相关与回归分析(10)

合集下载

第十章 直线回归与相关分析

第十章 直线回归与相关分析

115 125 128 143 132 121 129 112 120 130 125.5
135 137 128 127 155 132 148 117 134 132 134.5

图10-2 NaCl含量对单位叶面积干物重影响的散点图
Y . X X
含义是:对于变量X的每一个值,都有一个Y 的分布,这个分布的平均数就是该线性函数。
ˆ a bX Y
回归截距 与x值相对应的依变量y的点估计值
此方程称为Y对X的直线回归方程(linear regression equation),画出的直线称为回归线 ( regression line)。
ˆ Y a bx
ˆi ) 2 L ( yi y
i 1 n
Y
最小
编号 1 2 3 4 5 血球体积x /mm3 45 52 56 48 42 红血球数y /106 6.53 6.30 9.52 7.50 6.99 6 7 8 9 10 编号 血球体积x /mm3 35 58 40 39 50 红血球数y /106 5.90 9.49 6.20 6.55 8.72
n n
整理后得:
an b xi yi i1 i1 n n n a xi b xi2 xi yi i1 i1 i1
解正规方程得:
x y ( x )( y ) / n b x ( x ) / n ( x x)( y y) = S S ( x x)
第二节:一元线性回归 1 散点图的绘制
2 一元正态线性回归模型 3 直线回归方程的参数估计和回归方 程的建立 4 直线回归的假设检验
5 直线回归的方差分析
6 直线回归的意义( 自学)

相关分析和回归分析

相关分析和回归分析

即r (x x)( y y) 或r (x x)( y y)
n x y
(x x)2 ( y y)2
•协方差的意义
①显示x与y是正相关还是负相关 协方差为负,是负相关, 协方差为正,是正相关。 ②协方差显示x与y相关程度的大小 当相关点在四个象限呈散乱的分布,相关程度很低 当相关点分布在x与y的平均值线上时,表示不相关 当相关点靠近一直线,表示相关关系密切 当相关点全部落在一直线,表示完全相关
2、相关图被形象地称为相关散点图 3、因素标志分了组,结果标志表现为组平均数,
所绘制的相关图就是一条折线,这种折线又叫 相关曲线。
三、相关系数的计算:
1、符号系数:把两个同平均值的离差数列做对称 比较。
①如果一个数列的离差与另一个数列的离差有很 多同号,就可以认为这两标志之间存在正相关。
②如果大多数为异号,就可以认为他们之间存在 负相关。
.............b

xx x
y x

2
y


xy

1 n

x
y

x2

1 n

x2
当出现权数时:
方程为:a f b xf yf ................a xf b x2 f xyf
解得:a y bx
•相关系数的r的推导公式:
r
n xy x y
n x2 x2 n y2 y2
r
xy nxy
(
x2

2
nx )
y2

2
ny
r
xy x y

相关性分析回归分析

相关性分析回归分析

问题的提出


发现变量之间的统计关系,并且 用此规律来帮助我们进行决策才 是统计实践的最终目的。 一般来说,统计可以根据目前所 拥有的信息(数据)来建立人们 所关心的变量和其他有关变量的 关系。这种关系一般称为模型 (model)。
问题的提出


假如用Y表示感兴趣的变量,用X表示其 他可能与Y有关的变量(X也可能是若干 变量组成的向量)。则所需要的是建立 一个函数关系Y=f(X)。 这里Y称为因变量或响应变量 (dependent variable, response variable),而X称为自变 量,也称为解释变量或协变量
问题的提出


对于现实世界,不仅要知其然,而且 要知其所以然。顾客对商品和服务的 反映对于企业是至关重要的,但是仅 仅有满意顾客的比例是不够的;商家 希望了解什么是影响顾客观点的因素, 及这些因素如何起作用。 类似地,学校不能仅仅知道大学英语 四级的通过率,而且想知道什么变量 影响通过率,以及如何影响。
80
70
60
但对于具体个人来说,大约有一半的学生的 40 高一平均成绩比初三时下降,而另一半没有 40 50 60 70 80 90 100 110 变化或有进步
初三 成绩
一 绩 高 成
50
问题的提出


目前的问题是怎么判断这两 个变量是否相关、如何相关 及如何度量相关? 能否以初三成绩为自变量, 高一成绩为因变量来建立一 个回归模型以描述这样的关 系,或用于预测。
定量变量的线性回归分析



对例1中的两个变量的数据进行线性回归,就 是要找到一条直线来适当地代表图1中的那些 点的趋势。 首先需要确定选择这条直线的标准。这里介绍 最小二乘回归(least squares regression)。古 汉语“二乘”是平方的意思。 这就是寻找一条直线,使得所有点到该直线的 豎直距离的平方和最小。用数据寻找一条直线 的过程也叫做拟合(fit)一条直线。

相关分析与回归分析

相关分析与回归分析

客观现象的相互联系,可以通过一定的数量关系反映出来。
(2)回归分析是相关分析的深入和继续。
一、表格法(相关表法)
(一)简单相关表
n x y x y 编制方法:先将自变量的值按照从小到大的顺序排列出来,然后将因变量的值对应列上而排列成表格。
以x为自变量,y为因变量建立直线回归方程,并说明回归系数的经济意义。
※●很显复示 相明x关和:显y自事变:正量相两r关的个还以是取上负。相值关;为正或为负取决于分子。
1、协方差 的作用 3=1、0+两2个x 变量完全r相=0关. 时,则相2 关系数为(

6、下列回归方程中,肯定错xy 误的是(

A.x的数值增大时,y值也随之增大
显示x和y事正相关还是负相关; (5※、2)产回品归单分位析成是本相与关产分品析产的量深之入间和的继关续系。一般来说是( ) 第※※三绝显节 对值示回在归0x分. 析和与一y元相线性关回归程度的大小; 1一2x、、相关相关r=系关0.的概系念和数种类计算的简便公式
第二节 相关关系的判断
(二)相关系数的计算
rxy2
(xx)(yy) n
xy
(xx)2
(yy)2
n
n
n :资料项数
x
(xx)2 表示 x变量的标准差 n
y
(yy)2 表示 y变量的标准差 n
2 xy
(xx)(yy)表示 x、y两个变量数列的协方 n
第二节 相关关系的判断
r (xx)(yy) (xx)2 (yy)2
第一节 相关分析的意义和种类
3、根据相关的形式不同划分,分为线性相关和非线性相关。 ●线性相关:即直线相关。 ●非线性相关:即曲线相关。 4、根据相关的程度分为不相关、完全相关(函数关系)和不完全 相关。 三、相关分析的主要内容 1、确定现象之间有无关系。 2、确定相关关系的表现形式。 3、测定相关关系的密切程度和方向。

相关分析与回归分析 PPT

相关分析与回归分析 PPT
距离相关分析通过计算广义距离 度量样品或变量间得相似程度。
2022/9/20
26
距离相关分析一般不单独使用, 而就是作为聚类分析、因子分析等得 预处理过程。
距离相关分析根据统计量得不同, 分为不相似性测度和相似性测度。对 于不相似性测度,通过计算距离来表 示,距离越大,相似性越弱;对于相似性 测度,通过计算 Pearson 相关系
数据得采集也就是建立回归模型 得重要一环。
大多数建模竞赛题目会提供相关 数据,但这些数据可能包含了一些无 用得信息,个别数据缺失甚至失真。
在建模前,需要对数据进行适当
2022/9/20
45
处理。比如标准化,剔除个别过大或 过小得“野值”,用插值方法补齐空 缺数据等。 (3) 回归模型形式得确定
收集、处理好数据后,首先要确 定适当得数学模型来描述这些变量间 得统计关系。
显然,样品间得相关系数都接近
于1,很难辨别出其相似程度。
2022/9/20
31
例4 5名考官给10名应聘者得面
试分数如下,请问各考官评分得一致
性如何?哪位考官得可信度较小?各
应聘者分数得差异就是否明显?
解 若第1问改为:请问不同考官
对应聘者面试分数得影响就是否显著,
则勉强可用方差分析。因为考官给10
相关分析与回归分析
一、引 言
2022/9/20
2
在很多研究领域中,往往需要研
究事物间得关系。如收入与受教育程
度,子女身高与父母身高,商品销售额
与广告费用支出,农作物产量与施肥
量,上述两者间有关系吗?如果有关
系,又就是怎么样得关系呢?如何来
度量这种关系得强弱?
解决上述问题得统计方法就是相

10回归分析

10回归分析

回归分析
当研究对象的一个或多个变量X1,X2…Xm 的变化会引起另一个或多个变量Y1,Y2…Yn发 生变化时,我们就说它们之间存在着某种相 关关系。 其中诸X带有“原因”的性质,故称为自 变量,诸Y带有“结果”的性质,称之为因变 量。相关关系包括两种类型:确定关系和不 确定关系。
回归分析
不论确定关系还是不确定关系,对具有 相关关系的现象,都可以选择一适当的数学 关系式,用以说明一个或几个变量变动时, 另一变量或几个变量平均变动的情况,这种 关系式就称为回归方程。
回归方程检验
ˆ ˆ l yy ( yi y ) 2 [( yi y ) ( y y )]2
i 1 i 1 n n
ˆ ˆ ˆ ˆ ( yi y ) 2 ( y y ) 2 2 ( yi y )( y y )
i 1 i 1 i 1
回归直线的判定
设y* a bx是平面上的一条任意直线,(xi , yi )(i 1,2, ..., N )是变量x,y的一组观测数据。 那么,对于每一个xi,在直线y* a bx上确可以确定一 个yi a bxi的值,yi 与xi处实际观测值yi的差:
* *
yi yi yi (a bx)
一元线性回归分析法
全国每年的技术贸易额与很多因素有关, 但经过分析主要受全国GDP这一因素的影响 和制约,于是我们寻求二者之间的统计规律, 并进行预测。 以x表示自变量---全国GDP数量,以y表 示因变量---全国技术贸易额。根据国家统 计局公布的数字,将15年的数据列于下表:
根据列表数据,我们可以在直角坐标系中绘出散点图
相关性检验
臵信水平和臵信度是一样的,就是变量落 在臵信区间的可能性, “臵信水平”就是相信变 量在设定的臵信区间的程度,是个0-1的数,用 1-α表示。臵信区间是变量的一个范围,变量 落在这个范围的可能性是就是1-α。 显著性水平就是变量落在臵信区间以外的 可能性,“显著”就是与设想的臵信区间不一样, 用α表示,显著性水平与臵信水平的和为1。

相关与回归分析

相关与回归分析

5.3 等级相关分析

简单相关分析和偏相关分析通常广泛用于定量数据 或连续型数据的研究中,对于某些数据,尤其是定 性数据的相关分析而言,如果用Pearson法计算相 关系数,很难得到定性数据的协方差和标准差,对 于上述情,况的相关分析往往从数据的次序入手, 借助了非参数统计的思想。次序在数列中代表了某 个具体变量值的位置,等级或秩,因此此类相关分 析,等级相关分析或秩相关分析。 非参数相关系数主要有Spearman、Kendall tua-b 和Hoeffding’s等级相关系数。

上述过程会产生多组综合变量,对于变量的选择, SAS系统可以根据变量之间的关系计算出所谓的特 征根,并根据某一对组合的特征根占所有特征根总 和的比重,计算出特征根贡献率。如果只选择某对 最能说明问题的的综合变量组合,则应选择特征根 贡献最大的变量组合,如需选择一些能够对实际问 题进行解释的变量组合,则可以选择累计特征根贡 献比较大的组合。 除综合变量之间的典型相关系数之外,还可以计算 综合变量V和W与其对应的变量x、y之间的系数, 即典型系数。
Spearman相关系数

该相关系数主要测度顺序变量间的线性先关关系, 在计算过程中只考虑变量值的顺序,而不考虑变量 值的大小。其计算过程为:首先把变量转换成在样 本所有变量值中的排列次序或名词,在利用 Pearson方法求解转换后的两个变量对应的排列次 序(秩)的先关系数。
r
( Rx Rx )( Ry Ry ) 2 2 ( Rx Rx ) ( Ry Ry )

相关分析介绍
设有两个变量x和y,变量y随变量x一起变化,并完 全依赖于x,当变量x取某个数值时,y依确定的关系 取相应的值,则称y是x的函数,记为 y = f(x), 其中x称为自变量,y称为因变量。各观测点落在一 条线上。 自变量取值一定时,因变量的取值带有一定随机性 的两个变量之间的关系叫做相关关系。当一个或几 个相互联系的变量取一定数值时,与之相对应的另 一变量的值虽然不确定,但它仍按某种规律在一定 的范围内变化,变量间的这种相互关系,称为具有 不确定性的相关关系。

【毕业论文】相关分析和回归分析

【毕业论文】相关分析和回归分析

相关分析和回归分析客观事物之间的关系分为函数关系和统计关系,函数关系也就是我们通常所说的一一对应的关系,而统计关系是指两事物之间的一种非一一对应的关系,即当一个变量x取一定值时,另一变量y无法依确定的函数取唯一确定的值。

事物之间的统计关系是普遍存在,且有的关系强,有的关系弱。

相关分析和回归分析都是以不同方式测度事物之间统计关系的有效工具。

实际应用中。

这两种分析方法经常互相结合渗透。

一、相关分析相关分析通过图形和数值两种方式,能够有效的揭示事物之间统计关系的强弱程度。

1、散点图能直观的显示数据之间的相关关系,可以利用曲线将点散布的主要轮廓描述出来,使数据的主要特征更突出。

如下图:研究04年四层金指的报废面积与入仓面积的相关关系上图看出:数据集中分布在直线周围,说明是高度正相关的。

2、相关系数散点图能直观的展现变量之间的统计关系,但并不精确。

相关系数以数值的方式精确的反映了两个变量间线形相关的强弱程度。

➢ R=yyxx xy L L L ,其中xx L =∑=--ni ix x12)(,∑=----=ni i i xy y y x x L 1))((,∑=--=ni i yy y y L 12)(.➢ 相关系数R 的取值在-1~+1之间。

➢ R>0表示两变量之间存在正的线性相关关系;R<0表示两变量之间存在负的线性相关关系。

➢ R=1表示两变量存在完全正相关;R=-1表示两变量存在完全负相关;R=0表示两变量不存在线性相关关系。

➢ |R|>0.8表示两变量之间具有较强的线性关系;|R|<0.3表示两变量之间的线性相关关系较弱。

上例中,R=0.974,说明报废面积与入仓面积之间是强正相关的。

二、一元线性回归在实际应用中,我们常常需要考虑某一现象与影响它的最主要因素的关系,回归分析不仅可以揭示变量x 对变量y 的影响大小,还可以由回归方程进行预测和控制。

一元线性回归是最简单的回归模型。

数据的相关性与回归分析

数据的相关性与回归分析

数据的相关性与回归分析数据的相关性与回归分析是统计学中重要的概念和方法,用于探究变量之间的关系以及预测未知变量的值。

在本文中,我们将介绍相关性和回归分析的基本概念和原理,并探讨其在实际问题中的应用。

一、相关性的概念与计算相关性是用来衡量两个变量之间关系的强度和方向的指标。

一般来说,相关性的取值范围在-1到1之间,-1表示完全负相关,1表示完全正相关,0表示无相关关系。

计算相关性的常用方法是皮尔逊相关系数(Pearson correlation coefficient)。

皮尔逊相关系数可以通过下面的公式计算得到:r = (Σ[(xi - ȳ)(yi - ȳ)]) / (sqrt(Σ(xi - ȳ)²) * sqrt(Σ(yi - ȳ)²))其中,r表示相关系数,xi与yi分别表示第i个观测值的两个变量的取值,ȳ表示所有yi的均值。

二、回归分析的基本原理回归分析是一种建立变量之间关系模型的方法,它可以通过已知数据来预测未知变量的值。

回归分析的基本原理是建立一个方程来描述自变量和因变量之间的关系,通过该方程来进行预测或推断。

在回归分析中,通常假设自变量和因变量之间服从线性关系。

简单线性回归是其中最基本的形式,它的方程可以表示为:y = β0 + β1x + ε其中,y表示因变量的值,x表示自变量的值,β0和β1表示回归系数,ε表示误差项。

三、回归模型的建立和评估为了建立回归模型,我们需要有足够的数据来拟合该模型,并进行评估。

常用的评估指标有均方误差(Mean Squared Error)和确定系数(Coefficient of Determination)等。

均方误差可以通过下面的公式计算得到:MSE = Σ(yi - ŷi)² / n其中,yi表示观测值的实际值,ŷi表示回归模型预测的值,n表示观测值的个数。

确定系数可以通过下面的公式计算得到:R² = 1 - (Σ(yi - ŷi)² / Σ(yi - ȳ)²)其中,ȳ表示观测值的平均值。

回归分析与相关性检验方法

回归分析与相关性检验方法

回归分析与相关性检验方法引言回归分析和相关性检验方法是统计学中常用的两种分析方法。

它们主要用于研究变量之间的关联程度和预测某一变量对其他变量的影响。

在实际应用中,回归分析和相关性检验方法具有广泛的应用领域,例如经济学、医学、社会科学等。

本文将对回归分析和相关性检验方法进行详细介绍,并给出相应的案例应用。

一、回归分析回归分析是一种统计学方法,用于研究因变量和一个或多个自变量之间关系的强度和方向。

回归分析有两种基本类型:简单线性回归和多元线性回归。

1. 简单线性回归简单线性回归是指当因变量和自变量之间存在一种线性关系时使用的回归分析方法。

简单线性回归的模型可以表示为:$y = \\beta_0 + \\beta_1x + \\epsilon$,其中y表示因变量,x表示自变量,$\\beta_0$和$\\beta_1$是回归系数,表示截距和斜率,$\\epsilon$表示误差项。

简单线性回归的关键是通过最小二乘法估计回归系数,然后进行显著性检验和模型拟合度的评估。

通过显著性检验可以确定回归系数是否显著不为零,进而得出自变量对因变量的影响是否显著。

2. 多元线性回归多元线性回归是指当因变量和多个自变量之间存在一种线性关系时使用的回归分析方法。

多元线性回归的模型可以表示为:$y = \\beta_0 + \\beta_1x_1 +\\beta_2x_2 + ... + \\beta_nx_n + \\epsilon$,其中y表示因变量,x1,x2,...,x n表示自变量,$\\beta_0, \\beta_1, \\beta_2, ..., \\beta_n$表示回归系数,$\\epsilon$表示误差项。

多元线性回归的关键也是通过最小二乘法估计回归系数,并进行显著性检验和模型拟合度的评估。

多元线性回归可以通过检验回归系数的显著性,判断各个自变量是否对因变量产生显著影响。

二、相关性检验方法相关性检验方法是用于检测变量之间关系的非参数统计学方法。

回归分析和相关分析的区别

回归分析和相关分析的区别

相关分析和回归分析是极为常用的2种数理统计方法,在科学研究领域有着广泛的用途。然而,由于这2种数理统计方法在计算方面存在很多相似之处,且在一些数理统计教科书中没有系统阐明这2种数理统计方法的内在差别,从而使一些研究者不能严格区分相关分析与回归分析。
最常见的错误是:用回归分析的结果解释相关性问题。例如,作者将“回归直线(曲线)图”称为“相关性图”或“相关关系图”;将回归直线的R2(拟合度,或称“可决系数”)错误地称为“相关系数”或“相关系数的平方”;根据回归分析的结果宣称2个变量之间存在正的或负的相关关系。
回归分析和相关分析的区别! (2010-01-15 01:21:07)转载▼
标签: 回归分析 相关分析分析和相关分析是互相补充、密切联系的,相关分析需要回归分析来表明现象数量关系的具体形式,而回归分析则应该建立在相关分析的基础上。
主要区别有:一,在回归分析中,不仅要根据变量的地位,作用不同区分出自变量和因变量,把因变量置于被解释的特殊地位,而且以因变量为随机变量,同时总假定自变量是非随机的可控变量.在相关分析中,变量间的地位是完全平等的,不仅无自变量和因变量之分,而且相关变量全是随机变量. 二,相关分析只限于描述变量间相互依存关系的密切程度,至于相关变量间的定量联系关系则无法明确反映.而回归分析不仅可以定量揭示自变量对应变量的影响大小,还可以通过回归方程对变量值进行预测和控制.
如果自变量是普通变量,即模型Ⅰ回归分析,采用的回归方法就是最为常用的最小二乘法。如果自变量是随机变量,即模型Ⅱ回归分析,所采用的回归方法与计算者的目的有关。在以预测为目的的情况下,仍采用“最小二乘法”(但精度下降—最小二乘法是专为模型Ⅰ 设计的,未考虑自变量的随机误差);在以估值为目的(如计算可决系数、回归系数等)的情况下,应使用相对严谨的方法(如“主轴法”、“约化主轴法”或“Bartlett法” )。显然,对于回归分析,如果是模型Ⅱ回归分析,鉴于两个随机变量客观上存在“相关性”问题,只是由于回归分析方法本身不能提供针对自变量和因变量之间相关关系的准确的检验手段,因此,若以预测为目的,最好不提“相关性”问题;若以探索两者的“共变趋势”为目的,应该改用相关分析。如果是模型Ⅰ回归分析,就根本不可能回答变量的“相关性”问题,因为普通变量与随机变量之间不存在“相关性”这一概念(问题在于,大多数的回归分析都是模型Ⅰ回归分析!)。此时,即使作者想描述2个变量间的“共变趋势”而改用相关分析,也会因相关分析的前提不存在而使分析结果毫无意义。

相关分析和回归分析有什么区别

相关分析和回归分析有什么区别

相关分析和回归分析有什么区别在统计学和数据分析的领域中,相关分析和回归分析是两个常用的方法,它们都用于研究变量之间的关系,但在目的、方法和结果解释等方面存在着明显的区别。

首先,从目的上来看,相关分析主要是为了衡量两个或多个变量之间线性关系的强度和方向。

它并不关心变量之间的因果关系,只是简单地描述变量之间的关联程度。

例如,我们想了解身高和体重之间的关系,相关分析可以告诉我们它们之间的关联是紧密还是松散,是正相关(即身高增加体重也增加)还是负相关(身高增加体重反而减少)。

而回归分析则更进一步,它不仅要确定变量之间的关系,还试图建立一个数学模型来预测因变量的值。

这里就涉及到了因果关系的探讨,虽然在很多情况下,回归分析所确定的因果关系也并非绝对的,但它的目的在于找到自变量对因变量的影响程度,从而能够根据给定的自变量值来预测因变量的值。

比如,我们想知道教育程度如何影响收入水平,通过回归分析,就可以建立一个方程,根据一个人的教育年限来预测他可能的收入。

其次,在方法上,相关分析通常使用相关系数来衡量变量之间的关系。

最常见的相关系数是皮尔逊相关系数(Pearson correlation coefficient),其取值范围在-1 到 1 之间。

-1 表示完全的负相关,1 表示完全的正相关,0 则表示没有线性相关关系。

但需要注意的是,相关系数只能反映线性关系,如果变量之间存在非线性关系,相关系数可能无法准确反映其关联程度。

回归分析则通过建立回归方程来描述变量之间的关系。

常见的回归模型有线性回归、多项式回归、逻辑回归等。

在线性回归中,我们假设因变量与自变量之间存在线性关系,通过最小二乘法等方法来估计回归系数,从而得到回归方程。

对于非线性关系,可以通过对变量进行变换或者使用专门的非线性回归模型来处理。

再者,结果的解释也有所不同。

在相关分析中,我们关注的是相关系数的大小和符号。

一个较大的绝对值表示变量之间有较强的线性关系,正号表示正相关,负号表示负相关。

相关系数与线性回归分析

相关系数与线性回归分析

相关系数与线性回归分析数据分析是现代社会中不可或缺的一部分,它帮助我们了解事物之间的相互关系。

在数据分析中,相关系数与线性回归分析是常用的统计工具,它们可以揭示变量之间的关联和预测未来的趋势。

本文将以深入浅出的方式介绍相关系数与线性回归分析的原理、应用和局限性。

相关系数是用来衡量两个变量之间的统计依赖性的指标。

它的取值范围从-1到1,其中0表示没有线性关系,1表示完全正相关,-1表示完全负相关。

常用的相关系数有皮尔逊相关系数和斯皮尔曼等级相关系数。

皮尔逊相关系数是用来衡量两个连续变量之间线性关系的强弱的指标。

它的计算公式为cov(X,Y)/(σX σY),其中cov(X,Y)代表X和Y的协方差,σX和σY分别代表X和Y的标准差。

如果相关系数接近于1,则表示两个变量之间存在强正相关关系;如果接近于-1,则表示存在强负相关关系;如果接近于0,则表示两个变量之间没有线性关系。

斯皮尔曼等级相关系数是用来衡量两个有序变量之间的相关性的指标。

它通过将每个变量的原始值转换为等级值,并计算等级之间的差异来确定相关性。

斯皮尔曼等级相关系数的取值范围与皮尔逊相关系数相同,但它不要求变量之间呈现线性关系。

相关系数的应用非常广泛。

在金融领域中,相关系数可以用来衡量不同证券之间的关联性,帮助投资者构建更稳健的投资组合。

在医学研究中,相关系数可以用来分析不同变量对疾病风险的影响,为医生提供指导性建议。

在社会科学中,相关系数可以帮助研究者了解不同因素对人们态度和行为的影响,从而改善政策和社会管理的决策。

除了相关系数,线性回归分析也是一种常用的统计方法。

线性回归分析通过拟合一条直线来描述两个变量之间的关系,它的基本形式为Y = β0 + β1X + ε,其中Y表示因变量,X表示自变量,β0和β1表示回归系数,ε表示误差项。

线性回归分析的目标是找到最佳拟合线,使得回归系数能够准确地预测Y的变化。

线性回归分析的应用广泛。

在市场营销中,线性回归分析可以帮助企业了解消费者购买意愿与价格、促销活动等因素之间的关系,从而制定更有效的营销策略。

第10章相关分析及回归分析

第10章相关分析及回归分析

第八章相关与回归分析一、本章重点1.相关系数的概念及相关系数的种类。

事物之间的依存关系,能够分为函数关系和相关关系。

相关关系又有单向因果关系和互为因果关系;单相关和复相关;线性相关和非线性相关;不相关、不完全相关和完全相关;正相关和负相关等类型。

2.相关分析,着重掌握如何画相关表、相关图,如何测定相关系数、测定系数和进行相关系数的推断。

相关表和相关图是变量间相关关系的生动表示,对于未分组资料和分组资料计算相关系数的方式是不同的,一元线性回归中相关系数和测定系数有着紧密的关系,取得样本相关系数后还要对整体相关系数进行科学推断。

3.回归分析,着重掌握一元回归的大体原理方式,一元回归是线性回归的基础,多元线性回归和非线性回归都是以此为基础的。

用最小平方式估量回归参数,回归参数的性质和显著性査验,随机项方差的估量,回归方程的显菁性査验, 利用回归方程进行预测是回归分析的主要内容。

4.应用相关与回归分析应注意的问题。

相关与回归分析都有它们的应用范围,必需明白在什么情形下能用,什么情形下不能用。

相关分析和回归分析必需以定性分析为前提,不然可能会闹岀笑话,在进行预测时选取的样本要尽可能分散,以减少预测误差,在进行预测时只有在现有条件不变的情形下才能进行,若是条件发生了转变,原来的方程也就失去了效用。

二、难点释疑本章难点在于计算公式多,不容易记忆,所以更要注重计算的练习。

为了辜握大体计算的内容,最少应认真理解书上的例题,做完本指导书上的全数计算题。

初学者可能会感到本章公式多且复杂,难于记忆,其实只要抓住Lxx、Lxy. Lyy 这三个记号,记住它们的展开式,几个主要的公式就不难记忆了。

若是能自己把这些公式推证一下,弄清其关系,那就更易记住了。

三、练习题(一)填空题1事物之间的依存关系,按照其彼此依存和制约的程度不同,能够分为()和()两种。

2.相关关系按相关关系的情形可分为()和();按自变量的多少分()和();按相关的表现形式分()和();按相关关系的紧密程度分()、()和();按相关关系的方向分()。

第10章 直线回归与相关分析

第10章 直线回归与相关分析
是α+βxi的估计值
回归方程的基本条件(性质): 回归方程的基本条件(性质): 性质1 性质1 性质2 性质2 性质3 性质3
ˆ 最小; Q = ∑( y − y)2 = 最小;
ˆ ∑( y − y) = 0
; 。
回 归 直 线 通 过 点 (x, y)
2
ˆ Q = ∑( yi − yi ) = ∑[ yi − (a + bxi )]
二、直线回归的显著性检验
回归关系的假设测验: 回归关系的假设测验: 对于样本的回归方程,必须测定其来自无 对于样本的回归方程,必须测定其来自无 直线回归关系总体的概率大小。只有当这种概 直线回归关系总体的概率大小。 率小于0.05或0.01时,我们才能冒较小的危 或 率小于 时 险确认其所代表的总体存在着直线回归关系。 险确认其所代表的总体存在着直线回归关系。 这就是回归关系的假设测验 。 回归关系的假设测验有两种方法: 测验或F 回归关系的假设测验有两种方法:t测验或F测验
由于x变数的实测区间为[31.7,44.2], 由于x变数的实测区间为[31.7,44.2], [31.7 在应用=48.5-1.1x于预测时,需限定x 在应用=48.5-1.1x于预测时,需限定x的区间 =48.5 于预测时 为[31.7,44.2];如要在x<31.7或>44.2的 [31.7,44.2];如要在x 31.7或 44.2的 区间外延,则必须有新的依据。 区间外延,则必须有新的依据。
整理后可得: 整理后可得:
na + ( ∑ xi )b = ∑ yi ( ∑ xi ) a + ( ∑ x i ) b = ∑ x i y i
2
上式叫做a与b的正规方程组 正规方程组。 正规方程组
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

18
2.2 相关系数的特征及判别标准
【例】根据下列数据,计算变量 x 、y 的
相关系数。
序 人均收入 恩格尔系数 序 人均收入 恩格尔系数

x
y

x
y
1 280
0.683
6
670
0.602
2 320
0.675
7
790
0.544
3 370
0.662
8
880
0.490
4 530
0.649
9
910
0.505
5.813
x2
78400 102400 152100 280900 422500 448900 624100 774400 828100 1102500
4814300
y2
0.466489 0.455625 0.438244 0.421201 0.321489 0.362404 0.295936 0.240100 0.255025 0.190096
0
x
2021/2/4
第六章 相关与回归分析
34
参数、的最小二乘法估计(OLS估计)
2021/2/4
第六章 相关与回归分析
35
3.2 一元线性回归模型的参数估计 最小二(平方)乘法:
Q βˆ 1 , βˆ 2 yi βˆ 1 βˆ 2xi 2

理得Q : 2
这两种分析的联系是,它们是研究现象之间相互依存关系的 两个不可分割的方面。在实际工作中,一般先进行相关分析, 由相关系数或相关指数的大小决定是否需要进行回归分析。
2021/2/4
第六章 相关与回归分析
30
一元线性回归模型
2021/2/4
第六章 相关与回归分析
31
2021/2/4
第六章 相关与回归分析
2021/2/4
第六章 相关与回归分析
9
1.4 回归与回归分析 回归分析—在相关分析的基础上,
根据变量间的相关关系的形态,寻求 一个数学模型(数学表达式),来近 似的表达变量间的平均变化关系。
2021/2/4
第六章 相关与回归分析
10
1.4 回归与回归分析 回归分析的分类: 按照变量多少 —简单回归和复回归。 按照相关形态 —线性回归和非线性回归。
5 650
0.567 10 1050
0.436
2021/2/4
第六章 相关与回归分析
19
2.2 相关系数x 的 64特7元征,及y 判0.5别813标 58准.13%
x
280 320 390 530 650 670 790 880 910 1050
6470
y
0.683 0.675 0.662 0.649 0.567 0.602 0.544 0.490 0.505 0.436
相关的系一 数:致估计n1 量 。x x
2
1 n
y y
2
2021/2/4
第六章 相关与回归分析
15
2.1 相关系数的计算公式
r
1 n
x
x
y
y
1
n
x x
2
1 n
y y
2
x x y y
L xy
x x
2
y y 2
Lxx Lyy
nx yxy
n x2 x 2 n y2 y 2
6
1.3 相关分析和回归分析 相关分析 —研究具有相关关系变量的变
动方向和密切程度的统计分析方法 。
相关系数 r
r
较大 — 现象间依存关系强
较小 — 现象间依存关系弱
2021/2/4
第六章 相关与回归分析
7
1.3 相关分析及其内容
相关分析 —研究具有相关关系变量的变动
方向和密切程度的统计分析方法 。
每一 x Dx 法 则—f 唯一 y Y
相关关系:
确定 x
联系
y
一定范围
一定分布
2021/2/4
第六章 相关与回归分析
3
1.1 函60的0 关7系 00 800
80
85
95 100
95
现85收集90了有100关消110费 115
y和 i 收190入 50 的119资 05 料1112( 50 共113200计
0.00582169 -20.0669
0.02111209 -58.5559
0.0675121 -201.421
2021/2/4
第六章 相关与回归分析
20
2.2 相关系数的特征及判别标准
解法 1
Lxx
L yy
Lxy
n
x
y
x x2
y
2
y
x x y y
10 6470 5.813 628210 0.0675121 -201.421
2021/2/4
第六章 相关与回归分析
17
2.2 相关系数的特征及判别标准
2. 相关关系密切程度的划分
1 r 0 . 3
— 无直线相关;
2 0 . 3 r 0 . 5 — 低度相关;
3 0 . 5 r 0 . 8 — 显著相关
4 r 0 . 8
— 高度相关
2021/2/4
第六章 相关与回归分析
25
2021/2/4
第六章 相关与回归分析
26
2.2 相关系数的特征及判别标准
因子 Lxx Lyy Lxy
2021/2/4
换算因子的计算
含义
换算公式
x x2
y
2
y
x xy y
x2
1 n
x 2
y2
1 n
y 2
xy
1 n
x
y
第六章 相关与回归分析
27
第六章 相关与回归分析
第三节 一元线性回归分析
2021/2/4
第六章 相关与回归分析
12
1.5 相关分析与回归分析的关系
注意:
1. 进行相关和回归分析时要坚持定性分 析和定量分析相结合的原则,在定性 分析的基础上开展定量分析。
2. 只有当变量间存在高度相关时,才进 行回归分析寻求其相关的具体形式。
2021/2/4
第六章 相关与回归分析
13
第六章 相关与回归分析
125 140
35户1110家 55 庭1113) 55 并1132将 55 它115300们
155 165
分组12列 0 表14如 0 下15: 0 170 185
y i 100 110 120 130 140
2021/2/4
第六章 相关与回归分析
4
1.1 函数关系与相关关系
人均消费
200
180
3.446609
第六章 相关与回归分析
x y
191.24 216.00 258.18 343.97 368.55 403.34 429.76 431.20 459.55 457.80
3559.59
22
2.2 相关系数的特征及判别标准
解法 2
n x y x2 y2 x y
10 6470 5.813 4814300 3.446609 3559.59
5.813
2
xx xx
-367 134689
-327 106929
-257 66049
-117 13689
3
9
23
529
143 20449
233 54289
363 69169
403 162409
0 628210
y y
0.1017 0.00937 0.0827 0.0677 -0.0143 0.0207 -0.0373 -0.0913 -0.0763 -0.1453
2021/2/4
第六章 相关与回归分析
11
1.5 相关分析与回归分析的关系
相关分析与回归分析联系
相关关系
回归分析
判定相关关系及密切程 建立数学模型—平均变
联度
化关系
系 回归分析的前提和基础 相关分析的深入和继续
区 变量间的关系是对等
自、因变量划分不同, 回归方程也不同
别 自、因变量—随机变量 因变量是随机变量
2021/2/4
第六章 相关与回归分析
29
二、回归分析与相关分析联系与区别
相关分析,是研究两个或两个以上随机变量之间相互依存关 系的紧密程度。相关分析研究的都是随机变量,并且不分自 变量与因变量;
回归分析,是研究某一随机变量(因变量)与其他一个或几 个普通变量(自变量)之间的数量变动的关系。回归分析研 究的变量要定出自变量与因变量,并且自变量是确定的普遍 变量,因变量是随机变量。
基本内容:
1. 直观判断变量间是否存在相关关系及其 形态—统计图(散点图)。
2. 定量确定变量—相关系数(线性)。
2021/2/4
第六章 相关与回归分析
8
1.4 回归与回归分析 回归—在数量分析方法中“回归”
泛指变量间的一般数量关系,在相关 分析中,将反映现象间相关关系的直 线或者曲线称为回归直线或回归曲线, 将回归直线或回归曲线的方程称为回 归方程。
第二节 简单线性相关分析
2.1 相关系数的计算公式 2.2 相关系数的特征及判别标准 2.3 相关系数的检验
2.1 相关系数的计算公式
相关系r数与计ρ 算公式: X 、Y 的协方差
相总关样 系体数本:相关 系V数Caor是 vXX一,Va个 YrY统
计量。可以证明,样本相
样关本系数Xr的r 标是准总差n1体相x关 Yx系 的y标数准yρ差
相关文档
最新文档