椭圆的定义与几何性质

合集下载

椭圆的几何性质

椭圆的几何性质

(± 。顶点坐标是: 5, 0) (0, ±4) 。
解题的关键:1、将椭圆方程转化为标准方程 解题的关键: 、 明确a、 明确 、b x2 y2
25
+
16
= 1
2、确定焦点的位置和长轴的位置 、
当堂检测
x2 y2 1、若焦点在x轴上的椭圆 + = 1 的离心率为 2 m 则m为( B )。 3 8 2 A、 3 B、2 C、 D、 3 3
椭圆的几何性质
青云学府数学组 王斌
知识回顾
• 1、椭圆的定义: 、椭圆的定义: • 平面内与两个定点F1,F2的距离的和等于常数 (大于│F1F2 │)的点的轨迹叫做椭圆,这两 个定点叫做椭圆的焦点,两焦点的距离叫做椭 圆的焦距。 PF1 | + | PF2 |= 2a(2a >| F1 F2 |) | • 2、椭圆的标准方程是 、椭圆的标准方程是:
B1
令 y=0,得 x=?说明椭圆与 x轴的交点? 从图象上看A 从图象上看 1(-a,0),A2(a,0),B1(0,-b),B2(0,b) 因此,椭圆与它的对称轴共有四个交点, 因此,椭圆与它的对称轴共有四个交点,即:A1、A2、B1、B2。 、 、 、 这四个点叫做椭圆的顶点 椭圆的顶点。 这四个点叫做椭圆的顶点。 线段A 椭圆的长轴,其长度等于2a;线段 1B2叫椭圆的 线段B 线段 1A2叫椭圆的长轴,其长度等于 线段 短轴,其长度等于2b;线段 1C2叫椭圆的焦距,其长度等于 线段C 椭圆的焦距, 短轴,其长度等于 线段 2c. a、b分别叫做椭圆的长半轴长和短半轴长。c叫椭圆的半 分别叫做椭圆的长半轴长 叫椭圆的半 、 分别叫做椭圆的长半轴长和短半轴长。 叫椭圆的 焦距。 焦距。 在三角形F2OB2中│OB2│=b, │OF2│=c, │F2B2│=a。 在三角形 , 。 在直角△ 三者之间的关系。 在直角△ F2OB2中直观地显示出a,b,c三者之间的关系。 中直观地显示出 , , 三者之间的关系

椭圆的定义与性质

椭圆的定义与性质

椭圆的定义与性质椭圆是数学中的一个重要几何概念,它在几何学、物理学、天文学等领域中都有广泛的应用。

本文将从椭圆的定义、性质以及应用等方面进行探讨。

一、椭圆的定义椭圆是平面上一组点的集合,这组点到两个给定点的距离之和等于常数的情况。

这两个给定点称为焦点,而常数称为离心率。

椭圆的定义可以用数学表达式表示为:对于平面上的点P(x, y),到焦点F1和F2的距离之和等于常数2a,即PF1 + PF2 =2a。

其中,a为椭圆的半长轴。

二、椭圆的性质1. 焦点与半长轴的关系:椭圆的两个焦点到椭圆中心的距离之和等于2a,即F1C + F2C = 2a。

这表明椭圆的中心C位于焦点连线的中垂线上。

2. 离心率与形状的关系:离心率e是椭圆的一个重要参数,它决定了椭圆的形状。

当离心率e=0时,椭圆退化为一个圆;当0<e<1时,椭圆的形状趋近于圆;当e=1时,椭圆退化为一个抛物线;当e>1时,椭圆的形状趋近于双曲线。

3. 半短轴与半长轴的关系:椭圆的半长轴为a,半短轴为b,它们之间的关系可以用离心率e来表示,即e = √(1 - b²/a²)。

通过这个公式,我们可以计算出椭圆的半短轴。

4. 焦点与直径的关系:椭圆的焦点到椭圆上任意一点的距离之和等于椭圆的直径。

这个性质在椭圆的应用中非常重要,例如在天文学中,可以用椭圆的性质来描述行星的轨道。

三、椭圆的应用1. 天文学中的椭圆轨道:行星绕太阳运动的轨道可以近似看作椭圆,根据椭圆的性质,可以计算出行星的轨道参数,如离心率、半长轴等。

2. 椭圆的光学性质:椭圆镜是一种常见的光学元件,它可以将入射光线聚焦到一个点上,用于望远镜、显微镜等光学仪器中。

3. 椭圆的工程应用:在建筑、桥梁等工程设计中,椭圆形状的结构可以提供更好的力学性能和美观效果。

总结:椭圆作为一种重要的数学概念,在几何学和应用数学中都有广泛的应用。

通过对椭圆的定义与性质的探讨,我们可以更好地理解椭圆的形状特征以及其在各个领域中的应用。

椭圆的几何性质知识点归纳及典型

椭圆的几何性质知识点归纳及典型

Evaluation Warning: The document was created with Spire.Doc for JA V A.(一)椭圆的定义:1、椭圆的定义:平面内与两个定点1F 、2F 的距离之和等于定长(大于12||F F )的点的轨迹叫做椭圆。

这两个定点 1F 、2F 叫做椭圆的焦点,两焦点的距离12||F F 叫做椭圆的焦距。

对椭圆定义的几点说明: (1)“在平面内”是前提,否则得不到平面图形(去掉这个条件,我们将得到一个椭球面);(2)“两个定点”的设定不同于圆的定义中的“一个定点”,学习时注意区分; (3)作为到这两个定点的距离的和的“常数”,必须满足大于| F 1F 2|这个条件。

若不然,当这个“常数”等于| F 1F 2|时,我们得到的是线段F 1F 2;当这个“常数”小于| F 1F 2|时,无轨迹。

这两种特殊情况,同学们必须注意。

(4)下面我们对椭圆进行进一步观察,发现它本身具备对称性,有两条对称轴和一个对称中心,我们把它的两条对称轴与椭圆的交点记为A 1, A 2, B 1, B 2,于是我们易得| A 1A 2|的值就是那个“常数”,且|B 2F 2|+|B 2F 1|、|B 1F 2|+|B 1F 1|也等于那个“常数”。

同学们想一想其中的道理。

(5)中心在原点、焦点分别在x 轴上,y 轴上的椭圆标准方程分别为:22222222x y y x 1(a b 0),1(a b 0),a b a b +=>>+=>> 相同点是:形状相同、大小相同;都有 a > b > 0 ,222a cb =+。

不同点是:两种椭圆相对于坐标系的位置不同,它们的焦点坐标也不同(第一个椭圆的焦点坐标为(-c ,0)和(c ,0),第二个椭圆的焦点坐标为(0,-c )和(0,c )。

椭圆的焦点在 x 轴上⇔标准方程中x 2项的分母较大;椭圆的焦点在 y 轴上⇔标准方程中y 2项的分母较大。

椭圆的定义和几何性质

椭圆的定义和几何性质

答案: y 2
x2
1
25 16
椭圆第一定义:
平面内与两定点F1,F2的距离的和等于常数(大于 F1F2 )
的点的轨迹叫椭圆,这两个定点叫做椭圆的 焦点 , 定点 之间的距离叫做焦距.
注:①当2a=|F1F2|时,P点的轨迹是 线段 .②当 2a<|F1F2|时,P点的轨迹不存在.
2.椭圆 x2 y2 1的焦距为2,则 m4
1的左右焦点,已知 PF1F2
为等腰三
角形,求椭圆的离心率。
解:由题意2c b2 (a c)2
整理得:2c2 ac a2 0 两边同时除以a2
2e2 e 1 0
e 1 2
变题1. (2009 江苏),在平面直角坐标系xOy中,A1, A2, B1, B2 为椭
圆 与直ax22线 byB22 1F1(a相交b 与0)点的T四,个线顶段点OT,与F椭为圆其的右交焦点点M,恰直为线线A段1BO2 T的
1
的切线,切点分别为A,B直线AB恰好经过椭圆的右焦点与上
顶点,则椭圆的方程为
x2
y2
.
1
54
4已知F1、F2为椭圆
x2 a2
y2 b2
1(a b 0)的焦点;M为椭圆
上一点,MF1垂直于x轴,且

3.
F1MF2
60
,则椭圆的离心率
3
m=_5_或 _ 3
椭圆的标准方程:
(1)焦点在x轴上的椭圆标准方程是:
x2 a2
y2 b2
1
(a b 0, a2
b2 c2 )
(2)焦点在y轴上得椭圆的标准方程是:
y 2 x2 1 (a b 0, a2 b2 c2 )
a2 b2

圆锥曲线(椭圆,双曲线,抛物线)的定义方程和性质知识总结

圆锥曲线(椭圆,双曲线,抛物线)的定义方程和性质知识总结

椭圆的定义、性质及标准方程1. 椭圆的定义:⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。

这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。

⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<<e e ,则动点M 的轨迹叫做椭圆。

定点F 是椭圆的焦点,定直线l 叫做椭圆的准线,常数e 叫做椭圆的离心率。

说明:①若常数2a 等于2c ,则动点轨迹是线段12F F 。

②若常数2a 小于2c ,则动点轨迹不存在。

2.3. 椭圆上的任一点和焦点连结的线段长称为焦半径。

焦半径公式:椭圆焦点在x 轴上时,设12F F 、分别是椭圆的左、右焦点,()00P x y ,是椭圆上任一点,则10PF a ex =+,20PF a ex =-。

推导过程:由第二定义得11PF e d =(1d 为点P 到左准线的距离), 则211000a PF ed e x ex a a ex c ⎛⎫==+=+=+ ⎪⎝⎭;同理得20PF a ex =-。

简记为:左“+”右“-”。

由此可见,过焦点的弦的弦长是一个仅与它的中点的横坐标有关的数。

22221x y a b +=;若焦点在y 轴上,则为22221y x a b+=。

有时为了运算方便,设),0(122n m m ny mx ≠>=+。

双曲线的定义、方程和性质1. 定义(1)第一定义:平面内到两定点F 1、F 2的距离之差的绝对值等于定长2a (小于|F 1F 2|)的点的轨迹叫双曲线。

说明:①||PF 1|-|PF 2||=2a (2a <|F 1F 2|)是双曲线;若2a=|F 1F 2|,轨迹是以F 1、F 2为端点的射线;2a >|F 1F 2|时无轨迹。

②设M 是双曲线上任意一点,若M 点在双曲线右边一支上,则|MF 1|>|MF 2|,|MF 1|-|MF 2|=2a ;若M 在双曲线的左支上,则|MF 1|<|MF 2|,|MF 1|-|MF 2|=-2a ,故|MF 1|-|MF 2|=±2a ,这是与椭圆不同的地方。

椭圆及其性质

椭圆及其性质
例8已知P(4,2)是直线 被椭圆 所截得的线段的中点,求直线 的方程.
解:方法一:设所求直线方程为 .
代入椭圆方程,整理得

设直线与椭圆的交点为 , ,则 、 是①的两根,∴
∵ 为 中点,∴ , .
∴所求直线方程为 .
方法二:设直线与椭圆交点 , .∵ 为 中点,∴ , .又∵ , 在椭圆上,∴ , 两式相减得 ,
又 ,所以 , 适合.故 .
例3已知动圆P过定点 ,并且在定圆 的内部与其相内切,求动圆圆心P的轨迹方程.
解:如图所示,设动圆 和定圆 内切于点 .动点 到两定点,即定点 和定圆圆心 距离之和恰好等于定圆半径,即 .
∴点 的轨迹是以 , 为两焦点,半长轴为4,半短轴长为 的椭圆的方程: .
[补例练习]
定义
平面内到两个定点 的距离之和等于定长( )的点的轨迹
标准方程
椭圆 : ( );
椭圆 : ( );
几何性质
焦点坐标


顶点
, ; , ;
, ;
, ;
范围
≤ , ≤ ;
≤ , ≤ ;
对称性
关于 轴均对称,关于原点中心对称;
的关系
4、直线与椭圆的位置关系:
将直线方程与椭圆方程联立组成方程组,消元后得到一个一元二次方程.根据判别式:当Δ=0时,直线与椭圆相切;当Δ>0时,直线与椭圆相交;当Δ<0时,直线与椭圆相离.
焦点弦长公式:直线与椭圆方程相交通过联立方程应用韦达定理来求解得:

若 分别为A、B的纵坐标,则 .
5、点与椭圆的位置关系:设点 ,椭圆方程为 ,则:
(其中 为椭圆焦点).
二、典型例题
例1已知椭圆方程 ,长轴端点为A1,A2,焦点为F1,F2,P是椭圆上一点, .求: 的面积(用a、b、 表示).

椭圆的经典知识总结

椭圆的经典知识总结

椭圆的经典知识总结椭圆是一个非常重要的几何形状,广泛应用于数学、物理和工程等领域。

下面将对椭圆的经典知识进行总结,涵盖椭圆的定义、性质以及一些常见的应用。

一、定义和性质:1.椭圆定义:椭圆是平面上到两个给定点(焦点)距离之和等于一定常数(长轴)的点的集合。

2.主要要素:(1)焦点:椭圆的两个焦点是确定椭圆形状的关键要素。

(2)长轴和短轴:椭圆的长轴是连接两个焦点的线段,短轴则是垂直于长轴并通过中心点的线段。

长轴的长度称为椭圆的主轴,短轴的长度则称为次轴。

(3)中心:椭圆的中心是指长轴和短轴的交点。

(4)半焦距:则是焦点到中心的距离。

(5)离心率:椭圆的离心率是一个用来衡量椭圆形状的值,定义为离心距(焦点到中心的距离)与主轴长度之比。

3.离心率和几何性质:(1)离心率的取值范围为0到1之间,当离心率为0时,椭圆退化为一个点;当离心率为1时,椭圆退化为一个抛物线。

(2)在椭圆上的任意一点,到焦点的距离之和等于常数,称为焦散性质。

(3)椭圆的两个焦点到任意一点的距离之差等于长轴的长度。

4.椭圆的方程:椭圆的标准方程为(x-h)²/a²+(y-k)²/b²=1,其中(h,k)为椭圆中心点的坐标,a和b分别为长轴和短轴的长度,并且a>b。

二、椭圆的性质和应用:1.对称性:(1)椭圆具有对称性,关于中心对称,即中心点是对称中心。

(2)长轴和短轴也是椭圆的对称轴。

2.焦点与直线的关系:(1)焦点到椭圆上的任意一点的距离之和等于该点到椭圆的任意一条切线的长度。

(2)椭圆上的任意一条切线与焦点之间的两条线段的夹角相等。

3.切线和法线:(1)切线是与椭圆一点相切且垂直于切线的直线。

(2)法线是与切线垂直且通过椭圆上切点的直线。

4.面积公式:椭圆的面积为πab,其中a和b分别为长轴和短轴的长度。

5.椭圆的应用:(1)椭圆在天文学中被用来描述行星、彗星和其他天体的轨道。

(2)椭圆也广泛应用于工程学、建筑学和设计中,例如椭圆形的天花板和门窗等。

椭圆的定义及几何性质(含答案)

椭圆的定义及几何性质(含答案)

椭圆的定义及其几何性质[要点梳理]1.椭圆的概念平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:(1)若a>c,则集合P为椭圆;(2)若a=c,则集合P为线段;(3)若a<c,则集合P为空集.2.椭圆的标准方程和几何性质椭圆的常用性质(1)设椭圆x2a2+y2b2=1(a>b>0)上任意一点P(x,y),则当x=0时,|OP|有最小值b,P点在短轴端点处;当x=±a时,|OP|有最大值a,P点在长轴端点处.(2)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a为斜边,a2=b2+c2.(3)已知过焦点F1的弦AB,则△ABF2的周长为4a.[基础自测]一、思考辨析判断下列说法是否正确,正确的在它后面的括号里打“√”,错误的打“×”.(1)平面内与两个定点F1,F2的距离之和等于常数的点的轨迹是椭圆.()(2)椭圆上一点P与两焦点F1,F2构成△PF1F2的周长为2a+2c(其中a为椭圆的长半轴长,c为椭圆的半焦距).()(3)椭圆的离心率e越大,椭圆就越圆.()(4)椭圆既是轴对称图形,又是中心对称图形.()(5)方程mx2+ny2=1(m>0,n>0,m≠n)表示的曲线是椭圆.()(6)x2a2+y2b2=1(a>b>0)与y2a2+x2b2=1(a>b>0)的焦距相同.()答案:(1)×(2)√(3)×(4)√(5)√(6)√二、小题查验1.设P是椭圆x225+y216=1上的点,若F1,F2是椭圆的两个焦点,则|PF1|+|PF2|等于()A.4B.5 C.8 D.10解析:D[由椭圆的定义知:|PF1|+|PF2|=2×5=10.]2.已知椭圆x225+y2m2=1(m>0)的左焦点为F1(-4,0),则m=()A.2 B.3 C.4 D.9解析:B[由题意知25-m2=16,解得m2=9,又m>0,所以m=3.]3.已知椭圆C:x2a2+y24=1的一个焦点为(2,0),则C的离心率为()A .13B .12C .22D .223解析:C [由椭圆x 2a 2+y 24=1知b 2=4,∴b =2,c =2,∴a =b 2+c 2=22.∴椭圆的离心率e =c a =222=22.]4.过点A (3,-2)且与椭圆x 29+y 24=1有相同焦点的椭圆的方程为( )A .x 215+y 210=1B .x 225+y 220=1C .x 210+y 215=1D .x 220+y 215=1解析:A [由题意知c 2=5,可设椭圆方程为x 2λ+5+y 2λ=1(λ>0),则9λ+5+4λ=1,解得λ=10或λ=-2(舍去),∴所求椭圆的方程为x 215+y 210=1.]5.若方程x 25-k +y 2k -3=1表示椭圆,则k 的取值范围是__________.解析:由已知得⎩⎪⎨⎪⎧5-k >0,k -3>0,5-k ≠k -3,解得3<k <5且k ≠4. 答案:(3,4)∪(4,5) 三、大题突破1.分别求出满足下列条件的椭圆的标准方程.(1)与椭圆x 24+y 23=1有相同的离心率且经过点(2,-3);(2)已知点P 在以坐标轴为对称轴的椭圆上,且P 到两焦点的距离分别为5,3,过P 且 与长轴垂直的直线恰过椭圆的一个焦点.解:(1)由题意,设所求椭圆的方程为x 24+y 23=t 1或y 24+x 23=t 2(t 1,t 2>0),因为椭圆过点(2,-3),所以t 1=224+(-3)23=2,或t 2=(-3)24+223=2512.故所求椭圆的标准方程为x 28+y 26=1或y 2253+x 2254=1.(2)由于焦点的位置不确定,所以设所求的椭圆方程为x 2a 2+y 2b 2=1(a >b >0)或y 2a 2+x 2b 2=1(a >b>0),由已知条件得⎩⎪⎨⎪⎧2a =5+3,(2c )2=52-32,解得a =4,c =2,所以b 2=12. 故椭圆方程为x 216+y 212=1或y 216+x 212=1.2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点(2,1),且离心率为22.(1)求椭圆C 的方程;(2)设M ,N 是椭圆上的点,直线OM 与ON (O 为坐标原点)的斜率之积为-12.若动点P满足OP →=OM →+2ON →,求点P 的轨迹方程.解:(1)因为e =22,所以b 2a 2=12,又椭圆C 经过点(2,1),所以2a 2+1b 2=1,解得a 2=4,b 2=2,所以椭圆C 的方程为x 24+y 22=1.(2)设P (x ,y ),M (x 1,y 1),N (x 2,y 2),则由OP →=OM →+2ON →得x =x 1+2x 2,y =y 1+2y 2, 因为点M ,N 在椭圆x 24+y 22=1上,所以x 21+2y 21=4,x 22+2y 22=4,故x 2+2y 2=(x 21+4x 1x 2+4x 22)+2(y 21+4y 1y 2+4y 22)=(x 21+2y 21)+4(x 22+2y 22)+4(x 1x 2+2y 1y 2)=20+4(x 1x 2+2y 1y 2).设k OM ,k ON 分别为直线OM 与ON 的斜率,由题意知, k OM ·k ON =y 1y 2x 1x 2=-12,因此x 1x 2+2y 1y 2=0,所以x 2+2y 2=20,故点P 的轨迹方程为x 220+y 210=1.第1课时 椭圆的定义及简单几何性质[考点梳理]1.已知两圆C 1:(x -4)2+y 2=169,C 2:(x +4)2+y 2=9,动圆在圆C 1内部且和圆C 1相内切,和圆C 2相外切,则动圆圆心M 的轨迹方程为( )A .x 264-y 248=1B .x 248+y 264=1C .x 248-y 264=1D .x 264+y 248=1[解析] 设圆M 的半径为r ,则|MC 1|+|MC 2|=(13-r )+(3+r )=16,又|C 1C 2|=8<16,∴动圆圆心M 的轨迹是以C 1、C 2为焦点的椭圆,且2a =16,2c =8,则a =8,c =4,∴b 2=48,故所求的轨迹方程为x 264+y 248=1.2.F 1,F 2是椭圆x 29+y 27=1的两个焦点,A 为椭圆上一点,且∠AF 1F 2=45°,则△AF 1F 2的面积为( )A .7B .74C .72D .752[解析] 由题意得a =3,b =7,c =2, ∴|F 1F 2|=22,|AF 1|+|AF 2|=6.∵|AF 2|2=|AF 1|2+|F 1F 2|2-2|AF 1|·|F 1F 2|cos 45°=|AF 1|2-4|AF 1|+8, ∴(6-|AF 1|)2=|AF 1|2-4|AF 1|+8.∴|AF 1|=72,∴S △AF 1F 2=12×72×22×22=72.[答案] (1)D (2)C3.设F 1,F 2分别是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左,右焦点,过点F 1的直线交椭圆E 于A ,B 两点,|AF 1|=3|F 1B |,且|AB |=4,△ABF 2的周长为16,则|AF 2|=________. 解析:由|AF 1|=3|F 1B |,|AB |=4,得|AF 1|=3, ∵△ABF 2的周长为16,∴4a =16,∴a =4. 则|AF 1|+|AF 2|=2a =8, ∴|AF 2|=8-|AF 1|=8-3=5.4.已知F 1、F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1⊥PF 2,若△PF 1F 2的面积为9,则b =________.解析:设|PF 1|=r 1,|PF 2|=r 2,则⎩⎪⎨⎪⎧r 1+r 2=2a ,r 21+r 22=4c 2, 所以2r 1r 2=(r 1+r 2)2-(r 21+r 22)=4a 2-4c 2=4b 2,所以S △PF 1F 2=12r 1r 2=b 2=9,所以b =3. 答案:(1)5 (2)31.若直线x -2y +2=0经过椭圆的一个焦点和一个顶点,则该椭圆的标准方程为( )A .x 25+y 2=1B .x 24+y 25=1C .x 25+y 2=1或x 24+y 25=1D .x 24+y 2=1[解析] C [直线与坐标轴的交点为(0,1),(-2,0), 由题意知当焦点在x 轴上时,c =2,b =1, ∴a 2=5,所求椭圆的标准方程为x 25+y 2=1.当焦点在y 轴上时,b =2,c =1,∴a 2=5,所求椭圆的标准方程为y 25+x 24=1.] 2.一个椭圆的中心在原点,焦点F 1,F 2在x 轴上,P (2,3)是椭圆上一点,且|PF 1|,|F 1F 2|,|PF 2|成等差数列,则椭圆的标准方程为( )A .x 28+y 26=1B .x 216+y 26=1C .x 24+y 22=1D .x 28+y 24=1[解析] A [设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0).由点P (2,3)在椭圆上知4a 2+3b 2=1.又|PF 1|,|F 1F 2|,|PF 2|成等差数列, 则|PF 1|+|PF 2|=2|F 1F 2|,即2a =2×2c ,c a =12,又c 2=a 2-b 2,联立⎩⎪⎨⎪⎧4a 2+3b 2=1,c 2=a 2-b 2,c a =12即a 2=8,b 2=6,故椭圆方程为x 28+y 26=1.] 3.已知F 1(-1,0),F 2(1,0)是椭圆的两个焦点,过F 1的直线l 交椭圆于M ,N 两点,若△MF 2N 的周长为8,则椭圆方程为( )A .x 24+y 23=1B .y 24+x 23=1C .x 216+y 215=1D .y 216+x 215=1解析:∵F 1(-1,0),F 2(1,0)是椭圆的两个焦点,∴c =1.根据椭圆的定义,得△MF 2N 的周长为4a =8,得a =2,∴b =3,∴椭圆方程为x 24+y 23=1,故选A .4.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且与抛物线y 2=x 交于A ,B 两点,若△OAB (O 为坐标原点)的面积为22,则椭圆C 的方程为( )A .x 28+y 24=1B .x 22+y 2=1C .x 212+y 26=1D .x 212+y 28=1解析:∵椭圆C :x 2a 2+y 2b 2=1(a >b >0)与抛物线y 2=x 交于A ,B 两点∴设A (x ,x ),B (x ,-x ),则x x =22,解得x =2,∴A (2,2).由已知得⎩⎨⎧c a =22,4a 2+2b2=1,a 2=b 2+c 2,解得a =22,b =2.∴椭圆C 的方程为x 28+y 24=1,故选A .答案:(1)A (2)A[命题角度1] 椭圆的长轴、短轴、焦距1.已知椭圆x 2m -2+y 210-m=1的长轴在x 轴上,焦距为4,则m 等于( )A .8B .7C .6D .5 解析:A [∵椭圆x 2m -2+y 210-m =1的长轴在x 轴上,∴⎩⎪⎨⎪⎧m -2>0,10-m >0,m -2>10-m ,解得6<m <10.∵焦距为4,∴c 2=m -2-10+m =4,解得m =8.] [命题角度2] 椭圆的离心率2.已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,A 是C 的左顶点,点P 在过A且斜率为36的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则C 的离心率为( )A .23B .12C .13D .14解析:D [如图,作PB ⊥x 轴于点B .由题意可设|F 1F 2|=|PF 2|=2,则c =1,由∠F 1F 2P =120°,可得|PB |=3,|BF 2|=1,故|AB |=a +1+1=a +2, tan ∠P AB =|PB ||AB |=3a +2=36,解得a =4.所以e =c a =14.故选D .]2.已知F 1,F 2是椭圆C 的两个焦点,P 是C 上的一点,若PF 1⊥PF 2,且∠PF 2F 1=60°,则C 的离心率为( ) A .1-32 B .2-3 C .3-12D .3-1 解析:D [在Rt △PF 1F 2中,∠PF 2F 1=60°,不妨设椭圆焦点在x 轴上,且焦距|F 1F 2|=2,则|PF 2|=1,|FP 1|=3,由椭圆的定义可知,方程x 2a 2+y 2b 2=1(a >b >0)中,2a =1+3,2c =2,得a =1+32,c =1,所以离心率e =c a =21+3=3-1.故选D .]3.已知F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若椭圆C 上存在点P ,使得线段PF 1的中垂线恰好经过焦点F 2,则椭圆C 离心率的取值范围是( ) A .[32,1) B .[31,22] C .[31,1) D .(0,31]解析:C [如图所示,∵线段PF 1的中垂线经过F 2, ∴|PF 2|=|F 1F 2|=2c , 即椭圆上存在一点P , 使得|PF 2|=2c .∴a -c ≤2c <a +c .∴e =c a ∈⎣⎡⎭⎫13,1.] [命题角度3] 与椭圆有关的最值或范围问题4.已知F 是椭圆C :x 29+y 25=1的左焦点,P 为C 上一点,A (1,34),则|P A |+|PF |的最小值为( )A .103B .113C .4D .133解析:D [设椭圆C :x 29+y 25=1的右焦点为F ′(2,0),F (-2,0),由A ⎝⎛⎭⎫1,43,则|AF ′|=53, 根据椭圆的定义可得|PF |+|PF ′|=2a =6,所以|P A |+|PF |=|P A |+6-|PF ′|≥6-|AF ′|=6-53=133.]5.如图,焦点在x 轴上的椭圆x 24+y 2b 2=1的离心率e =12,F ,A 分别是椭圆的一个焦点和顶点,P 是椭圆上任意一点,则PF →·P A →的最大值为( )A .1B .23C .4D .43解析:C [设P 点坐标为(x 0,y 0). 由题意知a =2,∵e =c a =12,∴c =1,∴b 2=a 2-c 2=3.所求椭圆方程为x 24+y 23=1.∴-2≤x 0≤2,-3≤y 0≤3. 又F (-1,0),A (2,0),PF →=(-1-x 0,-y 0),P A →=(2-x 0,-y 0), ∴PF →·P A →=x 20-x 0-2+y 20=14x 20-x 0+1=14(x 0-2)2. 当x 0=-2时,PF →·P A →取得最大值4.][课时训练]一、选择题1.椭圆x 216+y 225=1的焦点坐标为( )A .(±3,0)B .(0,±3)C .(±9,0)D .(0,±9) 解析:B [根据椭圆方程可得焦点在y 轴上,且c 2=a 2-b 2=25-16=9,∴c =3,故焦点坐标为(0,±3).故选B.]2.已知椭圆的中心在原点,离心率e =12,且它的一个焦点与抛物线y 2=-4x 的焦点重合,则此椭圆方程为( )A .x 24+y 23=1B .x 28+y 26=1C .x 22+y 2=1D .x 24+y 2=1解析:A [依题意,可设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),由已知可得抛物线的焦点为(-1,0),所以c =1,又离心率e =c a =12,解得a =2,b 2=a 2-c 2=3,所以椭圆方程为x 24+y 23=1,故选A.] 3.方程kx 2+4y 2=4k 表示焦点在x 轴上的椭圆,则实数k 的取值范围是( )A .k >4B .k =4C .k <4D .0<k <4 解析:D [方程kx 2+4y 2=4k表示焦点在x 轴上的椭圆,即方程x 24+y 2k=1表示焦点在x轴上的椭圆,可得0<k <4,故选D.]4.若椭圆x 24+y 2m =1上一点到两焦点的距离之和为m -3,则此椭圆的离心率为( )A .53B .53或217C .217D .37或59解析:A [由题意得,2a =m -3>0,即m >3,若a 2=4,即a =2,则m -3=4,m =7>4,不合题意,因此a 2=m ,即a =m ,则2m =m -3,解得m =9,即a =3,c =m -4=5,所以椭圆离心率为e =53.故选A.] 5.设椭圆C :x 2a 2+y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点E (0,t )(0<t <b ).已知动点P 在椭圆上,且点P ,E ,F 2不共线,若△PEF 2的周长的最小值为4b ,则椭圆C 的离心率为( ) A .32 B .22 C .12 D .33解析:A [△PEF 2的周长为|PE |+|PF 2|+|EF 2|=|PE |+2a -|PF 1|+|EF 2| =2a +|EF 2|+|PE |-|PF 1|≥2a +|EF 2|-|EF 1|=2a =4b ,∴e =c a =1-⎝⎛⎭⎫b a 2=1-14=32,故选A.] 6.在椭圆x 2a 2+y 2b2=1(a >b >0)中,F 1,F 2分别是其左、右焦点,若|PF 1|=2|PF 2|,则该椭圆离 心率的取值范围是( )A .(31,1)B .[31,1)C .(0,31)D .(0,31] 解析:B [根据椭圆定义得|PF 1|+|PF 2|=2a ,将|PF 1|=2|PF 2|代入,得|PF 2|=2a 3,根据椭圆的几何性质,知|PF 2|≥a -c ,故2a 3≥a -c ,即a ≤3c ,故c a ≥13,即e ≥13,又e <1,故该椭圆离心率的取值范围是⎣⎡⎭⎫13,1,故选B.]7.过椭圆x 225+y 216=1的中心任意作一条直线交椭圆于P ,Q 两点,F 是椭圆的一个焦点,则 △PQF 周长的最小值是( )A .14B .16C .18D .20 解析:C [如图,设F 1为椭圆的左焦点,右焦点为F 2,根据椭圆的对称性可知|F 1Q |=|PF 2|,|OP |=|OQ |,所以△PQF 1的周长为|PF 1|+|F 1Q |+|PQ |=|PF 1|+|PF 2|+2|PO |=2a +2|PO |=10+2|PO |,易知2|OP |的最小值为椭圆的短轴长,即点P ,Q 为椭圆的上下顶点时,△PQF 1即△PQF 的周长取得最小值为10+2×4=18.]二、填空题8.设椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点与抛物线y 2=16x 的焦点相同,离心率为63,则此椭圆 的方程为______________.解析:由题意知抛物线y 2=16x 的焦点为(4,0),∴c =4, ∵e =c a =4a =63,∴a =26,∴b 2=a 2-c 2=8,∴椭圆的方程为x 224+y 28=1. 答案:x 224+y 28=1 9.若x 2+ky 2=2表示焦点在y 轴上的椭圆,则实数k 的取值范围是____________.解析:将椭圆的方程化为标准形式得y 22k+x 22=1,因为x 2+ky 2=2表示焦点在y 轴上的椭圆,所以2k>2, 解得0<k <1.答案:(0,1)10.若椭圆的方程为x 210-a +y 2a -2=1,且此椭圆的焦距为4,则实数a =________. 解析:由题可知c =2.①当焦点在x 轴上时,10-a -(a -2)=22,解得a =4.②当焦点在y 轴上时,a -2-(10-a )=22,解得a =8.故实数a =4或8.答案:4或811.若椭圆x 2a 2+y 2b 2=1(a >b >0)上存在点P ,使得PF 1→·PF 2→=0,则椭圆离心率的取值范围是 ______________.解析:因为PF 1→·PF 2→=0,所以∠F 1PF 2=90°.设P (x 0,y 0)S △PF 1F 2=b 2=c |y 0|≤cb ,即b ≤c ,则a 2-c 2≤c 2,解得e 2≥12,即e ≥22,又在椭圆中0<e <1,故椭圆离心率的取值范围是⎣⎡⎭⎫22,1. 答案:⎣⎡⎭⎫22,1三、解答题12.已知动圆M 过定点A (-3,0),并且内切于定圆B :(x -3)2+y 2=64,求动圆圆心M 的轨迹方程.解:设动圆M 的半径为r ,则|MA |=r ,|MB |=8-r ,∴|MA |+|MB |=8,且8>|AB |=6,∴动点M 的轨迹是椭圆,且焦点分别是A (-3,0),B (3,0),且2a =8,∴a =4,c =3,∴b 2=a 2-c 2=16-9=7.∴所求动圆圆心M 的轨迹方程是x 216+y 27=1.13.已知椭圆的长轴长为10,两焦点F 1,F 2的坐标分别为(3,0)和(-3,0).(1)求椭圆的标准方程;(2)若P 为短轴的一个端点,求△F 1PF 2的面积.解:(1)设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0), 依题意得⎩⎪⎨⎪⎧2a =10,c =3,因此a =5,b =4, 所以椭圆的标准方程为x 225+y 216=1. (2)易知|y P |=4,又c =3,所以S △F 1PF 2=12|y P |×2c =12×4×6=12. 14.设F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率; (2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b .解:(1)根据c =a 2-b 2及题设知M ⎝⎛⎭⎫c ,b 2a ,b 2a 2c =34, 2b 2=3ac .将b 2=a 2-c 2代入2b 2=3ac ,解得c a =12,c a=-2(舍去). 故C 的离心率为12. (2)由题意,原点O 为F 1F 2的中点,MF 2∥y 轴, 所以直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点, 故b 2a=4,即b 2=4a .① 由|MN |=5|F 1N |得|DF 1|=2|F 1N |.设N (x 1,y 1),由题意知y 1<0,则⎩⎪⎨⎪⎧2(-c -x 1)=c ,-2y 1=2,即⎩⎪⎨⎪⎧x 1=-32c ,y 1=-1.代入C 的方程,得9c 24a 2+1b 2=1.② 将①及c =a 2-b 2代入②得9(a 2-4a )4a 2+14a =1. 解得a =7,b 2=4a =28,故a =7,b =27.14.如图,椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2的直线交椭圆于P ,Q 两点,且PQ ⊥PF 1.(1)若|PF 1|=2+2,|PF 2|=2-2,求椭圆的标准方程;(2)若|PQ |=λ|PF 1|,且34≤λ<43,试确定椭圆离心率e 的取值范围.解:(1)由椭圆的定义知,2a =|PF 1|+|PF 2|=(2+2)+(2-2)=4,故a =2. 设椭圆的半焦距为c ,由已知得PF 1⊥PF 2, 因此2c =|F 1F 2|=|PF 1|2+|PF 2|2 =(2+2)2+(2-2)2=23,即c =3,从而b =a 2-c 2=1.故所求椭圆的标准方程为x 24+y 2=1. (2)如图,由PF 1⊥PQ ,|PQ |=λ|PF 1|,得|QF 1|=|PF 1|2+|PQ |2=1+λ2|PF 1|.由椭圆的定义知,|PF 1|+|PF 2|=2a ,|QF 1|+|QF 2|=2a ,所以|PF 1|+|PQ |+|QF 1|=4a .于是(1+λ+1+λ2)|PF 1|=4a ,解得|PF 1|=4a 1+λ+1+λ2, 故|PF 2|=2a -|PF 1|=2a (λ+1+λ2-1)1+λ+1+λ2. 由勾股定理得|PF 1|2+|PF 2|2=|F 1F 2|2=(2c )2=4c 2,从而⎝ ⎛⎭⎪⎫4a 1+λ+1+λ22+⎣⎢⎡⎦⎥⎤2a (λ+1+λ2-1)1+λ+1+λ22=4c 2, 两边除以4a 2,得4(1+λ+1+λ2)2+(λ+1+λ2-1)2(1+λ+1+λ2)2=e 2. 若记t =1+λ+1+λ2,则上式变成e 2=4+(t -2)2t 2=8⎝⎛⎭⎫1t -142+12. 由34≤λ<43及1+λ+1+λ2关于λ的单调性, 得3≤t <4,即14<1t ≤13,进而12<e 2≤59,即22<e ≤53.。

圆锥曲线(椭圆,双曲线,抛物线)的定义、方程和性质知识总结

圆锥曲线(椭圆,双曲线,抛物线)的定义、方程和性质知识总结

椭圆的定义、性质及标准方程1. 椭圆的定义:⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。

这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。

⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<<e e ,则动点M 的轨迹叫做椭圆。

定点F 是椭圆的焦点,定直线l 叫做椭圆的准线,常数e 叫做椭圆的离心率。

说明:①若常数2a 等于2c ,则动点轨迹是线段12F F 。

②若常数2a 小于2c ,则动点轨迹不存在。

2. 椭圆的标准方程、图形及几何性质:标准方程)0(12222>>=+b a by a x 中心在原点,焦点在x 轴上)0(12222>>=+b a b x a y 中心在原点,焦点在y 轴上图形范围 x a y b ≤≤,x b y a ≤≤,顶点()()()()12120000A a A a B b B b --,、,,、,()()()()12120000A a A a B b B b --,、,,、,对称轴 x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F)0(221>=c c F F离心率 )10(<<=e ace )10(<<=e ace 准线2a x c=±2a y c=±参数方程与普通方程22221x y a b +=的参数方程为 ()cos sin x a y b θθθ=⎧⎨=⎩为参数 22221y x a b +=的参数方程为 ()cos sin y a x b θθθ=⎧⎨=⎩为参数3. 焦半径公式:椭圆上的任一点和焦点连结的线段长称为焦半径。

椭圆知识点总结

椭圆知识点总结
(2)椭圆 (a>b>0) 横坐标-b≤x≤b,纵坐标-a≤x≤a
}
2.对称性
椭圆关于x轴y轴都是对称的,这里,坐标轴是椭圆的对称轴,原点是椭圆的对称中心,椭圆的对称中心叫做椭圆的中心
3.顶点
(1)椭圆的顶点:A1(-a,0),A2(a,0),B1(0,-b),B2(0,b)
(2)线段A1A2,B1B2分别叫做椭圆的长轴长等于2a,短轴长等于2b,a和b分别叫做椭圆的长半轴长和短半轴长。
同步测试
1已知F1(-8,0),F2(8,0),动点P满足|PF1|+|PF2|=16,则点P的轨迹为( )
A 圆 B 椭圆 C线段 D 直线
2、椭圆 左右焦点为F1、F2,CD为过F1的弦,则 CDF1的周长为______
3已知方程 表示椭圆,则k的取值范围是( )
A -1<k<1 B k>0 C k≥0 D k>1或k<-1
1.若椭圆经过点 , ,则该椭圆的标准方程为。
2.焦点在坐标轴上,且 , 的椭圆的标准方程为
3.焦点在 轴上, , 椭圆的标准方程为
4. 已知三点P(5,2)、 (-6,0)、 (6,0),求以 、 为焦点且过点P的椭圆的标准方程;
^
变式:求与椭圆 共焦点,且过点 的椭圆方程。
四.焦点三角形
1.椭圆 的焦点为 、 , 是椭圆过焦点 的弦,则 的周长是。
6.几何性质
(1) 最大角
(2)最大距离,最小距离
例题讲解:
一.椭圆定义:
1.方程 化简的结果是
%
2.若 的两个顶点 , 的周长为 ,则顶点 的轨迹方程是
3.已知椭圆 =1上的一点P到椭圆一个焦点的距离为3,则P到另一焦点距离为

(完整版)椭圆知识点总结

(完整版)椭圆知识点总结

椭圆知识点知识要点小结:知识点一:椭圆的定义平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若)(2121F F PF PF <+,则动点P 的轨迹无图形.知识点二:椭圆的标准方程1.当焦点在x 轴上时,椭圆的标准方程:12222=+by a x )0(>>b a ,其中222b a c -=2.当焦点在y 轴上时,椭圆的标准方程:12222=+bx a y )0(>>b a ,其中222b a c -=;注意:1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时, 才能得到椭圆的标准方程; 2.在椭圆的两种标准方程中,都有)0(>>b a 和222b ac -=; 3.椭圆的焦点总在长轴上.当焦点在x 轴上时,椭圆的焦点坐标为)0,(c ,)0,(c -; 当焦点在y 轴上时,椭圆的焦点坐标为),0(c ,),0(c - 知识点三:椭圆的简单几何性质椭圆:12222=+by a x )0(>>b a 的简单几何性质(1)对称性:对于椭圆标准方程12222=+b y a x )0(>>b a :说明:把x 换成x -、或把y 换成y -、或把x 、y 同时换成x -、y -、原方程都不变,所以椭圆12222=+by a x 是以x 轴、y 轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。

(2)范围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。

(3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。

椭圆的标准方程及其几何性质

椭圆的标准方程及其几何性质

椭圆的标准方程及其几何性质1. 椭圆定义:(1)第一定义:平面内与两个定点21F F 、的距离之和为常数|)|2(222F F a a >的动点P 的轨迹叫椭圆,其中两个定点21F F 、叫椭圆的焦点.当21212F F a PF PF >=+时, P 的轨迹为椭圆 ; ; 当21212F F a PF PF <=+时, P 的轨迹不存在;当21212F F a PF PF ==+时, P 的轨迹为 以21F F 、为端点的线段(2)椭圆的第二定义:平面内到定点F 与定直线l (定点F 不在定直线l 上)的距离之比是常数e (10<<e )的点的轨迹为椭圆(利用第二定义,可以实现椭圆上的动点到焦点的距离与到相应准线的距离相互转化). 2.椭圆的方程与几何性质:3.点),(00y x P 与椭圆)0(12222>>=+b a b y a x 的位置关系:当12222>+b y a x 时,点P 在椭圆外; 当12222>+b y a x 时,点P 在椭圆内; 当12222=+b y a x 时,点P 在椭圆上; 4.直线与椭圆的位置关系直线与椭圆相交0>∆⇔;直线与椭圆相切0=∆⇔;直线与椭圆相离0<∆⇔ 例题分析:题1写出适合下列条件的椭圆的标准方程:⑴两个焦点坐标分别是(-4,0)、(4,0),椭圆上一点P 到两焦点的距离 之和等于10;⑵两个焦点坐标分别是(0,-2)和(0,2)且过(23-,25) (3)两个焦点坐标分别是(-3,0),(3,0),椭圆经过点(5,0).(4)两个焦点坐标分别是(0,5),(0,-5),椭圆上一点P 到两焦点的距离和为26. (5)焦点在y 轴上,与y 轴的一个交点为P (0,-10),P 到它较近的一个焦点的距离等于2.解:(1)因为椭圆的焦点在x 轴上,所以设它的标准方程为所以所求椭圆标准方程为92522=+y x ⑵ 因为椭圆的焦点在y 轴上,所以设它的标准方程为由椭圆的定义知,22)225()23(2++-=a +22)225()23(-+-10=∴a 又2=c所以所求标准方程为61022=+x y 另法:∵ 42222-=-=a c a b∴可设所求方程142222=-+a x a y ,后将点(23-,25)的坐标代入可求出a ,从而求出椭圆方程(3)∵椭圆的焦点在x 轴上,所以设它的标准方程为: ∵100)35(0)35(222=+-+++=a ,2c =6. ∴3,5==c a∴163522222=-=-=c a b∴所求椭圆的方程为:1162522=+y x . (4)∵椭圆的焦点在y 轴上,所以设它的标准方程为)0(12222>>=+b a bx a y . ∴.144222=-=c a b∴所求椭圆方程为:114416922=+x y (5)∵椭圆的焦点在y 轴上,所以可设它的标准方程为: ∵P(0,-10)在椭圆上,∴a =10.又∵P 到它较近的一焦点的距离等于2, ∴-c -(-10)=2,故c =8. ∴36222=-=c a b .∴所求椭圆的标准方程是13610022=+x y . 题2。

椭圆几何性质知识点总结

椭圆几何性质知识点总结

椭圆几何性质知识点总结1. 椭圆的定义椭圆的定义是平面上到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。

即PF1+PF2=2a。

其中F1和F2称为焦点,2a称为长轴长度。

椭圆的对称轴是通过两个焦点的连接线,称为长轴。

椭圆的短轴是垂直于长轴,并且过椭圆中心的直线。

2. 椭圆的焦点和离心率椭圆的焦点是椭圆的特殊点,它决定了椭圆的形状和大小。

椭圆的离心率e定义为焦点到椭圆中心的距离与长轴长度a的比值。

离心率的取值范围是0<e<1,当e=0时,椭圆退化为一个圆,当e=1时,椭圆退化为一条直线。

3. 椭圆的参数方程椭圆的参数方程可以通过参数t来表示椭圆上的点的坐标。

一般来说,椭圆的参数方程可以写成x=acos(t),y=bsin(t)。

其中(a,b)是椭圆的长短轴长度,t是参数。

4. 椭圆的直角坐标方程椭圆的直角坐标方程可以表示为(x-h)²/a²+(y-k)²/b²=1,其中(h,k)是椭圆的中心点坐标。

5. 椭圆的几何性质椭圆具有许多重要的几何性质,例如:a. 椭圆的焦点性质:任意点到两个焦点的距离之和等于椭圆的长轴长度。

b. 椭圆的直径定理:椭圆的任意直径的长度都等于椭圆的长轴长度。

c. 椭圆的对称性:椭圆具有关于两个坐标轴的对称性。

d. 椭圆的切线性质:椭圆上的任意一点处的切线与两个焦点到该点的连线的夹角相等。

6. 椭圆的面积和周长椭圆的面积可以表示为S=πab,其中a和b分别是椭圆的长轴和短轴的长度。

椭圆的周长可以表示为C=4aE(e),其中E(e)是椭圆的第二类完全椭圆积分。

7. 椭圆的方程类型椭圆的方程可以分为标准方程和一般方程两种类型。

标准方程是指椭圆的中心点在坐标原点的方程形式,一般方程是指椭圆的中心点不在坐标原点的方程形式。

8. 椭圆的相关问题在实际问题中,椭圆经常出现在各种应用中,例如天体运动、工程设计等。

因此,研究椭圆的相关问题对于理论研究和应用都具有重要意义。

椭圆知识点

椭圆知识点

椭圆【复习目标】椭圆的定义、标准方程和几何性质。

【基础知识总结】1. 椭圆定义:(1)第一定义:平面内与两个定点21F F 、的距离之和为常数|)|2(222F F a a >的动点P 的轨迹叫椭圆,其中两个定点21F F 、叫椭圆的焦点.当21212F F a PF PF >=+时, P 的轨迹为椭圆 ; ; 当21212F F a PF PF <=+时, P 的轨迹不存在;当21212F F a PF PF ==+时, P 的轨迹为 以21F F 、为端点的线段(2)椭圆的第二定义:平面内到定点F 与定直线l (定点F 不在定直线l 上)的距离之比是常数e (10<<e )的点的轨迹为椭圆. 2.椭圆的标准方程和几何性质:标准方程 )0(12222>>=+b a by a x )0(12222>>=+b a b x a y 图形性 质参数关系 222c b a +=焦点 )0,(),0,(c c -),0(),,0(c c -焦距 c 2范围 b y a x ≤≤||,|| b x a y ≤≤||,||顶点 ),0(),,0(),0,(),0,(b b a a --)0,(),0,(),,0(),,0(b b a a --对称性 关于x 轴、y 轴和原点对称离心率)1,0(∈=ace 准线ca x 2±=ca y 2±=注:(1)对于椭圆定义:没有“平面内”这个条件,则是椭球而不是椭圆;对于确定哪种形式的标准方程则要看焦点的位置,若焦点在x 轴上则x 2的分母大,若焦点在y 轴上则y 2的分母大。

(2)求椭圆方程的除直接根据定义外,常用待定系数法。

当椭圆的焦点位置不明确而无法确定其方程时,可以设方程的形式为22x y m n+=1(m>0,n>0)或221(0,0)Ax By A B +=>>. 常用结论1. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2F PF S b γ∆=.2. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22O M A B b k k a ⋅=-,即0202y a x b K AB -=。

椭圆的定义与性质

椭圆的定义与性质

椭圆的定义与性质椭圆是一种常见的几何图形,具有特定的定义和性质。

本文将对椭圆的定义以及与其相关的性质进行探讨。

一、椭圆的定义椭圆可以用两个焦点和到两个焦点距离之和等于定值的点的集合来定义。

更准确地说,椭圆是平面上满足到焦点F1和F2的距离之和等于常数2a的点的集合,其中a是椭圆的半长轴。

椭圆还具有两个确定其形状和大小的参数:离心率e和焦点间的距离2c。

二、椭圆的特点椭圆具有以下几个重要的性质:1. 对称性:椭圆具有两条互相垂直的对称轴,即长轴和短轴。

这两条对称轴的交点称为椭圆的中心。

2. 焦点性质:对于椭圆上的任意一点P,到焦点F1和F2的距离之和等于2a。

即PF1 + PF2 = 2a。

3. 定义性质:椭圆上的任意一点P到焦点F1和F2的距离之和等于2a,这是椭圆的定义。

4. 离心率性质:椭圆的离心率e满足0 < e < 1,离心率越小,椭圆越扁平。

5. 半焦参数性质:椭圆的半焦参数c满足c = a * e,其中c表示焦点到中心的距离。

6. 弦性质:椭圆上任意一条弦的长度等于半长轴的长度。

三、椭圆与其他几何图形的关系椭圆与圆、抛物线和双曲线都是常见的二次曲线。

与圆相比,椭圆的两个焦点在中心的两侧,而圆的焦点和中心重合;与抛物线相比,椭圆是有界曲线,而抛物线则是无界曲线;与双曲线相比,椭圆是闭合曲线,而双曲线则是非闭合曲线。

四、椭圆的应用椭圆由于其独特的几何性质,在现实生活中有着广泛的应用。

以下列举几个常见的应用场景:1. 太阳系的行星轨道:行星围绕太阳运动的轨道是个近似椭圆形,其中太阳位于椭圆的一个焦点处。

2. 圆形的近似:在一些工程设计中,可以使用椭圆作为近似圆形来进行计算和设计,便于操作和运算。

3. 电子轨道运动:根据玻尔模型,电子在原子中的运动轨迹近似为椭圆形。

总结:椭圆是一种具有独特几何性质的几何图形,其定义和性质经过了仔细的研究与推导。

我们了解到,椭圆具有对称性、焦点性质和离心率性质等重要特征,并且与其他几何图形有所区别。

椭圆的定义及性质

椭圆的定义及性质

椭圆
一.椭圆的定义
平面内与两个定点F1、F2的距离之和等于常数2a(大于∣F1F2∣)的点的轨迹叫椭圆. 这两个定点F1、F2叫椭圆的焦点. 两焦点的距离∣F1F2∣叫椭圆的焦距(2c).
1.动画演示
2.椭圆定义的符号表述:
(2a>2c)
注意:
1.当2a>2c时,轨迹是椭圆
2.当2a=2c时,轨迹是一条线段, 是以 F1、F2为端点的线段. 3.当2a<2c时,无轨迹,图形不存在. 4.当c=0时,轨迹为圆.
二.椭圆的标准方程
(1)焦点在x轴
(2)焦点在y轴
看分母大小
1
2
y
o
F
F
P
x
1
o
F
y
x
2
F
P
三.椭圆的几何性质
让我们一起研究标准方程为:标准方程为: 的椭圆的性质
所以P到另一个焦点的距离 为6-2=4.
D
B
D
条件
2a>2c,a2=b2+c2,a>0,b>0,c>0
标准方程
图形
范围
对称性
曲线关于x轴、 y轴、原点对称
顶点
长轴顶点(±a,0) 短轴顶点(0,±b)
焦点
焦距
离心率
小结:椭圆的标准方程及其简单几何性质
(-c,0)和(c,பைடு நூலகம்)
顶点
长轴顶点(±a,0) 短轴顶点(0,±b)
范围
焦点
焦距
离心率
椭圆的标准方程及其简单几何性质
(-c,0)和(c,0)
(0,-c)和(0,c)
曲线关于x轴、 y轴、原点对称

椭圆定义及几何性质

椭圆定义及几何性质

x2 y 2 2 1(a b 0) 2 a b


x2 y 2 2 1(a b 0) 2 b a


|x|≤ a,|y|≤ b
|x|≤ b,|y|≤ a
对 称 性
顶点坐标 焦点坐标 半 轴 长 焦 距 (
关于x轴、y轴成轴对称;关于原点成中心对称。
椭圆方程 【解题回顾】|AF2|与|BF2|为焦半 径,所以考虑使用焦半径公式建 立关系式,同时结合图形,利用
平面几何知识在应用椭圆第二
定义时,必须注意相应的焦点和准线问题
四、课堂回顾:
1、椭圆的定义: 第一定义是什么? 第二定义又是什么?
2、椭圆几何性质: 长轴、短轴、顶点、焦点、对称轴、 对称中心、准线、离心率、焦半径。
= √1+(1/k)2 |y1-y2|
二、基础练习
1.椭圆x2/100+y2/64=1上一点P到左焦点F1的距离为 6,Q是 PF1的中点,O是坐标原点,则|OQ|= _____ 7 2.已知椭圆上横坐标等于焦点横坐标的点,其纵坐标等于
5 短半轴长的2/3,则椭圆的离心率为_______ 3
x2 y2 1 表示焦点y轴上的椭圆,则m的 3.已知方程 m -1 2 - m
a ,0
(
),(0,
c,0)
b)

b ,0
),(0,
(0,
c)
a)
长半轴长为a,短半轴长为b.
焦距为2c;
a,b,c关系 准线及离心率
a2=b2+c2
补充:
焦半径: |PF1|= a+ex |PF2|= a-ex
弦长公式:
P

椭圆的几何性质

椭圆的几何性质
2 2
y x 2 1 a b 0 2 a b
2
a b c
P95 1,2,3,4,5
x2 y2 1. 1 25 9
2. 由 |PF1| + |PF2| = 20, 得 |PF2| = 20-6=14 .
3. 写出适合下列条件的椭圆的标准方程:
x2 (1) y 2 1 16
2a叫做长轴长, 叫做短轴长 2b
a叫做长半轴长, 叫做短半轴长 b
c a b
2 2
2
4、椭圆的“扁”与“圆 ”
c 椭圆的焦距与长轴长之 比e ,叫做椭圆的离心率 (0 e 1) a
y
离心率越大,椭圆越扁 , 离心率越小,椭圆越圆
F1
o
F2
x
4 x2 y2 椭圆 1的离心率为: e 5 25 9 1 x2 y2 e 椭圆 1的离心率为: 2 4 3
解: 建系如图,以AB所在直线为x轴,AB中点为原点 2 y2 可设椭圆方程为: x 2 2 1 a b 0 a b y 6180 则 a c | OA | | OF2 | | F2 A | 6371 439 a c | OB | | OF2 | | F2B | 6371 2384 8755 解得 a 7782 5 , 972.5 . . c
一、椭圆的定义:
F
1

M ( x, y)

F2
平面内到两个定点F1、F2的距离之和等于常数 (大于|F1F2|)的点的轨迹叫做椭圆。 这两个定点叫做椭圆的焦点,
两焦点的距离叫做椭圆的焦距。
二、椭圆的标准方程:
y
M
y
F1
M
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

椭圆【教学目标】(1)掌握椭圆的定义(2)掌握椭圆的几何性质(3)掌握求椭圆的标准方程【教学重难点】(1)椭圆的离心率有关的问题(2)椭圆焦点三角形面积的求法【教学过程】一、知识点梳理知识点一:椭圆的定义平面内一个动点到两个定点、的距离之和等于常数(),这个动点的轨迹叫椭圆。

这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距。

注意:若,则动点的轨迹为线段;若,则动点的轨迹无图形。

知识点二:椭圆的标准方程1.当焦点在轴上时,椭圆的标准方程:,其中;2.当焦点在轴上时,椭圆的标准方程:,其中;注意:1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程;2.在椭圆的两种标准方程中,都有和;3.椭圆的焦点总在长轴上.当焦点在轴上时,椭圆的焦点坐标为,;当焦点在轴上时,椭圆的焦点坐标为,。

知识点三:椭圆的简单几何性质椭圆的的简单几何性质(1)对称性对于椭圆标准方程,把x换成―x,或把y换成―y,或把x、y同时换成―x、―y,方程都不变,所以椭圆是以x轴、y轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。

讲练结合:(2)范围椭圆上所有的点都位于直线x=±a和y=±b所围成的矩形内,所以椭圆上点的坐标满足|x|≤a,|y|≤b。

(3)顶点①椭圆的对称轴与椭圆的交点称为椭圆的顶点。

②椭圆(a>b>0)与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为A1(―a,0),A2(a,0),B1(0,―b),B2(0,b)。

③线段A1A2,B1B2分别叫做椭圆的长轴和短轴,|A1A2|=2a,|B1B2|=2b。

a和b分别叫做椭圆的长半轴长和短半轴长。

(4)离心率①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e表示,记作。

②因为a>c>0,所以e的取值范围是0<e<1。

e越接近1,则c就越接近a,从而越小,因此椭圆越扁;反之,e越接近于0,c就越接近0,从而b越接近于a,这时椭圆就越接近于圆。

当且仅当a=b时,c=0,这时两个焦点重合,图形变为圆,方程为x2+y2=a2椭圆的图像中线段的几何特征(如下图):(1),,;(2),,;(3),,;知识点四:椭圆与(a>b>0)的区别和联系,,,,,,长轴长=,短轴长=,,注意:椭圆,(a >b >0)的相同点为形状、大小都相同,参数间的关系都有a >b >0和,a 2=b 2+c 2;不同点为两种椭圆的位置不同,它们的焦点坐标也不相同。

二、考点分析考点一:椭圆的定义 【例1】方程()()10222222=++++-y x y x 化简的结果是 。

【例2】已知F 1(-8,0),F 2(8,0),动点P 满足|PF 1|+|PF 2|=16,则点P 的轨迹为( )A 圆B 椭圆C 线段D 直线【变式训练】已知椭圆=1上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为 。

考点二:求椭圆的标准方程【例3】若椭圆经过点(5,1),(3,2)则该椭圆的标准方程为 。

【例4】ABC ∆的底边16=BC ,AC 和AB 两边上中线长之和为30,求此三角形重心G 的轨迹和顶点A 的轨迹.22169x y +【例5】求以椭圆229545x y +=的焦点为焦点,且经过点M 的椭圆的标准方程.【变式训练】1、焦点在坐标轴上,且213a =,212c =的椭圆的标准方程为 。

2、焦点在x 轴上,1:2:=b a ,6=c 椭圆的标准方程为。

3、已知三点P (5,2)、1F (-6,0)、2F (6,0),求以1F 、2F 为焦点且过点P 的椭圆的标准方程;4、已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为354和352,过P 点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程.考点三:利用标准方程确定参数【例6】若方程25x k -+23y k -=1(1)表示圆,则实数k 的取值是 .(2)表示焦点在x 轴上的椭圆,则实数k 的取值范围是 . (3)表示焦点在y 型上的椭圆,则实数k 的取值范围是 . (4)表示椭圆,则实数k 的取值范围是 .【例7】椭圆22425100x y +=的长轴长等于 ,短轴长等于 , 顶点坐标是 ,焦点的坐标是 ,焦距是 ,离心率等于 。

【变式训练】1、椭圆2214x y m+=的焦距为2,则m = 。

2、椭圆5522=+ky x 的一个焦点是)2,0(,那么=k 。

考点四:离心率的有关问题 一、求离心率1、用定义(求出a,c 或找到c/a )求离心率(1)已知椭圆C :22221,(0)x y a b a b+=>>的两个焦点分别为12(1,0),(1,0)F F -,且椭圆C经过点41(,)33P .则椭圆C 的离心率 。

(2)设是椭圆的左、右焦点,为直线上一点,是底角为的等腰三角形,则的离心率为( )(3)椭圆(a >b >0)的左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2。

若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为_______________.(4)在给定的椭圆中,焦点到相应准线距离为1,则该椭圆的离心率为 。

2、根据题设条件构造a 、c 的齐次式方程,解出e 。

2220()0n c cma nac pc m p m a a++==>+⋅+= (1)若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( )A. B. C. D.(2)在平面直角坐标系xOy 中,椭圆C 的标准方程为)0,0(12222>>=+b a by a x ,右焦点为12F F 2222:1(0)x y E a b a b+=>>P 32a x =∆21F PF 30o E ()A 12()B 23()C 34()D 4522221x y a b+=54535251F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d ,若126d d =,则椭圆C 的离心率为_______.(3)设椭圆的两个焦点分别为F 1.F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若三角形F 1PF 2为等腰直角三角形,则椭圆的离心率为 。

二)、求离心率的范围(关键是建立离心率相关不等式) 1、直接根据题意建立,a c 不等关系求解.(1)椭圆22221(0)x y a b a b+=>>的焦点为1F ,2F ,两条准线与x 轴的交点分别为M N ,,若12MN F F ≤2,则该椭圆离心率的取值范围是 。

(2)已知21,F F 为椭圆()012222>>=+b a b y a x 的焦点,B 为椭圆短轴上的端点,2121212BF BF F F ⋅≥u u u r u u u u r u u u u r ,求椭圆离心率的取值范围 。

2、借助平面几何关系(或圆锥曲线之间的数形结合)建立,a c 不等关系求解设12F F ,分别是椭圆22221x y a b+=(0a b >>)的左、右焦点,若在其右准线上存在,P 使线段1PF 的中垂线过点2F ,则椭圆离心率的取值范围是 。

3、利用圆锥曲线相关性质建立,a c 不等关系求解.(焦半径或横纵坐标范围建立不等式)(1)椭圆22221x y a b+=(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则椭圆离心率的取值范围为 。

(2)已知椭圆22221(0)x y a b a b+=>>右顶为A,点P 在椭圆上,O 为坐标原点,且OP 垂直于PA ,求椭圆的离心率e 的取值范围 。

(3)椭圆)(012222>>=+b a b y a x 和圆2222⎪⎭⎫ ⎝⎛+=+c b y x (其中c 为椭圆半焦距)有四个不同的交点,求椭圆的离心率的取值范围 。

考点五:椭圆焦点三角形面积公式的应用【例14】已知椭圆方程()012222>>=+b a by a x ,长轴端点为1A ,2A ,焦点为1F ,2F ,P 是椭圆上一点,θ=∠21PA A ,α=∠21PF F .求:21PF F ∆的面积(用a 、b 、α表示).分析:求面积要结合余弦定理及定义求角α的两邻边,从而利用C ab S sin 21=∆求面积.【变式训练】1、若P 是椭圆16410022=+y x 上的一点,1F 、2F 是其焦点,且︒=∠6021PF F ,求△21PF F 的面积.2、已知P 是椭圆192522=+y x 上的点,1F 、2F 分别是椭圆的左、右焦点,若21||||2121=⋅PF PF PF PF ,则△21PF F 的面积为( ) A. 33 B. 32 C. 3 D.33课后作业: 一、选择题1已知F 1(-8,0),F 2(8,0),动点P 满足|PF 1|+|PF 2|=25,则点P 的轨迹为( )A 圆B 椭圆C 线段D 直线3已知方程22111x y k k+=+-表示椭圆,则k 的取值范围是( )A -1<k<1B k>0C k≥0D k>1或k<-1 17、椭圆32x +22y =1与椭圆22x +32y =λ(λ>0)有( )(A)相等的焦距 (B)相同的离心率 (C)相同的准线 (D)以上都不对18、椭圆192522=+y x 与125922=-+-λλy x (0<k<9)的关系为( )(A)相等的焦距 (B)相同的的焦点 (C)相同的准线 (D)有相等的长轴、短轴 二、填空题2、椭圆221169x y -=左右焦点为F 1、F 2,CD 为过F 1的弦,则∆CDF 1的周长为______4、求满足以下条件的椭圆的标准方程(1)长轴长为10,短轴长为6 (2)长轴是短轴的2倍,且过点(2,1) (3) 经过点(5,1),(3,2)5、若⊿ABC 顶点B 、C 坐标分别为(-4,0),(4,0),AC 、AB 边上的中线长之和为30,则⊿ABC 的重心G 的轨迹方程为______________________6.椭圆22221(0)x y a b a b-=>>的左右焦点分别是F 1、F 2,过点F 1作x 轴的垂线交椭圆于P点。

若∠F 1PF 2=60°,则椭圆的离心率为____ _____7、已知正方形ABCD ,则以A 、B 为焦点,且过C 、D 两点的椭圆的的离心率为____ ___ 椭圆方程为 ___________________.8已知椭圆的方程为22143x y +=,P 点是椭圆上的点且1260F PF ∠=︒,求12PF F ∆的面积9.若椭圆的短轴为AB ,它的一个焦点为F 1,则满足△ABF 1为等边三角形的椭圆的离心率为10.椭圆13610022=+y x 上的点P 到它的左焦点的距离是12,那么点P 到它的右焦点的距离是 11.已知椭圆)5(125222>=+a y ax 的两个焦点为1F 、2F ,且821=F F ,弦AB 过点1F ,则△2ABF 的周长 。

相关文档
最新文档