《概率论》课件:1-5条件《概率论》课件:
合集下载
概率论与数理统计第五节 条件概率.ppt5(最新版)
P(B)=P( A1B)+P(A2B)+P(A3B)
P(B)=P( A1B)+P(A2B)+P(A3B)
P ( B) P ( Ai ) P ( B|Ai )
i 1
3
对求和中的每一 项用乘法公式
代入数据计算便可得结果, 我们这里略去计算。
将此例中所用的方法推广到一般的情形,就 得到在概率计算中常用的全概率公式.
例题选讲 例题1 设在10个同一类型的元件中有7个一等品, 从这些元件中不放回地连续取3次,每次取一个元件, 7 ( ) 求: 1) 3次取得一等品的概率 24 119 2) 3次中至少一次取得一等品的概率 ( )
120
例题2 设P( A) 0.5, P( B) 0.4, P( A | B) 0.6 求P( AB), P( A | A B)的值
解 设Ai 第i次取出黑球,i 1, 2,...n, 则所 求的概率为P ( A1... An1 An1 1... An ) p
则 p P( A1 ) P( A2 | A1 ) P( An1 | A1 An1 1 ) *P( An1 1 | A1 An ) P( An | A1 An1 An1 1 An-1 )
B
AB A
S
2 定义
P( AB) 设A,B是两个事件且P(A)>0,称 P( B A) P( A)
为在事件A发生的条件下事件B发生的条件概率.
条件概率也符合概率的公理化定义中的三个条件:
1) 非负性 对于每一事件B,有P(B|A)>=0;
2) 规范性 对于必然事件S,有P(S|A)=1;
3) 可列可加性 :
也可以直接按条件概率的含义来求 P(B A) :
P(B)=P( A1B)+P(A2B)+P(A3B)
P ( B) P ( Ai ) P ( B|Ai )
i 1
3
对求和中的每一 项用乘法公式
代入数据计算便可得结果, 我们这里略去计算。
将此例中所用的方法推广到一般的情形,就 得到在概率计算中常用的全概率公式.
例题选讲 例题1 设在10个同一类型的元件中有7个一等品, 从这些元件中不放回地连续取3次,每次取一个元件, 7 ( ) 求: 1) 3次取得一等品的概率 24 119 2) 3次中至少一次取得一等品的概率 ( )
120
例题2 设P( A) 0.5, P( B) 0.4, P( A | B) 0.6 求P( AB), P( A | A B)的值
解 设Ai 第i次取出黑球,i 1, 2,...n, 则所 求的概率为P ( A1... An1 An1 1... An ) p
则 p P( A1 ) P( A2 | A1 ) P( An1 | A1 An1 1 ) *P( An1 1 | A1 An ) P( An | A1 An1 An1 1 An-1 )
B
AB A
S
2 定义
P( AB) 设A,B是两个事件且P(A)>0,称 P( B A) P( A)
为在事件A发生的条件下事件B发生的条件概率.
条件概率也符合概率的公理化定义中的三个条件:
1) 非负性 对于每一事件B,有P(B|A)>=0;
2) 规范性 对于必然事件S,有P(S|A)=1;
3) 可列可加性 :
也可以直接按条件概率的含义来求 P(B A) :
概率论与数理统计1-5
25
(3)三个事件至少有一个发生; (4)A发生,B、C不发生; (5)A、B都发生,C不发生; (6)三个事件中至少有两个发生; (7)不多于一个事件发生 ; (8)不多于两个事件发生。
26
§1.2 随机事件的概率 一、事件的频率
定义:如果在n次重复随机试验中,事件A发
生了nA次,那么就称比值 fn(A)为事件A发生
6
另一个在概率论史上的代表人物是法国数学家泊 松(1781—1840 ), 他推广了伯努利形式下的大数 定律,研究得出一种新的分布, 即泊松分布。 概率论即他们之后其中心课题则集中在推广和改 进伯努利大数定律及中心极限定理。 1781年6月21日生于法国卢瓦雷省的皮蒂维耶, 1840年4月25日卒于法国索镇。1798年入巴黎综 合工科学校深造。1806年任该校教授,1812年当 选为巴黎科学院院士。
件又可记为 A 。
结论:A、B互逆 A、B互不相容 A、B互不相容; A、B互逆。
23
(7)事件的运算规律
交换律:A∪B=B∪A,AB=BA 结合律:(A∪B)∪C=A∪(B∪C), (AB)C=A(BC) 分配律:(AB)∪C=(A∪C)· (B∪C) , (A∪B)C=(AC)∪(BC) 德摩根公式: A B A B
是任意无穷多个互不相容的事件,有
P( Ai ) P( Ai )
i 1 i 1
这3条也是概率的三个基本性质,此外概率 还有一些其他性质:
32
性质1. 不可能事件的概率为0,即 P( ) 0.
性质2.有限可加性 : A1 , A2 , , An两两互不相容, 则有 P( Ai ) P( Ai )
中,如果事件A发生的频率总是在一个确定的
(3)三个事件至少有一个发生; (4)A发生,B、C不发生; (5)A、B都发生,C不发生; (6)三个事件中至少有两个发生; (7)不多于一个事件发生 ; (8)不多于两个事件发生。
26
§1.2 随机事件的概率 一、事件的频率
定义:如果在n次重复随机试验中,事件A发
生了nA次,那么就称比值 fn(A)为事件A发生
6
另一个在概率论史上的代表人物是法国数学家泊 松(1781—1840 ), 他推广了伯努利形式下的大数 定律,研究得出一种新的分布, 即泊松分布。 概率论即他们之后其中心课题则集中在推广和改 进伯努利大数定律及中心极限定理。 1781年6月21日生于法国卢瓦雷省的皮蒂维耶, 1840年4月25日卒于法国索镇。1798年入巴黎综 合工科学校深造。1806年任该校教授,1812年当 选为巴黎科学院院士。
件又可记为 A 。
结论:A、B互逆 A、B互不相容 A、B互不相容; A、B互逆。
23
(7)事件的运算规律
交换律:A∪B=B∪A,AB=BA 结合律:(A∪B)∪C=A∪(B∪C), (AB)C=A(BC) 分配律:(AB)∪C=(A∪C)· (B∪C) , (A∪B)C=(AC)∪(BC) 德摩根公式: A B A B
是任意无穷多个互不相容的事件,有
P( Ai ) P( Ai )
i 1 i 1
这3条也是概率的三个基本性质,此外概率 还有一些其他性质:
32
性质1. 不可能事件的概率为0,即 P( ) 0.
性质2.有限可加性 : A1 , A2 , , An两两互不相容, 则有 P( Ai ) P( Ai )
中,如果事件A发生的频率总是在一个确定的
概率论与数理统计(完整版)(课堂PPT)
E3: 将一枚硬币抛三次,观察出现正面的情况. E4: 电话交换台一分钟内接到的呼唤次数. E5: 在一批灯泡中任取一只, 测试它的寿命.
3
随机试验:
(1) 可在相同的条件下重复试验; (2) 每次试验的结果不止一个,且能事先明确所有可能的结 果; (3) 一次试验前不能确定会出现哪个结果.
4
§2. 样本空间与随机事件
(一) 样本空间:
定义 随机试验E的所有可能结果组成的集合称为 E的样 本空间, 记为S. 样本空间的元素称为样本点,用表示.
样本空间的分类:
1.离散样本空间:样本点为有限个或可列个. 例 E1,E2等. 2.无穷样本空间:样本点在区间或区域内取值. 例 灯泡的寿命{t|t≥0}.
5
(二) 随机事件
定义 样本空间S的子集称为随机事件, 简称事件. 在一 次试验中, 当且仅当这一子集中的一个样本点出现时, 称 这一事件发生.
基本事件: 由一个样本点组成的单点集. 如:{H},{T}.
复合事件: 由两个或两个以上的基本事件复合而成的事件 为复合事件. 如:E3中{出现正面次数为奇数}.
必然事件: 样本空间S是自身的子集,在每次试验中总是 发生的,称为必然事件。
为在事件A发生的条件下事件B发生的条件概率2.9
2. 性质: 条件概率符合概率定义中的三个条件, 即 10 对于每一 B有 个 , 1 事 P(件 |B A)0.
20 P (|SA) 1.
30 设B1,B2,两两互不,则 相容
P ( Bi |A)P(Bi |A.)
i1
i1
此外, 条件概率具有无条件概率类似性质.例如:
P(A 1)P(A 2)P(A n).(有限)可
性3质 . 若 AB,则有 P(BA)P(B)P(A);
3
随机试验:
(1) 可在相同的条件下重复试验; (2) 每次试验的结果不止一个,且能事先明确所有可能的结 果; (3) 一次试验前不能确定会出现哪个结果.
4
§2. 样本空间与随机事件
(一) 样本空间:
定义 随机试验E的所有可能结果组成的集合称为 E的样 本空间, 记为S. 样本空间的元素称为样本点,用表示.
样本空间的分类:
1.离散样本空间:样本点为有限个或可列个. 例 E1,E2等. 2.无穷样本空间:样本点在区间或区域内取值. 例 灯泡的寿命{t|t≥0}.
5
(二) 随机事件
定义 样本空间S的子集称为随机事件, 简称事件. 在一 次试验中, 当且仅当这一子集中的一个样本点出现时, 称 这一事件发生.
基本事件: 由一个样本点组成的单点集. 如:{H},{T}.
复合事件: 由两个或两个以上的基本事件复合而成的事件 为复合事件. 如:E3中{出现正面次数为奇数}.
必然事件: 样本空间S是自身的子集,在每次试验中总是 发生的,称为必然事件。
为在事件A发生的条件下事件B发生的条件概率2.9
2. 性质: 条件概率符合概率定义中的三个条件, 即 10 对于每一 B有 个 , 1 事 P(件 |B A)0.
20 P (|SA) 1.
30 设B1,B2,两两互不,则 相容
P ( Bi |A)P(Bi |A.)
i1
i1
此外, 条件概率具有无条件概率类似性质.例如:
P(A 1)P(A 2)P(A n).(有限)可
性3质 . 若 AB,则有 P(BA)P(B)P(A);
《条件概率》课件
答案2
两次都取到白球的概率为$frac{6}{10} times frac{6}{10} = frac{36}{100} = frac{9}{25}$。解析:第一次取到白球 的概率为$frac{6}{10}$,第二次取到白球的概率为 $frac{6}{10}$,因此两次都取到白球的概率为 $frac{6}{10} times frac{6}{10} = frac{36}{100} =
《条件概率》ppt课件
contents
目录
• 条件概率的定义 • 条件概率的性质 • 条件概率的应用 • 条件概率的实例分析 • 条件概率的习题与解答
CHAPTER 01
条件概率的定义
条件概率的数学定义
定义
在事件B发生的条件下,事件A发生的概率称为条件概率,记作P(A|B)。
公式
P(A|B) = P(A∩B) / P(B)
条件概率的几何意义
条件概率P(A|B)表示在事件B发生的条 件下,事件A发生的概率,这可以表示 为在事件B发生的条件下,事件A发生 的区域与整个样本空间的比值。
CHAPTER 02
条件概率的性质
条件概率的加法性质
总结词
条件概率的加法性质是ቤተ መጻሕፍቲ ባይዱ当某一事件B发 生时,另一事件A发生的概率等于两事件 A和B同时发生的概率加上A不发生但B发 生的概率。
贝叶斯决策
贝叶斯决策是一种基于贝叶斯定理的决策方法,通过计算不 同行动方案在不同自然状态下的期望效用值,选择最优的行 动方案。贝叶斯决策中需要用到条件概率来计算不同自然状 态下的期望效用值。
在机器学习中的应用
分类器设计
在分类器设计中,常常需要计算不同类别下的条件概率,以设计最优的分类器。例如, 在朴素贝叶斯分类器中,通过计算不同特征在不同类别下的条件概率,实现分类器的设
两次都取到白球的概率为$frac{6}{10} times frac{6}{10} = frac{36}{100} = frac{9}{25}$。解析:第一次取到白球 的概率为$frac{6}{10}$,第二次取到白球的概率为 $frac{6}{10}$,因此两次都取到白球的概率为 $frac{6}{10} times frac{6}{10} = frac{36}{100} =
《条件概率》ppt课件
contents
目录
• 条件概率的定义 • 条件概率的性质 • 条件概率的应用 • 条件概率的实例分析 • 条件概率的习题与解答
CHAPTER 01
条件概率的定义
条件概率的数学定义
定义
在事件B发生的条件下,事件A发生的概率称为条件概率,记作P(A|B)。
公式
P(A|B) = P(A∩B) / P(B)
条件概率的几何意义
条件概率P(A|B)表示在事件B发生的条 件下,事件A发生的概率,这可以表示 为在事件B发生的条件下,事件A发生 的区域与整个样本空间的比值。
CHAPTER 02
条件概率的性质
条件概率的加法性质
总结词
条件概率的加法性质是ቤተ መጻሕፍቲ ባይዱ当某一事件B发 生时,另一事件A发生的概率等于两事件 A和B同时发生的概率加上A不发生但B发 生的概率。
贝叶斯决策
贝叶斯决策是一种基于贝叶斯定理的决策方法,通过计算不 同行动方案在不同自然状态下的期望效用值,选择最优的行 动方案。贝叶斯决策中需要用到条件概率来计算不同自然状 态下的期望效用值。
在机器学习中的应用
分类器设计
在分类器设计中,常常需要计算不同类别下的条件概率,以设计最优的分类器。例如, 在朴素贝叶斯分类器中,通过计算不同特征在不同类别下的条件概率,实现分类器的设
概率论第一章ppt课件
i1
i1
13
3. 积(交)事件 : 事件A与事件B同时发生,记
作 AB 或AB。
推广:n个事件A1, A2,…, An同时发生,记作
n
n
A1A2…An或 A i 或 A i
i1
i1
14
4. 差事件: A-B称为A与B的差事件, 表示事件 A发生而事件B不发生
15
5. 互不相容事件(也称互斥的事件): 即事件 A与事件B不能同时发生。AB= 。
A 1 “: 至少有一人命中目标 A 2 “: 恰有一人命中目标” A 3 “: 恰有两人命中目标” A 4 “: 最多有一人命中目标 A 5 “: 三人均命中目标” A 6 “: 三人均未命中目标”
”:
ABC
: ABCABCABC
: AC BABC ABC
”: BCACAB
:
ABC
:
ABC
21
小结
P Ak
k 1
k
k 1 k!
e
1 e
.
本题可采用另外一种解法. A A0 { 该地一年内
未发生交通事故} ,于是
P(A) 1 P(A) 1 P( A0) 1 e .
33
小结
• 本节课主要讲授: 1.概率的统计定义; 2.概率的公理化定义; 3.概率的性质(重点)。
34
§1.3 古典概型与几何概型
验,简称试验。随机试验常用E表示。
7
1.1.3 随机事件与样本空间
❖样本空间: 试验的所有可能结果所组成的集合称为 试验E的样本空间, 记为Ω. ❖样本点: 试验的每一个可能出现的结果(样本空 间中的元素)称为试验E的一个样本点, 记为ω.
8
例1-2:
概率论第一章PPT课件
2021/3/24
-
10
费尔马的解法
费尔马注意到,如果继续赌下去,最多只要再赌4轮便可 决出胜负,如果用“甲”表示甲方胜,用“乙”表示乙方胜, 那么最后4轮的结果,不外乎以下16种排列。
甲甲甲甲 甲甲甲乙 甲甲乙甲 甲乙甲甲 乙甲甲甲 乙甲甲乙
甲甲乙乙 甲乙甲乙 甲乙乙甲 乙乙甲甲 乙甲乙甲
甲乙乙乙 乙甲乙乙 乙乙甲乙 乙乙乙甲 乙乙乙乙
2021/3/24
-
8
直到1654年,一位经验丰富的法国赌徒默勒以自己的 亲身经历向帕斯卡请教“赌金分配问题“,求助其对这种现 象作出解释,引起了这位法国天才数学家的兴趣,帕斯卡接 受了这些问题,但他没有立即去解决它,而是把它交给另一 位法国数学家费尔马。之后,他们频频通信,互相交流,围 绕着赌博中的数学问题开始了深入细致的研究。这些问题后 来被来到巴黎的荷兰科学家惠更斯获悉,回荷兰后,他也开 始就这方面展开研究。
若每次试验中,事件A与事件B不能同时发生, 即A∩B= 。则称事件A与事件B互斥或互不相 容。
有时,我们也称满足以上三个特点的试验为随机 试验。
2021/3/24
-
20
§1.1.2 样本空间 随机事件
一、样本空间
随机试验E的所有可能的结果组成的集合称为E的 样本空间,记为Ω。Ω的每个元素,即Ω的每一个可能 的结果,称为E的一个样本点或基本事件。
指的是基本 结果
2021/3/24
样本点
-
21
特征:条件不能完全决定结果。
确定性现象与随机现象的共同特点是事物本身的含 义确定。随机现象与模糊现象的共同特点是不确定性, 随机现象的不确定性是指试验的结果不确定,而模糊现 象的不确定性有两层含义,一是指事物本身的定义不确 定,二是结果不确定。
概率论课件-条件概率
则 B1, B2, B3 是样本空间 的一个划分,
且 P(B1 ) 0.15, P(B2 ) 0.80, P(B3 ) 0.05,
P( A B1) 0.02, P( A B2 ) 0.01, P( A B3 ) 0.03. (1) 由全概率公式得
P( A) P( A B1)P(B1) P( A B2 )P(B2 ) P( A B3 )P(B3 ) 0.0125.
P( AC) 1 P( AC) 0.05,
P(C) 0.005, P(C) 0.995,
由貝葉斯公式得所求概率為
P(C A)
P( AC)P(C)
P( AC)P(C) P( AC)P(C)
0.087.
即平均1000個具有陽性反應的人中大約只有87人 患有癌症.
(1) 在仓库中随机地取一只元件 ,求它是次品的
概率;
(2) 在仓库中随机地取一只元件, 若已知取到的是 次品, 为分析此次品出自何厂, 需求出此次品由三 家工厂生产的概率分别是多少. 试求这些概率.
解 设 A 表示“取到的是一只次品”, Bi (i 1,2,3)
表示“所取到的产品是由第 i 家工厂提供的”.
證明
P ( Bi
A)
P(Bi A) P( A)
P( A Bi )P(Bi )
n
,
i 1,2,,n.
P(ABj)P(Bj)
j 1
引例4:一班與二班各有40人分班上課,其中一班有 20名女生,二班有18名女生。現從兩個班中 任選一名學生,假設每人被選到的可能性相 同,每班被選到的可能性也相同。已知選到 了一名女生,問她來自一班的可能性是多少?
则 A3 、A4 为事件第三、四次取到白球.
因此所求概率为 P( A1 A2 A3 A4 ) P( A4 A1 A2 A3 )P( A3 A1 A2 )P( A2 A1 )P( A1 ) ta t ra r . r t 3a r t 2a r t a r t
且 P(B1 ) 0.15, P(B2 ) 0.80, P(B3 ) 0.05,
P( A B1) 0.02, P( A B2 ) 0.01, P( A B3 ) 0.03. (1) 由全概率公式得
P( A) P( A B1)P(B1) P( A B2 )P(B2 ) P( A B3 )P(B3 ) 0.0125.
P( AC) 1 P( AC) 0.05,
P(C) 0.005, P(C) 0.995,
由貝葉斯公式得所求概率為
P(C A)
P( AC)P(C)
P( AC)P(C) P( AC)P(C)
0.087.
即平均1000個具有陽性反應的人中大約只有87人 患有癌症.
(1) 在仓库中随机地取一只元件 ,求它是次品的
概率;
(2) 在仓库中随机地取一只元件, 若已知取到的是 次品, 为分析此次品出自何厂, 需求出此次品由三 家工厂生产的概率分别是多少. 试求这些概率.
解 设 A 表示“取到的是一只次品”, Bi (i 1,2,3)
表示“所取到的产品是由第 i 家工厂提供的”.
證明
P ( Bi
A)
P(Bi A) P( A)
P( A Bi )P(Bi )
n
,
i 1,2,,n.
P(ABj)P(Bj)
j 1
引例4:一班與二班各有40人分班上課,其中一班有 20名女生,二班有18名女生。現從兩個班中 任選一名學生,假設每人被選到的可能性相 同,每班被選到的可能性也相同。已知選到 了一名女生,問她來自一班的可能性是多少?
则 A3 、A4 为事件第三、四次取到白球.
因此所求概率为 P( A1 A2 A3 A4 ) P( A4 A1 A2 A3 )P( A3 A1 A2 )P( A2 A1 )P( A1 ) ta t ra r . r t 3a r t 2a r t a r t
概率论与数理统计条件概率PPT课件
( 1 ) P ( A B ) = P ( A ) P ( B ) = 0 . 9 × 0 . 9 = 0 . 8 1 ( 2 ) P ( A B ) = P ( A ) + P ( B ) - P ( A B ) = 0 . 9 + 0 . 9 - 0 . 8 1 = 0 . 9 9
(3)P(A B A B)=P(A B )+P( A B) =P(A)P( B )+P( A )P(B)
问题:条件概率P(B|A)与普通概率有何关系?
P(B| A) 6 6 / 20 P( AB ) 10 10 / 20 P( A)
《概率统计》
返回
下页
结束
§1.4.1 条件概率
一、 条件概率
1.定义1 设A,B为随机试验E 的两个事件,且P(A)>0,则称
P(B| A)P(AB) P(A)
为在事件A已发生的条件下,事件B发生的条件概率. 注:条件概率与普通概率有相类似的性质,如,
则 P(A) = 0.9,P(B) = 0.8,P(C) = 0.85
因 A、B、C 相互独立,所求概率分别为
(1) P(ABC)
(2) P(ABC)
(3) P ( A B C A B C A B C A B C )
算法 (1) P (ABC ) P (A )P (B )P (C )
(2) P (A B C )P (AB )1 C P (AB ) C (3) 略.
《概率统计》
返回
下页
结束
二、多个事件的独立性
(1) 3个事件相互独立的定义
三个事件A、B、C,如果满足下面四个等式
P(AB) P(A)P(B)
P(AC) P(A)P(C)
(3)P(A B A B)=P(A B )+P( A B) =P(A)P( B )+P( A )P(B)
问题:条件概率P(B|A)与普通概率有何关系?
P(B| A) 6 6 / 20 P( AB ) 10 10 / 20 P( A)
《概率统计》
返回
下页
结束
§1.4.1 条件概率
一、 条件概率
1.定义1 设A,B为随机试验E 的两个事件,且P(A)>0,则称
P(B| A)P(AB) P(A)
为在事件A已发生的条件下,事件B发生的条件概率. 注:条件概率与普通概率有相类似的性质,如,
则 P(A) = 0.9,P(B) = 0.8,P(C) = 0.85
因 A、B、C 相互独立,所求概率分别为
(1) P(ABC)
(2) P(ABC)
(3) P ( A B C A B C A B C A B C )
算法 (1) P (ABC ) P (A )P (B )P (C )
(2) P (A B C )P (AB )1 C P (AB ) C (3) 略.
《概率统计》
返回
下页
结束
二、多个事件的独立性
(1) 3个事件相互独立的定义
三个事件A、B、C,如果满足下面四个等式
P(AB) P(A)P(B)
P(AC) P(A)P(C)
《概率论》ppt课件
xi R, i 1, 2, , n.
对于固定的 n ,我们称{FX (x1, x2, , xn;t1,t2, ,tn ),ti T}
为随机过程{X (t),t T}的 n 维分布函数族。
注:可以证明(柯尔莫哥洛夫),在一定条件下 ,随机过程的统计特性完全由它的有限维分布函 数族决定。
(二)二维随机过程的联合分布函数
p
2 (1, )
2 1 2
(0, 1 ) 4
1
2
三 随机过程的数字特征
1.单个随机过程的情况
① 函数 X (t) E[X (t)], t T
为{X(t),tT}的均值函数.
②
2 X
(t)
E[ X
2
(t )]
为{X(t),tT}的均方值函数.
③
2 X
(t
)
DX (t) D[ X (t)]
为{X(t),tT}的方差函数.
例3: 考虑抛掷一颗骰子的试验,(i)设 X是n 第n次 (n )1 抛掷的点数,对于n=1,2…的不同值, 是X不n 同的随机变量,因而 { Xn构, n成 1一} 随机过程,称为 贝努利过程或贝努利随机序列,(ii)设Xn是前n次
抛掷中出现的最大点数,
也{是X一n , n随机1}过程。
例 4 在时间 [0,t]内某地段出现的交通事故次数
2. n维分布函数族
对 任 意 正 整 数 n 可 取 定 t1,t2, ,tn T 则 (X (t1), X (t2 ), , X (tn )) 是一个n 维随机变量,他的分 布函数为
FX (x1, x2 , , xn; t1, t2, , tn )
P( X (t1) x1, X (t2 ) x2, , X (tn ) xn ),
对于固定的 n ,我们称{FX (x1, x2, , xn;t1,t2, ,tn ),ti T}
为随机过程{X (t),t T}的 n 维分布函数族。
注:可以证明(柯尔莫哥洛夫),在一定条件下 ,随机过程的统计特性完全由它的有限维分布函 数族决定。
(二)二维随机过程的联合分布函数
p
2 (1, )
2 1 2
(0, 1 ) 4
1
2
三 随机过程的数字特征
1.单个随机过程的情况
① 函数 X (t) E[X (t)], t T
为{X(t),tT}的均值函数.
②
2 X
(t)
E[ X
2
(t )]
为{X(t),tT}的均方值函数.
③
2 X
(t
)
DX (t) D[ X (t)]
为{X(t),tT}的方差函数.
例3: 考虑抛掷一颗骰子的试验,(i)设 X是n 第n次 (n )1 抛掷的点数,对于n=1,2…的不同值, 是X不n 同的随机变量,因而 { Xn构, n成 1一} 随机过程,称为 贝努利过程或贝努利随机序列,(ii)设Xn是前n次
抛掷中出现的最大点数,
也{是X一n , n随机1}过程。
例 4 在时间 [0,t]内某地段出现的交通事故次数
2. n维分布函数族
对 任 意 正 整 数 n 可 取 定 t1,t2, ,tn T 则 (X (t1), X (t2 ), , X (tn )) 是一个n 维随机变量,他的分 布函数为
FX (x1, x2 , , xn; t1, t2, , tn )
P( X (t1) x1, X (t2 ) x2, , X (tn ) xn ),
1-5 条件概率
(二)乘法定理
(二)乘法定理 对于两个事件A,B,若P(A)>0,则 若P(B)>0,则 P(AB)=P(A)P(B|A) P(AB)=P(B)P(A|B)
对于三个事件A,B,C,若P(AB)>0,则P(ABC)=P(A)P(B|A)P(C|AB) 注意:由于ABA,故P(A)P(AB),从而必有 P(A)>0 对于n个事件A1,A2,„,An (n≥2),且P(A1A2„An-1) > 0,则 P(A1A2„An) = P(A1)P(A2|A1)P(A3|A1A2)„P(AnA1A2„A
例题2
法一: 由条件概率定义
6 12 9 12 2 3
P(B|A)
P ( AB ) P ( A)
法二: 在缩减的样本空间SA=A中,直接得
P(B|A)=6/9=2/3
法三: 第一次抽取的样本空间为:S1={1,2,3,4} 当A发生,即第一次抽取一只一等品后,其样本空 间S2只剩下3个元素,而其中只有两个元素是一等品, 因此 P(B|A)=2/3。
P (Bi A) P(A)
B1 B2
Bn A
P ( A Bi )P (Bi )
P ( A B j )P (B j )
j1
n
i 1,2 , , n
P(Bi)>0(i=1,2,„,n)
全概率公式和贝叶斯公式的应用
在很多实际问题中,P(A)不易直接求得,但却容易找到样本
空间S的一个划分B1,B2,„,Bn,且P(Bi)和P(A|Bi)或为已知,或易
随机地取一只元件,求它是次品的概率; 3 0.03 0.05 (2)在仓库中随机地取一只元件,若已知取到的是次品,为分析此 次品出自何厂,需求出此次品由三家工厂生产的概率分别是多少。 试求这些概率。 设事件A表示“取到的是一只次品”,事件Bi(i=1,2,3)表示 解: “所取到的产品是由第i家工厂提供的”,则B1,B2,B3是样本空 间S的一个划分。由题意 P(B1)=0.15,P(B2)=0.80,P(B3)=0.05 P(A|B1)=0.02,P(A|B2)=0.01,P(A|B3)=0.03
概率论-1-5条件概率,乘法公式,全概率公式,贝叶斯公式
3
P ( B) P ( Ai )P ( B|Ai )
i 1
1 1 1 2 1 1 8 3 5 3 5 3 15
将此例中所用的方法推广到一般的情形,就 得到在概率计算中常用的全概率公式.
2. 样本空间的划分及全概率公式
定义 设S为试验E的样本空间, B1 B1, B2,, Bn 为E的一组事件,若
注意P(AB)与P(A | B)的区别! 请看下面的例子
例4 甲、乙两厂共同生产1000个零件,其中 300 件是乙厂生产的. 而在这300个零件中,有189个是标准 件,现从这1000个零件中任取一个,问这个零件是乙厂 生产的标准件的概率是多少?
解 设B={零件是乙厂生产}, A={是标准件}
PBi PA | Bi
i 1
当 n=2 时,划分 B1, B2 可写成划分 B, B ,于是 P( A) P(B)P( A | B) P(B)P( A | B))
3. 全概率公式的理解
n
PA PBi PA | Bi
i 1
全概率公式 .
全概率公式的基本思想 是把一个未知的复杂事 件
样本空间中的任一事件 A ,恒有
n
PA PBi PA | Bi
i 1
证明 因为 A AS AB1 B2 Bn
AB1 AB2 ABn
并且 ABi AB j , i j ,所以
PA PAB1 PAB2 PABn
P n
B1
P
A
|
B1
PBn PA | Bn
解 记 Ai={球取自i号箱}, i=1,2,3;
B ={取得红球}
12 3
其中 A1、A2、A3两两互斥 B发生总是伴随着A1,A2,A3 之一同时发生,
P ( B) P ( Ai )P ( B|Ai )
i 1
1 1 1 2 1 1 8 3 5 3 5 3 15
将此例中所用的方法推广到一般的情形,就 得到在概率计算中常用的全概率公式.
2. 样本空间的划分及全概率公式
定义 设S为试验E的样本空间, B1 B1, B2,, Bn 为E的一组事件,若
注意P(AB)与P(A | B)的区别! 请看下面的例子
例4 甲、乙两厂共同生产1000个零件,其中 300 件是乙厂生产的. 而在这300个零件中,有189个是标准 件,现从这1000个零件中任取一个,问这个零件是乙厂 生产的标准件的概率是多少?
解 设B={零件是乙厂生产}, A={是标准件}
PBi PA | Bi
i 1
当 n=2 时,划分 B1, B2 可写成划分 B, B ,于是 P( A) P(B)P( A | B) P(B)P( A | B))
3. 全概率公式的理解
n
PA PBi PA | Bi
i 1
全概率公式 .
全概率公式的基本思想 是把一个未知的复杂事 件
样本空间中的任一事件 A ,恒有
n
PA PBi PA | Bi
i 1
证明 因为 A AS AB1 B2 Bn
AB1 AB2 ABn
并且 ABi AB j , i j ,所以
PA PAB1 PAB2 PABn
P n
B1
P
A
|
B1
PBn PA | Bn
解 记 Ai={球取自i号箱}, i=1,2,3;
B ={取得红球}
12 3
其中 A1、A2、A3两两互斥 B发生总是伴随着A1,A2,A3 之一同时发生,
条件概率、全概率公式PPT课件
-
14
设 A1,A2,,An 满足上面的两S 条件,则 对任何事件 B 有
B B S B ( A 1 U A 2 U L U A n ) B A 1 U B A 2 U U B A n
于是 P (B ) P (B A 1 U B A 2 U U B A n )
P (B A 1 ) P (B A 2 ) P (B A n )
“点落在圆形区域B内”,
在已知事件A发生的条件下 事件B 发生的条件概率为
A
AB B
S
p B
A
AB的 面 积 A的 面 积
AB的 面 积 A的 面 积 S的 面 积
S的 面 积
p AB pA .
-
3
条件概率 P ( • A ) 的性质
(1)非负性 对任意事件B,有 pBA0;
(2)规范性 对必然事件 S ,有 pS A 1;
-
12
2.2 全概率公式
如何将一个复杂概率计算问 题分解为简单计算问题之和
设 S 为样本空间,若事件 A1,A2,,An满足:
A1,A2,,An 两两不相容,即
A iA j ( i j,i,j 1 ,2 ,,n ) 通常要求
A 1 U A 2 U U A n S ( 或 A 1 U A 2 U P U (A A i)n 0 B ,) i1,2,,n
解 设Ai表示事件“任取的1件产品是第i组生生产的” (i=1,2,3,4),B表示“任取的1件产品是次品”.
P A1 0 .1 5 ,
P B A1 0 .0 5 ,
P A 2 0 .2 0 ,
P B A 2 0 .0 4 ,
P A 3 0 .3 0 ,
P B A 3 0 .0 3,
概率论-1-5条件概率
为在事件 A 发生的条件下事件B发生的条件概率.
同理可得 P( A B) P( AB) P(B)
为在事件 B发生的条件下事件 A发生的条件概率
3、条件概率的假设 同概率一样,条件概率也满足3条 文档.doc
4 条件概率的计算
1) 用定义计算
P( A
B)
P( AB) P(B)
, P(B)
0.
4 条件概率的计算
实际中还有另一类问题,即“已知结果求原 因”。
例7 在例6中将问题改为:某人从任一箱中任意 摸出一球,发现是红球,求该球是从1号箱取出 的概率(或该球取自哪号箱的可能性最大)。
这一类问题在实际中更为常见,它所求的是条 件概率. 接下来我们介绍为解决这类问题而引出的贝叶 斯公式.
例将7这的里求得解到:的公式一般P化(,B1就A得) 到贝P叶P( A(斯AB公)1)式
(*)例5 设某光学仪器厂制造的透镜, 第一次落下 时打破的概率为1/2,若第一次落下未打破, 第二次 落下打破的概率为7/10 , 若前两次落下未打破, 第 三次落下打破的概率为9/10.试求透镜落下三次而 未打破的概率.
解 以Ai (i 1,2,3)表示事件"透镜第 i 次落下打破",
以B 表示事件“透镜落下三次而未打破”. 因为 B A1 A2 A3 , 所以 P(B) P( A1 A2 A3 )
该公式于1763年由贝叶斯给出。它是在观察 到事件A已经发生的条件下,寻找导致A发生的 每个原因的概率。
贝叶斯公式在实际中有很多应用,它可以
帮助人们确定某结果(事件A)的最可能原因.
例8 某地区患有癌症的人占0.005,患者对 一种试验反应是阳性的概率为0.95,正常 人对这种试验反应是阳性的概率为0.04, 现抽查了一个人,试验反应是阳性,问此 人是癌症患者的概率有多大?
同理可得 P( A B) P( AB) P(B)
为在事件 B发生的条件下事件 A发生的条件概率
3、条件概率的假设 同概率一样,条件概率也满足3条 文档.doc
4 条件概率的计算
1) 用定义计算
P( A
B)
P( AB) P(B)
, P(B)
0.
4 条件概率的计算
实际中还有另一类问题,即“已知结果求原 因”。
例7 在例6中将问题改为:某人从任一箱中任意 摸出一球,发现是红球,求该球是从1号箱取出 的概率(或该球取自哪号箱的可能性最大)。
这一类问题在实际中更为常见,它所求的是条 件概率. 接下来我们介绍为解决这类问题而引出的贝叶 斯公式.
例将7这的里求得解到:的公式一般P化(,B1就A得) 到贝P叶P( A(斯AB公)1)式
(*)例5 设某光学仪器厂制造的透镜, 第一次落下 时打破的概率为1/2,若第一次落下未打破, 第二次 落下打破的概率为7/10 , 若前两次落下未打破, 第 三次落下打破的概率为9/10.试求透镜落下三次而 未打破的概率.
解 以Ai (i 1,2,3)表示事件"透镜第 i 次落下打破",
以B 表示事件“透镜落下三次而未打破”. 因为 B A1 A2 A3 , 所以 P(B) P( A1 A2 A3 )
该公式于1763年由贝叶斯给出。它是在观察 到事件A已经发生的条件下,寻找导致A发生的 每个原因的概率。
贝叶斯公式在实际中有很多应用,它可以
帮助人们确定某结果(事件A)的最可能原因.
例8 某地区患有癌症的人占0.005,患者对 一种试验反应是阳性的概率为0.95,正常 人对这种试验反应是阳性的概率为0.04, 现抽查了一个人,试验反应是阳性,问此 人是癌症患者的概率有多大?
《概率论讲义》PPT课件
(2) 规范性 : Fn 1;
(3) 可加性:对互斥事件A, B,有 Fn (A B) Fn (A) Fn (B)
推广 有限可加性: 若A1,A2,, Ak 两两 互不相容, 则
k
F n( Ai ) Fn ( A1) Fn ( A2 ) Fn ( Ak ). i 1
E2:将一枚硬币抛三次,观察正反面出现的情况. 2={HHH, THH,
HTH, HHT,HTT,THT,TTH,TTT }
E3:掷一颗骰子,观察点数.则 3={1,2,3,4,5,6}
1=1 2=2 6=6
E4:电话交换台一分钟内接到的呼唤次数.
4={0,1,2, }
1=0, 2=1, 3=2
0.5069
皮尔逊 12000
6019
0.5016
皮尔逊 24000
12012
0.5005
(二) 概 率
1 统计定义: 频率的稳定值P(A)反映了事件A在一次试 验中发生的可能性大小,称P(A)为事件A 的概率。
2 公理化定义:设为样本空间,A为事件, 对每一事件A赋予一实数P(A),如果P(A)满 足如下三条公理:
故有
P(i )
1 n
(n 1,2,, n)
若A {i1,i2 ,,ik }, 则有
P( A)
P(i1 )
P(i2 )
P(ik
)
k n
于是,P
( A)
k n
A包含的样本点数 样本点总数
例1. 设一袋中有编号为1,2,…,9的球共9只,
现从中任取3只,试求:
n1
且Ai Aj . 由概率的可列可加性得
(3) 可加性:对互斥事件A, B,有 Fn (A B) Fn (A) Fn (B)
推广 有限可加性: 若A1,A2,, Ak 两两 互不相容, 则
k
F n( Ai ) Fn ( A1) Fn ( A2 ) Fn ( Ak ). i 1
E2:将一枚硬币抛三次,观察正反面出现的情况. 2={HHH, THH,
HTH, HHT,HTT,THT,TTH,TTT }
E3:掷一颗骰子,观察点数.则 3={1,2,3,4,5,6}
1=1 2=2 6=6
E4:电话交换台一分钟内接到的呼唤次数.
4={0,1,2, }
1=0, 2=1, 3=2
0.5069
皮尔逊 12000
6019
0.5016
皮尔逊 24000
12012
0.5005
(二) 概 率
1 统计定义: 频率的稳定值P(A)反映了事件A在一次试 验中发生的可能性大小,称P(A)为事件A 的概率。
2 公理化定义:设为样本空间,A为事件, 对每一事件A赋予一实数P(A),如果P(A)满 足如下三条公理:
故有
P(i )
1 n
(n 1,2,, n)
若A {i1,i2 ,,ik }, 则有
P( A)
P(i1 )
P(i2 )
P(ik
)
k n
于是,P
( A)
k n
A包含的样本点数 样本点总数
例1. 设一袋中有编号为1,2,…,9的球共9只,
现从中任取3只,试求:
n1
且Ai Aj . 由概率的可列可加性得
概率论与数理统计图文课件最新版-第1章-第3-5节
(1). 有放回地抽取 设A:取到的两张都是中奖券
n : 第一次从盒中取,不论是否是中奖券,总是
从 6 张中取一张,第二次再从盒中取,仍是 有 6 张券可供抽取,故有:
P61 P61 36 (种)
k : 中奖券有 2 张,第一次取有 2 张可供抽取,
第二次取仍有 2 张可供抽取,故有:
P21 P21 4 (种)
即, 10个球中的任一个被 取出的机会是相等的,
均为1/10.
10个球中的任一个被取 出的机会都是1/10
所以称这类概率模型为古典概型.
概率统计
在此示例中, 若记 A={ 摸到2号球 } 2
则 P(A)=?
显然: P(A)= 1/10
若记 B={ 摸到红球 } 1 2 3 4 5 6
则 P(B)=?
从而: P( A) k 4 1 0.111 n 36 9
概率统计
nn:
(2). 不放回地抽取
n : P61 P51 30
k : P21 P11 2
从而: P( A) k 2 1 0.067 n 30 15
注 ▲ 若在此例中若将取法改为 “一次抽取两张” ,
其它条件不变则有:
概率统计
P(e1) P(e2) L L P(en)
又由于基本事件是两两互不相容的,于是:
P(S) P(e1Ue1UL L en)
P(e1) P(e2) L L P(en)
nP(ei)
而 P(S) 1
又由已知,
P(ei )
1 n
,
i 1, 2,L n
A ei1 U ei2 UL U eik , (1 i1 i2 L ik n)
(2).若首位数 2, 4, 6, 8 则有: P41 P41 P84
n : 第一次从盒中取,不论是否是中奖券,总是
从 6 张中取一张,第二次再从盒中取,仍是 有 6 张券可供抽取,故有:
P61 P61 36 (种)
k : 中奖券有 2 张,第一次取有 2 张可供抽取,
第二次取仍有 2 张可供抽取,故有:
P21 P21 4 (种)
即, 10个球中的任一个被 取出的机会是相等的,
均为1/10.
10个球中的任一个被取 出的机会都是1/10
所以称这类概率模型为古典概型.
概率统计
在此示例中, 若记 A={ 摸到2号球 } 2
则 P(A)=?
显然: P(A)= 1/10
若记 B={ 摸到红球 } 1 2 3 4 5 6
则 P(B)=?
从而: P( A) k 4 1 0.111 n 36 9
概率统计
nn:
(2). 不放回地抽取
n : P61 P51 30
k : P21 P11 2
从而: P( A) k 2 1 0.067 n 30 15
注 ▲ 若在此例中若将取法改为 “一次抽取两张” ,
其它条件不变则有:
概率统计
P(e1) P(e2) L L P(en)
又由于基本事件是两两互不相容的,于是:
P(S) P(e1Ue1UL L en)
P(e1) P(e2) L L P(en)
nP(ei)
而 P(S) 1
又由已知,
P(ei )
1 n
,
i 1, 2,L n
A ei1 U ei2 UL U eik , (1 i1 i2 L ik n)
(2).若首位数 2, 4, 6, 8 则有: P41 P41 P84
概率论ppt
当且仅当子集A中某个样本点出现时, 称事件A发生.
实例 抛掷一枚骰子, 观察出现的点数. 特别地:
基本事件 由一个样本点组成的单点集 实例 “出现1点”, “出现2点”, … , “出现6点”. 必然事件 随机试验中必然发生的事件. 实例 上述试验中 “点数不大于6” 就是必然事件. 不可能事件 随机试验中不可能发生的事件. 实例 上述试验中 “点数大于6” 就是不可能事件.
(2) 随机试验通常用 E 来表示.
实例 “抛掷一枚硬币,观 察正面、反面出现的情况”.
分析 (1) 试验可以在相同的条件下重复地进行;
(2) 试验的所有可能结果: 正面、反面;
(3) 进行一次试验之前不能 确定哪一个结果会出现.
故为随机试验.
同理可知下列试验都为随机试验. (1) 抛掷一枚骰子,观察出现的点数.
例如 只包含两个样本点的样本空间
{H,T}
它既可以作为抛掷硬币出现正面或出现反面的
模型 , 也可以作为产品检验中合格与不合格的 模型 , 又能用于排队现象中有人排队与无人排 队的模型等.
在具体问题的 研究中 , 描述随机 现象的第一步就是 建立样本空间.
三、随机事件及其发生
随机事件:
通俗地讲 随机事件是指随机试验中可能发生也 可能不发生的结果。 根据这个说法不难发现 随机事件和样本空间的 子集有一一对应关系!
Ω
.
样本点e
实例1 抛掷一枚硬币,观察正面,反面出现的情况.
1 {H ,T }.
H 正面朝上 T 反面朝上
实例2 抛掷一枚骰子,观察出现的点数.
2 {1, 2, 3, 4, 5, 6}.
实例3 从一批产品中,依次任选三件,记录出 现正品与次品的情况.
实例 抛掷一枚骰子, 观察出现的点数. 特别地:
基本事件 由一个样本点组成的单点集 实例 “出现1点”, “出现2点”, … , “出现6点”. 必然事件 随机试验中必然发生的事件. 实例 上述试验中 “点数不大于6” 就是必然事件. 不可能事件 随机试验中不可能发生的事件. 实例 上述试验中 “点数大于6” 就是不可能事件.
(2) 随机试验通常用 E 来表示.
实例 “抛掷一枚硬币,观 察正面、反面出现的情况”.
分析 (1) 试验可以在相同的条件下重复地进行;
(2) 试验的所有可能结果: 正面、反面;
(3) 进行一次试验之前不能 确定哪一个结果会出现.
故为随机试验.
同理可知下列试验都为随机试验. (1) 抛掷一枚骰子,观察出现的点数.
例如 只包含两个样本点的样本空间
{H,T}
它既可以作为抛掷硬币出现正面或出现反面的
模型 , 也可以作为产品检验中合格与不合格的 模型 , 又能用于排队现象中有人排队与无人排 队的模型等.
在具体问题的 研究中 , 描述随机 现象的第一步就是 建立样本空间.
三、随机事件及其发生
随机事件:
通俗地讲 随机事件是指随机试验中可能发生也 可能不发生的结果。 根据这个说法不难发现 随机事件和样本空间的 子集有一一对应关系!
Ω
.
样本点e
实例1 抛掷一枚硬币,观察正面,反面出现的情况.
1 {H ,T }.
H 正面朝上 T 反面朝上
实例2 抛掷一枚骰子,观察出现的点数.
2 {1, 2, 3, 4, 5, 6}.
实例3 从一批产品中,依次任选三件,记录出 现正品与次品的情况.
概率论课件(总)
则称P(A)为事件A的概率。
3.概率的性质
• • • • • • • • (1) 加法公式:若A与B为互斥事件,则有: P(AB)=P(A)+P(B ) (2)求逆公式: 设A、 A 互为对立事件,则有: P( A)=1-P( A ) (3)减法公式: 若AB,则 P(A-B)=P(A)-P(B) P(A)P(B) (4)广义加法公式:P(AB)=P(A)+P(B)-P(AB)
§1 概率论的基本概念
• 必然现象: 在一定条件下必然发生或必然
不发生的现象.
•随机现象: 在一定条件下可能出现这样的结 果,也可能出现那样的结果,结果 的出现呈现出一定的偶然性.
统计规律性
:
联想举例?
某一随机现象,其结果的出现就个别试验而 言好象没有规律性,但在大数次试验的情况 下又呈现出某种规律性。
二.随机事件
随机事件:随机试验的结果叫事件。因为结果的 出现是随机的,故也称为随机事件。随机事件常用 大写字母A、B、C、…等表示。 随机事件包括基本事件和复合事件。 基本事件:仅包含一个样本点的事件。 复合事件:包含两个及两个以上样本点的事件。 以掷一枚骰子为例,观察下列随机事件:
A={1}(表示掷出的点数是1) B= {1,2,3}; C={5,6} 样本空间S:S={1,2,3,4,5,6} 结论:随机事件可看作是样本空间的子集。
第一章 概率论基础
统计规律性 必然现象和随机现象 概率论是研究随机现象统计规律性的数 学学科. 概率论问题的起源: 1654年 De Mere Pascal(1623-1662) Fermat(1601-1665) 两赌徒各出32枚金币作为赌金,以先得3分 为赢。第一人现得2分,第二人仅得1分, 设赌局因故中断,问怎样分配赌金才算 公平?
3.概率的性质
• • • • • • • • (1) 加法公式:若A与B为互斥事件,则有: P(AB)=P(A)+P(B ) (2)求逆公式: 设A、 A 互为对立事件,则有: P( A)=1-P( A ) (3)减法公式: 若AB,则 P(A-B)=P(A)-P(B) P(A)P(B) (4)广义加法公式:P(AB)=P(A)+P(B)-P(AB)
§1 概率论的基本概念
• 必然现象: 在一定条件下必然发生或必然
不发生的现象.
•随机现象: 在一定条件下可能出现这样的结 果,也可能出现那样的结果,结果 的出现呈现出一定的偶然性.
统计规律性
:
联想举例?
某一随机现象,其结果的出现就个别试验而 言好象没有规律性,但在大数次试验的情况 下又呈现出某种规律性。
二.随机事件
随机事件:随机试验的结果叫事件。因为结果的 出现是随机的,故也称为随机事件。随机事件常用 大写字母A、B、C、…等表示。 随机事件包括基本事件和复合事件。 基本事件:仅包含一个样本点的事件。 复合事件:包含两个及两个以上样本点的事件。 以掷一枚骰子为例,观察下列随机事件:
A={1}(表示掷出的点数是1) B= {1,2,3}; C={5,6} 样本空间S:S={1,2,3,4,5,6} 结论:随机事件可看作是样本空间的子集。
第一章 概率论基础
统计规律性 必然现象和随机现象 概率论是研究随机现象统计规律性的数 学学科. 概率论问题的起源: 1654年 De Mere Pascal(1623-1662) Fermat(1601-1665) 两赌徒各出32枚金币作为赌金,以先得3分 为赢。第一人现得2分,第二人仅得1分, 设赌局因故中断,问怎样分配赌金才算 公平?
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
故 P(A)>0 , 则 P(AB)=P(A)P(B|A) (3)
概率论
乘法定理可以推广到多个事件的积事件的情况.
设 A、B、C 为三个事件 ,且 PAB 0 ,则
P ABC P A PB | A PC | AB.
一般地 ,设有 n 个事件 A1, A2, , An ,n 2 , 并且
PA1A2 An1 0 ,则由条件概率的定义 ,可得
在缩减样本空 间中A所含样 本点个数
概率论
掷骰子
概率论
例1 掷两颗均匀骰子,已知第一颗掷出6点,问 “掷出点数之和不小于10”的概率是多少?
解 设A={掷出点数之和不小于10}
B={第一颗掷出6点}
应用 定义
解法1 解法2
P(A
|
B)
P( AB) P(B)
3 6
36 36
1 2
P(A | B) 3 1 62
P
i 1
Bi
A
P
i 1
Bi
A
所以,有关概率的性质对条件概率都成立。
4. 条件概率的计算
1) 用定义计算:
P( A | B) P( AB)去算
例:A={掷出2 点},B={掷出偶数点}
P(A|B)= 1 3
B发生后的缩减 样本空间所含样 本点总数
概率论
随机取一个球,观看颜色后放 回罐中,并且再加进 a 个与所抽出
的球具有相同颜色的球.
r个红球,t个白球
解 设 Ai={第i次取出是红球}, i=1,2,3,4
Bj={第j次取出是白球}, j=1,2,3,4 于是A1A2B3B4表示事件“连续取四个球,第一
、第二个是红球,第三、四个是白球. ”
PA 8 , PB | A 8 , PC | AB 2 ,
10
10
10
概率论
PABC PC | ABPB | APA
2 8 8 16 . 10 10 10 125
2 无放回抽样
PA 8 , PB | A 7 , PC | AB 2 ,
10
9
8
PABC PC | ABPB | APA
27 8 7 . 8 9 10 45
概率论
例6 设某光学仪器厂制造的透镜 , 第一次落下时
打破的概率为 1 ,若第一次落下未打破 ,第二次落下 2
打破的概率是 7 ,若前两次未打破 , 第三次落下打
破的概率是
9
10 ,试求透镜落下三次未打破的概率 .
10
解设 Ai 透镜第 i 次落下打破 , (i 1, 2,3)
B 透镜落下三次未打破 , 则 B A1A2 A3 .
PB PA1A2 A3 PA1 PA2 | A1 PA3 | A1A2
1
1 2
1
7 10
1
9 10
3 200
.
概率论
本题也可以先求 PB ,再由 PB 1 PB 求得 PB .
由于 B A1 A1 A2 A1 A2 A3 并 , 且 A1, A1A2 , A1A2 A3 为两两不相容事件, 故有
在B发生后的缩减样本 空间中计算
概率论
二、 乘法公式 由条件概率的定义: P( A | B) P( AB) P(B)
若已知P(B), P(A|B)时, 可以反求P(AB). 即 若P(B)>0,则P(AB)=P(B)P(A|B) (2)
将A、B的位置对调,有
若 它P(们2(A)可和)>计(03,)算则式两P都(个B称A事为)=件P乘(同A法)时P公(发B式|生A, )的利概用率 而 P(AB)=P(BA)
概率论
第五节 条件概率
条件概率 乘法公式 小结 布置作业
概率论
一、条件概率
1. 条件概率的概念 在解决许多概率问题时,往往需要在有某 些附加信息(条件)下求事件的概率. 如在事件B发生的条件下求事件A发生的概率, 将此概率记作P(A|B).
一般地 P(A|B) ≠ P(A)
概率论
又如,10件产品中有7件正品,3件次品,7件正 品中有3件一等品,4件二等品. 现从这10件中任取 一件,记
概率论
用乘法公式容易求出
P(A1A2B3B4) = P(A1) P(A2|A1) P(B3|A1A2) P(B4|A1A2B3)
r ra t ta r t r t a r t 2a r t 3a
当 a > 0 时,由于每次取出球后会增加下一次 也取到同色球的概率. 这是一个传染病模型. 每次 发现一个传染病患者,都会增加再传染的概率.
同理,若P(A)>0,则称
P(B | A) P(AB) P(A)
为在事件A发生的条件下,事件B发生的条件概率.
概率论
3. 条件概率的性质
条件概率 P• | A具备概率定义的三个条件 :
1 非负性 : 对于任意的事件 B , PB | A 0 ;
2 规范性 : PS | A 1 ;
3 可列可加性 :设 B1, B2,是两两互斥事件 ,则有
PB PA1 A1A2 A1A2 A3
PA1 PA1A2 PA1A2 A3
1 2
P
A1
P
A2
|
A1
P
A1
A={取到一等品},B={取到正品}
则 P(A )=3/10, P(A|B) 3 3 10 P( AB) 7 7 10 P(B)
由此得到条件概率的定义如下
概率论
2. 条件概率的定义
设A、B是两个事件,且P(B)>0,则称
P( A | B) P( AB) (1) P(B)
为在事件B发生的条件下,事件A发生的条件概率.
P A1A2 An P A1 P A2 | A1 P A3 | A1A2 ...
P An1|A1A2 An-2 P An|A1A2 An1
概率论
乘法公式应用举例
(波里亚罐子模型)
t个白球, r个红球
一个罐子中包含 r 个红球和 t 个白球. 随机地抽 取一个球,观看颜色后放回罐中,并且再加进 a 个与所抽出的球具有相同颜色的球. 这种手续进行 四次 ,试求第一、二次取到红球且第三、四次取 到白球的概率.
概率论
例4 设袋中有 5 个红球 ,3 个黑球 ,2 个白球 , 试按
1 有放回抽样;2不放回抽样 两种方式摸球三次
每次摸得一球 ,求第三次才摸得白球的概率 .
解 设 A 第一次未摸得白球, B 第二次未摸得白球, C 第三次摸得白球.
则事件"第三次才摸得白球"可表示为ABC .
1 有放回抽样
概率论
乘法定理可以推广到多个事件的积事件的情况.
设 A、B、C 为三个事件 ,且 PAB 0 ,则
P ABC P A PB | A PC | AB.
一般地 ,设有 n 个事件 A1, A2, , An ,n 2 , 并且
PA1A2 An1 0 ,则由条件概率的定义 ,可得
在缩减样本空 间中A所含样 本点个数
概率论
掷骰子
概率论
例1 掷两颗均匀骰子,已知第一颗掷出6点,问 “掷出点数之和不小于10”的概率是多少?
解 设A={掷出点数之和不小于10}
B={第一颗掷出6点}
应用 定义
解法1 解法2
P(A
|
B)
P( AB) P(B)
3 6
36 36
1 2
P(A | B) 3 1 62
P
i 1
Bi
A
P
i 1
Bi
A
所以,有关概率的性质对条件概率都成立。
4. 条件概率的计算
1) 用定义计算:
P( A | B) P( AB)去算
例:A={掷出2 点},B={掷出偶数点}
P(A|B)= 1 3
B发生后的缩减 样本空间所含样 本点总数
概率论
随机取一个球,观看颜色后放 回罐中,并且再加进 a 个与所抽出
的球具有相同颜色的球.
r个红球,t个白球
解 设 Ai={第i次取出是红球}, i=1,2,3,4
Bj={第j次取出是白球}, j=1,2,3,4 于是A1A2B3B4表示事件“连续取四个球,第一
、第二个是红球,第三、四个是白球. ”
PA 8 , PB | A 8 , PC | AB 2 ,
10
10
10
概率论
PABC PC | ABPB | APA
2 8 8 16 . 10 10 10 125
2 无放回抽样
PA 8 , PB | A 7 , PC | AB 2 ,
10
9
8
PABC PC | ABPB | APA
27 8 7 . 8 9 10 45
概率论
例6 设某光学仪器厂制造的透镜 , 第一次落下时
打破的概率为 1 ,若第一次落下未打破 ,第二次落下 2
打破的概率是 7 ,若前两次未打破 , 第三次落下打
破的概率是
9
10 ,试求透镜落下三次未打破的概率 .
10
解设 Ai 透镜第 i 次落下打破 , (i 1, 2,3)
B 透镜落下三次未打破 , 则 B A1A2 A3 .
PB PA1A2 A3 PA1 PA2 | A1 PA3 | A1A2
1
1 2
1
7 10
1
9 10
3 200
.
概率论
本题也可以先求 PB ,再由 PB 1 PB 求得 PB .
由于 B A1 A1 A2 A1 A2 A3 并 , 且 A1, A1A2 , A1A2 A3 为两两不相容事件, 故有
在B发生后的缩减样本 空间中计算
概率论
二、 乘法公式 由条件概率的定义: P( A | B) P( AB) P(B)
若已知P(B), P(A|B)时, 可以反求P(AB). 即 若P(B)>0,则P(AB)=P(B)P(A|B) (2)
将A、B的位置对调,有
若 它P(们2(A)可和)>计(03,)算则式两P都(个B称A事为)=件P乘(同A法)时P公(发B式|生A, )的利概用率 而 P(AB)=P(BA)
概率论
第五节 条件概率
条件概率 乘法公式 小结 布置作业
概率论
一、条件概率
1. 条件概率的概念 在解决许多概率问题时,往往需要在有某 些附加信息(条件)下求事件的概率. 如在事件B发生的条件下求事件A发生的概率, 将此概率记作P(A|B).
一般地 P(A|B) ≠ P(A)
概率论
又如,10件产品中有7件正品,3件次品,7件正 品中有3件一等品,4件二等品. 现从这10件中任取 一件,记
概率论
用乘法公式容易求出
P(A1A2B3B4) = P(A1) P(A2|A1) P(B3|A1A2) P(B4|A1A2B3)
r ra t ta r t r t a r t 2a r t 3a
当 a > 0 时,由于每次取出球后会增加下一次 也取到同色球的概率. 这是一个传染病模型. 每次 发现一个传染病患者,都会增加再传染的概率.
同理,若P(A)>0,则称
P(B | A) P(AB) P(A)
为在事件A发生的条件下,事件B发生的条件概率.
概率论
3. 条件概率的性质
条件概率 P• | A具备概率定义的三个条件 :
1 非负性 : 对于任意的事件 B , PB | A 0 ;
2 规范性 : PS | A 1 ;
3 可列可加性 :设 B1, B2,是两两互斥事件 ,则有
PB PA1 A1A2 A1A2 A3
PA1 PA1A2 PA1A2 A3
1 2
P
A1
P
A2
|
A1
P
A1
A={取到一等品},B={取到正品}
则 P(A )=3/10, P(A|B) 3 3 10 P( AB) 7 7 10 P(B)
由此得到条件概率的定义如下
概率论
2. 条件概率的定义
设A、B是两个事件,且P(B)>0,则称
P( A | B) P( AB) (1) P(B)
为在事件B发生的条件下,事件A发生的条件概率.
P A1A2 An P A1 P A2 | A1 P A3 | A1A2 ...
P An1|A1A2 An-2 P An|A1A2 An1
概率论
乘法公式应用举例
(波里亚罐子模型)
t个白球, r个红球
一个罐子中包含 r 个红球和 t 个白球. 随机地抽 取一个球,观看颜色后放回罐中,并且再加进 a 个与所抽出的球具有相同颜色的球. 这种手续进行 四次 ,试求第一、二次取到红球且第三、四次取 到白球的概率.
概率论
例4 设袋中有 5 个红球 ,3 个黑球 ,2 个白球 , 试按
1 有放回抽样;2不放回抽样 两种方式摸球三次
每次摸得一球 ,求第三次才摸得白球的概率 .
解 设 A 第一次未摸得白球, B 第二次未摸得白球, C 第三次摸得白球.
则事件"第三次才摸得白球"可表示为ABC .
1 有放回抽样