判定线性系统的能控性和能观性
第三章 线性系统的能控性与能观测性
。 显见第二、三行元素相同。 rank Qk 2 3 故不能控。
例6 桥式电路图中,若取电感L的电流 i及电容 L C的电压 v 为状态变量,取 为输出变量,则系 iL c 统方程为:
R R 1 R R iL ( 1 2 3 4 ) d L R1 R2 R3 R4 1 dt ( R2 R4 ) vC C R1 R2 R3 R4 1 R3 1 R1 ( ) iL L R1 R2 R3 R4 L u 1 1 1 ( ) vC 0 C R1 R2 R3 R4
1 0 ~ 2 A n 0 中,输入矩阵
~ b11 ~ ~ b21 , B ~ bn1
~ b12 ~ b21 ~ bn 2
~ b1r ~ b2r ~ bnr
(3.4)
.
表明: 状态变量 , x1 都可通过选择输入u而 x2 由始点 终点完全能控。 输出y只能反映状态变量 ,所以 不能观测。 x x
2
1
完全能控,不完全能观系统!
例3: 桥式电路如图所示, 选取电感L的电流为 为 状态变量, i (t ) x(t )
u (t ) 为电桥输 入,输出
量为 y (t ) 。 解: 从电路可以直观看出,如果 x(t 0 ) 0 u (t ,则不论 如何 ) 选取,对于所有 ,有 t 0 ,即ut(t)不能控制x(t)的变化, x( ) 0 t 故系统状态为不能控。 若u(t)=0,则不论电感L上的 x(t 0 ) 初始电流 取为多少, 对所有时刻 t 都恒有y(t)=0,即状态x(t)不能由输出y(t)反映,故 t0 系统是状态不能观测的。 该电路为状态既不能控,也不能观测系统。
第4章(1)线性控制系统的能控性和能观性
第4章(1)线性控制系统的能控性和能观性第四章线性控制系统的能控性和能观性在现代控制理论中,能控性(Controllability)和能观性(Observ- ability)是两个重要的概念,它是卡尔曼(Kalman)在1960年提出的,是最优控制和最优估计的设计基础。
能观(测)性针对的是系统状态空间模型中的状态的可观测性,它反映系统的内部状态x(t)(通常是不可以直接测量的)被系统的输出量y(t)(通常是可以直接测量的)所反映的能⼒。
能控性严格上说有两种,⼀种是系统控制输⼊u(t)对系统内部状态x(t)的控制能⼒,另⼀种是控制输⼊u(t)对系统输出y(t)的控制能⼒。
但是⼀般没有特别指明时,指的都是状态的可控性。
所以,系统的能控性和能观性研究⼀般都是基于系统的状态空间表达式的。
4-1 线性连续定常系统的能控性定义对于单输⼊n 阶线性定常连续系统bu Ax x+= 若存在⼀个分段连续的控制函数u(t),能在有限的时间段 []f t t ,0内把系统从0t 时刻的初始状态()0t x 转移到任意指定的终态()f t x ,那么就称系统在0t 时刻的状态()0t x 是能控的;如果系统每⼀个状态()0t x 都能控,那么就称系统是状态完全可控的。
反之,只要有⼀个状态不可控,我们就称系统不可控。
对于线性定常连续系统,为简便计,可以假设00=t ,()0=f t x ,即00=t 时刻的任意初始状态()0x ,在有限时间段转移到零状态()0=f t x (原点)。
4-2线性连续定常系统的能控性判别4-2-1具有约旦标准型系统的能控性判别 1.单输⼊系统具有约旦标准型系统bu x x+Λ==Λn λλλλ0000000000000321n λλλλ≠≠≠≠ 321即为n 个互异根或bu Jx x+==++n m m J λλλλλλ000000000000000100000000121111m 个重根1λn-m 个互异根n m m λλλ≠≠≠++ 21 例:分析下列系统的能控性(1)u b x x+??=221000λλ[]x c c y 21=解:?=111x xλ 1x 与u ⽆关,即不受u 控制 ?+=u b x x2222λ 2x 为能控状态该系统为状态不完全能控,因⽽为不能控系统。
现代控制理论-线性控制系统的能控性与能观性例题精选全文完整版
如果线性定常系统: y Cx 是状态不完全能控的, 它的能控性判别矩阵的秩
rankM n1 n
则存在非奇异变换:x Rcxˆ
将状态空间描述变换为:
xˆ y
Aˆ xˆ Cˆ xˆ
Bˆ u
n1 n n1
其中:
xˆ
xˆ1
xˆ
2
n1
n n1
Aˆ
R c1AR c
Aˆ 11 0
3.6.1 线性系统的对偶关系
线性系统1、2如下:
1:yx 11
A1x1 C1x1
B1u1
2:
x 2 y 2
A2x2 C2x2
B2u2
如果满足如下关系
A2 A1T , B2 C1T , C2 B1T
则称两系统是互为对偶的.
u1(t) B
x1(t)
x1(t)
++
∫
y1(t) C
A
y2(t) BT
0
A 0 1 0 , b 0, c 1 1 1
1 4 3
1
解: 能控性矩阵
0 1 4
M b Ab A2b 0 0
0
1 3 8
rankM 2 n1 dim A n 3 不能控
构造变换矩阵
0 1 0 Rc 0 0 1
1 3 0
✓与前2个列向量 线性无关; ✓尽可能简单
结构分解
u
co
y
co
依据能控能观 性,将系统分解
co
为四个子系统
co
x Ax Bu
y Cx Du
特殊的线性变换
x xTco xTco xTco xTco
分解步骤:
1、将系统分解成能控与不能控子系统;
现代控制理论(12-17讲:第4章知识点)
0 1 1 0 0 1 1 1 0 1 0 1 0 0 x y x 0 1 1 1 1 0 0 1 1 0 0 0 1 1 0 0
MIMO系统,n=5,r=5,独立特征向量为2, C阵对应列 (1、4列),线性无关, 故系统状态完全能观。
4-4 线性定常离散系统的能控性和能观性
故系统是不能观测的。
y 3 2 0 x
18
例2:判定如下系统的能观性。
1 0 3 x x 7 u 0 3
0 0 1 y x 0 u 1 1
故系统是能观测的。
特别要注意特征值互异的条件,否则会影 响判定结论的正确性。
解: n=3、 r=1 有
0 2 8 Q c B AB A 2 B 0 0 0 1 3 11
显然:
rankQc 2( n)
4
故系统是不能控的。
3、能控性判据之二 (1)、系统特征值互异的情况:
若线性定常系统: Ax + Bu , 具有n个互不相同的 x 特征值,则其状态完全能控的充分必要条件是,系统经非 奇异变换后的状态方程式:
C 1 1 rankQo rank 1 n CA 5 5
故系统是不能观测的.(detQo=0)
16
例2:判定如下系统的能观性。
2 1 1 x x 1 u 1 3
1 0 y x 1 0
b1 0
故系统状态不可控。
特别要注意特征值互异的条件,否则会影 响判定结论的正确性。
(2)、系统具有重特征值的情况: 若线性定常系统: Ax + Bu , 具有重特征值,且 x 每一个重特征值只对应一个独立特征向量,则其状态完全能 控的充分必要条件是,系统经非奇异变换后的Jordan规范形:
线性系统能控性能控性与能观性
时变系统
能达性定义及判据 能观性定义及判据
①Gram 判据 ①Gram 矩阵非奇异
离散时间线性
能控性判据 ①Gram 判据②秩判据
rank H GH G n 1 H n
时不变系统
能达性判据 能观性判据 ①Gram 判据②秩判据 ①Gram 判据②秩判据
三、连续时间线性时不变系统的结构分解
* * 于物理构成,问题的提法;取输出反馈控制律 u Fy v ,对任意给定期望极点组 1 , * 2 , n ,确定
一个反馈矩阵 F ,使导出的输出反馈闭环系统
x A BFC x Bv y Cx
的所有特征值实现期望的配置,即有 i A BFC * i , i 1,2, , n 。 输出反馈局限性: (1)对完全能控连续时间线性时不变受控系统,输出反馈一般不能任意配置系 统全部极点。 (2)对完全能控 n 维 SISO-LTIC 受控系统,输出反馈只能使闭环极点配置到根轨迹上。 扩大输出反馈配置功能的一个途径是采用动态输出反馈, 即在采用输出反馈同时附加引入补偿器。 可以证明,通过合理选取补偿器机构和特性,可对带补偿器输出反馈系统的全部极点进行任意配置。 4.2 状态反馈镇定问题 4.2.1 所谓的镇定问题就是,对给定的线性时不变受控系统,确定状态反馈控制律 u Kx v ,使 导出的状态反馈闭环系统 x A BK x Bv 为渐进稳定,即闭环系统特征值均具有负实部。 镇定问题实质上属于极点区域配置问题,对于镇定问题,系统闭环极点的综合目标,并不要求配 置于任意指定期望位置,而只要求配置于复平面的左半开平面上。 4.2.2 可镇定条件
4.1.2 极点配置问题的算法 [极点配置定理] 对 n 维连续时间线性时不变系统,系统可通过状态反馈任意配置全部 n 个极点 即特征值的充分必要条件是 A, B完全能控。 [多输入状态反馈阵算法] 给定 n 维多输入连续时间时不变受控系统 A, B 和一组任意的期望闭
4 线性系统的能控性与能观性
4 线性系统的能控性与能观性内容提要能观性与能控性是现代控制理论中的两个重要问题。
比如在设计最优控制系统时,目的在于通过控制变量的作用,使系统的状态按预期的轨迹运行,如果状态变量不受控制,当然无法实现最优控制。
另外,一个系统的状态变量往往难以测取,需要由输出量来估计状态,不能观测的系统就无法实现此目的。
本章主要介绍线性系统的能控能观方面的基本知识,内容包括:1) 能控性与能观性两个基础性概念,它们的判别准则以及对偶关系;2) 分析系统的内在结构,按能控性与能观性进行的标准分解;3) 系统能控性、能观性和传递函数矩阵间的关系,即系统状态空间描述法与输入输出描述法的关系;4) 能控标准形和能观标准形;5) 系统的实现和传递函数矩阵的最小实现问题。
习题与解答4.1 判断下列系统的能控性。
1) u x x x x⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡10 01112121 2) ⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡21321321111001 342100010u u x x x x x x3) ⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡21321321020011 100030013u u x x x x x x4) u x x x x x x x x⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1110 000000000001432111114321λλλλ 5) u x x x x x x⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡031 2025016200340321321解:1) 由于该系统控制矩阵⎥⎦⎤⎢⎣⎡=01b ,系统矩阵⎥⎦⎤⎢⎣⎡=0111A ,所以⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=1101 0111Ab 从而系统的能控性矩阵为[]⎥⎦⎤⎢⎣⎡==1011Ab bU C 显然有[]n Ab b U C ===2rank rank满足能控性的充要条件,所以该系统能控。
线性系统理论(第四章)线性系统的能控性和能观测性
An1B] T S 0
rankS n 系统状态不能控,与已知矛盾。
同理可证充分性。
例 线性定常连续系统的状态方程如下,判断其能控性。
0 1 0 0 0 1
0 0 1 0 1 0
x
x u0 0 0 1 Nhomakorabea0
1
0 0 5 0 2 0
系统的特征值: 1 2 0 ,3 5 ,4 5
当 1 2 0 时:
② 系统能控:如果状态空间中的所有非零状态都是在 t0 时 刻可控的,则称系统在 t0 时刻是完全可控,简称系统在 时刻 t0 可控。如果系统对任意初始时刻 t0 完全可控, 则称系统一致可控。
③系统不完全能控:如果对给定得初始时刻 t0 Tt ,如果状
态空间中存在一个或一些非零状态在 t0 时刻是不可控的,则 称系统在 t0 时刻是不完全可控的,也称系统是不可控的。
x0TWC (0, t1)x0
t1 0
x0T
eAt
BBT
eAT t
x0
dt
t1 0
BT
eAT t
x0
2
dt
0,
BT eATt x0 0
x(t1) eAt1 x0
t1 eA(t1t) Bu(t) d t 0
0
x0
et1 -At1
0
Bu(t) d t
x0
2
x0T x0
[
et1 -At1
An1B] T S 0
T Ai B 0; i 0,1,2, ,n 1 应用凯-哈定理 An , An1 均可表示为A 的 n-1 阶多项式
T Ai B 0; i 0,1,2,3,
对 t1 0
(1)i T
Ai t i i!
线性系统的能控性和能观性
对于能控系统有 命题:对状态方程进行 线性非奇异变换, 及 {1 , 2 , , r }不变。
线性系统理论 线性系统的能控性和能观性 15
3.5.2 线性系统的能观性指数
x Ax Bu A R nn , B R nr y Cx C R mn C CA 定义km n阶常数阵 Qk k 1 CA 若系统能观,k n时, Qn Qo为能观阵,rankQn n 当k由1增加,直到rankQk n, 存在一个使rankQk n成立 的k的最小正整数,称其为系统能观性指 数:
定义(状态不能观测) :对于线性时变系统,若对取定初始 时刻t0J的一个非零初始状态x0,若t1 J,t1>t0,均有y(t)=0,t [t0 , t1],则称此x0在时刻t0为不能观测的。
定义(完全能观测的):对于线性时变系统,若状态空间的所 有状态都是时刻t0(t0 J)的能观测状态,称系统在时刻t0 是完 全能观测的。若 t0 [T1 , T2],系统均在t0时刻是完全能观测 的,称系统在区间[T1 , T2]上是完全能观测的。
min{k : rankQk n}
线性系统理论 线性系统的能控性和能观性 13
引理:设系统能控性指 数为,rankB r , 则必成立 n n r 1 r 推论: r 1时, n 1、 2、线性定常系统能控的 充要条件 rankQn r 1 rank B
根据约当规范形来判别线性系统的能控性和能观测性
用约当规范形判别线性系统的能控性赛耀樟控制科学与工程学院 检测技术与自动化装置 2009010189摘要:60年代初期卡尔曼提出了能控性和能观测性概念。
能控性和能观测性分别是从状态的控制能力和状态的测辨能力两个方面揭示了控制系统的两个基本属性。
现代控制理论的许多基本问题,如最优控制和最优估计,都是以能控性和能观测性为存在条件的。
一 能控性约当规范形判据内容线性定常系统的能控性约当规范形判据 线性定常系统状态方程(1)当矩阵A 的特征值两两互质时.,,,,)3(0,)0(,0常阵为维输入向量为维状态向量为p n n n B A p u n t x x Bu A ⨯⨯≥=+=x x x ()()⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=+==++++⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⨯⨯⨯⨯i i i i i i i i p i i i i i l p n l n n l l n B B B B J J J J B B B B J J J A u B A n A B u B ααδδδδδδδλδλδλλλλˆˆˆˆˆˆˆˆˆ:ˆˆˆˆ3,),(,),(),()2(.,2121,21,2121221121 其中导出的约当规范形由时且重重重的特征值为当矩阵不包含元素全为零的行中x x x x二 能控性约当规范形判据推导为使推证过程中的符号不致过于复杂,不失普遍性,不妨取为..,,2,1ˆˆˆ),,2,1(ˆ,)(ˆˆˆˆ11212121,证略均为行线性无关对阵的最后一行所组成的矩由而l i ri b b b k B r r r rik b b b B J i ri ri i ik i i i i ik ik p r ik i i i r r i i ik ik ik =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡==+++⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⨯⨯ααδλλλα其中ran可以证出约当规范性判据。
线性系统能观性能控性判定
rank[ λi I − A ⋮ B ] = n ( i = 1, 2 , ⋯ , n ) 证明略) (证明略)
(10) )
定理3 互异, 定理3-4 (2)式的线性定常系统的矩阵 A 的特征值 λ i 互异, )
( i = 1, 2 , ⋯ , n ) 将系统经过非奇异线性变换变换成对角阵
0 λ1 λ2 x + Bu (11) ) ɺ x= ⋱ 0 λn 中不包含元素全为零的行。 则系统能控的充分必要条件是矩阵 B 中不包含元素全为零的行。
y 电路如下图所示。 为输入量, 为输出量, 例3-3 电路如下图所示。选取 u (t ) 为输入量, (t )为输出量,两个电 感上的电流分别作为状态变量, 感上的电流分别作为状态变量,则系统方程为
- 2 1 1 ɺ x = Ax + Bu = x + u 1 - 2 0
y = Cx = [0 1]x
系统状态转移矩阵为
0 x (0) = 如果初始状态为 0
e At
1 e −t + e −3t = − t − 3t 2 e − e
e −t − e −3t −t − 3t e +e
系统状态方程的解为 1 t −(t − τ ) x(t ) = ∫ e u(τ ) d τ 0 1 可见, 可见,不论加入什么样的 输入信号, 输入信号,总是有 x1 = x2
对于不能观测的系统,其不能观测的状态分量与 既无直接关系, 对于不能观测的系统,其不能观测的状态分量与y 既无直接关系, 又无间接关系。状态是否能观测不仅取决于C,还与A 有关。 又无间接关系。状态是否能观测不仅取决于 ,还与 有关。
3.2 能控性及其判据
线性系统理论第4章 线性系统的能控性和能观测性
满秩,即rankQ o=n
结论5
n 维连续时间线性时不变系统完全能观测的充分必要条件为:
SI A rank n S C C
或
i I A 为系统特征值 rank n , 1 , 2 ,n C
Wc [0, t1 ] e At BBe A t dt
T
t1
0
为非奇异。
结论3:n 维连续时间线性时变系统 x A(t ) x B(t )u x(t 0 ) x0
设A(t),B(t)对t为n-1阶连续可微,定义
t, t0 J
M 0 (t ) B (t ) d M 0 (t ) dt d M 2 (t ) A(t ) M 1 (t ) M 1 (t ) dt d M n 1 (t ) A(t ) M n 2 (t ) M n 2 (t ) dt M 1 (t ) A(t ) M 0 (t )
6/8,9/45
1 L QC [b, Ab] 0
R3 R4 1 R1 R2 2 L R1 R2 R3 R4 1 R2 R4 LC R1 R2 R3 R4
线性控制系统的能控性和能观性
C 1, C 2 Cn 满足G = C ? = C 3性无关。
,则把向量 X 「X 2 X n 叫做线11 1 0L 1X i 二 01 1X 2 二 1X 3_0 _0第三章 线性控制系统的能控性和能观性在现代控制理论中,能控性和能观性是卡尔曼(Kalma n )在I960年首先提出来的,它是最优控制和最优估值的设计基 础。
能控性和能观性是分别分析 u(t)对状态x(t)的控制能力 以及输出y(t)对状态x(t )的反映能力。
§3—1能控性的定义能控性所研究的只是系统在控制作用 u(t)的作用下,状态 矢量x(t)的转移情况,而与输出y(t)无关。
矢量的线性无关与线性相关:如果G xi * C 2x2 C 3X 3C n xn= 0式中的常数无关。
若向量X i ,x 2…x n 中有一个向量Xi 为其余向量的线性组 合,□便是线性例如向量C nX i不全为零。
故为线性相关。
具有约旦标准型系统的能控性判据 1 •单输入系统先将线性定常系统进行状态变换, 又例如在式中X 3X 2, X i3X ^ 0式中系数并把状态方程的A 阵和B相关。
阵化为约旦标准型(A, E?),再根据B 阵确定系统的能控性。
具有约旦标准型系统矩阵的单输入系统,状态方程为即:Xi、C j X j j=i j-i则称向量X i ,X 2 x n 为线性相关。
例如向量X iX3二 2_4便是线性x 八 x bu 或 x 二 Jx bu2,各根互异。
其中:(特征值有重根的)10 11 0111 Jnb 2bX11C2c 1xc 2x 2y cy(t)u(t)b1X1C2_b n卜面列举两个二阶系统,对其能控性加以剖析。
「0 例:1)厂匕x 2 二 2X 2 pu 0 0X u 2 巾2m 2故为状态不完全能控的,11X_b 2例:2)y约旦型)c 2 ]xX 厂'1x 1 x 2X 2= 2X 2 b ?u (为y = GN c 2x 2lL (t )从上式看出X 1与u 无关,即不受u 控制,因而只有一个特— 01 殊状态。
第6章 线性系统的能控性和能观性(第四章)
1 α n −1 L α1 CAn −1 O O M M Q= O α n −1 CA 1 A
给定完全能观测单输入单输出连续时间线性时不变系统: 例 4.21 给定完全能观测单输入单输出连续时间线性时不变系统:
ϕ T = BT (t )ψ T
对偶原理: 对偶原理:
Σ 完全能控 ⇔ Σ d完全能观测 Σ 完全能观测 ⇔Σ d完全能控
4.8 能控规范形和能观测规范形
单输入单输出情形 能控规范形
Σ:
& x = Ax + Bu,
y = Cx
线性非奇异变换下,能控性、能观测性, 线性非奇异变换下,能控性、能观测性, 可控指数、可控指数集,能观测指数和能观测 可控指数、可控指数集, 指数集保持不变。 指数集保持不变。
4.2 连续时间线性时不变系统的能控性判据
& x = Ax + Bu, x (0) = x0 ,
t≥0
系统完全能控的充分必要条件为: 系统完全能控的充分必要条件为:
rankQC = rank B
例:
AB L An −1 B = n
4 0 1 & x = x + u 0 −5 2
t∈J
说明: 说明:
表征系统状态可到达任意目标的定性属性, (1) 表征系统状态可到达任意目标的定性属性, 不关注运动的轨迹形态; 不关注运动的轨迹形态; 对控制无限制; (2) 对控制无限制; (3) 线性时不变系统与 t0 无关; 无关; 线性时不变系统能控性与能达性等价。 (4) 线性时不变系统能控性与能达性等价。 系统完全能控/能达: 系统完全能控/能达:指所有非零状态 系统不完全能控/能达: 系统不完全能控/能达:
线性系统理论4能控性和能观性
如果存在某个时刻 t1 t0,使得rankQ O (t1 ) n
t0 为不能观测的。
定义 4.1.6 对于线性时变系统
x A(t)x
, x(t0 ) x0 , t0 , t J
y C(t)x
如果状态空间中所有状态都是时刻 t0(t0 J )
的能观测状态,则称系统在时刻 t0 是完全能
观测的。如果对于任何 t0 [T1,T2] 系统均是在
t0 时刻为能观测的,则称系统在 [T1,T2 ]
在 t0 , t1 上行线性独立,即对任意 n
维非零向量 z 都有
zT (t1 , )B( ) 0, t0 t1
4.2.3 基于系统参数矩阵的判据
定理 4.2.3 假设系统
x A(t)x B(t)u, t J
中的 A(t) 和 B(t) 的每个元分别是 n 2和
n 1 一次连续可微函数,记 B1(t) B(t)
那么它能控的充分必要条件是:
det b Ab An1b 0
4.3.3 PBH判据
定理4.3.2 定常线性系统
x Ax Bu, x(t0 ) x0 , t t0
能控的充分必要条件是,对每个 (A)
都有 rank A In B n 其中, ( A)
表示 A 的特征值集合。
推论 4.3.3 定常线性系统
2
dt
x0T T
(t1 , t0 )Wc1(t1 , t0 )(t1 , t0
)x0
4.2.2 基于状态转移矩阵的判据
定理 4.2.2 假设 A(t) 和 B(t) 都是 t
的连续函数矩阵,则系统
x A(t)x B(t)u, t J
在t0 时刻能控的充分必要条件是存在某
第四章线性系统的能控性和能观性-山东大学
(3)线性定常离散系统能控性判据 rankUc= rank[ H GH … G n1H]= n
(4)线性定常系统离散化后的能控性: 连续系统不能控,离散化后的系统一定不能控;
连续系统能控,离散化后的系统不一定能控,与采 样周期T的选择有关。
(5)能控标准形 ① SISO Σ(A,B) ,其A和B有以下的标准格式
CAn B
CAn1B
CA2(
n
1)
B
0 0
0
0
0
0
0
CAn B
0
CAn B
CAn1B
CA2 ( n 1)
B
可见,QoQc不满秩。根据矩阵理论,Qo,Qc中至少 有一个矩阵不满秩,即系统不能同时可控可观测。证 毕。
17
例3-28 已知系统的传递函数为
4
0 1 0
A
0
0 1
an
an1
a1
0
B
0
1
② 对能控系统Σ(A,B)化为能控标准形的变换矩 阵P是唯一的,且
P1
P 1
P1 A
P1
An1
P1 = [0 … 0 1][B AB … An1B ]1
0
CAn1
1
10
4、对偶原理 线性系统Σ1(A,B,C)与Σ2(AT,CT,BT)互为
对偶系统。若系统Σ1能控(能观测),则Σ2能观测 (能控)。 5、线性定常系统的结构分解
线性系统的能控性和能观性
例3.4 判断下列系统的能控性
(1)、A
2
0
0 1 1, B 0
(2)、A
2
0
0 1 1, B 1
(3)、A
1
0
01B
1 1
3 1 0 0 0
(4)、A
0
3 0, B 2 1
0 0 1 0 3
4 1 0 0
(5)、A
0
4
0 , B 1
0 0 4 2
所以A为约旦阵,但有两个相同特征值的约旦块 对应b虽为最后一行全为0的元素行,仍不能控, 可算出rank[M]<3.
,t0)
tf t0
(
t
f
, )B()u()d
x(t0 )
tf t0
(
t
0
,
)B()u
()d
意义:系统状态x(t0)能控,即[t0,tf]区间上受 u(t)控制。
(三)能控性判据 [定理3.1]系统∑(A(t),B(t),C(t))在t0时刻或[t0,tf]
完全能控的充要条件是矩阵Φ(t0,t)*B(t)是行 线性无关的(满秩的、非奇异的)
例:x
1
0
-
-
02x 10u, y 1 1x
分析: 1、x1与输入u无关,不能 控,x2能控, x1, x2不完 全能控。 2、y= x1+ x2 , x1或x2 都能对y产生影响,通 过y能确定x1或x2 ,能 观测。
3、能控能观是最优制和 最优估计的设计基础。
3.1 线性连续系统的能控性
)d
x(t f ) (t f )x(0) 0t f (t f )B( )u( )d x(0) 0t f ( )Bu( )d
第三章线性系统的能控性与能观性
0 1 a2
0 1
a2
1 a2
a1 a2
2
0 0
1
Mc [B AB A2B] 0 1
1 a2
a1
a2 a2
2
无论a1、a2取何值,ranckM 3n,得证。
一、秩判据
0 0 3 1 1
例:已知系统 A2 0 7,B0 1,判别系统能
控性。
0 1 0 0 1
二、对角型、约当型判据
1设、系非统奇状异态变空换间不描改述变为系统X的 能YA控XC性XBU
任取非奇异变换阵P,令Xˆ PX,变换后系统为
Xˆ AˆXˆ BˆU
其中
A ˆP 1A Y,B P ˆCˆ XˆP 1B ,C ˆCP
现在证明当且仅当∑=(A,B,C)能控时,(Aˆ,Bˆ,Cˆ)
能控。
一、秩判据
例:对于三阶能控标准型的系统,试证明其必然能控。
证明:三阶能控标准型如下:x1 0 1 0 x1 0
xx3 20a0
0 a1
1a2xx3 21 0U
0 1 0 0 0
AB 0 0 1 0 1
a0 a1 a2 1 a2
0 A2B A AB 0
a0
1 0 a1
ranck rM a[B n ˆA ˆkB ˆ A ˆn1B ˆ] ra[P nk B PA 1P PB (PA 1)P P ( A 1) P(PA 1)P P]B
ra[P n(B kA BAn1B)]
由于矩r阵aP(P n 是nk M c*)n非奇异矩阵,由矩阵性质可得
rankcM rankcM
3.2.2 能控性判据
一、秩判据 二、对角型、约当型判据
一、秩判据
定理:线性定常系统状态完全能控的充 要条件是系统能控性判别矩阵 M c [B A B A 2 B A n 1 B ]
线性系统的能控性和能观性
3.约当规范型矩阵
若A是约当阵,且B阵中与每个约当块最后一行相对应 的行的元素不全为零,则系统可控。反之为零一行所 对应的状态不可控。
例.判断能控性
• 4 1. x 0
0 5
x1 x2
12u
7 0 0 2
•
2. x
0
5
0
x
0
0 0 3 7
1 1 0 4 2
3.
•
x
0
e3t
0
te3t
e3t
t
x(t) e At x(0) e A(t )Bu( )d
0
x1(t)
x2
(t
)
e3t
0
te3t e3t
x1(0)
x2
(0)
t 0
e 3(t
0
)
(t
)e3(t e3(t )
)
10u(
)d
t
x1(t) e3t x1(0) te3t x2 (0) (t )e3(t )u( )d
0
t
x2 (t) e3t x2 (0) e3(t )u( )d
0
t
y(t) x1(t) e3t x1(0) te3t x2 (0) (t )e3(t )u( )d
可见:1.两个状态变量中均有输入的作用,可0 控
2.输出中有两个状态变量的出现,输出可以反映初始状态,可测
例.如图所示,1、2表示蓄水池,u1、u2表示输入流量,R1、 R2液阻,H1、H2液面高度A1、A2截面积,问 (1)仅用一个调节阀,应放在何处? (2)仅用一个液位计,应放在何处?
Z (S ) U (S )
S
2.5 1
S2
1 1.5S