圆周运动问题汇总
圆周运动中的临界问题(全)
圆周运动中的“临界问题”总结一、“绳”模型——“最高点处有临界,最低点时无选择”一轻绳系一小球在竖直平面内做圆周运动.小球“刚好”“恰好”过最高点的条件是:此时,只有小球的 提供向心力,即 =m rv 2,这时的速度是做圆周运动的最小速度,vmin = . V= 是“绳”模型中小球能否顺利通过最高点继续做圆周运动的临界速度。
类此模型:竖直平面内的内轨道巩固1:游乐园里过山车原理的示意图如图所示。
设过山车的总质量为m =60kg ,由静止从斜轨顶端A 点开始下滑,恰好过半径为r=2.5m 的圆形轨道最高点B 。
求在圆形轨道最高点B 时的速度大小。
巩固2:杂技演员在做水流星表演时,用绳系着装有水的水桶,在竖直平面内做圆周运动,若水的质量m =0.5 kg ,绳长l=60cm ,求:(1)最高点水不流出的最小速率。
(2)水在最高点速率v =3 m /s 时,水对桶底的压力.巩固3:公路在通过小型水库的泄洪闸的下游时,常常要修建凹形桥,也叫“过水路面”。
如图所示,汽车通过凹形桥的最低点时A .车的加速度为零,受力平衡B .车对桥的压力比汽车的重力大C .车处于超重状态D .车的速度越大,车对桥面的压力越小二、“杆”模型————“最高点处有临界,最低点时无选择” 一轻杆系一小球在竖直平面内做圆周运动,注意v=0和v=gr 两个速度。
①当v =0时,杆对小球的支持力 小球的重力;②当0<v <gr 时,杆对小球产生 力,且该力 于小球的重力;③当v =gr 时,杆对小球的支持力 于零;④当v >gr 时,杆对小球产生 力。
V= 是“杆”模型中杆对小球是“推”“拉”的临界。
类此模型:竖直平面内的管轨道.巩固4:如图所示,长为L 的轻杆一端有一个质量为m 的小球,另一端有光滑的固定轴O ,现给球一初速度,使球和杆一起绕O 轴在竖直平面内转动,不计空气阻力,则( )A.小球到达最高点的速度必须大于gLB .小球到达最高点的速度要大于0C.小球到达最高点受杆的作用力一定为拉力D.小球到达最高点受杆的作用力一定为支持力 三、“拱形桥”模型——“最高点处有临界”小球沿球面运动,轨道对小球只能支撑,而不能产生拉力.在最高点时,若小球与球面间弹力为零,则有 = ,v= 。
考点01圆周运动的运动学问题
[考点01] 圆周运动的运动学问题1.描述圆周运动的物理量2.匀速圆周运动(1)定义:如果物体沿着圆周运动,并且线速度的大小处处相等,这种运动叫作匀速圆周运动.(2)特点:加速度大小不变,方向始终指向圆心,是变速运动. (3)条件:合外力大小不变、方向始终与速度方向垂直且指向圆心.1.对公式v =ωr 的理解 当ω一定时,v 与r 成正比. 当v 一定时,ω与r 成反比. 2.对a n =v 2r=ω2r 的理解在v 一定时,a n 与r 成反比;在ω一定时,a n 与r 成正比. 3.常见的传动方式及特点同轴转动皮带传动齿轮传动装置A 、B 两点在同轴的一个圆盘上两个轮子用皮带连接,A 、B 两点分别是两个轮子边缘的点两个齿轮轮齿啮合,A 、B 两点分别是两个齿轮边缘上的点角速度、周期相同线速度大小相等典例1(圆周运动物理量的分析和计算)(2023·罗平县·月考)小红同学在体验糕点制作“裱花”环节时,她在绕中心匀速转动的圆盘上放置一块直径8英寸(20 cm)的蛋糕,在蛋糕边缘每隔4 s 均匀“点”一次奶油,蛋糕转动一周正好均匀“点”上15点奶油.下列说法正确的是( )A .圆盘转动的转速为2π r/minB .圆盘转动的角速度大小为π30 rad/sC .蛋糕边缘的线速度大小为π3m/sD .蛋糕边缘的奶油半个周期内的平均速度为0 答案 B解析 由题意可知,圆盘转动的周期为T =15×4 s =60 s =1 min ,则圆盘转动的转速为1 r/min ,A 错误;圆盘转动的角速度为ω=2πT =2π60 rad/s =π30 rad/s ,B 正确;蛋糕边缘的线速度大小为v =rω=0.1×π30 m/s =π300 m/s ,C 错误;蛋糕边缘的奶油半个周期内的平均速度约为v=2r T 2=0.230 m/s =1150 m/s ,故D 错误. 典例2(圆周传动问题)(多选)如图所示的传动装置中,B 、C 两轮固定在一起绕同一轴转动,A 、B 两轮用皮带传动,三个轮的半径关系是r A =r C =2r B .若皮带不打滑,则A 、B 、C 三轮边缘上a 、b 、c 三点的( )A.角速度之比为2∶1∶2B.线速度大小之比为1∶1∶2C.周期之比为1∶2∶2D.转速之比为1∶2∶2 答案 BD解析 A 、B 两轮通过皮带传动,皮带不打滑,则A 、B 两轮边缘的线速度大小相等;B 、C 两轮固定在一起绕同一轴转动,则B 、C 两轮的角速度相等. a 、b 比较:v a =v b由v =ωr 得:ωa ∶ωb =r B ∶r A =1∶2 b 、c 比较:ωb =ωc由v =ωr 得:v b ∶v c =r B ∶r C =1∶2 所以ωa ∶ωb ∶ωc =1∶2∶2v a ∶v b ∶v c =1∶1∶2,A 错误,B 正确; 由ω=2πn 知,n a ∶n b ∶n c =1∶2∶2,D 正确; T =1n,故T a ∶T b ∶T c =2∶1∶1,C 错误.典例3(圆周运动的多解问题)如图所示,一位同学做飞镖游戏,已知圆盘的直径为d ,飞镖距圆盘L ,且对准圆盘上边缘的A 点水平抛出(不计空气阻力,重力加速度为g ),初速度为v 0,飞镖抛出的同时,圆盘绕垂直圆盘过盘心O 的水平轴匀速转动,角速度为ω.若飞镖恰好击中A 点,则下列关系正确的是( )A.d =L 2g v20B.ω=π(2n +1)v 0L (n =0,1,2,3…)C.v 0=ωd2D.ω2=g π2(2n +1)2d(n =0,1,2,3…)答案 B解析 依题意飞镖做平抛运动的同时,圆盘上A 点做匀速圆周运动,恰好击中A 点,说明A 正好在最低点被击中,平抛的时间t =Lv 0,可得ω=(2n +1)πt =π(2n +1)v 0L (n =0,1,2,3…),v 0=Lω(2n +1)π(n =0,1,2,3…),B 正确;平抛的竖直位移为d ,则d =12gt 2=12g (L v 0)2=gL 22v 20,故A 、C错误;ω2=π2(2n +1)2v 20L 2=π2(2n +1)2g2d (n =0,1,2,3…),故D 错误.1.火车以60 m/s 的速率驶过一段圆弧弯道,某乘客发现放在水平桌面上的指南针在10 s 内匀速转过了10°.在此10 s 时间内,火车( ) A .运动位移为600 m B .加速度为零 C .角速度约为1 rad/s D .转弯半径约为3.4 km 答案 D解析 由Δs =v Δt 知,弧长Δs =600 m 是路程而不是位移,A 错误;火车在弯道内做曲线运动,加速度不为零,B 错误;由10 s 内匀速转过10°知,角速度ω=ΔθΔt =10°360°×2π10 rad/s =π180 rad/s ≈0.017 rad/s ,C 错误;由v =rω知,r =v ω=60π180m ≈3.4 km ,D 正确. 2.如图所示为“南昌之星”摩天轮,它的转盘直径为153米,转一圈的时间大约是30分钟.乘客乘坐观光时,其线速度大约为( )A .5.0 m/sB .1.0 m/sC .0.50 m/sD .0.27 m/s答案 D解析 半径R =1532m ,周期T =30 min =1 800 s ,根据匀速圆周运动各物理量间的关系可得v =ωR =2πTR ,代入数据得v ≈0.27 m/s ,故选D.3.(2021·全国甲卷·15)“旋转纽扣”是一种传统游戏.如图,先将纽扣绕几圈,使穿过纽扣的两股细绳拧在一起,然后用力反复拉绳的两端,纽扣正转和反转会交替出现.拉动多次后,纽扣绕其中心的转速可达50 r/s ,此时纽扣上距离中心 1 cm 处的点向心加速度大小约为( )A .10 m/s 2B .100 m/s 2C .1 000 m/s 2D .10 000 m/s 2答案 C解析 根据匀速圆周运动的规律,此时ω=2πn =100π rad/s ,向心加速度a =ω2r ≈1 000 m/s 2,故选C.4.(2023·泰州市·期中)甲、乙两物体都做匀速圆周运动,甲的转动半径为乙的一半,当甲转过60°时,乙在这段时间内正好转过45°,则甲、乙两物体的线速度大小之比为( ) A .1∶4 B .4∶9 C .2∶3 D .9∶16 答案 C解析 当甲转过60°时,乙在这段时间内正好转过45°,由角速度的定义式ω=ΔθΔt 有:ω1ω2=60°45°=43,甲的转动半径为乙的一半,根据线速度与角速度的关系式v =rω可得:v 1v 2=ω1r 1ω2r 2=43×12=23,故选项C 正确,A 、B 、D 错误. 5.如图所示的皮带传动装置中,皮带与轮之间不打滑,两轮半径分别为R 和r ,且R =3r ,A 、B 分别为两轮边缘上的点,则皮带运动过程中,关于A 、B 两点,下列说法正确的是( )A .向心加速度大小之比a A ∶aB =1∶3 B .角速度大小之比ωA ∶ωB =3∶1C .线速度大小之比v A ∶v B =1∶3D .在相同的时间内通过的路程之比为s A ∶s B =3∶1 答案 A解析由于两轮为皮带传动,A、B线速度大小相等,由a n=v2r可知,a n与r成反比,所以向心加速度大小之比a A∶a B=1∶3,故A正确,C错误;由ω=vr可知,ω与r成反比,所以角速度大小之比ωA∶ωB=1∶3,故B错误;由于A、B的线速度大小相等,在相同的时间内通过的路程相等,所以s A∶s B=1∶1,故D错误.6.(多选)(2023·辽宁省·质检)在如图所示的齿轮传动中,三个齿轮的半径之比为2∶3∶6,当齿轮转动的时候,关于小齿轮边缘的A点和大齿轮边缘的B点,()A.A点和B点的线速度大小之比为1∶1B.A点和B点的角速度之比为1∶1C.A点和B点的角速度之比为3∶1D.以上三个选项只有一个是正确的答案AC解析题图中三个齿轮边缘线速度相等,A点和B点的线速度大小之比为1∶1,由v=ωr 可得,线速度一定时,角速度与半径成反比,A点和B点角速度之比为3∶1,选项A、C 正确,选项B、D错误.7.如图所示是一辆自行车,A、B、C三点分别为自行车轮胎和前后两齿轮外沿上的点,其中R A=2R B=5R C,下列说法中正确的是()A.ωB=ωCB.v C=v AC.2ωA=5ωBD.v A=2v B答案C解析B轮和C轮是链条传动,v B=v C,根据v=ωR,得5ωB=2ωC,故A错误;由于A轮和C轮同轴,故两轮角速度相同,根据v=ωR,得v A=5v C,故B错误;因v A=5v C,v A=ωA R A,v C=v B=ωB R B,故v A=5v B,2ωA=5ωB,故C正确,D错误.8.某新型自行车,采用如图甲所示的无链传动系统,利用圆锥齿轮90°轴交,将动力传至后轴,驱动后轮转动,杜绝了传统自行车“掉链子”问题.如图乙所示是圆锥齿轮90°轴交示意图,其中A 是圆锥齿轮转轴上的点,B 、C 分别是两个圆锥齿轮边缘上的点,两个圆锥齿轮中心轴到A 、B 、C 三点的距离分别记为r A 、r B 和r C (r A ≠r B ≠r C ).下列有关物理量大小关系正确的是( )A.B 点与C 点的角速度:ωB =ωCB.C 点与A 点的线速度:v C =r Br A v AC.B 点与A 点的线速度:v B =r Ar B v AD.B 点和C 点的线速度:v B >v C 答案 B解析 B 点与C 点的线速度相等,由于r B ≠r C ,所以ωB ≠ωC ,故A 、D 错误;B 点的角速度与A 点的角速度相等,所以v B r B =v A r A ,即v B =r Br A v A ,故C 错误;B 点与C 点的线速度相等,所以v C =v B =r Br Av A ,故B 正确.9.(2022·南通市高一期末)如图所示为旋转脱水拖把,拖把杆内有一段长度为25 cm 的螺杆通过拖把杆下段与拖把头接在一起,螺杆的螺距(相邻螺纹之间的距离)d =5 cm ,拖把头的半径为10 cm ,拖把杆上段相对螺杆向下运动时拖把头就会旋转,把拖把头上的水甩出去. 某次脱水时,拖把杆上段1 s 内匀速下压了25 cm ,该过程中拖把头匀速转动,则( )A .拖把杆向下运动的速度为0.1π m/sB .拖把头边缘的线速度为π m/sC .拖把头转动的角速度为5π rad/sD .拖把头的转速为1 r/s 答案 B解析 拖把杆向下运动的速度v 2=lt=0.25 m/s ,故A 错误;拖把杆上段1 s 内匀速下压了25 cm ,则螺杆转动5圈,即拖把头的转速为n =5 r/s ,则拖把头转动的角速度ω=2πn =10π rad/s 拖把头边缘的线速度v 1=ωR =π m/s ,故B 正确,C 、D 错误.10.(2023·嘉兴市·期中)如图为车牌自动识别系统的直杆道闸,离地面高为1 m 的细直杆可绕O 在竖直面内匀速转动.汽车从自动识别线ab 处到达直杆处的时间为3.3 s ,自动识别系统的反应时间为0.3 s ;汽车可看成高1.6 m 的长方体,其左侧面底边在aa ′直线上,且O 到汽车左侧面的距离为0.6 m ,要使汽车安全通过道闸,直杆转动的角速度至少为( )A.π4 rad/sB.3π4 rad/sC.π6 rad/sD.π12 rad/s 答案 D解析 由题意可知,在汽车行驶至a ′b ′时,横杆上a ′上方的点至少要抬高1.6 m -1 m =0.6 m ,即横杆至少转过π4,所用时间为t =3.3 s -0.3 s =3 s ,则角速度ω=θt =π12 rad/s ,故选D.11.(多选)如图所示,B 和C 是一组塔轮,即B 和C 半径不同,但固定在同一转动轴上,其半径之比为R B ∶R C =3∶2,A 轮的半径大小与C 轮相同,它与B 轮紧靠在一起,当A 轮绕过其中心的竖直轴转动时,由于摩擦作用,B 轮也随之无滑动地转动起来.a 、b 、c 分别为三轮边缘的三个点,则a 、b 、c 三点在运动过程中的( )A.线速度大小之比为3∶3∶2B.角速度之比为3∶3∶2C.转速之比为2∶3∶2D.周期之比为2∶3∶3 答案 AD解析 A 轮、B 轮靠摩擦传动,边缘点线速度相等,故v a ∶v b =1∶1,根据公式v =rω,有ωa ∶ωb =3∶2,根据ω=2πn ,有n a ∶n b =3∶2,根据T =2πω,有T a ∶T b =2∶3;B 轮、C轮是同轴转动,角速度相等,故ωb ∶ωc =1∶1,根据v =rω,有v b ∶v c =3∶2,根据ω=2πn ,有n b ∶n c =1∶1,根据T =2πω,有T b ∶T c =1∶1,联立可得v a ∶v b ∶v c =3∶3∶2,ωa ∶ωb ∶ωc=3∶2∶2,n a ∶n b ∶n c =3∶2∶2,T a ∶T b ∶T c =2∶3∶3,故A 、D 正确,B 、C 错误. 12.两个小球固定在一根长为L 的杆的两端,绕杆上的O 点做圆周运动,如图所示.当小球1的速度大小为v 1时,小球2的速度大小为v 2,则O 点到小球2的距离是( )A.L v 1v 1+v 2B.L v 2v 1+v 2C.L (v 1+v 2)v 1D.L (v 1+v 2)v 2答案 B解析 两球在同一杆上,旋转的角速度相等,均为ω,设两球的转动半径分别为r 1、r 2,则r 1+r 2=L .又知v 1=ωr 1,v 2=ωr 2,联立得r 2=L v 2v 1+v 2,B 正确.13.(多选)如图所示,直径为d 的纸筒以角速度ω绕中心轴匀速转动,将枪口垂直指向圆筒轴线,使子弹穿过圆筒,结果发现圆筒上只有一个弹孔,若忽略空气阻力及子弹自身重力的影响,则子弹的速度可能是( )A.dωπB.dω2πC.dω3π D.dω4π答案 AC解析 由题意知圆筒上只有一个弹孔,说明子弹穿过圆筒时,圆筒转过的角度应满足θ=(2k +1)π(k =0,1,2…),子弹穿过圆筒所用的时间t =d v =θω,则子弹的速度v =dω(2k +1)π(k =0,1,2…),故选项A 、C 正确.14.如图所示,半径为R 的圆盘绕垂直于盘面的中心轴匀速转动,其正上方h 处沿OB 方向水平抛出一小球,不计空气阻力,重力加速度为g ,要使球与盘只碰一次,且落点为B ,求小球的初速度v 及圆盘转动的角速度ω的大小.答案 Rg2h2n πg2h(n =1,2,3…) 解析 设球在空中运动时间为t ,此圆盘转过θ角,则 R =v t ,h =12gt 2故初速度大小v =R g 2hθ=n ·2π(n =1,2,3…) 又因为θ=ωt则圆盘角速度ω=n ·2πt=2n πg2h(n =1,2,3…).15.(多选)(2023·江西南昌·校考)如图所示,靠在一起的M 、N 两转盘靠摩擦传动,两盘均绕过圆心的竖直轴转动,M 盘的半径为r ,N 盘的半径R=2r ,A 为M 盘边缘上的一点,B 、C 为N 盘直径的两个端点,当O '、A 、B 、C 共线时(如图所示的位置),从O '的正上方P 点以初速度v 0地沿O O '方向水平抛出一小球,小球落至圆盘C 点,重力加速度为g ,则下列5r0,1,2),可以落0,1,2),可知当的角速度为M ω=.若小球抛出时到O 下落的时间2t =1,2,3),可以落在2,3)可知当的角速度为''M 2ωω==。
专题09 圆周运动七大常考模型(解析版)
专题09 圆周运动七大常考模型(解析版)2020年高考物理一轮复热点题型归纳与变式演练专题09 圆周运动七大常考模型专题导航】目录题型一水平面内圆盘模型的临界问题在水平面内,圆盘绕自身的对称轴做匀速圆周运动时,当圆盘上一点的速度等于圆盘上任意一点的速度时,该点所在的半径为临界半径。
此时,圆盘上该点所受的向心力最大,达到极限值。
热点题型二竖直面内圆周运动的临界极值问题在竖直面内,圆周运动的临界问题与水平面内的类似,但由于竖直面内的向心力方向不再垂直于重力方向,因此需要通过分解向心力和重力的合力来求解临界速度和临界半径。
球-绳模型或单轨道模型球-绳模型指的是一个质量为m的小球通过一根质量忽略不计的细绳悬挂在竖直方向上,并绕着一个半径为R的竖直圆周做匀速圆周运动的模型。
单轨道模型则是一个质量为m 的小球沿着一个半径为R的水平圆周滑行的模型。
这两个模型的分析方法类似,都需要通过分解合力来求解运动的参数。
球-杆模型或双轨道模型球-杆模型指的是一个质量为m的小球沿着一个质量忽略不计的细杆滚动的模型。
双轨道模型则是一个质量为m的小球沿着两个半径分别为R1和R2的圆轨道滚动的模型。
这两个模型的分析方法也类似,都需要通过分解合力来求解运动的参数。
热点题型三斜面上圆周运动的临界问题在斜面上,圆周运动的临界问题与水平面内的类似,但由于斜面的存在,需要通过分解合力来求解临界速度和临界半径。
热点题型四圆周运动的动力学问题圆周运动的动力学问题主要涉及到角加速度、角速度和角位移等参数的计算。
在这类问题中,需要利用牛顿第二定律和角动量守恒定律等物理定律来分析运动状态。
圆锥摆模型圆锥摆模型指的是一个质量为m的小球通过一根质量忽略不计的细绳悬挂在竖直方向上,并绕着一个半径为R的圆锥面做匀速圆周运动的模型。
在分析这种模型时,需要考虑到向心力和重力的合力方向与竖直方向的夹角,以及圆锥面的倾角等因素。
车辆转弯模型车辆转弯模型主要涉及到车辆在转弯时所受的向心力和摩擦力等因素。
(完整版)圆周运动题型总结
一.角速度 线速度 周期之间的关系1.做匀速圆周运动的物体,10s 内沿半径是20m 的圆周运动了100m ,试求物体做匀速圆周运动时:(1)线速度的大小; (2)角速度的大小; (3)周期的大小.【答案】(1);(2);(3)10/m s 0.5/rad s 12.56s2.如图所示,两个小球固定在一根长为l 的杆的两端,绕杆上的O 点做圆周运动,当小球A 的速度为v A 时,小球B 的速度为v B .则轴心O 到小球B 的距离是( )A .B A B v l v v + B .A A Bv l v v + C . D .A B A v v L v +A BB v v Lv +【答案】A 3.转笔(Pen Spinning )是一项用不同的方法与技巧、以手指来转动笔的休闲活动,如图所示.转笔深受广大中学生的喜爱,其中也包含了许多的物理知识,假设某转笔高手能让笔绕其上的某一点O 做匀速圆周运动,下列有关该同学转笔中涉及到的物理知识的叙述正确的是( )A .笔杆上的点离O 点越近的,角速度越大B .笔杆上的点离O 点越近的,做圆周运动的向心加速度越大C .笔杆上的各点做圆周运动的向心力是由万有引力提供的D .若该同学使用中性笔,笔尖上的小钢珠有可能因快速的转动做离心运动被甩走【答案】D 二.传动装置4.如图所示,A 、B 是两个靠摩擦传动且接触面没有相对滑动的靠背轮,A 是主动轮,B 是从动轮,它们的半径RA =2R B , a 和b 两点在轮的边缘,c 和d 分别是A 、B 两轮半径的中点,下列判断正确的有 A .v a = 2 v b B .ωb = 2ωaC .v c = v aD .a c =a d【答案】B5.某变速箱中有甲、乙、丙三个齿轮,如图所示,其半径分别为r 1、r 2、r 3,若甲轮的角速度为ω,则丙轮边缘上某点的向心加速度为A .B.C.D.3221r r ω12223r r ω22223r r ω3221r r r ω【答案】A6.如图所示的皮带传动装置中,轮A 和B 同轴,A 、B 、C 分别是三个轮边缘的质点,且RA=RC=2RB ,若传动过程中皮带不打滑,则下列说法正确的是( )A .A 点与C 点的线速度大小相同B .B 点与C 点的角速度相同C .A 点的向心加速度大小是B 点的2倍D .B 点的运行周期大于C 点的运行周期【答案】C7.一部机器由电动机带动,机器皮带轮的半径是电动机皮带轮半径的3倍(如图),皮带与两轮之间不发生滑动。
圆周运动综合练习题(有答案)
圆周运动综合练习题1.汽车在半径为r的水平弯道上转弯,如果汽车与地面的滑动摩擦因数为μ,那么使汽车发生侧滑的最小速率为:( B )A.rg;B.grμ;C.gμ;D.mgμ。
2.用细线拴着一个小球,在光滑水平面上作匀速圆周运动,下列说法中正确的是:( C ) ①小球线速度大小一定时线越长越容易断;②小球线速度大小一定时,线越短越容易断;③小球角速度一定时,线越长越容易断;④小球角速度一定时,线越短越容易断。
A.①③;B.①④;C.②③;D.②④。
3.轻杆一端固定在光滑水平轴上,另一端固定一质量为m的小球,如图所示,给小球一初速度,使其在竖直平面内运动,且刚好能通过最高点,下列说法正确的是:(BD )A.小球在最高点时对杆的作用为零;B.小球在最高点时对杆的作用力大小为mg;C.若增大小球的初速度,则在最高点时球对杆的力一定增大;D.若增大小球的初速度,则在最高点时球对杆的力可能增大。
4.当汽车通过拱桥顶点的速度为5m/s时,车对桥顶的压力为车重的8/9,如果要使汽车在粗糙的桥面行使至桥顶时,不受摩擦力作用,则汽车通过桥顶的速度应为:( C )A.5m/s;B.10m/s;C.15m/s;D.20m/s。
5.长为L的细线,一端系一个质量为m的小球,另一端固定于O 点。
当线拉着球在竖直平面内绕O点作圆周运动时刚好过最高点,则下列说法正确的是:(BC )A.小球过最高点时速率为零;B.小球过最低点时速率为gL5;C.小球过最高点时线的拉力为零;D.小球过最低点时线的拉力为5mg 。
6.关于匀速圆周运动,下列说法正确的是:( C )A.匀速圆周运动就是匀速运动;B.匀速圆周运动是匀加速运动;C.匀速圆周运动是一种变加速运动;D.匀速圆周运动的物体处于平衡状态。
7.在匀速圆周运动中,下列关于向心加速度的说法中,正确的是:( A )A.向心加速度的方向始终与速度的方向垂直;B.向心加速度的方向保持不变;C.在匀速圆周运动中,向心加速度是恒定的;D.向心加速度的大小不断变化。
高中物理必修二第六章圆周运动经典大题例题(带答案)
高中物理必修二第六章圆周运动经典大题例题单选题1、离心现象在生活中很常见,比如市内公共汽车在到达路口转弯前,车内广播中就要播放录音:“乘客们请注意,车辆将转弯,请拉好扶手”。
这样做可以()A.使乘客避免车辆转弯时可能向前倾倒发生危险B.使乘客避免车辆转弯时可能向后倾倒发生危险C.使乘客避免车辆转弯时可能向转弯的内侧倾倒发生危险D.使乘客避免车辆转弯时可能向转弯的外侧倾倒发生危险答案:D车辆转弯时,如果乘客不能拉好扶手,乘客将做离心运动,向外侧倾倒发生危险。
故选D。
2、如图所示,半径为R的光滑半圆形轨道放在竖直平面内,AB连线为竖直直径,一小球以某一速度冲上轨道,运动到最高点B时对轨道的压力等于重力的2倍。
则小球落地点C到轨道入口A点的距离为()A.2√3R B.3R C.√6R D.2R答案:A在最高点时,根据牛顿第二定律3mg=m v2 R通过B点后做平抛运动2R=12gt2x=vt 解得水平位移x=2√3R故选A。
3、已知某处弯道铁轨是一段圆弧,转弯半径为R,重力加速度为g,列车转弯过程中倾角(车厢底面与水平面夹角)为θ,则列车在这样的轨道上转弯行驶的安全速度(轨道不受侧向挤压)为()A.√gRsinθB.√gRcosθC.√gRtanθD.√gR答案:C受力分析如图所示当内外轨道不受侧向挤压时,列车受到的重力和轨道支持力的合力充当向心力,有F n=mg tan θ,F n=m v2R解得v=√gR tanθ故选C。
4、做匀速圆周运动的物体,它的加速度大小必定与()A.线速度的平方成正比B.角速度的平方成正比C.运动半径成正比D.线速度和角速度的乘积成正比答案:DA.根据a=v2 r可知只有运动半径一定时,加速度大小才与线速度的平方成正比,A错误;B.根据a=ω2r可知只有运动半径一定时,加速度大小才与角速度的平方成正比,B错误;C.根据,a=ω2ra=v2r当线速度一定时,加速度大小与运动半径成反比;当角速度一定时,加速度大小与运动半径成正比,C错误;D.根据a=ω2r,v=ωr联立可得a=vω可知加速度大小与线速度和角速度的乘积成正比,D正确。
高中物理必修二第六章圆周运动题型总结及解题方法(带答案)
高中物理必修二第六章圆周运动题型总结及解题方法单选题1、如图所示是利用两个大小不同的齿轮来达到改变转速的自行车传动结构的示意图。
已知大齿轮的齿数为48个,小齿轮的齿数为16个,后轮直径约为小齿轮直径的10倍.假设脚踏板在1s内转1圈,下列说法正确的是()A.小齿轮在1s内也转1圈B.大齿轮边缘与小齿轮边缘的线速度之比为3:1C.后轮与小齿轮的角速度之比为10:1D.后轮边缘与大齿轮边缘的线速度之比为10:1答案:DAB.齿轮的齿数与半径成正比,因此大齿轮的半径是小齿轮半径的3倍,大齿轮与小齿轮是链条传动,边缘点线速度大小相等,令大齿轮为A,小齿轮为B,后轮边缘为C,故v A:v B=1:1又r A:r B=3:1根据v=ωr可知,大齿轮与小齿轮的角速度之比ωA:ωB=r B:r A=1:3所以脚踏板在1s内转1圈,小齿轮在1s内转3圈,故AB错误;CD.B、C两点为同轴转动,所以ωB:ωC=1:1根据v=ωr可知,后轮边缘上C点的线速度与小齿轮边缘上B点的线速度之比v C:v B=r C:r B=10:1故C错误,D正确。
故选D。
2、某同学经过长时间的观察后发现,路面出现水坑的地方,如果不及时修补,水坑很快会变大,善于思考的他结合学过的物理知识,对这个现象提出了多种解释,则下列说法中不合理的解释是()A.车辆上下颠簸过程中,某些时刻处于超重状态B.把坑看作凹陷的弧形,车对坑底的压力比平路大C.车辆的驱动轮出坑时,对地的摩擦力比平路大D.坑洼路面与轮胎间的动摩擦因数比平直路面大答案:DA.车辆上下颠簸过程中,可能在某些时刻加速度向上,则汽车处于超重状态,A正确,不符合题意;B.把坑看作凹陷的弧形,根据牛顿第二定律有F N−mg=m v2 R则根据牛顿第三定律,把坑看作凹陷的弧形,车对坑底的压力比平路大,B正确,不符合题意;C.车辆的驱动轮出坑时,对地的摩擦力比平路大,C正确,不符合题意;D.动摩擦因数由接触面的粗糙程度决定,而坑洼路面可能比平直路面更光滑则动摩擦因数可能更小,D错误,符合题意。
专题 圆周运动临界问题
专题 圆周运动的临界问题一.水平转台上与静摩擦力有关的临界问题在转台上做圆周运动的物体,若有静摩擦力参与,当转台的转速变化时,静摩擦力也会随之变化。
关键:(1)找出与最大静摩擦力对应的临界条件 (2)牢记“静摩擦力大小有个范围,方向可以改变1.单个物体做圆周运动【例1】如图所示,水平转盘上放有质量为m 的物块,当物块到转轴的距离为r 时,连接物块和转轴的绳刚好被拉直(绳上张力为零)。
物体和转盘间最大静摩擦力是其下压力的μ倍。
求:⑴当转盘角速度ω1=μg 2r 时,细绳的拉力T 1 ⑵当转盘角速度ω2=3μg 2r时,细绳的拉力T 22.绳子连接两个物体在圆心的一侧做圆周运动【例2】一圆盘可以绕其竖直轴在图所示水平面内转动,A 、B 物体质量均为m ,它们与圆盘之间的最大静摩擦力均为正压力的μ倍,两物体用一根长为L 的轻绳连在一起。
若将A 放在距轴心为L 的位置,A 、B 之间连线刚好沿半径方向被拉直,随着圆盘角速度ω的增加,摩擦力或绳子拉力会出现不同的状态,(两物体均看作质点)求:(1)ω1=Lg 3μ时,细绳的拉力T 1和A 所受的摩擦力f 1(2)ω1=Lg 53μ时,细绳的拉力T 2和A 所受的摩擦力f 23.绳子连接两个物体分别在圆心的两侧做圆周运动【例3】(多选)如图所示,在匀速转动的水平圆盘上,沿半径方向放着用细绳相连的质量均为m 的两个物体A 和B ,它们分居圆心两侧,与圆心距离分别为R A =r ,R B =2r ,与盘间的动摩擦因数μ相同,当圆盘转速缓慢加快到两物体刚好要发生滑动时,最大静摩擦力等于滑动摩擦力,则下列说法正确的是( )A .此时绳子张力为3μmgB .此时A 所受摩擦力方向沿半径指向圆内C .此时圆盘的角速度为2μg rD .此时烧断绳子,A 仍相对盘静止,B 将做离心运动【针对训练1】如图所示,水平转台上的小物体A 、B 通过轻绳连接,转台静止时绳中无拉力,A 、B 的质量分别为m 、2m ,A 、B 与转台间的动摩擦因数均为μ, A 、B 离转台中心的距离分别为1.5r 、r ,当两物体随转台一起匀速转动时,设最大静摩擦力等于滑动摩擦力,下列说法中正确的是( )A .绳中无拉力时,A 、B 物体受到的摩擦力大小相等B .当绳中有拉力时,转台转动的角速度应大于√μg rC .若转台转动的角速度为√6μg r ,则A 、B 一起相对转台向B 离心的方向滑动D .物体A 所受的摩擦力方向一定指向圆心【针对训练2】(多选)如图所示,圆盘可以绕其竖直轴在水平面内转动。
圆周运动专题汇编(必须掌握经典题目)有答案
r m 高一期末考试题目 圆周运动专题汇编一、选择题[共53题]1、如图所示,用长为L 的细绳拴着质量为m 的小球在竖直平面内做圆周运动,则( )A .小球在最高点时所受向心力一定为重力B .小球在最高点时绳子的拉力不可能为零C .若小球刚好能在竖直面内做圆周运动,则其在最高点速率是gLD .小球在圆周最低点时拉力可能等于重力C2、在质量为M 的电动机的飞轮上,固定着一个质量为m 的重物,重物到转轴的距离为r ,如图所示,为了使放在地面上的电动机不会跳起,电动机飞轮的角速度不能超过( )A .g mrm M + B .g mr m M + C .g mr m M - D .mr Mg A3.关于匀速圆周运动的向心加速度,下列说法正确的是:A .大小不变,方向变化B .大小变化,方向不变C .大小、方向都变化D .大小、方向都不变A4.同一辆汽车以同样大小的速度先后开上平直的桥和凸形桥,在桥的中央处有:A .车对两种桥面的压力一样大B .车对平直桥面的压力大C .车对凸形桥面的压力大D .无法判断B5、洗衣机的脱水筒在转动时有一衣物附在筒壁上,如图所示,则此时:A .衣物受到重力、筒壁的弹力和摩擦力的作用B .衣物随筒壁做圆周运动的向心力是由摩擦力提供的C .筒壁对衣物的摩擦力随转速增大而减小D .筒壁对衣物的摩擦力随转速增大而增大A6、关于物体做匀速圆周运动的正确说法是A .速度大小和方向都改变B .速度的大小和方向都不变C .速度的大小改变,方向不变D .速度的大小不变,方向改变B7、如图所示,一光滑的圆锥内壁上,一个小球在水平面内做匀速圆周运动,如果要让小球的运动轨迹离锥顶远些,则下列各物理量中,不会引起变化的是( )A .小球运动的线速度B .小球运动的角速度C .小球的向心加速度D .小球运动的周期C8、如图所示,汽车以速度v通过一圆弧式的拱桥顶端时,则汽车 ( )A.的向心力由它的重力提供B.的向心力由它的重力和支持力的合力提供,方向指向圆心C.受重力、支持力、牵引力、摩擦力和向心力的作用D.以上均不正确B9、如图,质量为M的物体内有光滑圆形轨道,现有一质量为m的小滑块沿该圆形轨道在竖直面内作圆周运动。
物理生活中的圆周运动题20套(带答案)
物理生活中的圆周运动题20套(带答案)一、高中物理精讲专题测试生活中的圆周运动1.如图所示,粗糙水平地面与半径为R =0.4m 的粗糙半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量为m =1kg 的小物块在水平恒力F =15N 的作用下,从A 点由静止开始做匀加速直线运动,当小物块运动到B 点时撤去F ,小物块沿半圆轨道运动恰好能通过D 点,已知A 、B 间的距离为3m ,小物块与地面间的动摩擦因数为0.5,重力加速度g 取10m/s 2.求: (1)小物块运动到B 点时对圆轨道B 点的压力大小. (2)小物块离开D 点后落到地面上的点与D 点之间的距离【答案】(1)160N (2)2 【解析】 【详解】(1)小物块在水平面上从A 运动到B 过程中,根据动能定理,有: (F -μmg )x AB =12mv B 2-0 在B 点,以物块为研究对象,根据牛顿第二定律得:2Bv N mg m R-=联立解得小物块运动到B 点时轨道对物块的支持力为:N =160N由牛顿第三定律可得,小物块运动到B 点时对圆轨道B 点的压力大小为:N ′=N =160N (2)因为小物块恰能通过D 点,所以在D 点小物块所受的重力等于向心力,即:2Dv mg m R=可得:v D =2m/s设小物块落地点距B 点之间的距离为x ,下落时间为t ,根据平抛运动的规律有: x =v D t ,2R =12gt 2解得:x =0.8m则小物块离开D 点后落到地面上的点与D 点之间的距离20.82m l x ==2.如图所示,水平桌面上有一轻弹簧,左端固定在A 点,自然状态时其右端位于B 点.D 点位于水平桌面最右端,水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =0.45m 的圆环剪去左上角127°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离为R ,P 点到桌面右侧边缘的水平距离为1.5R .若用质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,用同种材料、质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点后其位移与时间的关系为x =4t ﹣2t 2,物块从D 点飞离桌面后恰好由P 点沿切线落入圆轨道.g =10m/s 2,求:(1)质量为m 2的物块在D 点的速度;(2)判断质量为m 2=0.2kg 的物块能否沿圆轨道到达M 点:(3)质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中克服摩擦力做的功. 【答案】(1)2.25m/s (2)不能沿圆轨道到达M 点 (3)2.7J 【解析】 【详解】(1)设物块由D 点以初速度v D 做平抛运动,落到P 点时其竖直方向分速度为:v y 22100.45gR =⨯⨯m/s =3m/sy Dv v =tan53°43=所以:v D =2.25m/s(2)物块在内轨道做圆周运动,在最高点有临界速度,则mg =m 2v R,解得:v 32gR ==m/s 物块到达P 的速度:22223 2.25P D y v v v =+=+=3.75m/s若物块能沿圆弧轨道到达M 点,其速度为v M ,由D 到M 的机械能守恒定律得:()22222111cos5322M P m v m v m g R =-⋅+︒ 可得:20.3375M v =-,这显然是不可能的,所以物块不能到达M 点(3)由题意知x =4t -2t 2,物块在桌面上过B 点后初速度v B =4m/s ,加速度为:24m/s a =则物块和桌面的摩擦力:22m g m a μ= 可得物块和桌面的摩擦系数: 0.4μ=质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,由能量守恒可弹簧压缩到C 点具有的弹性势能为:p 10BC E m gx μ-=质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点时,由动能定理可得:2p 2212BC B E m gx m v μ-=可得,2m BC x = 在这过程中摩擦力做功:12 1.6J BC W m gx μ=-=-由动能定理,B 到D 的过程中摩擦力做的功:W 2222201122D m v m v =- 代入数据可得:W 2=-1.1J质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中摩擦力做的功12 2.7J W W W =+=-即克服摩擦力做功为2.7 J .3.如图所示,水平转盘可绕竖直中心轴转动,盘上放着A 、B 两个物块,转盘中心O 处固定一力传感器,它们之间用细线连接.已知1kg A B m m ==两组线长均为0.25m L =.细线能承受的最大拉力均为8m F N =.A 与转盘间的动摩擦因数为10.5μ=,B 与转盘间的动摩擦因数为20.1μ=,且可认为最大静摩擦力等于滑动摩擦力,两物块和力传感器均视为质点,转盘静止时细线刚好伸直,传感器的读数为零.当转盘以不同的角速度勾速转动时,传感器上就会显示相应的读数F ,g 取210m/s .求:(1)当AB 间细线的拉力为零时,物块B 能随转盘做匀速转动的最大角速度; (2)随着转盘角速度增加,OA 间细线刚好产生张力时转盘的角速度;(3)试通过计算写出传感器读数F 随转盘角速度ω变化的函数关系式,并在图乙的坐标系中作出2F ω-图象.【答案】(1)12/rad s ω= (2)222/rad s ω= (3)2252/m rad s ω=【解析】对于B ,由B 与转盘表面间最大静摩擦力提供向心力,由向心力公式有:2212B B m g m L μω=代入数据计算得出:12/rad s ω=(2)随着转盘角速度增加,OA 间细线中刚好产生张力时,设AB 间细线产生的张力为T ,有:212A A m g T m L μω-=2222B B T m g m L μω+=代入数据计算得出:222/rad s ω= (3)①当2228/rad s ω≤时,0F =②当2228/rad s ω≥,且AB 细线未拉断时,有:21A A F m g T m L μω+-=222B B T m g m L μω+=8T N ≤所以:2364F ω=-;222228/18/rad s rad s ω≤≤ ③当218ω>时,细线AB 断了,此时A 受到的静摩擦力提供A 所需的向心力,则有:21A A m g m w L μ≥所以:2222218/20/rad s rad s ω<≤时,0F =当22220/rad s ω>时,有21A A F m g m L μω+=8F N ≤所以:2154F ω=-;2222220/52/rad s rad s ω<≤若8m F F N ==时,角速度为:22252/m rad s ω=做出2F ω-的图象如图所示;点睛:此题是水平转盘的圆周运动问题,解决本题的关键正确地确定研究对象,搞清向心力的来源,结合临界条件,通过牛顿第二定律进行求解.4.如图所示,光滑水平面AB 与竖直面内的半圆形导轨在B 点相接,导轨半径为R .一个质量为m 的物体将弹簧压缩至A 点后由静止释放,在弹力作用下物体获得某一向右速度后脱离弹簧,当它经过B 点进入导轨瞬间对导轨的压力为其重力的7倍,之后向上运动恰能完成半个圆周运动到达C 点.试求:(1)弹簧开始时的弹性势能.(2)物体从B 点运动至C 点克服阻力做的功. (3)物体离开C 点后落回水平面时的速度大小. 【答案】(1)3mgR (2)0.5mgR (3)52mgR 【解析】试题分析:(1)物块到达B 点瞬间,根据向心力公式有:解得:弹簧对物块的弹力做的功等于物块获得的动能,所以有(2)物块恰能到达C 点,重力提供向心力,根据向心力公式有:所以:物块从B运动到C,根据动能定理有:解得:(3)从C点落回水平面,机械能守恒,则:考点:本题考查向心力,动能定理,机械能守恒定律点评:本题学生会分析物块在B点的向心力,能熟练运用动能定理,机械能守恒定律解相关问题.5.如图所示,一质量为m的小球C用轻绳悬挂在O点,小球下方有一质量为2m的平板车B静止在光滑水平地面上,小球的位置比车板略高,一质量为m的物块A以大小为v0的初速度向左滑上平板车,此时A、C间的距离为d,一段时间后,物块A与小球C发生碰撞,碰撞时两者的速度互换,且碰撞时间极短,已知物块与平板车间的动摩擦因数为μ,重力加速度为g,若A碰C之前物块与平板车已达共同速度,求:(1)A、C间的距离d与v0之间满足的关系式;(2)要使碰后小球C能绕O点做完整的圆周运动,轻绳的长度l应满足什么条件?【答案】(1);(2)【解析】(1)A碰C前与平板车速度达到相等,设整个过程A的位移是x,由动量守恒定律得由动能定理得:解得满足的条件是(2)物块A与小球C发生碰撞,碰撞时两者的速度互换,C以速度v开始做完整的圆周运动,由机械能守恒定律得小球经过最高点时,有解得【名师点睛】A 碰C 前与平板车速度达到相等,由动量守恒定律列出等式;A 减速的最大距离为d ,由动能定理列出等式,联立求解。
圆周运动题型总结(合集5篇)
圆周运动题型总结(合集5篇)第一篇:圆周运动题型总结1.如图,长均为L的两根轻绳,一端共同系住质量为m的小球,另一端分别固定在等高的A.B两点,A、B两点间的距离也为L.重力加速度大小为g.今使小球在竖直平面内以AB为轴做圆周运动,若小球在最高点速率为v时,两根绳的拉力恰好均为零,则小球在最高点速率为2v时,每根绳的拉力大小为()A.B.C.3mg D.故选:A.2.如图甲所示,一长为R的轻绳,一端穿在过O点的水平转轴上,另一端固定一质量未知的小球,整个装置绕O点在竖直面内转动,小球通过最高点时,绳对小球的拉力F与其速度平方v2的关系如图乙所示,图线与纵轴的交点坐标为a,下列判断正确的是()A.利用该装置可以得出重力加速度,且g=RaB.绳长不变,用质量较大的球做实验,得到的图线斜率更大C.绳长不变,用质量较小的球做实验,得到的图线斜率更大D.绳长不变,用质量较小的球做实验,图线a点的位置不变解答:CD.3.质量为m 的小球由轻绳a和b分别系于一轻质木架上的A点和C点。
如图所示,当轻杆绕轴BC以角速度ω匀速转动时,小球在水平面内做匀速圆周运动,绳a在竖直方向,绳b在水平方向,当小球运动到图示位置时,绳b被烧断的同时木架停止转动,则()A.绳a对小球拉力不变B.绳a对小球拉力增大C.小球一定前后摆动D.小球可能在竖直平面内做圆周运动解答:A.绳b被烧断前,小球在竖直方向没有位移,加速度为零,a绳中张力等于重力,在绳b被烧断瞬间,a绳中张力与重力的合力提供小球的向心力,而向心力竖直向上,绳a的张力大于重力,即张力突然增大,故A错误,B正确;C.小球原来在水平面内做匀速圆周运动,绳b被烧断后,若角速度ω较小,小球原来的速度较小,小球在垂直于平面ABC的竖直平面内摆动,若角速度ω较大,小球原来的速度较大,小球可能在垂直于平面ABC的竖直平面内做圆周运动,故C错误,D正确。
故选:BDA、B两球的质量分别为m1与m2,用一劲度系数为k的弹簧相连,一长为l1的细线与A球相连,置于水平光滑桌面上,细线的另一端栓在竖直轴上,如图所示。
圆周运动经典题型归纳
圆周运动经典题型归纳一、圆周运动基本物理量与传动装置1.共轴传动一个圆环以竖直直径AB为轴匀速转动,环上M、N两点的角速度之比为MN/MA=1/2,周期之比为2/1,线速度之比为1/2.2.皮带传动在某一皮带传动装置中,主动轮的半径为r1,从动轮的半径为r2.已知主动轮做顺时针转动,转速为n,转动过程中皮带不打滑。
从动轮的转速为n,因为皮带传动中,主动轮和从动轮的线速度相等。
3.齿轮传动如图所示,A、B两个齿轮的齿数分别是z1、z2,各自固定在过O1、O2的轴上,其中过O1的轴与电动机相连接,此轴每分钟转速为n1.求B齿轮的转速n2,A、B两齿轮的半径之比,以及在时间t内,A、B两齿轮转过的角度之比。
4.混合题型在图示的传动装置中,B、C两轮固定在一起绕同一轴转动,A、B两轮用皮带传动,三轮半径关系是rA=rC=2rB。
若皮带不打滑,则A、B、C轮边缘的a、b、c三点的角速度之比ωa:ωb:ωc=1:2:1,线速度之比va:vb:vc=1:2:2.二、向心力来源1.由重力、弹力或摩擦力中某一个力提供洗衣机的甩干桶竖直放置,桶的内径为20厘米,工作被甩的衣物贴在桶壁上,衣物与桶壁的动摩擦因数为μ。
若不使衣物滑落下去,甩干桶的转速至少为sqrt(5gμR),其中g为重力加速度,R为桶的半径。
2.在匀速转动的水平盘上,沿半径方向放着三个物体A、B、C,Ma=Mc=2Mb,他们与盘间的摩擦因数相等。
他们到转轴的距离的关系为Ra<Rb<Rc。
当转盘的转速逐渐增大时,先开始滑动的物体是B,沿半径向外滑动。
3.一质量为m的小球,用长的细线拴住在竖直面内作圆周运动。
当小球恰好能通过最高点时的速度为sqrt(2gh),细线的拉力为mg+mv^2/R,其中g为重力加速度,h为最高点的高度,v为小球在最高点的速度,R为圆周运动的半径。
4.向心力由几个力的合力提供1)由重力和弹力的合力提供半径为R的半球型碗底的光滑内表面,质量为m的小球正以角速度ω,在一水平面内作匀速圆周运动。
圆周运动测试题及答案
圆周运动测试题及答案一、选择题1. 一个物体做匀速圆周运动,下列哪些物理量是保持不变的?()A. 线速度B. 角速度C. 向心加速度D. 周期答案:B2. 一个物体在水平面上做匀速圆周运动,向心力的方向指向()A. 圆心B. 圆外C. 切线方向D. 法线方向答案:A3. 以下哪个公式与匀速圆周运动的向心力无关?()A. F = mv^2/rB. F = mω^2rC. F = maD. F = 2mv答案:D二、填空题4. 一个物体做匀速圆周运动时,其向心加速度的大小为________,其中v是线速度,r是半径。
答案:v^2/r5. 如果一个物体的角速度增加,而半径保持不变,那么其线速度会________。
答案:增加三、计算题6. 一个物体在水平面上以2米/秒的速度做匀速圆周运动,半径为5米。
求物体的向心加速度大小。
答案:向心加速度 a = v^2/r = (2 m/s)^2 / 5 m = 0.8 m/s^27. 一个物体绕垂直轴旋转,其角速度为10 rad/s,半径为0.5米。
求物体的线速度。
答案:线速度v = ωr = 10 rad/s * 0.5 m = 5 m/s四、简答题8. 描述一下匀速圆周运动的特点。
答案:匀速圆周运动的特点是物体在圆周轨迹上运动,速度大小保持不变,但方向始终指向圆心,因此存在向心加速度。
向心加速度的方向始终指向圆心,大小与物体的速度、半径成反比。
9. 解释为什么在匀速圆周运动中,物体的速度方向时刻改变。
答案:在匀速圆周运动中,虽然速度的大小保持不变,但由于物体在圆周轨迹上运动,其运动方向不断改变,始终沿着圆的切线方向。
因此,速度的方向时刻在变化,即使大小不变,速度矢量也在变化。
五、实验题10. 设计一个实验来验证匀速圆周运动的向心力公式 F = mv^2/r。
答案:实验设计应包括以下步骤:a. 准备一个可旋转的圆盘和一个可变质量的物体。
b. 将物体固定在细绳的一端,细绳的另一端固定在圆盘的中心。
圆周运动经典练习(有答案详解)
《圆周运动》练习题(一)1.A. 线速度不变2. A 和B A. 球AB. 球AC. 球AD. 球A 3. 演,如图5A. 《B. C. D. 4.A. B. C. D. …5.如图1个质量为应为( )A. 5.2cmB. 5.3cmC. 5.0cmD. 5.4cm6. (M>m A.mLgm M )(-μC.MLgm M )(+μ7. 如图3A. A 、B 【C. 若︒=30θ,则8. A. 木块A B. 木块A C. 木块A 受重力、支持力和静摩擦力,摩擦力的方向指向圆心D. 木块A 受重力、支持力和静摩擦力,摩擦力的方向与木块运动方向相同9. 如图5所示,质量为m :A. B.C. D.10. 一辆质量为4t;11.和60°,则A 、B12.如图所示,a 、b B r OC =(1)B C ωω:13. 转动时求杆OA 和AB!14. 司机开着汽车在一宽阔的马路上匀速行驶突然发现前方有一堵墙,他是刹车好还是转弯好(设转弯时汽车做匀速圆周运动,最大静摩擦力与滑动摩擦力相等。
)18.^(1(2答案—1.解析:匀速圆周运动的角速度和周期是不变的;线速度的大小不变,但方向时刻变化,故匀速圆周运动的线速度是变化的,加速度不为零,答案为B 、D 。
2. 解析:对小球A 、B 受力分析,两球的向心力都来源于重力mg 和支持力N F 的合力,其合成如图4所示,故两球的向心力αcot mg F F B A ==比较线速度时,选用rv m F 2=分析得r 大,v 一定大,A 答案正确。
比较角速度时,选用r m F 2ω=分析得r 大,ω一定小,B 答案正确。
比较周期时,选用r Tm F 2)2(π=分析得r 大,T 一定大,C 答案不正确。
小球A 和B 受到的支持力N F 都等于αsin mg,D 答案不正确。
点评:①“向心力始终指向圆心”可以帮助我们合理处理物体的受力;② 根据问题讨论需要,解题时要合理选择向心力公式。
圆周运动的题型归纳--一中
圆周运动题型总结题型一:圆周运动各物理量的关系1、如图所示,转轴O1上固定有两个半径为R和r的轮,用皮带传动O2轮,O2轮的半径是r ´,若O1每秒转了5转,R=1m,r=r´=0.5m,则(l)大轮转动的角速度多大?(2)图中A、C两点的线速度大小分别是多少?1.答案:31.4rad/s v A=15.7m/s v C=31.4m/s2.如图所示,A、B两轮半径之比为1:3,两轮边缘挤压在一起,在两轮转动中,接触点不存在打滑的现象,则两轮边缘的线速度大小之比等于______。
两轮的转数之比等于______,A轮半径中点与B轮边缘的角速度大小之比等于______。
2.答案:1∶1 、3∶1、3∶13、如图所示,一种向自行车车灯供电的小发电机的上端有一半径r0=1.0cm的摩擦小轮,小轮与自行车车轮的边缘接触.当车轮转动时,因摩擦而带动小轮转动,从而为发电机提供动力.自行车车轮的半径R1=35cm,小齿轮的半径R2=4.0cm,大齿轮的半径R3=10.0cm.求大齿轮的转速n l和摩擦小轮的转速n2之比.(假定摩擦小轮与自行车车轮之间无相对滑动)3.答案:2:1754、图示为一种“滚轮——平盘无级变速器”的示意图,它由固定于主动轴上的平盘和可随从动轴移动的圆柱形滚轮组成.由于摩擦的作用,当平盘转动时,滚轮就会跟随转动.如果滚轮不打滑,那么主动轴转速n1、从动轴转速n2、滚轮半径r以及滚轮中心距离主动轴轴线的距离x之间的关系是( )A.n2=n1xrB.n2=n1rxC.n2=n1x2r2D.n2=n1xr解析:滚轮与平盘接触处的线速度相等,故有:ω1x=ω2r,即2πn1x=2πn2r可得:n2=n1x r .4.答案:A5、如图所示,A 、B 是两个圆盘,它们能绕共同的轴以相同的角速度转动,两盘相距为L.有一颗子弹以一定速度垂直盘面射向A 盘后又穿过B 盘,子弹分别在A 、B 盘上留下的弹孔所在的半径之间的夹角为θ.现测得转轴的转速为n r/min ,求子弹飞行的速度.(设在子弹穿过A 、B 两盘过程中,两盘转动均未超过一周)题型二:圆周运动的应用(圆周运动的动力学问题)1、如图所示,固定的锥形漏斗内壁是光滑的,内壁上有两个质量相 等的小 球A 和B ,在各自不同的水平面做匀速圆周运动,以下关系正确的是( B ) A.角速度 ωA >ωB B. 线速度v A >v B C. 向心加速度a A >a B D. 支持力N A >N B 1.答案:B2、如图所示,在绕竖直轴匀速转动的水平圆盘盘面上,离轴心r=20cm 处放置一小物块A ,其质量为m =2kg ,A 与盘面间相互作用的静摩擦力的最大值为其重力的k 倍(k =0.5),试求⑴当圆盘转动的角速度ω=2rad/s 时, 物块与圆盘间的摩擦力大小多大?方向如何?⑵欲使A 与盘面间不发生相对滑动,则圆盘转动的最大角速度多大?(取g=10m/s 2解:(1)f=mr ω2=1.6N …① 方向为指向圆心。
圆周运动的临界问题结论总结
圆周运动的临界问题结论总结圆周运动的临界问题结论总结1. 引言:圆周运动是物理学中的一个重要问题,涉及到质点在圆周轨道上运动的临界条件和相关结论。
通过对圆周运动的深入研究和分析,我们可以更好地理解质点运动的性质以及相应的临界条件。
2. 圆周运动的基本定义和参数:圆周运动是指质点沿着固定半径的圆周轨道做匀速运动。
它的参数包括半径r、角速度ω和线速度v等。
圆周运动的关键特征是质点受到向心力的作用,它的大小与质点的质量m、角速度ω和半径r有关,即F = mω²r。
3. 圆周运动的临界条件:圆周运动会出现临界情况,当质点的向心力等于或超过受力的上限时,圆周运动将发生变化。
这个临界条件可以用一个重要的方程来表示:F = mv²/r = mω²r。
当F > mω²r时,质点将脱离圆周轨道,产生离心力;当F = mω²r时,质点保持在圆周轨道上做匀速运动,达到临界情况。
4. 圆周运动的结论总结:通过对圆周运动的分析,我们可以得出以下结论:4.1 向心力是使质点保持在圆周轨道上运动的重要力量,它提供了质点的必要的向心加速度,进而产生了向心力。
4.2 圆周运动的临界条件是质点所受向心力等于或超过受力上限,当向心力小于受力上限时,质点无法保持在圆周轨道上做匀速运动。
4.3 圆周运动的临界条件方程为F = mω²r,其中F是向心力,m是质点的质量,ω是角速度,r是运动半径。
4.4 圆周运动的临界条件可以帮助我们计算或推导质点的角速度、线速度、运动半径等参数,从而更加深入地了解质点运动的性质。
5. 我的个人观点和理解:圆周运动的临界问题是一个非常有趣且重要的物理学问题。
通过对临界条件的研究和理解,我们可以更好地把握物体在圆周轨道上运动时的行为特征,推导出相关的运动参数,并进行定量分析。
这样,我们可以更深入、全面地了解物体运动的规律和特点,为实际问题的解决提供有力支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆周运动问题汇总一.传动装置问题1.同轴传动的各点角速度相同2.当皮带不打滑时,传动皮带、用皮带连接的两轮边沿上的各点线速度大小相等例1:如图所示的传动装置中,B、C两轮固定在一起绕同一轴转动,A、B两轮用皮带传动,三轮半径关系r A=r C=2r B,若皮带不打滑,求A、B、C轮边缘的a、b、c三质点的角速度,线速度和向心加速度之比。
解析:由于b、c是同轴的物体,所以ωb=ωc,由于a、b是轮子边缘上的点,所以v a=v b,线速度与角速度的关系v=rω,则可以得到ωa:ωb:ωc=1:2:2,v a:v b:v c=1:1:2,a a:a b:a c=1:2:4二.转弯问题1.水平路面转弯由静摩擦力提供向心力2.倾斜路面转弯由重力和支持力的合力提供向心力例2:汽车甲和汽车乙质量相等,以相等的速率沿同一水平弯道做匀速圆周运动,甲车在乙车的外侧,两车沿半径方向受到的摩擦力分别为f甲和f乙,以下说法正确的是A. f甲小于f乙B. f甲等于f乙C. f甲大于f乙D. f甲和f乙均与速率无关解析:因为在水平路面上转弯由静摩擦力提供向心力,根据向心力公式F=m v 2r可得 f甲小于f乙,所以选A项例3:高速行驶的竞赛汽车依靠摩擦力转弯是有困难的,所以竞赛场地的弯道处做成侧向斜坡,如果弯道半径为r,斜坡和水平方向成θ角,则汽车完全不依靠摩擦力转弯折速度大小为A.√grsinθB.√grcosθC.√grtanθD.√grtanθ解析:高速行驶的竞赛汽车完全不依靠摩擦力转弯时所需的向心力由重力和路面的支持力的合力提供,力图如图.根据牛顿第二定律得mg tanθ=m v 2r,可得v=√gr tanθ,所以选C项三.圆锥摆问题圆锥摆问题中物体所受的重力与弹力提供向心力例4:如图所示,两个质量不同的小球用长度不等的细线拴在同一点,并在同一水平面内做匀速圆周运动,则它们的CA a BbA.运动周期相同B.运动线速度大小相同C.运动角速度相同D.向心加速度大小相同解析:对其中一个小球受力分析,如图,受重力,绳子的拉力,由于小球做匀速圆周运动,故细线的拉力与重力的合力提供向心力;将重力与拉力合成,合力指向圆心,由几何关系得,细线的拉力T=mgcosθ,因θ不同,故T不同,故A错误.B、C、D合力F=mgtanθ ①;由向心力公式得到,F=mω2r ②;设绳子与悬挂点间的高度差为h,由几何关系,得:r=htanθ ③;由①②③三式得,ω=gh,与绳子的长度和转动半径无关,故C正确;由v=wr,两球转动半径不等,故B错误;由a=ω2r,两球转动半径不等,故D错误;故选:C.四、汽车过拱桥问题汽车过拱桥问题中物体所受的重力与弹力提供向心力例5:有一辆质量为1.2 t的小汽车驶上半径为50 m的圆弧形拱桥,如图所示。
求:(1)汽车到达桥顶的速度为10m/s时对桥的压力有多大?(2)汽车以多大的速度经过桥顶时恰好对桥没有压力作用而腾空?解析:如图所示,汽车到达桥顶时,竖直方向受到重力G和桥对它的支持力N的作用.根据牛顿第二定律得,mg−N=m v 2r 解得:N=mg−m v2r=1200×10−1200(10)250=9600N根据牛顿第三定律知,汽车对桥的压力为9600N.(2)当汽车对桥没有压力时,重力提供向心力,则mg=m v 2r解得:v=√gr= 10√5m/s当小车经过凹桥时,得到N-mg=mv²/r五、临界问题1. 水平面内的临界问题在水平面内圆周运动的物体,当角速度ω变化时,物体有远离或向着圆心运动(半径有变化)的趋势。
这时,要根据物体的受力情况,判断物体受某个力是否存在以及这个力存在时的方向如何(特别是一些接触力如静摩擦力,绳的拉力等)例6:如图,两个质量均为m的小木块a和b(可视为质点)放在水平圆盘上,a 与转轴OO'的距离为L,b与转轴的距离为2L。
木块与圆盘的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g。
若圆盘从静止开始绕轴缓慢地加速转动,用 表示圆盘转动的角速度,下列说法正确的是A .b 一定比a 先开始滑动B .a 、b 所受的摩擦力始终相等C .ω=√kg 2L 是b 开始滑动的临界角速度D .当ω=√2kg 3L 时,a 所受摩擦力的大小为kmg解析:小木块都随水平转盘做匀速圆周运动时,在发生相对滑动之前,角速度相等,静摩擦力提供向心力即f 静=mrω2,由于木块b 的半径大,所以发生相对滑动前木块b 的静摩擦力大,选项B 错。
随着角速度的增大,当静摩擦力等于滑动摩擦力时木块开始滑动,则有f 静=mrω2=kmg ,代入两个木块的半径,小木块a 开始滑动时的角速度ωa =√kg L ,木块b 开始滑动时的角速度ωb =√kg 2L ,选项C 对。
根据ωa >ωb ,所以木块b 先开始滑动,选项A 对。
当角速度ω=√2kg 3L ,木块b 已经滑动,但是ω=√2kg 3L <ωa ,所以木块a 未达到临界状态,摩擦力还没有达到最大静摩擦力,所以选项D 错。
故选AC 项 2. 竖直面内的临界问题(1)、线球模型(高中阶段只要求分析特殊位置最高点、最低点)如图所示,没有物体支撑的小球,在竖直平面做圆周运动过最高点的情况:注意:绳对小球只能产生沿绳收缩方向的拉力①临界条件:绳子或轨道对小球没有力的作用:mg=mv 2/R →v 临界=(可理解为恰好转过或恰好转不过的速度)②能过最高点的条件:v ≥,当V >时,绳对球产生拉力,轨道对球产生压力。
③不能过最高点的条件:V <V 临界(实际上球还没到最高点时就脱离了轨道)。
(2)、杆球模型注意:杆与绳不同,杆对球既能产生拉力,也能对球产生支持力。
①当v =0时,N =mg (N 为支持力)②当 0<v <时, N 随v 增大而减小,且mg >N >0,N 为支持力.③当v=时,N =0Rg Rg Rg Rg Rg 无支撑模型(也叫绳模型)有支撑模型(也叫杆模型)例7:游乐场的过山车的运行过程可以抽象为如图所示的模型.弧形轨道的下端与圆轨道相接,使小球从弧形轨道上端A点静止滑下,进入圆轨道后沿圆轨道运动,最后离开.试分析A点离地面的高度h至少要多大,小球才可以顺利通过圆轨道最高点(已知圆轨道的半径为R,不考虑摩擦等阻力).解析:设在圆轨道最高处的速度为v,则在圆轨道最高处mg=m v2R由机械能守恒定律得:mgh=mg2R+12mv2联立以上各式得h=52R例8:长L=0.5m质量可忽略的细杆,其一端可绕O点在竖直平面内转动,另一端固定着一个物体A.A的质量为m=2kg,当A通过最高点时,如图所示,求在下列两种情况下杆对小球的力:(1)A在最低点的速率为√21m/s;(2)A在最低点的速率为6m/s解析:(1)设杆对小球为竖直向上的力F1从最低点到最高点过程中由机械能守恒得mg2L=12mv12−12mv22在最低点牛顿第二定律得mg−F1=m V22L 联立解得F1=16N(2)设杆对小球为竖直向上的力F2从最低点到最高点过程中由机械能守恒得mg2L=12mv32−12mv42在最低点牛顿第二定律得mg−F2=m V42L联立解得F2=−44N负号代表方向竖直向下3.斜面内的圆周运动例9:如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定的角速度ω转动,盘面上离转轴距离2.5m处有一小物体与圆盘始终保持相对静止。
物体与盘面间的动摩擦因数为√32(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为300,g取10m/s2。
则ω的最大值是A.√5rad/s B.√3rad/sC.1.0rad/s D.0.5rad/s解析:本题考查受力分析、应用牛顿第二定律、向心力分析解决匀速圆周运动问题的能力.物体在最低点最可能出现相对滑动,对物体进行受力分析,应用牛顿第二定律,有μmg cosθ−mg sinθ=m rω2,解得ω=1.0 rad/s,选项C正确。
4.松驰临界和分离临界松驰临界和分离临界问题关键是弹力为0时对应的临界速度或角速度例10. 如图所示,直角架ABC的AB在竖直方向上,B点和C点各系一根细绳,两绳共吊着一个质量为1kg的小球D,且BD垂直CD,θ=300,BD=40cm,当直角架以ω=10rad/s的角速度绕AB转动时,绳BD和CD的张力各为多大?解析:设CD绳恰好没有拉力时的角速度为ω0mg tan30°=mLω02sinθ解得:ω0=√50√33rad/s<10rad/s rad/s5.一光滑的圆锥体固定在水平桌面上,其轴线沿竖直方向,其顶角为60°,如图所示,一条长为L的轻绳,一端固定在锥顶O点,另一端拴一质量为m的小球,小球以速率v绕圆锥的轴线做水平面内的匀速圆周运动。
(1)v=√gL6时,绳上的拉力多大?(2)v=√3gL2时,绳上的拉力多大?解析:设小球刚好对圆锥没有压力时的速度为v0mgtan30°=m v02Lsin30°解得:v0=√√36gL(1)当v<v0时,小球受三个力,FTcos30°+FNsin30°=mgFT sin 30°-FNcos30°=mv2Lsin30°解得FT=1.033mg(2)当v>v0时,小球受二个力,mgtanφ=mv2Lsinφ解得φ=60°FT=mgcos60°=2mg3.火车转弯问题LO m60°。