=C n−mn其实就是反选,从五个⾥⾯取出四个的组合数就相当于从五个⾥⾯取⼀个(取哪四个等同于不取哪⼀个)2. C m−1n+C m n=C m n+1这个似乎在m和n⽐较⼤的时候可以有效避免爆空间3. C0n+C1n+......+C n n=2n4. C r r+C r r+1+......+C r n=C r+1n+15.k∑i=0C i n C k−im=C k m+n代码实现1. 定义式int C(int m,int n){//这⾥⽤longlong是因为第6⾏乘完之后极有可能暂时超过了int能表⽰的范围long long result = 1;for(int i = 0;i<n;i++){result *= (m-i);}for(int i = 2;i<=n;i++){result /= i;}return (int)result;}⾮常容易想到2. 递归版组合数求法int C(int m,int n){if(m == n) return 1;if(n == 1) return m;return C(m-1,n)+C(m-1,n-1);}根据拓展公式(2)写的,优点是⾮常好写(⼿和脑⼦只能懒⼀个),缺点是慢......这张图是以C(7,3)为例画的图(不得不说实在是太强了)⼀眼就能看见相当多的重复运算3. 递推版组合数求法int C(int m,int n){int c[n+1][m+1];for(int i = 1;i<=m;i++){c[1][i] = i;}for(int i = 2;i<=n;i++){c[i][i] = 1;}for(int i = 2;i<n;i++){for(int j = i+1;j<m;j++){c[i][j] = c[i-1][j-1] + c[i][j-1];}}for(int i = n+1;i<=m;i++){c[n][i] = c[n-1][i-1] + c[n][i-1];}return c[n][m];}既然C(m,n)与m,n都有关系,那么不妨开⼀个n⾏m列的⼆维数组(m⾏n列也⾏,⾃⼰调整⼀下)看上图的所有的叶⼦节点,都是m=n或者n=1m=n时C(m,n)=1n=1时C(m,n)=m因此,代码的第3~8⾏开出了如下表的⼀个⼆维数组1234567112345672131接着,根据拓展公式⼆,我们可以知道这个⼆维数组的每⼀项等于其左侧值和左上值的和并且第m列(即上表中的第7列)除了最后⼀⾏都没有必要填上(填上也⾏)所以代码的第9~13⾏将⼆维数组填充到了如下表所⽰的程度1234567112345672136101531然后第14~17⾏填完了最后⼀⾏最后返回值即可这是以C(36,24)为例的耗时(再⼤递推还是秒出,但递归我可能真的等不了了)Processing math: 100%。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8 12
3
161514 3360
121110 9 8 7 6 5 5 121110 9 8 7 6
6!=6×5×4×3×2×1=720
例2 某段铁路上有12个 车站,共需要准备多少种 普通客票?
P 1211 132(种)
2 12
作业:
课本第232页练习第1,2,3, 4,5,6题。
简理财 https:///about/ 简理财 相信,前些日子水清被他冤枉咯。不过,在他转变对水清偏见の同时,更是被她极大地震惊咯。震惊の缘由不只是水清の沉冤昭雪,毕竟那 天玉盈对他说の那壹番话,已经成功地让他对水清の戒备心理解除咯不少。他现在更震惊の,是水清与八福晋の那壹番斗智斗勇。那木泰是 壹各多么不好对付の角色,王爷当然最清楚,而水清竟然能做到见招拆招,不但没有被那木泰の气势所压倒,反而是打咯壹各漂漂亮亮の反 击战。这各出人意料の结果震惊得他半天都没有缓过神儿来。总算是将她の“诡计多端”用在咯正道上!壹想到这里,他の心情不由得好起 来许多。而受到极大震动の王爷并没有就此走进水清の帐子里,而是选择咯独自转身离开。可是转身离开の他,也没有回到他自己の帐子, 而是壹边沉思,壹边漫无目の地走着,走着……不知不觉之中,竟然走出咯营区,走进咯这星光灿烂の夏夜草原。夜幕下の草原格外静谧、 迷人。也正是在这各夏末初秋、神清气爽の季节和时辰里,才让他有时间、有心情,好好地理顺壹下他那乱成壹团糟の生活。刚刚姐妹两人 の谈话,让他既震惊又伤情。因此,他の大脑中不停地思考着、审视着年家の这姐妹两人,结果却是越思考,越是真真地让他犯咯愁,犯咯 难。先是水清,虽然他の潜意识里已经不再壹口认定水清与八小格私自串通情报,但是他连做梦都想不到,连八福晋竟然都不是她の对手! 要知道排字琦与那木泰也只是勉强打各平手而已,但是排字琦已经在王府里摸爬滚打咯二十来年,而水清才刚刚嫁进来壹年而已。小小年纪 竟能有这番沉着冷静、智勇双全の表现,怎么能够不令他惊叹不已?他承认,除咯她那样强硬倔强、清高冷傲の性子以外,在他所有の妻妾 之中,水清确实是最为完美の壹各。可是就是这样壹各几近完美の诸人,他却不知道为啥啊,与他の侧福晋竟然是越走越远,几乎是水火不 容。他清楚地记得,从他们成婚の第壹天开始,他们就是这么远远地躲避着对方,是啥啊让他们彼此疏离、彼此戒备?他甚至连接近她、咯 解她の想法都没有,更不要说去尝试、去努力。可是她总是出奇不意地给他意外,给他震惊。先是掀开喜帕后,呈现在他眼前の那貌若天仙 般の容颜,然后是她那冷漠清高の性情,再后来就是她の学问。无论他怎样刻意地贬低她,诋毁她,毋庸置疑,在他认识の所有の女性当中, 她都牢牢地占据咯最有才学诸人の头把交椅。最后,就是她の“诡计多端”,当然咯,平心而论,应该是“足智多谋”,让他在与八小格の 这壹轮交锋中,干净利落、漂漂亮亮地赢得壹局。这各意外の惊喜,不但让王爷震惊,更是让他心理上得到咯极大の满足。可是震惊、欣喜、 满足の同时,他又因为玉盈那句“姐姐不会嫁人”の话而黯然伤神。玉盈,他该拿她怎么办?第壹卷 第295章 悬疑那木泰窝着壹肚子气回 到咯自己の帐子,八小格早早就到她の帐子恭候多时咯,壹看她の表情就知道事情进展得很不顺利:“怎么?没见到?”“比这各更可 气!”“还有啥啊更可气の情况?”“见到咯!”“见到咯怎么还更可气?”“哼,当然是见着咯比没见着更让人生气!说是病咯,脸儿朝 里躺在炕上呢。妾身根本见不到她の模样,更不要说跟她说几句话咯!”“病咯?早不病晚不病,你壹去就病咯?这各丫环确实是很奇怪呢, 看来爷の猜测绝对不是空穴来风!”“当然奇怪咯!假如是丫环,怎么可能躺在小四嫂の炕上?假如是被四哥收咯房,小四嫂怎么能够忍受 得咯这各窝囊气,还悉心呵护,还万般袒护!都快分不出来谁是主子,谁是奴才咯!”“你以为都跟你似の,像各母老虎,在府里耍耍威风、 逞逞能耐就算咯,在外面还不知道收敛,弄得整各儿京城都沸沸扬扬,怪不得连皇阿玛都要训斥你呢。”“爷!妾身在您の心目中就是这么 不堪吗?”“没有,没有,爷错咯,错咯,你这是驭夫有方,爷心甘情愿。”八小格言不由衷、嘴不对心地哄着她。那木泰是八小格最坚定 の依靠,先不说她自己有多么积极努力,光是她强大の娘家势力,就足以让八小格不容有丝毫小视。假如惹恼咯她,还不是要影响自己の宏 图伟业?那木泰见爷向自己低咯头,虽然心中迸发出强烈の不满,但毕竟爷能服软也是本着息事宁人の态度,点到为止、见好就收才是良策, 何苦再闹得不欢而散。因此她赶快转移咯话题,又说起咯另外壹件事情:“别说这各小四嫂和她那各丫环奇怪,就连二十三叔都跟着奇怪着 呢。”“二十三弟怎么咯?”“跟塔娜拌嘴呗,两人拌嘴の原因居然是因为小四嫂!”于是那木泰将刚刚塔娜の壹番话又原封不动地说给咯 自家爷。八小格壹听这番话,开始也是觉得蹊跷,继而突然想起来去年八月节过后,他们兄弟四各人在西海茶楼,笑话二十三小格の那件事 情!特别是二十三阿阿和九小格两各人の话,即使今日他还能依稀记得,壹各痛心疾首地说“她已经嫁人咯”,壹各不以为然地说“给她夫 家二百两银子打发走人咯事”。从不把诸人当回事儿、从不会哄诸人开心,不会关心体贴诸人の二十三小格,怎么倒关心起小四嫂来咯?如 此这番の表现实在是太反常咯!现在连那木泰都认为二十三小格奇怪,说明其中壹定有问题!只是不知道他の问题和王爷那各不明不白の侍 妾之间有啥啊关系。不管怎么说,那木泰没有从水清那里套出来啥啊有价值の情报,出师不利,那么现在只能是由八小格亲自出马,力图从 二十
cbd
cda
dbc
dca
adc
bdc
cdb
dcb
9.3 排列数公式 从 n 个不同元素中取出 m (m≤n) 个元素的所有排列的个数, 叫做从 n 个不同元素中取出 m 个 m 元素的排列数,用符号 Pn 表示。
第1位
ቤተ መጻሕፍቲ ባይዱ
第2位
P n (n 1)
2 n
n
n-1
第m位
第1位 第2位 第3位
······
例3 写出从 a , b , c , d 四 个元素中 任取三个元素的所 有排列。
cdbd bc cdadacbd ad ab bcacab
b
c a
d
a
c b
d
a
b c
d
a
b d
c
所有的排列为:
abc
abd acb
bac
bad bca
cab
cad cba
dab
dac dba
acd
adb
bcd
bda
n
m n
n-1
n-2
n-m+1
P n (n 1) (n 2) (n m 1)
P n (n 1) (n 2) (n m 1)
m n
P n (n 1) (n 2)
n n
• ···•3 •2 •1
P n!
n n
例1 计算:
(1) P16 ; P ( 2) 7 ; P12 6 (3) P6 .
排列与组合
(高二代数)
陈展明
排列与排列数公式
(一)
播放时间:5月27日9:50-10:30
9.2 排列 例1 北京、上海、广州 三个民航站之间的直达航 线,需要准备多少种不同 的飞机票?
起点站 北京
终点站
飞机票
上海
广州 北京
北京
北京 上海
上海
广州 北京
上海
广州 广州
北京 上海
上海
广州 广州
广州
4 1 2 4 1 3 4 2 1 4 2 3 4 3 1 4 3 2
3 1 3 3 2 3 4
4 1 4 2 4 3
3 4 1
3 4 2
一般地说,从 n 个不同元素 中,任取 m (m≤n) 个元素(本章 只研究被取出的元素各不相同的 情况),按照一定的顺序排成一 列,叫做从 n 个不同元素中取出 m 个元素的一个排列。
北京 上海
例2 由数字1,2,3,4可 以组成多少个没有重复数字 的三位数?
1 2
1 2 3
1 2 4 1 3 2 1 3 4 1 4 2 2 2 1
2 1 3
2 1 4 2 3 1 2 3 4 2 4 1
1
1 3
1 4
2 3
2 4
1 4 3
3 1 2 3 1 4 3 2 1 3 2 4 4
2 4 3
相关文档
最新文档