华师大新版九年级下学期 中考题同步试卷:26.2 二次函数的图象与性质(10)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华师大新版九年级(下)中考题同步试卷:26.2 二次函数的图
象与性质(10)
一、选择题(共8小题)
1.二次函数y=x2﹣4x+5的最小值是()
A.﹣1B.1C.3D.5
2.二次函数y=ax2+bx+c(a、b、c为常数且a≠0)中的x与y的部分对应值如下表:x﹣3﹣2﹣1012345
y1250﹣3﹣4﹣30512给出了结论:
(1)二次函数y=ax2+bx+c有最小值,最小值为﹣3;
(2)当时,y<0;
(3)二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴两侧.则其中正确结论的个数是()
A.3B.2C.1D.0
3.将二次函数y=x2﹣2x+3化为y=(x﹣h)2+k的形式,结果为()A.y=(x+1)2+4B.y=(x+1)2+2C.y=(x﹣1)2+4D.y=(x﹣1)2+2 4.已知0≤x≤,那么函数y=﹣2x2+8x﹣6的最大值是()
A.﹣10.5B.2C.﹣2.5D.﹣6
5.如图,二次函数y=x2+bx+c的图象过点B(0,﹣2).它与反比例函数y=﹣的图象交于点A(m,4),则这个二次函数的解析式为()
A.y=x2﹣x﹣2B.y=x2﹣x+2C.y=x2+x﹣2D.y=x2+x+2
6.已知m,n,k为非负实数,且m﹣k+1=2k+n=1,则代数式2k2﹣8k+6的最小值为()
A.﹣2B.0C.2D.2.5
7.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A.﹣B.或C.2或D.2或或
8.定义符号min{a,b}的含义为:当a≥b时min{a,b}=b;当a<b时min{a,b}=a.如:min{1,﹣3}=﹣3,min{﹣4,﹣2}=﹣4.则min{﹣x2+1,﹣x}的最大值是()A.B.C.1D.0
二、填空题(共6小题)
9.把二次函数y=x2﹣12x化为形如y=a(x﹣h)2+k的形式.
10.抛物线y=x2+1的最小值是.
11.函数y=(x﹣1)2+3的最小值为.
12.抛物线y=ax2+bx+c(a≠0)经过点(1,2)和(﹣1,﹣6)两点,则a+c=.13.已知二次函数y=x2+bx+c经过点(3,0)和(4,0),则这个二次函数的解析式是.14.如图,P是抛物线y=﹣x2+x+2在第一象限上的点,过点P分别向x轴和y轴引垂线,垂足分别为A,B,则四边形OAPB周长的最大值为.
三、解答题(共14小题)
15.如图,在平面直角坐标系中,正方形OABC的边长为4,顶点A、C分别在x轴、y轴的正半轴,抛物线y=﹣x2+bx+c经过B、C两点,点D为抛物线的顶点,连接AC、BD、CD.
(1)求此抛物线的解析式.
(2)求此抛物线顶点D的坐标和四边形ABCD的面积.
16.已知二次函数y=x2+mx+n的图象经过点P(﹣3,1),对称轴是经过(﹣1,0)且平行于y轴的直线.
(1)求m、n的值;
(2)如图,一次函数y=kx+b的图象经过点P,与x轴相交于点A,与二次函数的图象相交于另一点B,点B在点P的右侧,P A:PB=1:5,求一次函数的表达式.
17.已知抛物线y=﹣x2+bx+c经过点A(3,0),B(﹣1,0).
(1)求抛物线的解析式;
(2)求抛物线的顶点坐标.
18.如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0)和B(3,0)两点,交y轴于点E.(1)求此抛物线的解析式.
(2)若直线y=x+1与抛物线交于A、D两点,与y轴交于点F,连接DE,求△DEF的面积.
19.如图,抛物线y=x2+bx+c过点A(﹣4,﹣3),与y轴交于点B,对称轴是x=﹣3,请解答下列问题:
(1)求抛物线的解析式.
(2)若和x轴平行的直线与抛物线交于C,D两点,点C在对称轴左侧,且CD=8,求△BCD的面积.
注:抛物线y=ax2+bx+c(a≠0)的对称轴是x=﹣.
20.如图,已知二次函数y=x2+bx+c过点A(1,0),C(0,﹣3)
(1)求此二次函数的解析式;
(2)在抛物线上存在一点P使△ABP的面积为10,请直接写出点P的坐标.
21.在关于x,y的二元一次方程组中.
(1)若a=3.求方程组的解;
(2)若S=a(3x+y),当a为何值时,S有最值.
22.如图,已知二次函数y=ax2+bx+c的图象过A(2,0),B(0,﹣1)和C(4,5)三点.(1)求二次函数的解析式;
(2)设二次函数的图象与x轴的另一个交点为D,求点D的坐标;
(3)在同一坐标系中画出直线y=x+1,并写出当x在什么范围内时,一次函数的值大于二次函数的值.
23.如图,抛物线y=a(x﹣1)2+4与x轴交于点A,B,与y轴交于点C,过点C作CD ∥x轴交抛物线的对称轴于点D,连接BD,已知点A的坐标为(﹣1,0)
(1)求该抛物线的解析式;
(2)求梯形COBD的面积.
24.如图,抛物线y=x2﹣bx+c交x轴于点A(1,0),交y轴于点B,对称轴是x=2.(1)求抛物线的解析式;
(2)点P是抛物线对称轴上的一个动点,是否存在点P,使△P AB的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.
25.在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A(0,﹣2),B(3,4).(1)求抛物线的表达式及对称轴;
(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,且点D纵坐标为t,记抛物线在A,B之间的部分为图象G(包含A,B两点).若直线CD与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围.
26.如图,抛物线y=ax2+2x+c经过点A(0,3),B(﹣1,0),请解答下列问题:(1)求抛物线的解析式;
(2)抛物线的顶点为点D,对称轴与x轴交于点E,连接BD,求BD的长.
注:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(﹣,).