数学建模—微分方程之预测模型
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实际为281.4 (百万)
模型应用——预报美国2010年的人口 加入2000年人口数据后重新估计模型参数 r=0.2490, xm=434.0 x(2010)=306.0
Logistic 模型在经济领域中的应用(如耐用消费品的售量)
森林救火
问题
森林失火后,要确定派出消防队员的数量。 队员多,森林损失小,救援费用大; 队员少,森林损失大,救援费用小。 综合考虑损失费和救援费,确定队员数量。
问题 分析
记队员人数x, 失火时刻t=0, 开始救火时刻t1, 灭火时刻t2, 时刻t森林烧毁面积B(t).
• 损失费f1(x)是x的减函数, 由烧毁面积B(t2)决定.
• 救援费f2(x)是x的增函数, 由队员人数和救火时间决定.
存在恰当的x,使f1(x), f2(x)之和最小
问题 分析
• 关键是对B(t)作出合理的简化假设. 失火时刻t=0, 开始救火时刻t1, 灭火时刻t2, 画出时刻 t 森林烧毁面积B(t)的大致图形
其中 c1,c2,c3, t1, ,为已知参数
模型求解
dC 0 dx
求 x使 C(x)最小
c1t12 2c2t1 x 2c32
b
dB dt
x
0
t1
t2 t
结果解释
结果 解释
c1t1 2c2t1 x 2c32
2
c1~烧毁单位面积损失费, c3~每个队员一次性费用, t1~ 开始救火时刻, ~火势蔓延速度, ~每个队员平均灭火速度.
c1, t1, x c3 , x
模型 应用
c1,c2,c3已知, t1可估计, ,可设置一系列数值
由模型决定队员数量x
r ( xm ) 0
x r ( x) r (1 ) xm
阻滞增长模型(Logistic模型)
dx rx dt
dx/dt
dx x r ( x) x rx(1 ) dt xm
x xm xm/2 x0
0
xm/2
xm x
0
x (t )
xm xm rt 1 ( 1)e x0
分析B(t)比较困难, 转而讨论森林烧毁 速度dB/dt.
B B(t2)
0
t1
t2
t
模型假设
1)0tt1, dB/dt 与 t成正比,系数 (火势蔓延速度) 2)t1tt2, 降为-x (为队员的平均灭火速度) 3)f1(x)与B(t2)成正比,系数c1 (烧毁单位面积损失费) 4)每个队员的单位时间灭火费用c2, 一次性费用c3 火势以失火点为中心, 均匀向四周呈圆形蔓延, r 假设1) 半径 r与 t 成正比 的解释 B
r=0.2557, xm=392.1 专家估计
阻Fra Baidu bibliotek增长模型(Logistic模型)
模型检验
用模型计算2000年美国人口,与实际数据比较
x(2000 ) x(1990 ) x x(1990 ) rx(1990 )[1 x(1990 ) / xm ]
x(2000 ) 274.5
面积 B与 t2成正比, dB/dt与 t成正比.
模型建立
b b t1 , t 2 t1 x
b
假设1)
dB dt
假设2)
t 2 t1
B(t2 )
假设3)4)
t2
x
t1
0
x
t1
t2 t
0
2 2 2 bt t t1 2 1 B(t )dt 2 2 2(x )
x(t ) x0 e
rt
x(t ) x0 (e ) x0 (1 r )
r t
t
随着时间增加,人口按指数规律无限增长
指数增长模型的应用及局限性
• 与19世纪以前欧洲一些地区人口统计数据吻合 • 适用于19世纪后迁往加拿大的欧洲移民后代
• 可用于短期人口增长预测
• 不符合19世纪后多数地区人口增长规律 • 不能预测较长期的人口增长过程 19世纪后人口数据 人口增长率r不是常数(逐渐下降)
1 如何预报人口的增长
背景 世界人口增长概况
年 1625 1830 1930 1960 1974 1987 1999 人口(亿) 5 10 20 30 40 50 60 中国人口增长概况 年 1908 1933 1953 1964 1982 1990 1995 2000 人口(亿) 3.0 4.7 6.0 7.2 10.3 11.3 12.0 13.0 研究人口变化规律 控制人口过快增长
f1 ( x) c1B(t2 ), f 2 ( x) c2 x(t2 t1 ) c3 x
C( x) f1 ( x) f 2 ( x)
目标函数——总费用
模型建立
2
目标函数——总费用
2 2
c1 t1 c1 t1 c2 t1 x C ( x) c3 x 2 2(x ) x
阻滞增长模型(Logistic模型)
人口增长到一定数量后,增长率下降的原因: 资源、环境等因素对人口增长的阻滞作用 且阻滞作用随人口数量增加而变大 假设 r是x的减函数
r ( x) r sx (r, s 0)
r s xm
r~固有增长率(x很小时)
xm~人口容量(资源、环境能容纳的最大数量)
常用的计算公式
k年后人口
今年人口 x0, 年增长率 r
xk x0 (1 r )
k
指数增长模型——马尔萨斯提出 (1798)
基本假设 : 人口(相对)增长率 r 是常数
x(t) ~时刻t的人口
dx rx, x(0) x0 dt
x(t t ) x(t ) rt x(t )
t
x(t)~S形曲线, x增加先快后慢
阻滞增长模型(Logistic模型)
参数估计 用指数增长模型或阻滞增长模型作人口 预报,必须先估计模型参数 r 或 r, xm
• 利用统计数据用最小二乘法作拟合
例:美国人口数据(单位~百万)
1860 31.4 1870 38.6 1880 50.2 …… 1960 …… 179.3 1970 204.0 1980 226.5 1990 251.4