神经递质受体激动剂和拮抗剂的类型
神经递质和受体(课堂PPT)
++++++ +++++++++ +++++ -------- ------------ -a---b---
g
IONOTROPIC .
METABOTROPIC 14
Ionotropic Receptor
Channel
NT neurotransmitter
.
15
Ionotropic Receptor
A
R
C
G
ATP
GTP
cAMP
PK
.
24
G protein: Protein Phosphorylation
A
R
C
G
ATP
GTP
P
cAMP
PK
.
Pore
25
周围神经系统的递质和受体
-胆碱能纤维 -肾上腺素能纤维
.
26
乙酰胆碱及其受体
Acetylcholine is the first discovery neurotransmitter
NT
Pore
.
16
G protein: direct control
R
G
GDP
.
20
G protein: direct control
R
G
GTP
Pore
.
21
G protein: Protein Phosphorylation
A
R
C
G
GDP
PK
.
23
药理最全知识点总结
药理最全知识点总结药理学是研究药物的作用、吸收、分布、代谢和排泄的科学,它是药物治疗的理论基础。
药理学知识对于医学和药学专业的学生来说十分重要。
下面将对药理学的一些核心知识点进行总结。
一、药物的分类1. 按照作用机制的不同,药物可以分为兴奋剂和抑制剂。
兴奋剂包括兴奋性神经递质的合成激动剂和释放促进剂、受体激动剂、离子通道开放剂等;抑制剂包括酶抑制剂、受体阻断剂等。
2. 根据药物的来源,药物可以分为天然药物、半合成药物和全合成药物。
3. 根据化学结构的不同,药物可以分为酸性药、碱性药、中性药和极性药。
二、药物的作用机制1. 药理作用的基本机制包括药物与受体的结合、药物与酶的结合、药物与细胞膜的相互作用等。
2. 受体是药物作用的靶点,它是一种特异性蛋白质。
受体激动剂、受体拮抗剂和受体激动/拮抗剂是药物的三种基本类型。
3. 药物与酶的结合会影响酶的活性,从而影响生物体内的代谢过程。
酶抑制剂和酶诱导剂是两种基本类型的药物。
4. 药物与细胞膜的相互作用可以影响细胞膜的通透性和离子通道的打开和关闭。
三、药物的用药途径1. 药物的用药途径可以分为口服、注射、吸入、局部应用、皮下给药、皮内给药等。
2. 不同的用药途径会影响药物的吸收速度和程度,从而影响药物的治疗效果和毒副作用。
四、药物的代谢与排泄1. 药物在体内的代谢和排泄是决定药物作用持续时间和毒性的重要因素。
2. 药物的代谢过程包括氧化、还原、水解和甲基化等,这些过程大部分发生在肝脏中。
3. 药物的排泄方式包括尿排泄、胆汁排泄和肠道排泄。
其中,尿排泄是最主要的排泄途径。
五、药物的不良反应1. 药物的不良反应包括毒性反应、变态反应和药物相互作用等。
2. 临床上最常见的药物不良反应包括胃肠道反应、皮肤过敏反应、药物性肝炎、药物性肾病等。
六、药物的临床应用1. 非甾体抗炎药(NSAIDs)具有退热、镇痛和消炎的作用,常用于治疗风湿性关节炎、痛风等疾病。
2. 抗生素能够杀灭或抑制细菌的生长,常用于治疗细菌感染性疾病。
拮抗剂和激动剂的名词解释
拮抗剂和激动剂的名词解释在生物学和医学领域中,拮抗剂和激动剂是常见的术语,用于描述某些物质对生物系统的影响。
拮抗剂和激动剂的作用相反,但它们在药物研究、临床治疗以及生理学研究中都起到了重要的作用。
拮抗剂是指能够与生物体内的结构或信号系统相互作用,通过干扰特定的生物过程来阻断或减弱某种效应的物质。
拮抗剂通常与生物体内的受体结合,阻碍病理过程中的信号传递,从而产生治疗作用。
举个例子,许多抗生素通过阻断细菌细胞壁合成的过程,达到抗菌的效果。
这些抗生素作为细胞壁合成酶的拮抗剂,能够阻止细菌生长和复制。
拮抗剂也被广泛应用于调节神经递质的信号传递,在治疗神经系统疾病方面发挥重要作用。
与拮抗剂相反,激动剂是指能够增强或模拟生物系统中特定效应的物质。
激动剂通过与受体结合激活生物过程,促进特定的生理反应。
举个例子,肌肉收缩需要神经冲动来触发,而某些药物具有作为肌肉激动剂的作用,可以增强神经冲动的传导,从而促进肌肉收缩。
在临床医学中,激动剂被广泛应用于治疗多种疾病,如心脏病、哮喘等。
拮抗剂和激动剂的研究与开发在药物领域中至关重要。
根据疾病的不同,科学家们进行了大量的研究,以寻找新型的拮抗剂和激动剂来治疗各种疾病。
药物的拮抗剂和激动剂特性可以通过多种方法进行研究,如体内和体外实验、分子对接模拟等。
研究者们希望找到具有高效性和选择性的药物,以实现减轻疼痛、减缓疾病进展、延长生命等目标。
除了药物研究外,拮抗剂和激动剂的概念也在生理和行为科学的研究中起着关键作用。
在生理学研究中,科学家们使用拮抗剂研究生物体内不同化学物质的作用机制。
这些研究有助于我们更好地理解生物体内各种生理过程。
在行为学研究中,激动剂被广泛用于研究动物和人类的行为反应,以便更好地理解行为变化的原因和机制。
总之,拮抗剂和激动剂是描述物质对生物系统的影响的重要术语。
拮抗剂通过阻断或减弱特定生物过程的效应发挥治疗作用,而激动剂则通过增强或模拟生物过程的效应来促进特定生理反应。
生理学课件神经系统2神经递质和受体
② N受体亚型 神经元型、肌肉型两个亚型。
神经元型烟碱受体(N1型烟碱受体) 分布于中枢神经系统和自主神经节 节后神经元的细胞膜上;
肌肉型烟碱受体(N2型烟碱受体) 分布于骨骼肌终板膜
③ N受体的阻断剂是筒箭毒碱 (Tubocurarine);
神经元型烟碱受体的阻断剂: 六烃季铵 (Hexamethnium);
⑷肽类Peptides:
① 下丘脑调节肽,7种 ② 阿片肽 ③ 脑-肠肽 ④ 其他:血管紧张素Ⅱ
血管升压素(VP) 缩宫素(OXT), 心房钠尿肽等
⑸ 嘌呤类(Purine):
腺苷(adenosine)、 ATP
⑹ 脂类(Lipid):
花生四烯酸及其衍生物:前列腺素(PG) 神经活性类固醇
⑺ 气体类:
NO; CO;
5.神经递质的共存 ⑴ 戴尔原则(Dale principle):
一个神经元的全部神经末梢均释放 同一种神经递质。
⑵ 递质共存现象:
一个神经元内可以存在两种或两种以上 的神经递质或调质,末梢可同时释放两种或 两种以上的递质 。
递质共存的意义:
① 协调某些生理过程: 如:支配猫唾液腺的副交感神经 ACh:分泌唾液 VIP: 增加唾液腺血供, 增强受体对ACh的亲和力
毒蕈碱样作用(M样作用)
腺体分泌增加:消化腺,汗腺 平滑肌收缩:支气管,胃肠平滑肌,膀胱逼尿肌 抑制心血管活动的、血管舒张,血压下降 瞳孔缩小等。
② M受体亚型
M1、M2、M3、M4、M5等。 M1在脑内含量丰富; M2主要在心脏 M3和 M4存在于平滑肌 M4还存在于胰腺腺泡和胰岛组织,
介导胰酶和胰岛素分泌;
胆碱能神经元:中枢神经系统中能合成Ach 的神经元。
神经药理学研究神经药物的作用机制和神经调节剂
神经药理学研究神经药物的作用机制和神经调节剂神经药理学是研究神经药物的作用机制和神经调节剂的学科。
神经药物是指能够影响中枢神经系统功能的药物,包括神经递质调节剂、神经保护剂、神经免疫调节剂等。
它们通过调节神经元间的信号传导,对神经系统起到调节和修复的作用。
本文将从神经药物的分类、作用机制及其在临床中的应用等方面进行探讨。
一、神经药物的分类神经药物可根据其作用机制、药理特性和临床应用等方面进行分类。
按照作用机制,神经药物主要分为促进神经递质释放的药物、抑制神经递质再摄取的药物、阻断或激活神经递质受体的药物以及改变神经递质代谢的药物等。
1. 促进神经递质释放的药物促进神经递质释放的药物主要包括钙离子通道开放剂和神经递质酶激活剂等。
钙离子通道开放剂通过增加钙离子内流,促进神经递质的释放;神经递质酶激活剂则通过增加神经递质酶的活性,增加神经递质的合成和释放。
2. 抑制神经递质再摄取的药物抑制神经递质再摄取的药物主要包括抗抑郁药和抗焦虑药等。
这些药物通过抑制神经递质的再摄取,增加神经递质在突触间隙的浓度,从而起到调节情绪和改善心理状态的作用。
3. 阻断或激活神经递质受体的药物阻断或激活神经递质受体的药物主要包括神经递质受体拮抗剂和神经递质受体激动剂等。
神经递质受体拮抗剂通过与受体结合,阻断神经递质的结合和作用;神经递质受体激动剂则通过与受体结合,模拟神经递质的作用。
4. 改变神经递质代谢的药物改变神经递质代谢的药物主要包括神经递质合成酶抑制剂和神经递质降解酶抑制剂等。
神经递质合成酶抑制剂通过抑制神经递质的合成酶活性,减少神经递质的合成;神经递质降解酶抑制剂则通过抑制神经递质的降解酶活性,增加神经递质的持续作用时间。
二、神经药物的作用机制神经药物的作用机制涉及神经元内和神经元间的信号传导过程。
通过作用于神经递质、受体和其调节环节,神经药物对中枢神经系统进行调节和影响。
1. 神经递质的合成、释放和再摄取神经药物可以通过调节神经递质的合成、释放和再摄取来影响神经系统的功能。
药物对中枢神经系统的作用机制
药物对中枢神经系统的作用机制药物的作用机制是指药物通过与生物系统内的特定目标相互作用,从而发挥治疗作用或产生不良反应的过程。
对于中枢神经系统来说,药物作用的机制非常重要,可以影响到大脑和脊髓的功能。
本文将探讨药物对中枢神经系统的作用机制,并阐述不同类别的药物以及它们的作用方式。
一、神经递质的作用机制神经递质是中枢神经系统中传递信息的化学信使,它们通过神经元之间的突触传递信号。
药物可以通过改变神经递质的合成、释放、再摄取或受体相互作用的方式来对中枢神经系统产生影响。
1.1 兴奋型神经递质的作用机制兴奋型神经递质,如谷氨酸和天冬氨酸,可以增加神经元之间的兴奋性,促进神经传导。
某些药物可以增加这些兴奋型神经递质的合成或释放,从而增强中枢神经系统的兴奋反应。
1.2 抑制型神经递质的作用机制抑制型神经递质,如γ-氨基丁酸 (GABA) 和甘氨酸,可以减少神经元之间的兴奋性,抑制神经传导。
某些药物可以增加这些抑制型神经递质的合成或释放,从而减缓中枢神经系统的活动。
二、药物对受体的作用机制药物通过与中枢神经系统中的受体相互作用,调节神经递质的信号传导。
根据受体的类型和作用方式,药物可以分为激动剂和拮抗剂两大类。
2.1 激动剂的作用机制激动剂能够与受体结合,模拟神经递质的效应,从而增强中枢神经系统的活动。
例如,乙酰胆碱是一种神经递质,在阿尔茨海默病患者中存在缺乏。
乙酰胆碱酯酶抑制剂药物可以增加乙酰胆碱的浓度,改善患者的认知功能。
2.2 拮抗剂的作用机制拮抗剂能够与受体结合,阻碍神经递质与受体的结合,从而减弱或抑制中枢神经系统的活动。
例如,抗精神病药物是一类中枢神经系统拮抗剂,通过与多巴胺受体结合,减少多巴胺的活性,从而减轻精神病症状。
三、药物对离子通道的作用机制离子通道是神经元膜上的特殊蛋白通道,通过调节离子流动来影响神经传导。
药物可以选择性地调节这些离子通道的活性,从而改变中枢神经系统的功能。
3.1 钠通道的作用机制钠通道在神经元动作电位的形成和传导中起着重要作用。
神经递质受体激动剂和拮抗剂的类型
神经递质受体激动剂和拮抗剂的类型在我们的神经系统中,神经递质就如同传递信息的“信使”,而神经递质受体则是接收这些“信息”的“信箱”。
神经递质受体激动剂和拮抗剂就像是影响这些“信箱”开合和接收信息能力的关键因素。
接下来,让我们一起深入了解一下神经递质受体激动剂和拮抗剂的类型。
先来说说神经递质受体激动剂。
这类物质能够激活神经递质受体,增强神经递质的作用效果。
常见的类型包括完全激动剂和部分激动剂。
完全激动剂具有很强的活性,能够最大程度地激活神经递质受体,产生强烈的生理效应。
比如,在胆碱能神经系统中,乙酰胆碱就是一种天然的神经递质。
而某些药物,如卡巴胆碱,它的作用就类似于乙酰胆碱,能够完全激活胆碱能受体,从而引起平滑肌收缩、腺体分泌等生理反应。
部分激动剂则相对温和一些,它们只能部分地激活神经递质受体,产生的生理效应也相对较弱。
例如,丁螺环酮是 5-羟色胺 1A 受体的部分激动剂,在治疗焦虑症方面发挥着一定的作用。
再看看神经递质受体拮抗剂。
它们的作用是阻止神经递质与受体的结合,或者即使结合了也不能产生正常的生理效应。
拮抗剂也有不同的类型,比如竞争性拮抗剂和非竞争性拮抗剂。
竞争性拮抗剂与神经递质竞争受体的结合位点。
如果竞争性拮抗剂的浓度增加,那么神经递质与受体结合的机会就会减少。
例如,阿托品是乙酰胆碱受体的竞争性拮抗剂,它能与乙酰胆碱竞争受体结合位点,从而抑制乙酰胆碱的作用,导致瞳孔放大、心率加快等。
非竞争性拮抗剂则是通过其他方式来发挥作用的。
它们不是与神经递质竞争结合位点,而是通过改变受体的结构或功能,使其无法对神经递质做出正常反应。
比如,某些金属离子可以与受体的特定部位结合,导致受体失去活性,从而起到非竞争性拮抗的作用。
在中枢神经系统中,多巴胺受体的激动剂和拮抗剂具有重要的意义。
多巴胺是与运动控制、奖赏机制和情感调节等相关的重要神经递质。
像溴隐亭就是多巴胺受体的激动剂,常用于治疗帕金森病,通过激活多巴胺受体来改善患者的运动症状。
神经递质及其受体
脑干胆碱能系统:胞体位于脑桥被盖核、背外侧被盖核、内 侧缰核、二叠体旁核脑桥被盖核和背外侧被盖核的纤维分 背、腹束背侧被盖束和腹侧被盖束向头端投射至丘脑、下 丘脑、苍白球和尾壳核它们的纤维与其它上行纤维组成上 行网状激活系统引起警觉和觉醒内侧缰核、二叠体旁核则 分别投射于脚间核和上丘
神经递质及其受体
Excellent handout training template
第一节 神经递质概述
一、神经递质及其分类
神经递质和神经调质的概念
• 神经递质neurotransmitter:神经系统通过化学物质作为 媒介进行信息传递的过程称为化学传递化学传递物质即是 神经递质
• 神经调质neuromodulator:有一些神经调节物本身并不 直接触发所支配细胞的功能效应只是调节传统递质的功能 和作用称为神经调质
五递质通过重摄取、酶解和弥散在突触间隙消除
• 递质释放到突触间隙与突触后受体结合未与受体结合的一 部分递质必须迅速移去否则突触后神经元不能对随即而来 的信号发生反应况且受体持续暴露在递质作用下几秒后便 失敏使递质传递效率降低递质失活的方式有重摄取、酶解 和弥散递质的重摄取依靠膜转运体氨基酸类递质释放后可 以被神经元和胶质细胞重摄取而单胺类递质仅被神经元重 摄取重摄取的递质进入胞浆后又被囊泡转运体摄取重新储 存在囊泡中膜转运体位于神经元和胶质细胞也可以在周围 组织中如肝、肾、心脏等
重摄取 4
3 胶质细胞摄取
1 扩散
2 酶解
神经递质与神经调质实际上并不能绝对割裂开来往往同一种 神经化学调节物的具体作用在某种情况下起递质作用而在另一种 情况下起调质作用
一直认为一个神经元内只 存在一种递质其全部神经末梢均 释放一种递质这一原则称为戴尔 原则Dale Principle近年来发现有 递质共存现象包括经典递质、神 经肽的共同或相互共存
激动剂和拮抗剂的名词解释
激动剂和拮抗剂的名词解释在生物医学领域中,人们常常会听到激动剂和拮抗剂这两个词,它们是药物研究和治疗中非常重要的概念。
激动剂和拮抗剂在药物的作用方式和效果上有着截然不同的作用,对于理解药物的机制和效果具有重要意义。
本文将对激动剂和拮抗剂进行详细的解释和探讨。
激动剂(Agonist)激动剂是指能够与生物体内的受体结合,并激活受体引发效应的物质。
在生物学和药理学中,激动剂可以是天然产物或合成化合物。
当激动剂与受体结合时,它们会引起一系列的生理和药理效应。
在神经系统中,激动剂可以刺激神经递质的释放,或增加神经递质与受体之间的相互作用。
以神经递质多巴胺为例,多巴胺激动剂能够结合多巴胺受体并模拟多巴胺的作用,因此可用于治疗帕金森病等多巴胺缺乏疾病。
除了神经递质,激动剂还可以作用于其他类型的受体,如激素受体、细胞表面受体等。
例如,肾上腺素能受体激动剂可以用于治疗心衰、支气管痉挛等疾病。
拮抗剂(Antagonist)相对于激动剂,拮抗剂是一类能与受体结合,但不能引发效应的化合物。
拮抗剂在生物体内能与激动剂竞争受体结合位点,从而阻断激动剂与受体的结合,减弱或抑制激动剂的效应。
拮抗剂中的一类被称为竞争性拮抗剂。
它们与激动剂竞争同一受体位点,由于结合力较强,使激动剂无法结合受体。
例如,贝他受体阻滞剂是一种广泛应用的药物,能够与β受体结合并抑制它的激动作用,用于治疗心脏病和高血压等疾病。
除了竞争性拮抗剂外,还有一类被称为非竞争性拮抗剂。
它们与受体结合,但作用不同于激动剂。
非竞争性拮抗剂通过改变受体的构象,使激动剂难以结合或无法产生效应。
这类拮抗剂的作用通常是不可逆的。
例如,氟虫腈是一种γ-氨基丁酸(GABA)受体的非竞争性拮抗剂,用于治疗癫痫和焦虑症等疾病。
激动剂与拮抗剂的临床应用激动剂和拮抗剂在药物研究和临床应用中发挥着不可替代的作用。
通过设计和合成具有特定效应的激动剂和拮抗剂,科学家和医生可以更好地了解生物体内的药物作用机制,并开发出更有效的药物。
生理-神经内分泌调节
结合并激活可溶性鸟苷酸环化酶,使胞质内cGMP水平升高,
引起一系列生物学效应。 CO:作用与NO相似 其他可能递质:前列腺素也存在于神经系统中。糖皮质激素 和一些性激素可影响脑的功能,称之为神经活性类固醇。
B 激素分泌节律及其调控
(一)生物节律性分泌
许多激素具有节律性分泌的特征,短者为分钟(小 时)计的脉冲式,长者为月(季)周期性波动。
分布:中脑网状结构、脑桥的蓝 斑、延髓网状结构的腹外侧部分 。其上行纤维投射到大脑皮层、 边缘前脑和下丘脑;下行纤维投 射到脊髓。 作用:对大脑皮质起兴奋作用, 维持皮质觉醒状态,也有抑制性 作用。
肾上腺素
分布:位于延髓的 C1 、 C2 、 C3三个细胞群。 作用:与血压、呼吸及神经 内分泌调节有关。
经系统。 中枢组胺系统可能与觉醒、性行为、腺垂体激素的 分泌、血压、饮水和痛觉等调节有关。
(3)氨基酸类递质及其受体
分布:中枢神经元;
种类:兴奋性氨基酸:谷氨酸、门冬氨酸
抑制性氨基酸:γ -氨基丁酸、甘氨酸
谷氨酸的受体分型
①促代谢型受体
属于G蛋白耦联受体,可引起IP3和DG增加;在海马
和小脑可能参与突触的可塑性活动;
靶腺激素(三级)
甲状腺激素(T4,T3)
促肾上腺皮质激素(ACTH)
皮质醇
生长激素(GH)
胰岛素样生长因子(IGFs)
长反馈:调节环路中终末靶腺或组织所分泌激素对 上位腺体活动的反馈影响。 短反馈:垂体所分泌的激素对下丘脑分泌活动的反
馈影响。
超短反馈:下丘脑肽能神经元活动受其自身所分泌
下降,称为受体的下调。
(三)人体内主要的神经递质和受体系统
乙酰胆碱:M型、N型 单胺类:肾上腺素 α 受体和 β 受体 、 5- 羟色 胺受体 、多巴胺受体 氨基酸类:谷氨酸、γ -氨基丁酸等
神经递质受体激动剂和拮抗剂的类型
神经递质受体激动剂和拮抗剂的类型2、神经递质、受体、激动剂和拮抗剂的类型神经递质受体激动剂拮抗剂胆碱类:M-受体:M1-M5M:M:N-受体:N1、N2毒菌碱阿托品乙酰胆碱毛果芸香碱N1:槟榔碱六烃季胺氧化震颤素十烃季胺N:美加明烟碱N2:M N:刖毒杀虫剂促使Ach释放:蝎毒黑寡妇蜘蛛毒液a-银环蛇毒Ca2+ Mg2+抑制Ach合成:密胆碱-3 三乙基胆碱4-吡啶抑制Ach释放:^=^*1 ^=^*1 -=^1肉毒毒糸胆碱酯酶抑制剂:新斯的明毒扁豆碱腾喜龙有机磷脂类河豚毒单胺类:去甲肾上腺素受多巴胺激动剂:多巴胺拮抗剂:(1)儿茶酚胺:体:左旋多巴AMPTa去甲肾上腺素 a 1、a 2苯丙胺(安非他氯内嗪b多巴胺 B 1、B 2明) 氯氮平c肾上腺素可卡因利血平(2)吲哚胺:多巴胺受体:哌甲酯(利他灵) 肾上腺素拮抗剂: 5-羟色胺D1—D5受体司来吉米镰刀菌酸血清紧张素肾上腺素激动剂:5-羟色胺拮抗剂:5-羟色胺受体:咪唑克生PCPA5-HT1—5-HT7 受5-羟色胺激动剂:去甲肾上腺素拮体氟西汀抗剂:芬氟拉明 a :MDMA酚妥拉明LSD B :去甲肾上腺素激心得安动剂:心得平a :心得静异丙肾上腺素、NEB : NE E氨基酸类:谷氨酸门控离子谷氨酸激动剂:谷氨酸拮抗剂: (1) 抑制性氨基酸通道受体:NMDA AP5类:NMD/受体AMPA酒精甘氨酸非NMD受体红藻氨酸PCP( 2) 兴奋性氨基(AMP/受体、KA Y氨基丁酸激动剂:Y氨基丁酸拮抗剂酸类:受体) 毒蝇蕈醇荷牡丹碱谷氨酸G蛋白耦联谷氨受巴氯芬CGP335348天冬氨酸体:苯二氮卓类印防己毒素ACPD受体巴比妥酸盐烯丙基甘氨酸L-AP4 NMDA S体类固醇甘氨酸拮抗剂:士的宁多肽类: 神经肽类阿片肽类受体:阿片肽类激动剂:阿片肽类拮抗剂:阿片肽类K & 3吗啡纳洛芬胃肠肽类海洛因纳洛酮激肽类杜冷丁纳曲酮芬太尼美沙酮其他:前列腺素组胺内皮源性舒张因子(NO CO)核苷类核苷类的阻断剂:咖啡因NO的拮抗剂:L-NAME。
神经动物学-3.1神经递质 与受体-精品文档
——
——
非典型β
结构信息
477 aa(人)
413 aa(人)
408 aa(人)
信 号 传 导 Gs(增加cAMP)Gs( 增 加 Gs(增加cAMP)
途径
cAMP)
表达部位 冠状动脉,肾 肾脏,肺, 脂 肪 组 织 , 肠
脏,心脏,中 心脏,中枢 胃血管内皮
枢神经系统 神经系统
生理功能 心脏兴奋,冠 平滑肌松弛 脂 肪 细 胞 的 脂
乙酰胆碱受体(蕈毒碱类)
目前公认的 名称
M1
结构信息 460 aa (人)
M2
466 aa (人)
M3
M4
M5
590 aa (人) 479 aa (人) 532 aa (人)
信 号 传 导 Gq/11(增加 Gi (cAMP)
途径
IP3/DAG) ↑K+(G)
NO
Gq/11(增加 Gi
IP3/DAG) (cAMP
化引起的K+通道激活和外部毛
细胞的超极化
相关疾病 阿尔茨海默症,疼痛,孤独症,常染色 巨膀胱-小结肠-肠蠕 α7:阿尔茨海默症,炎症,精 重症肌无力
体显性遗传的夜间额叶癫痫(α4,β2点 动低下综合征,溃疡 神分裂症
突变),烟瘾,帕金森氏症
性结肠炎
有机磷农药中毒
胆碱脂酶活性↓
胆碱能受体持续兴奋
M 受体
α1-肾上腺受体
α 目 前 公 认 的 名
称
1A
α1B
α1D
别名
α1a, α1c
α1b
α1d, α1a/d
结构信息
466 aa(人)
517 aa(人)
572 aa(人)
神经递质和受体概述
主要的递质、受体系统(以外周为主)
1. 乙酰胆碱 ( acetylcholine )
(1)外周胆碱能神经纤维 (cholinergic fibers): 支配骨骼肌的纤维 交感、副交感节前纤维 大多数副交感节后纤维 少数交感节后纤维(支配汗腺、骨骼肌舒血管
纤维)
配体(ligand)
激动剂(agonist) 拮抗剂(antagonist)
配体与受体结合的特性
特异性 饱和性 可逆性
2.受体(receptor)
对受体研究的一些认识 有多个亚型
突触前受体(presynaptic receptor)
分类: 促离子型受体和促代谢型受体 受体的调节: 上调 (up regulation )
• 烟碱(N)受体 ( nicotinic receptor ):
– 分布于自主神经节节后神经元的突触后膜和 神经-肌接头的终板膜上
– 阻断剂:筒箭毒(antagonist) – 分类:神经元型烟碱受体 N1
阻断剂 :六烃季铵(antagonist) 肌肉型烟碱受体 N2 阻断剂 :十烃季铵(antagonist ) 兴奋后效应:骨骼肌收缩
平滑肌 胃肠道、支气管血管舒 较E弱
代谢 血糖↑、脂分解↑
较E弱
1.神经递质(neurotransmitter) 1) 递质条件 2) 递质和调质的种类
胆碱类、单胺类(NE、Ad、DA、5-HT…)、肽类、 AA类、其他(NO、PG、腺苷…)
3) 递质共存
Dale原则/观点
4) 递质代谢
合成---储存---释放---降解---再摄取、再合成
2.受体(receptor)
肾上腺素(E) (NE)
神经生物学 神经递质和受体
1 receptor 配体(ligand)
特定生物学效应
外源性 内源性
激动剂 拮抗剂 angonist antoganist
特点
1 特异性结合特点 2 具有可逆性 3 一般具有内源性配体 4饱和性
孤儿受体
分类
1药理学效应
激动剂
2解剖学定位
膜受体 核受体
3 跨膜信号转导机制 受体门控离子通道
膀胱逼尿肌、腺体分泌
流涎、流泪、流涕、支气管分泌物增多、咯痰 恶心呕吐、腹痛腹泻、肠鸣亢进、大便失禁
气急、呼吸困难 出汗 尿频 心动徐缓、血压下降
N受体 激活:
骨骼肌 神经节
肌颤、肌无力、肌麻痹、呼 吸肌肉麻痹、呼吸困难
心动过速、血压升高
烟碱样作用
2、NA、A及其受体
肾上腺素能纤维 (adrenergic fiber)
神经调质 neuromodulator
调节信息传递效应
递质共存 neurotransmitter co-existence
协调某些生理活动
交感神经 副交感神经
NA 神经肽Y
ACh 血管活性肠肽
猫唾液腺
递质的代谢
合成,储存,释放,降解, 重摄取,再合成
ACh及其受体 NA、A及其受体 多巴胺及其受体 5-羟色胺及其受体 组胺及其受体 氨基酸类递质及其受体 神经肽及其受体 嘌呤类递质及其受体 NO、CO及其受体
突触前受体的功能 反馈调节递质的释放 不同神经元递质释放的突触调节
2 神经递质 突触前神经元具有合成该递质的前体和酶,并且能 够合成该递质
储存于囊泡,冲动到达时能够释放入突触间隙
释放入后经突触间隙作用与突触后膜的受体发挥作 用,人为施加该递质可发挥相同生理作用
神经递质、受体、激动剂和拮抗剂的类型
毒蕈碱:在30-60分钟内可出现毒蕈碱样中毒症状。
毒蕈碱样中毒症状是有机磷农药中毒的主要表现.表现为体内多种腺体分泌增加和平滑肌收缩所产生的症状和体征,如多汗,流涎,流泪,鼻溢,和肺部干湿啰音,呼吸困难。
恶心呕吐,腹痛腹泻,肠鸣音亢进,尿频尿急,大小便失禁。
瞳孔缩小,视力模糊,抑制血管平滑肌,血压下降。
毛果芸香碱:对眼和腺体的作用最为明显。
治疗原发性青光眼,包括开角型与闭角型青光眼。
①引起缩瞳,眼压下降,并有调节痉挛等作用。
通过激动瞳孔括约肌的M胆碱受体,使瞳孔括约肌收缩。
缩瞳引起前房角间隙扩大,房水易回流,使眼压下降。
由于睫状肌收缩,悬韧带松弛,使晶状体屈光度增加,故视近物清楚,看远物模糊,称为调节痉挛。
②增加外分泌腺分泌。
对汗腺和唾液腺作用最为明显,尚可增加泪液、胃液、胰液、肠液及呼吸道黏液细胞分泌。
③引起肠道平滑肌兴奋、肌张力增加,支气管平滑肌、尿道、膀胱及胆道肌张力也增加。
槟榔碱在医疗上用于治疗青光眼,能使绦虫瘫痪,所以也用作驱绦虫药,与南瓜仁效果更好。
临床用于治疗产后子宫出血、子宫复旧不良、月经过多等。
烟碱对中枢神经系统尼古丁可与尼古丁乙酰胆碱接受器结合,增加神经传递物的量,脑中的多巴胺增加,产生幸福感和放松感,最后可能会因吸食而有成瘾的现象。
烟草燃烧产生的烟中包含了单胺氧化酶抑制剂(Monoamine oxidase inhibitor),单胺氧化酶会分解单胺类神经传递物、多巴胺、正肾上腺素和血清素。
透过吸烟长期暴露于尼古丁中的人,尼古丁会正向调节小脑和脑干中α4β2尼古丁乙酰胆碱受体。
对周边神经系统尼古丁会刺激交感神经,借由刺激内脏神经影响副肾髓质,释放肾上腺素。
副交感神经节前纤维释放乙酰胆碱,作用在烟碱酸乙酰胆碱接受器上,使之释放肾上腺素和正肾上腺素至血液中。
对副肾髓质尼古丁与肾上腺髓质的烟碱接受器结合后,会增加血液中肾上腺素的含量。
透过与接受器结果,尼古丁使细胞去极化,钙离子由钙离子通道流入,钙离子促使神经细胞以胞泌作用的方式,释出肾上腺素和正肾上腺素至血液中,血液中肾上腺素增加,造成心跳加快,血压升高,呼吸加快,就像高血糖的情形一样。
小分子抑制剂、激动剂、拮抗剂---神经信号通路
神经信号神经信号参与中枢神经系统的结构、功能、遗传和生理的调节。
神经元合成/导入神经递质,并将其储存在突触前囊泡中。
突触前神经元释放的小泡,进而传递神经冲动。
常见的神经递质有γ氨基丁酸(GABA)、谷氨酸、血清素、多巴胺等。
在神经信号通路中,这些神经递质的功能障碍可能多种神经系统疾病,如慢性疼痛、神经退行性疾病、失眠、精神障碍(精神分裂症、双相情感障碍、抑郁症和成瘾)等。
神经信号通路转导过程当受到来自环境或其他神经元的信号刺激时,神经递质受体通过G蛋白偶联信号通路和G蛋白非依赖机制激活下游细胞内信号通路:包括cAMP/PKA, PI3K/AKT, 磷脂酶A2(PLA2), 磷脂酶C(PLC)信号通路等。
例如,多巴胺受体通过cAMP激活PKA等信号分子,通过CREB和其他转录因子的作用调控基因表达。
其他神经递质如NMDAR或AMPAR与控制Ca2+和Na+流量的离子通道有关,这样就能在突触后神经元中传递动作电位。
神经信号通路图神经信号通路列表*Aβ人类血小AlmotriptanNimesulide 51803-78-2 COX-2 26 μM *γ-secretase名称CAS 细胞靶点IC50VU 0357121 433967-28-3 mGluR5 30 nM *肾上腺素能受体113775- 1.08*AChRα7Oxybutynin 5633-20-5 AChR金雀花碱485-35-8 nAChR *组胺受体H1 receptor *多巴胺受体盐酸氯丙嗪69-09-0Chlorprothixene*阿片受体*GABA受体*P-gp名称CAS 靶点IC50 Kd Ki *P2受体*P2受体*MT 受体*BACEBACE2 10.2 nM *Substance P*P-gp*Trk受体名称CAS 细胞靶点IC50 Kd *CaMK*GlyT。
5-HT受体激动剂和拮抗剂
5-HT受体激动剂和拮抗剂在胃肠病中的应用作者:佚名科研信息来源:本站原创点击数:血157 更新时间:2005-12-16[关键词]:功能性胃肠病中,司琼类,必利类健康网讯:5- 羟色胺(5-hydroxytryptamine ,5-HT)又称血清素(serotonin),是重要的神经递质,人体内95%的5-HT在胃肠道的肠嗜铬细胞(enterochromaffin cells , EC)及肠神经元中合成,5-HT通过与其受体相互作用,在胃肠道动力、感觉和分泌中发挥重要作用。
5-H T受体超家族可分为7种亚型(5-HT1〜7受体)和更多的亚亚型。
胃肠道内至少有5种受体,其中5-HT3受体和5-HT4受体与胃肠运动和分泌功能最为密切。
本文将讨论5-HT受体激动剂和拮抗剂在功能性胃肠病中的应用(见表 1 )。
5-HT 1受体激动剂舒马曲坦(sumatriptan )是选择性5-H「BQ受体激动剂。
在健康人静注舒马曲坦后不但可以使胃液体排空延缓,还可以延缓胃固体餐的排空。
舒马曲坦激活中枢和周围5-HT1B/D受体,释放非肾上腺素能非胆碱能( non-adre nergic no n- choli nergic, NANC )神经递质,松弛胃底、胃窦和幽门平滑肌,改善餐后胃的容受性;并增加食管的敏感性,降低食管顺应性。
Tack等报道,舒马曲坦治疗功能性消化不良( functional dyspepsia, FD )患者,可降低胃壁张力,增加胃平均容量,并改善早饱不适感。
但也有不同结果的报告,因而需更多的临床研究的证实。
5-HT 3受体激动剂动物中的研究显示,5-HT3受体激动剂YM- 31636可促进动物的排便、增加排便量,这可能与增加结肠的动力有关,这一效应可被5-HT3受体拮抗剂雷莫司琼所阻断。
YM-31636不增加内脏疼痛阈值,有望用于治疗慢性便秘、以便秘为主的肠易激综合征( irritable bowel syn drome, 1BS )等,但目前尚无临床报道。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
神经递质受体激动剂和
拮抗剂的类型
SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#
2、神经递质、受体、激动剂和拮抗剂的类型
神经递质受体激动剂拮抗剂
胆碱类:乙酰胆碱M-受体:M1-M5
N-受体:N1、N2
M:
毒菌碱
毛果芸香碱
槟榔碱
氧化震颤素
N:
烟碱
M、N:
杀虫剂
促使Ach释放:
蝎毒
黑寡妇蜘蛛毒液
α-银环蛇毒
Ca2+、Mg2+
胆碱酯酶抑制
剂:新斯的明
毒扁豆碱
腾喜龙
有机磷脂类
M:
阿托品
N1:
六烃季胺
十烃季胺
美加明
N2:
箭毒
抑制Ach合成:
密胆碱-3
三乙基胆碱
4-吡啶
抑制Ach释放:
肉毒毒素
河豚毒
单胺类:
(1)儿茶酚胺 :
a 去甲肾上腺素
b 多巴胺
c 肾上腺素
(2) 吲哚胺: 5-羟色胺
血清紧张素去甲肾上腺素受
体:
α1、α2
β1、β2
多巴胺受体:
D1—D5 受体
5-羟色胺受体:
5-HT1—5-HT7受
体
多巴胺激动剂:
左旋多巴
苯丙胺(安非他
明)
可卡因
哌甲酯(利他
灵)
司来吉米
肾上腺素激动
剂:
咪唑克生
5-羟色胺激动
剂:
氟西汀
芬氟拉明
MDMA
LSD
去甲肾上腺素激
动剂:
α:
多巴胺拮抗剂:
AMPT
氯内嗪
氯氮平
利血平
肾上腺素拮抗
剂:
镰刀菌酸
5-羟色胺拮抗
剂:
PCPA
去甲肾上腺素拮
抗剂:
α:
酚妥拉明
β:
心得安
心得平
心得静
异丙肾上腺素、NE
β:NE、E
氨基酸类: (1)抑制性氨基酸类:
甘氨酸
(2) 兴奋性氨基酸类:
谷氨酸
天冬氨酸谷氨酸门控离子
通道受体:
NMDA受体
非NMDA受体
(AMPA受体、KA
受体)
G蛋白耦联谷氨受
体:
ACPD受体
L-AP4 NMDA受体
谷氨酸激动剂:
NMDA
AMPA
红藻氨酸
γ-氨基丁酸激动
剂:
毒蝇蕈醇
巴氯芬
苯二氮卓类
巴比妥酸盐
类固醇
谷氨酸拮抗剂:
AP5
酒精
PCP
γ-氨基丁酸拮抗
剂:
荷牡丹碱
CGP335348
印防己毒素
烯丙基甘氨酸
甘氨酸拮抗剂:
士的宁
多肽类:神经肽类阿片肽类
胃肠肽类
激肽类阿片肽类受体:
κ、δ、μ
阿片肽类激动
剂:
吗啡
海洛因
杜冷丁
芬太尼
美沙酮
阿片肽类拮抗
剂:
纳洛芬
纳洛酮
纳曲酮
其他:
前列腺素
组胺
内皮源性舒张因子(NO、CO)
核苷类核苷类的阻断剂:
咖啡因
NO的拮抗剂:L-NAME。