有机化学 第四章 立体异构
4 立体异构

四、对映异构体的标记
(一) D/L相对构型标记法:以甘油醛为标准。
CHO H OH CH 2OH
—OH在横线右端 D-(+)-甘油醛
CHO HO H CH 2OH
—OH在横线左端
L-(-)-甘油醛
注:标准的Fischer投影式
从D型甘油醛
从L型甘油醛 [O]
反应
化合物(D型);
化合物(L型) 。
无旋光性 异构体数目计1个 纯物质
无旋光性 计 2个 混合物(拆分)
六、不具有手性碳原子化合物的对映异构
1.丙二烯型化合物
a≠b, d≠e, 手性
2,3-戊二烯
H3C C H C C
CH3 H
H3C C H C C
CH3 H
2. 联苯型化合物(不作要求)
总结:
产生对映异构现象的原因:分子的手性。
旋光性: 物质能使偏振光的振动面旋转的性质。
手性分子具有旋光性,具有旋光性的分子有手性。
旋光仪
旋光性物质
右旋物质:“d‖ or ―+‖
左旋物质:“l‖ or ―-‖
对映异构体又称为旋光异构体或光学异构体
(二)旋光度和比旋光度[]Dt
旋光度 :偏振光振动面旋转的角度 影响的因素: 物质的分子结构 溶液的浓度—— ρ(g/ml) 盛液管的长度—— l(dm) 光的波长 ——光谱中的D线(即钠光λ=589nm) 测定的温度—— t 比旋光度[]Dt : 是旋光性物质特有的一种物理常数。 果糖溶液: []D20 = - 92.8°
CH3
H
OH
CH3
OH H
(1) HO
(2) H
有机化合物的立体异构与立体化学

有机化合物的立体异构与立体化学有机化合物是由碳原子与其他元素原子通过共价键连接而成的化合物。
其中,碳原子可以形成四个共价键,因此有机化合物的分子结构非常复杂多样。
立体异构是指化学结构相同但空间结构不同的化合物,而立体化学研究的是化合物的空间结构对其化学性质的影响。
本文将就有机化合物的立体异构与立体化学展开讨论。
一、立体异构的概念与分类立体异构是指分子结构中的原子在空间中的不同排列方式,导致化学性质的差异。
常见的立体异构类型有构象异构、顺反异构、光学异构等。
1. 构象异构构象异构是由于化学键自由旋转或者某些键的自由旋转受到空间位阻等因素的影响,从而使分子构象发生改变。
构象异构体具有相同的化学式、结构式,但空间取向不同。
常见的构象异构有顺式异构和反式异构。
2. 顺反异构顺反异构是指分子中的取代基或配位基在空间中的相对位置不同。
顺式异构指取代基或配位基在空间中相对位置相邻,反式异构则相对位置相对。
顺反异构体可表现出不同的化学性质,如催化活性、环境稳定性等。
3. 光学异构光学异构是指化合物中存在手性碳原子,使得分子不对称并能够存在两个非重叠的镜像异构体。
这两种异构体被称为手性体或对映异构体。
手性体的化学性质不对称,例如对光线的旋光性质,称为旋光异构体。
二、立体化学的基本原理立体化学是研究有机化合物的空间结构对其化学性质的影响,包括光学性质、化学反应活性等。
在立体化学中,需要关注的几个重要概念包括手性、手性中心、手性体和立体异构。
1. 手性手性是指产生镜像异构体的性质。
在有机化合物中,手性由手性中心决定。
手性中心是指一个碳原子与四个不同取代基围绕着它的排列方式。
当一个化合物包含一个或多个手性中心时,该化合物就是手性的。
2. 手性体手性体是指一个化合物的嗅觉或味觉特性因其立体异构而产生的变化。
手性体可以是对映体,也可以是非对映体。
非对映体是指具有多个手性中心的化合物,在其各个手性中心构型相同的情况下只存在一种异构体。
有机化学基础知识点整理立体异构与手性化合物

有机化学基础知识点整理立体异构与手性化合物有机化学基础知识点整理立体异构与手性化合物介绍:有机化学是研究有机物的结构、性质和反应的学科。
其中,立体异构与手性化合物是有机化学中的重要概念。
本文将为您整理基础的有机化学知识点,重点探讨立体异构和手性化合物。
一、立体异构1.1 定义立体异构是指分子的空间结构相同,但是在立体构型方面存在不同的化学物质。
即同一分子式的化合物,其空间结构不同,化学性质和物理性质也会相应变化。
1.2 分类1.2.1 构型异构构型异构是指分子内部原子的排列方式不同,导致空间结构也不同。
主要有以下几种形式:1.2.1.1 同分异构同分异构是指同种原子通过共价键连接,在排列或转动时可形成不同的构型。
如顺反异构、轴官能团异构等。
1.2.1.2 二面角异构二面角异构是指由于碳链之间存在着特定的旋转角度,分子在空间中不同部位产生不同构型的异构体。
如转平面异构。
1.2.2 空间异构空间异构是指构成分子的原子的连接方式不同,导致分子空间结构不同,无法通过旋转或转动使其重合。
主要有以下几种形式:1.2.2.1 键位置异构键位置异构是指在分子中,原子的连接方式或位置不同,导致分子的空间结构也会不同。
如环异构。
1.2.2.2 空间位阻异构空间位阻异构是指分子内部的原子或官能团由于空间位阻的影响,影响了分子的空间构型,从而导致异构体的产生。
二、手性化合物2.1 定义手性化合物是指分子或物体不重合与其镜像体的物质。
手性化合物包括手性立体异构体和不对称分子。
2.2 手性中心手性中心是指分子中一个碳原子与四个不同基团连接。
手性中心是产生手性的必要条件。
根据手性中心的性质,分子可以分为两种类型:2.2.1 单手性中心单手性中心的分子有两个镜像异构体,即L体和D体。
2.2.2 多手性中心多手性中心的分子有2的n次方个立体异构体,其中n为手性中心的个数。
2.3 光学异构体光学异构体是指由于手性中心的存在而产生的非重合的光学异构体。
有机化学基础知识点整理有机分子的立体异构体的分类和性质研究

有机化学基础知识点整理有机分子的立体异构体的分类和性质研究有机分子是由碳元素构成的化合物,其中碳原子能够形成多种立体异构体。
立体异构体是指具有相同分子式、相同原子连接方式但空间结构不同的化合物。
研究立体异构体的分类和性质对于理解有机化学的深层次原理和应用具有重要意义。
一、立体异构体的分类立体异构体主要分为构造异构体和空间异构体两类。
1. 构造异构体构造异构体是指分子中原子的连接模式不同。
常见的构造异构体包括同分异构体、分链异构体、位置异构体和环异构体。
- 同分异构体:同分异构体是指分子中碳链相同,原子的连接顺序不同。
例如,丙醇和异丙醇就是同分异构体,它们的分子式均为C3H8O。
- 分链异构体:分链异构体是指碳原子的连接顺序不同,如正戊烷和2-甲基丁烷就是分链异构体。
- 位置异构体:位置异构体是指官能团的位置不同,如1-丙醇和2-丙醇就是位置异构体。
- 环异构体:环异构体是指存在环状结构的异构体,如环己烷和甲基环戊烷就是环异构体。
2. 空间异构体空间异构体是指分子空间结构的非对称性,分为构象异构体和对映异构体。
- 构象异构体:构象异构体是指由于化学键的旋转或在键轴周围的自由旋转引起的不同空间构象。
例如,正-2-丁烯的反式构象和顺式构象就是构象异构体。
- 对映异构体:对映异构体是指分子与其镜像图形无法完全重合的立体异构体。
对映异构体可以由手性中心引起,手性中心是指一个碳原子与四个不同的基团相连。
例如,左旋和右旋的叶绿素就是对映异构体。
二、立体异构体的性质研究立体异构体的性质研究可从物理性质和化学性质两个方面进行。
1. 物理性质立体异构体的物理性质包括熔点、沸点、密度和旋光度等。
相同化学式的立体异构体由于其分子空间结构的不同,物理性质可能存在差异。
例如,顺式-1,2-二氯乙烷比反式-1,2-二氯乙烷熔点更高。
2. 化学性质立体异构体的化学性质与它们的分子空间结构密切相关。
不同构象异构体或对映异构体可能表现出不同的化学反应活性。
有机化学基础知识点整理有机分子的立体异构体分类和性质

有机化学基础知识点整理有机分子的立体异构体分类和性质有机化学基础知识点整理有机分子的立体异构体分类和性质引言:有机化学是研究有机物质的组成、结构、性质、合成、反应与应用的科学。
在有机化学中,立体异构体是一种重要的概念。
立体异构体是指具有相同分子式但空间构型不同的有机分子。
本文将对有机分子的立体异构体进行分类和性质的整理。
一、立体异构体的分类1. 构象异构体(conformational isomers):构象异构体是由于化学键的旋转所产生的异构体。
这种异构体在分子内部的空间构型上有不同的构象,但它们之间的键没有断裂或形成新的键。
常见的构象异构体有转式异构体、扭式异构体和轴式异构体等。
2. 构造异构体(constitutional isomers):构造异构体是由于分子内部原子连接方式的不同而产生的异构体。
这种异构体在原子的连接方式上有所区别,导致它们具有化学性质和物理性质上的差异。
常见的构造异构体有链式异构体、环式异构体和官能团异构体等。
3. 光学异构体(optical isomers):光学异构体是由于分子中手性中心的存在而产生的异构体。
光学异构体的分子拥有相同的构成式,但它们的立体构型是镜像对称的,无法重合。
光学异构体对于旋光性是有影响的,其中左旋异构体为L型,右旋异构体为D型。
二、立体异构体的性质1. 空间构象的影响:构象异构体的不同空间构象对于分子的稳定性、形状、反应性等都有影响。
例如,转式异构体的存在使得分子中的取向限制,并影响其反应性能。
2. 化学性质的差异:构造异构体的存在导致分子之间具有不同的化学性质。
例如,链式异构体由于原子连接方式的不同,其分子之间的键能和键长都会有所差异,从而影响分子的化学性质。
3. 光学活性:光学异构体的存在使得有机分子具有光学活性,能够影响其对极化光的旋光性。
光学异构体的相关性质对于化学和生物学领域具有重要的应用价值。
4. 热力学稳定性:不同立体异构体的热力学稳定性各不相同。
有机化学基础知识点整理立体化学中的立体异构体

有机化学基础知识点整理立体化学中的立体异构体有机化学基础知识点整理立体化学中的立体异构体在有机化学中,立体异构体是指具有相同分子式和结构式,但分子间空间结构不同的化合物。
这种不同是由于分子内原子或基团的不同空间排列方式而导致的。
了解立体异构体的性质和特点对于有机化学的学习和应用至关重要,下面将对立体化学中的立体异构体进行整理。
一、立体异构体的分类1. 构象异构体:构象异构体指的是分子中化学键的旋转或改变结构而产生的异构体。
构象异构体的产生是因于原子或基团在空间结构上不同的旋转自由度。
常见的构象异构体包括顺式异构体和反式异构体。
- 顺式异构体:顺式异构体是指在分子结构中,两个相邻的取代基位于同一平面上。
顺式异构体由于取代基间的空间阻碍,其旋转自由度较小。
- 反式异构体:反式异构体是指在分子结构中,两个相邻的取代基位于分子的相对位置。
反式异构体的构象比顺式异构体的旋转自由度更大。
2. 构造异构体:构造异构体指的是分子中原子或基团的连接方式不同而产生的异构体。
构造异构体的产生是由于取代基的不同连接顺序或键的连接方式不同所引起的。
- 键式异构体:键式异构体是替代基在分子中的连接方式不同而产生的异构体。
这一类异构体常见的有链构异构体、环构异构体等。
- 互变异构体:互变异构体指的是通过转移原子或基团的位置而形成的异构体。
互变异构体的转变是通过化学反应来实现的,并会伴随着原子或基团的位置变化。
二、立体异构体的例子1. 光学异构体:光学异构体是指在不对称碳原子或其他不对称中心周围键的连接方式不同而产生的异构体。
光学异构体可以分为两类,即对映异构体和顺式异构体。
- 对映异构体:对映异构体是指分子结构中存在一个不对称碳原子或其他不对称中心,并且分子的空间结构是镜像对称的。
对映异构体彼此之间无法通过旋转或移动而重叠,其物理和化学性质也有所不同。
这种对称性导致对映异构体具有光学活性,可以通过手性分子之间的旋光性来进行检测。
第四章 立体异构

Cl
C CH3
C Br
CH3
C
C H
(E)- 2-氯-1-溴丙烯
(Z)- 2-氯-1-溴丙烯
2. 次序规则
(1)将与双键碳原子直接相连的原子按原 子序数大小排列,原子ቤተ መጻሕፍቲ ባይዱ数大者为“较优”基 团;若为同位素,则质量高者为“较优”基团。
I > Br > Cl > S > P > F > O > N > C > D > H
H C CH3
这种在有双键或环状结构的分子中,由于旋转受阻 使与双键或环相连接的原子或原子团在空间的排布方式不 同所引起的立体异构现象叫做顺反异构现象。各种异构 体互称为顺反异构,又称几何异构。
2.产生顺反异构的原因和条件
产生的原因:由于双键中的π键限制了σ键 的自由旋转,使得两个甲基和两个氢原子在空间 有两种不同的排列方式。
三、含一个手性碳原子的化合物的旋光异构
1.对映体和外消旋体 H3C
C
CH3 H HO
C
HOOC
H OH
COOH
乳酸的一对对映体(透视式) 对映体:互为实物和镜像关系的异构体叫做对 映异构体,简称对映体。
外消旋体;它们的等量混合物可组成一个外消 旋体,用(±)表示 。外消旋体无旋光性。
2.构型的表示方法
构象的两种表示方法
透视式
H
H H C H H C H H
H C H H H
C H
交叉式
重叠式
纽曼投影式:
H H H H
H H
H H
HH
H H
交叉式
重叠式
交叉式构象为优势构象
乙烷处于交叉式构象时,两个碳 上的氢原子相距最远,相互排斥力最 小,因而内能最低。重叠式构象内能 最高。但二者内能相差仅12.5kJ/mol, 室温时,分子热运动所提供的能量就 能使各个构象相互转化,因而不能分 离出乙烷的某一构象异构体。
有机化学基础知识点整理立体化学中的立体异构

有机化学基础知识点整理立体化学中的立体异构立体化学是有机化学中重要的一个分支,研究有机分子的空间结构及其对化学性质和反应机理的影响。
在立体化学中,立体异构是一个重要的概念。
本文将对有机化学中的立体异构进行整理和探讨。
一、立体异构的概念在化学中,分子的立体异构是指分子的空间排列不同而具有不同的化学性质的现象。
根据立体异构的类型,可以分为构象异构和光学异构。
1. 构象异构构象异构是指分子内部键的旋转或配位构型的改变,使得分子的空间构型不同而产生异构体。
构象异构体具有相同的分子式、分子量和化学键,但其物理性质和化学性质可能有所不同。
常见的构象异构体包括顺式异构体和反式异构体。
例如,对二氯乙烷而言,它可以存在顺式异构体和反式异构体,由于氯原子的相对位置不同,两者的物理性质和化学性质也会有所不同。
2. 光学异构在有机化学中,光学异构是指分子中的某个碳原子上的四个不同取代基围绕这个碳原子构成的四个取代基的不同排列方式所引起的异构体。
光学异构又分为手性异构和无机异构。
手性异构是指分子镜像对称,但不可重合,不是同一分子的立体异构体。
无机异构是指分子的图像和镜像可以通过旋转对称生成。
二、立体异构的分类及其例子1. 构象异构的例子构象异构常见于环状化合物和双键化合物。
例如,环丁烷可以存在船型构象和扭曲构象两种异构体;苯的立体异构体为平面异构体和扭曲异构体。
2. 光学异构的例子光学异构常见于手性化合物。
光学异构体由一个手性中心引起,手性中心是指一个碳原子上的四个取代基不同,且不可重合。
例如,D-葡萄糖和L-葡萄糖就是光学异构体。
两者除了旋光方向不同外,其它物理性质和化学性质都相同,但生物学活性可能存在差异。
三、立体异构对化学性质的影响1. 光学异构的生物活性差异光学异构体的生物活性差异是药物化学中的一个重要问题。
由于手性分子在生物体内与相同的酶、受体等具有不同的亲和力,因此光学异构体的生物学效应可以有显著差异。
举例而言,D-葡萄糖是人体能够利用的天然糖,而L-葡萄糖则无法在人体内代谢。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(二)、旋光仪和比旋光度
Nicol棱镜
旋光仪的工作原理
WXG-4圆盘旋光仪
t: 比旋光度 [ α ]λ
测定温度
比旋光度
[α] t λ=
波长
α
旋光度(旋光仪上的读数)
l × ρ
溶液的浓度(g/ml) 盛液管长度(dm)
质量浓度ρB = 1g/ml的旋光物质溶液,放在l = 1dm长的盛液管中测得的旋光度为这个物质的比
CHO H OH CH2OH COOH [O] HgO H OH CH2OH
D-(+)-甘油醛
D-(-)-甘油酸
If the —OH or —NH2 which attaches to the
chiral carbon atom lies on the right,the
molecule is called ―D‖;if on the left,i H H Cl F H
有对称中心的分子能和它的镜像重合,没有手性
一般来讲,一种分子不能重叠镜像的条件是这 种分子没有对称面,也没有对称中心。
Plane of Symmetry
对映异构体
对映体的物理性质和化学性质一般 都相同,比旋光度的数值相等,但旋光 方向相反;等量对映体的混合物称为外 消旋体(Racemate) ,用dl或(± ) 表示。 Racemic Mixtures
手性分子
Amino acid possesses a carbon with four different attached groups (R, NH2, H, COOH); there is no such carbon in propanoic acid.
COOH
手性碳原子(手性中心):
连有四个不同基团的碳原子
R-2,3-二羟基丙酸
CH3 H H OH CH2 CH
最小基团H位于横线 基团次序:OH > H2C
CH2
CH
CH2 > CH3
S-构型 S-4-戊烯-2-醇
H H H2N CH3
最小基团H位于竖线 基团次序:NH2 > COOH > CH3
COOH
R-构型 R-2-氨基丙酸
CH3 ClCH2 Cl CH(CH3)2
第四章 立体异构 (Stereo isomerism)
1874年,年仅22岁的荷兰科学家范霍夫(Herr van’t Hoff) 发表了名为“原子的空间排布”(The Arrangements of Atoms in Space)一文,正式将有机化合物的结构推到了三维 层次——立体化学(stereochemistry),帮助我们解释了有机 化合物的立体结构不同可以导致它们的性质不同。
C
H
C
H
CO2H
C
H
H CH3
C
H
H CH3 3
非手性分子
But some of organic molecules are non-superimposable on their mirror images
amino acid
COOH C H R NH2
COOH COOH C C H R R H NH2 NH 2
R、S 标记法规则:
1、将连在手性碳上的四个基团(a、b、c、d) 按顺序规则排出它们的优先次序为 a>b>c>d。 2、若优先次序最小的原子或原子团d位于Fischer 式的横键时(不论在左还是在右),则当a、b、c顺 时针方向排列时,则手性碳具有S-构型,相反则 为R-构型。
a c b d d a c b
对映异构
一、对映异构体的旋光性
(一)、平面偏振光和旋光性
光是一种电磁波,它的传播方向与光振动方
向相垂直。
在普通光线里,光波可以在垂直于传播方向 的各个不同的平面内振动。
将普通光线通过Nicol棱镜,它只允许与其晶
轴平行的平面上振动的光线通过。
Nicol棱镜 平面偏振光:通过Nicol棱镜后只在一个平 面上振动的光,简称偏振光。
顺反异构
C
C
C
C
CH3 H
CH3 H
CH3 H
H CH3
对映异构:本章学习。
第一节
顺反异构
一、顺反异构的概念和形成条件
碳碳双键不能自由旋转:
顺-2-丁烯 mp:-151.4℃
反-2-丁烯
mp:-136.0℃
由于组成双键的两个碳原子上连接的基团在空间位 置不同而形成的构型不同的现象称为顺反异构现象。
旋光物质:乳酸、葡萄糖等,能使偏振
光的振动方向旋转一定的角度。
旋光物质 旋光性:能使平面偏振光振动方向发生 旋转的性质。
旋光物质的旋光方向
左旋体(-) 或l :使偏振光振动方向按逆时针方 向旋转; 右旋体(+) 或d :使偏振光振动方向按顺时针方 向旋转。
旋光度α: 使平面偏振光旋转的角度
手性:物质分子与自己的镜像不能重合的性质。 手性分子:具有手性的分子,有互为镜像但不 能重叠的对映异构体存在。
Some of organic molecules are superimposable on their mirror images.
CO2H CO2H H CH3 H H3C
CO2 2H
沙利度胺(Thalidomide)——又名反应停
O O H N
D-甘油醛
L-甘油醛
1951年,J.M.Bijvoet利用特种的X-射线技术对右 旋酒石酸铷钠进行分析,确定其绝对构型后,再 根据甘油醛与酒石酸构型之间的关系而得知D-甘 油醛是右旋的,L-甘油醛则是左旋的。 在既要表示构型又要标出旋光性时,可同时用 D, L表示构型和(+),(-)表示旋光性,不再使用 d, l。例如:右旋甘油醛可用D-(+)-甘油醛来表 示。
COOH H H C C
*
OH OH
对称面
*
COOH
这种分子内含有多个手性碳原子,但因存 在对称因素而使分子无手性、无旋光性的化 合物称为内消旋体(mesomer).
三、对映异构体的表示方法
楔形透视式:
CH3CHCOOH OH
*
COOH C H HO CH3
CH3
COOH C H OH
费歇尔(Fischer)投影式:
OH
OH
C
CH3 H COOH HOOC
C
CH3 H
互为镜像的异构体称为对映异构体,简称对映体。
3、手性分子的判断
手性分子都具有对映异构体存在。 判断一个分子是不是手性分子,最直接的办 法就是,看这个分子能否和它的镜像重合。 画出分子的镜像,进行比较。
分子有无手性,也可以从它具有的对称因素来
改变原化合物的构型。
CH3CH2CHCH3 OH
CH3 H OH CH2CH3 HO CH3 H CH2CH3
* 1
四、对映异构体构型的标记
1、D、L命名法
以甘油醛为标准来确定对映体的相对构型
CHO H OH CH2OH
CHO
CHO H OH CH2OH
CHO OH H CH2OH
HO H CH2OH
S-构型
R-构型
3、若d位于Fischer式的竖键时(不论在上还是在 下),则当a、b、c顺时针方向排列时,则手性 碳具有R-构型,相反则为S-构型。
b a d c b c d a
R-构型
S-构型
例
H
题
COOH OH CH2OH
最小基团H位于横线 基团次序: OH > COOH > CH2OH
R-构型
Br
同碳上下比较
I C
(Z)-1-氯-1-溴-2-碘乙烯
>
Cl
>
C
(Z)-1-bromo-1-chloro-2-iodoetene
H
H3C C Br
CH3 C H
H3C C Br
H C CH3
>
顺-2-溴-2-丁烯
反-2-溴-2-丁烯 (Z)-2-溴-2-丁烯
(E)-2-溴-2-丁烯
>
>
>
第二节
CHO H OH CH2OH D-glyceraldehyde H2N CH3 L-alanine COOH H
COOH H CH3 OH HO
COOH H CH3
D-(-)-乳酸
L-(+)-乳酸
2、 R、S 标记法 三维结构 1>2>3>4
Assigning (R) and (S) Absolute Configuration
Jacobus Henricus van ‘t Hoff (1852-1911) 第一个Nobel化学奖获得者(1901)
分类
碳链异构 位置异构 构造异构 官能团异构 (互变异构)
顺反异构
同分异构
构型异构
立体异构 构象异构
对映异构
构造异构:分子中原子互相联接的方式和次
序不同而产生的异构现象。 碳链异构 CH3 CH2 CH2 CH3
判定。
(1)、对称面 (σ) 假设分子中有一平面能把分子切成互为镜象的两 半,该平面就是分子的对称面。
对称面
COOH H H C C
*
OH OH
*
COOH
有对称面的分子能和它的镜像重合,没有手性
(2)、对称中心(i)
从分子中任何一个原子向i 引一条直线,再延长 到对面等距的地方,总有一个相同的原子。
CH3 CH CH3 CH3
位置异构 CH3 CH2 CH CH2 CH3 CH CH CH 3
官能团异构 CH2 CH CH CH2 CH3 CH2 C CH